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Abstract. In this paper, we will test the importance of music complex-
ity as a factor for melody recognition in multi voiced popular music.
The assumption is that the melody (or lead instrument) will contain the
largest amount of information – will be less redundant than the rest.
Measures of melodic complexity of pitch and timing are proposed. We
test the different complexity measures and different prediction strategies,
and evaluate them on the task of predicting which track of a MIDI file
that contains the main melody. Filtering out melody tracks can be use-
ful when searching large databases for similar songs. 108 melody track
annotated pop songs were included in the experiment.

1 Introduction

Locating the melody in music is a trivial listening task. Human listeners are
very effective in (unconsiously) picking out those notes in a – possibly complex –
multi-voiced piece that constitute the melodic line. Melody is also an important
aspect in music-related computater applications, for instance, in Music Informa-
tion Retrieval (e.g., in music databases that offer retrieval by melodic motifs [1]
or Query by Humming [2]).

Standard MIDI files are structured into tracks, and good sources have dif-
ferent instruments stored on different tracks. Current work of ours describes a
method for locating the notes constituting a likely melody throughout a piece of
classical music stored in a MIDI file [3]. The melody is constructed from notes
from different instruments of the piece.

In this paper we assume that the melody role will be taken by a single
instrument throughout the piece. This assumption is expected to hold in popular
music. We address the problem of finding the single track of a MIDI file that
holds the main melody of a pop song. Melody track identification is useful in
systems that indend to change aspects of the melody in a MIDI file, e.g. changing
the instrument or muting the melody in order to create a file suitable for karaoke.

2 Complexity and Melody Perception

The basic motivation for our model of melody track identification is the obser-
vation, which has been made many times in the literature on music cognition,



2

that there seems to be a connection between the complexity of a musical line,
and the amount of attention that will be devoted to it on the part of a listener.
A voice introducing new or surprising musical material will potentially attract
the listener’s attention. However, if the new material is constantly repeated, we
will pay less and less attention to it and become habituated or accustomed to
the stimulus. Less attention is required from the listener and the voice will fall
into the background [4]. The notion of musical surprise is also related to the
concepts of ‘expectation’, ‘realisation’ and ‘denial’, as they have been put forth
in recent music theories [5, 6]. If we assume that the melody is the musical line
that commands most attention and presents most new information, it seems nat-
ural to investigate melodic complexity measures as a basis for melody detection
algorithms.

Indeed, the idea of using information-theoretic complexity measures to char-
acterise aspects of musical development is not at all new. For instance, to cite
just two, in [7], a measure of Information Rate [8] computed over a piece of music
was shown to correlate in significant ways with familiarity ratings and emotional
force response profiles by human human subjects. In [9] it was shown that kernel-
based machine learning methods using a compression-based similarity measure
on audio features perform very well in automatic musical genre classification.

3 Related Work

Current work of ours [3] indicates that in classical music, the complexity or in-
formation content of a sequence of notes may be directly related to the degree to
which the note sequence is perceived as being part of the melody. The algorithm
described in [3] predicts locally at any point in the music the notes expected to
belong to the melody (the algorithm also requires the music to be divided into
tracks or voices). The complexity is measured in terms of entropy of notes in the
musical surface.

The problem addressed in this paper is somewhat similar. The melody is now
expected not to change between the tracks, so a single track must be predicted.
This calls for a different prediction strategy. In addition to the local measures of
complexity, also global complexity measures based on entropy and compression
of entire tracks are examined. A different evaluation data set is required as well
– we have tested our hypothesis on popular music, assuming the melody is not
likely to change between the tracks.

Melody track identification has recently been examined from a feature ex-
traction and melody/accompaniment learning point of view[10, 11]. Statistical
properties of tracks and of note material (pitches, intervals, and note durations)
from melody and non-melody tracks can be learned to build a classifier. This
approach seems to work quite well. We consider our contribution to be able to
fit very well into or extend these models, providing a few, but very significant
features.
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4 Music Complexity Measures

Shannon’s entropy [12] is a measure of randomness or uncertainty in a signal.
If the predictability is high, the entropy is low, and vice versa. We will apply
this measure to music in a suitable encoding. Let X = {x1, x2, . . . , xn} and
p(x) = Pr(X = x) then the entropy H(x) is defined as:

H(X) = −
∑

x∈X

p(x) log
2
p(x) (1)

X could for example be the set of MIDI pitch numbers and p(x) would then
be the probability (estimated by the frequency) of a certain pitch. In the case
that only one type of event (one pitch) is present in the current time window,
that event is highly predictable or not surprising at all, and the entropy is 0.
Entropy is maximised when the probability distribution over the present events
is uniform.

4.1 Entropy of Musical Dimensions

We are going to calculate entropy of ‘features’ extracted from sequences of notes.
We will use features related to pitch and duration of the notes. A lot of features
are possible: MIDI pitch number, MIDI interval, pitch contour, pitch class, note
duration, inter onset interval (IOI) etc. (cf. [13]). We will test the following three
basic ones:

1. Pitch class (C): consider the list of notes as a list of pitch class events (the
term pitch class is used to refer the ‘name’ of a note, i.e., the pitch irrespective
of the octave, such as C, D, etc.);

2. MIDI Interval (I): encode the list of notes as a list of melodic intervals
between consequtive notes (e.g., minor second up, major third down, . . . );

3. Inter onset interval (O): encode the list of notes in terms of inter onset
interval classes, where the classes are derived by discretisation (a IOI is
given its own class if it is not within 10% of an existing class).

Each encoding then yields a sequence of events from a given sequence of notes,
and entropies can be calculated from the frequencies of these events resulting in
the following three basic measures: HC , HI , and HO. Two weighted combinations
of the basic features will also be tested: HCO = 1

2
(HC + HO) and HCIO =

1

4
(HC + HI) + 1

2
HO.

Entropy is also defined for a pair of random variables with joint distribution:

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log
2
[p(x, y)] (2)

We will test two joint entropy measures: Pitch class in relation to IOI (HC,O)
and interval together with IOI (HI,O). These are expected to be more specific
discriminators.
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The model is not using information related to performance aspects of the midi
file although an actual performance might influence the listener’s experience of
the piece. What we try to measure is solely the information present in the musical
surface.

4.2 Compression by Substitution

The entropy function is a purely statistical measure related to the frequency of
events. No relationships between events is measured. For example, the events
abcabcabc and abcbcacab will result in the same entropy value. However, if
we were to remember the first string we would probably think of something like
three occurrences of the substring abc – we infer structure. According to Snyder,
we perceive music in the most structured way possible [4].

To account for this, complexity measures based on compression could be con-
sidered. Music that can be compressed a great deal (in a lossless way) can then
be considered less complex than music that cannot be compressed. Shmulevich
and Povel [14] have examined methods for measuring the complexity of short
rhythmic patterns which are supposed to repeat infinitely. Tanguiane’s measure
[15] is based on the idea that a rhythmic pattern can be described as elaborations
of simpler patterns. Methods exist that substitute recurring patterns with a new
event, and store the description of that pattern only once, e.g. run-length encod-
ing or LZW compression [16]. This idea has been discussed in several musical
application contexts (e.g., in Music Information Retrieval [9] or in automated
music analysis and pattern discovery [17]).

LZW compression is not well suited for compressing short sequences – we
will examine compression of entire tracks as a melody prediction method in
section 5.3.

5 Prediction Models

We are going to test three prediction models, all capable of producing a melody
track prediction, when presented with a MIDI file. The methods will be tested
with several encodings of the music, in order to see which variations result in
the highest prediction correctness.

First some assumptions about the MIDI files have to be made. A MIDI file
can have all events stored on a single track. However, the type of data we are
interested in for this experiment are polyphonic pieces that have already been
‘streamed’ into voices or tracks. Stream separation is a music analysis problem
on its own. Although recent work by the authors [18] indicates that this can be
solved quite effectively via heuristic search, the MIDI files we use in the current
experiments have instruments stored on separate tracks.

The methods we apply to the tracks assume that the tracks are more or
less single-voiced (do not contain chords). Methods for reducing a polyphonic
track into a representative monophonic sequence of notes where no notes are
overlapping in time, are often referred to as skyline-algorithms. Some variants are
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suggested by Uitdenbogerd and Zobel [19]. We do not require total monophony of
the tracks, but a simple reduction step is adopted. Notes having onsets separated
by no more than 35 ms are assumed to onset at the same time and are treated
as a chord. For every chord in every track, only the highest pitched note is taken
into account.

5.1 Entropy-based Local Prediction

This method considers the note material through a sliding window. The window
is advanced from the beginning to the end in steps of 200 ms. Notes sounding
simultaneously with any part of the window are considered to be present in that
window.

For each track present in a window, a complexity value calculated on the
features extracted from the ‘sky-lined’ note sequence is calculated (e.g. HC ,
entropy of the pitch classes of the events). The track yielding the highest entropy
value is the ‘winner’ of that window. Summing the winners over all windows gives
a prediction of which track contains the most complex voice for the longest time.
This voice will be predicted as the melody.

Different window sizes of 6, 9, 12, and 15 seconds have been examined, each
in combination with the 7 feature encodings presented in section 4.1.

5.2 Entropy-based Global Prediction

A simple variant of the local prediction method is to calculate the entropy of the
entire track, and predict the track with the overall greatest complexity. This is
also done in the 7 different encodings of the music.

5.3 Compression-based Global Prediction

This model predicts the track that can be compressed the least with an imple-
mentation of the LZW algorithm [16].

Sequences of events are transformed into strings of letters – one letter for each
event type. The size of the string s before and after compression is recorded, and
a compression ratio r = size(lzw(s))/size(s) is calculated. The track resulting
in the highest compression ratio – the track believed to be the most complex
voice – is predicted as the melody.

Applying the compression algorithm to short strings is likely to actually
expand the string (r > 1.0), giving misleading results. Simply ignoring all non-
compressable tracks proved to be an unfruitful strategy. Instead tracks with
less than 100 events were given an artificial ratio of 0.0 – taking them out of
competition for the melody selection.

We examine the following encoding possibilities of the events in the tracks:
Pitch Class, Interval, IOI, Pitch Class × IOI, and Interval × IOI.
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6 Experiments and Results

The prediction algorithms have now been described, and we can run the experi-
ments. We want to test the hypothesis that we tend to listen to the most complex
voice at all times, and that this voice is experienced as melody. Popular music
in indeed often made in such a way that many accompanying instruments play
a pattern or a figure most of the time. All our prediction models are designed
to predict the least redundant voice. If the melody really is less repetitive than
the accompaniment, our methods will exploit this.

6.1 The Data

The prediction algorithms have been tested on two data sets compiled of MIDI
files found on the Internet. The first is a set of popular songs from the 70’s
to the 90’s (‘Traditional’) – 79 files of pop and rock music hits, film themes
etc., (e.g. ‘Africa’ (Toto), ‘Cant Help Falling In Love’ (UB40), ‘Country Roads’
(John Denver), ‘Blueberry Hills’ (Fats Domino)). The second set (‘Modern’)
contains 29 songs downloaded from an Internet MIDI file download site – all
were found among the most popular 50 songs in September 2006 (artists like 50
Cent, Britney Spears, Evanescence, Linkin Park, and Maroon5).

All files were manually annotated by a trained musicologist, and a single
track was annotated as the melody (however, in case of more tracks representing
the melody in unison, all these tracks were annotated). More files were originally
downloaded, but a great deal of files were found to be single track MIDI files,
and then discarded. In a few cases cases the melody was found to be shifting so
much between different tracks, that the annotator was not able to decide which
was the main melody. Such files were also omitted.

The files in the Traditional data set contain each between 3 and 24 tracks –
9.05 tracks on average per file. The Modern data set between 5 and 21 tracks –
11.0 on average. A theoretical baseline for the classification task can be calculated
by averaging the number of melodies (in unison) per file divided by the number of
tracks per file. This tells us that by random guessing we would be able to achieve
15.3% of the melody tracks correct in the Traditional data set, and 10.6% correct
in the other.

6.2 Results

Table 1 shows the prediction results from the classification experiments based on
entropy. For each data set, we list local window-based prediction for four window
sizes, and the results of global classification via entropy of the entire track. In
each experiment (column) the value of the most successful predictor has been
highlighted.

The numbers in the last row (Pi) correspond to a baseline experiment using
just the average pitch as a measure instead of entropy (predicting the highest
pitched voice in each window/track). This simple strategy can compete with
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Correctness (%), Traditional Correctness (%), Modern

Measure 6 s 9 s 12 s 15 s track 6 s 9 s 12 s 15 s track

HC 25.3 24.1 29.1 30.4 22.8 27.6 27.6 27.6 27.6 13.8
HI 27.8 29.1 29.1 26.6 24.1 20.7 20.7 24.1 24.1 10.3
HO 48.1 49.4 51.9 50.6 34.2 62.1 58.6 58.6 55.2 37.9
HCO 48.1 48.1 48.1 46.8 35.4 55.2 51.7 51.7 51.7 37.9
HCIO 43.0 48.1 49.4 49.4 41.8 51.7 55.2 51.7 51.7 37.9
HC,O 32.9 41.8 48.1 49.4 34.2 41.4 48.3 58.6 58.6 37.9
HI,O 30.4 39.2 43.0 43.0 39.2 31.0 37.9 51.7 51.7 41.4

Pi 50.6 45.6 44.3 43.0 36.7 34.5 34.5 34.5 34.5 20.7

Table 1. Entropy-based prediction results

the other strategies in the Traditional data set, but is not of much use when
estimating the melody track in the Modern collection.

Table 2 lists the results of the compression based approach. When looking
at the tracks globally, LZW compression of events seems to be a better strategy
than taking the entropy of the events, which in turn is better than just picking
the highest pitched voice – at least under the conditions examined.

Encoding Correctness (%), Traditional Correctness (%), Modern

C 32.9 20.7
I 32.9 31.0
O 43.0 51.7

HC,O 39.2 37.9
HI,O 39.2 41.4

Table 2. Compression-based prediction results

The most significant finding is that the measures based solely on timing infor-
mation of the tracks (IOI) are the most successful classifiers. It tells us that there
is a strong correlation between rhythmic complexity and melody perception. It
could derive from the simple fact that the melody in popular music is strongly
related to producing the words of the song, which then might have a more com-
plex emphasis pattern or just rhythmical interpretation than any accompanying
instruments.

The melody prediction models are far from perfect. The algorithm is often
mislead when there is a solo instrument in the music, that can take over the role of
being the instrument we would prefer to listen to for a longer while. Instruments
contantly playing small ‘fills’ also attract the attention of our prediction models.

In some songs the accompaniment is simply more important than the melody
e.g. when the melody is moving ‘slowly’ by sustaining long notes. Again the lyrics
of the song might be an important factor: the melody can be percieved as the
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most important voice simply because it expresses meaning through words. We
are not going to catch this kind of complexity from the MIDI file.

7 Conclusion

Methods for measuring complexity in music were proposed, and used as a basis
for melody track prediction models. The different measures and prediction mod-
els were tested on two data sets of popular music. The significance of different
parameter settings of the models was reported.

Although our models do not comprise the entire truth about the concept
of melody, our recognition rates tells us that complexity alone is certainly an
important factor. Besides testing our approach on more data, we expect that
the way to continue is to combine our research with a statistical approach. Since
our approach is not hooked up on any learned average values, we expect it to be
a valuable addition to these kind of systems.
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