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Abstract
This paper presents an algorithm for converting midi events

into logical voices. The algorithm is fundamentally based

on the pitch proximity principle. New heuristics are intro-

duced and evaluated in order to handle unsolved situations.

The algorithm is tested on ground truth data: inventions and

fugues by J. S. Bach. Due to its left to right processing it

also runs on real time input.
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1. Introduction

Voice separation or stream separation is the task of dividing

a set of notes into most likely voices or auditory streams as

it was coined by Bregman [1]. Adding voice information

to notes is essentially adding structure to complex data. An

obvious application that can benefit from a voice separation

algorithm is music transcription, but a reliable stream sepa-

ration algorithm could also be useful in music analysis sys-

tems. For MIR systems based on monophonic techniques –

such MIR applications could be query by humming or theme

finding – voice information is a prerequisite. This particular

separation algorithm is intended to be used for online analy-

sis of performed music.

2. Related work

A handful of existing approaches for separating voices has

been published.

Cambouropoulos [2] and Kilian and Hoos [3] propose

algorithms aiming at transcription applications. The latter

method uses a stochastic local search based on a paramet-

ric cost function. The main feature of this approach is the

ability to assign chords to a single voice.

Other algorithms aim at being able to reproduce the voices

as they are perceived or exactly as they were written in the

score. Kirlin and Utgoff [4] propose a data driven approach

where a same-voice predicate is learned and later used to

separate new music.
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Chew and Wu [5] attack the problem by splitting the

piece into ‘contigs’ where the number of voices is constant.

Contigs are then combined using pitch proximity.

Temperley [6] lists well-formedness rules and preference

rules (GTTM style [7]) and uses dynamic programming to

minimize the cost function balancing the preferences. Our

method is highly inspired by this approach as we shall see

in Section 4.

The algorithms differ in the way they determine the num-

ber of voices they will produce. The methods described by

Cambouropoulos, and Chew and Wu use as many voices as

there are notes in the largest chord in the input file. Kilian

and Hoos require an input value of desired maximum num-

ber of voices voices, whereas Kirlin and Utgoff and Tem-

perley decide this dynamically.

In order to be able to do real time voice separation, we

will pursue the approach of ‘left to right’ processing, as

well as dynamically opening and closing voices as they are

needed.

2.1. Gestalt principle of proximity

All methods are in some way or another dependent on the

principle of pitch proximity when grouping notes into se-

quences.

If two note sequences are played simultaneously but sep-

arated somewhat in pitch, we tend to perceive them as two

separate voices – the notes sequentially group together in

two melodies. This is even true when the notes are played

in alternation (see Figure 1). Pseudo-polyphony is the term

for this phenomenon when one sequence of notes gives the

impression of two melodies. The impression weakens when

the sequence is played slowly (longer time between note on-

sets). The impression increases when the pitch separation is

greater. Huron reports limit values for when events in a se-

quence will separate or fuse [8].

3. Quantizing the MIDI events

A MIDI file contains events with information about note on-

sets and offsets – we need to construct notes from that infor-

mation. The algorithm processes events in groups of notes

approximately beginning at the same time. MIDI events are

processed in their time stamp order. Notes having onsets

separated by no more than 35 ms are assumed to onset at the

same time and are treated as a chord (onset group).
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Figure 1. When two pitch sequences are interleaved, the two

sequences will seem to fuse into a single stream if they are close

together in pitch (b); otherwise they will seem to form two in-

dependent streams (a) [6].

The algorithm processes the groups of onsetting notes in

time order. Note that only notes onsetting (approximately)

simultaneously are member of the same group. Notes sus-

tained from past onset groups are not included. Such notes

are said to be busy at group time tg (tg is the start time of the

first onsetting note in the group) when they have not ended

before 80 ms after tg . We shall use this later to determine if

a voice is occupied by a note at any given group time.

When the input is a file, all notes are constructed at the

beginning and afterwards the groups are determined and the

separation begins. From real time input notes and groups

are created on the fly.

4. The algorithm

Inspired by Temperley’s well-formedness rules we will state

some requirements the algorithm must assure:

• Each note must be assigned to exactly one voice

• A voice must not contain overlapping notes (must con-

sist of temporally contiguous notes)

Voices are not allowed to contain notes sounding at the

same time – we want the resulting voices to be entirely

monophonic melodies. Furthermore the following will be

preferred:

• Minimize leaps between notes in all voices

• Minimize the number of voices

• Minimize the number of rests within a voice (end a

voice instead of introducing long rests)

In contrast to most of the existing algorithms voice cross-

ing is not prohibited. Making voices cross from one onset

group to the next is always more costly than making them

continue the shortest path to the next notes (when the notes

in each group have distinct pitches) and will thus not be a

preferred choice. We shall later return to the issue of han-

dling groups containing equal pitched notes.

The algorithm is implemented with a voice configuration

unit generating valid (well formed) solutions and a note as-

signment unit calculating the preferred-ness of a solution us-

ing a parameterized cost function. There is a cost related to

starting and ending a voice, inserting a rest (not assigning

a note to an open voice) and there is a cost function of the

leap size (for example the number of semitones). The hope

is that the cheapest solution – given appropriate parameters

– now corresponds to the correct one.

The optimal voice configuration and note assignment of

a group gi is highly dependent on the surrounding groups.

We cannot consider the entire search space at once. Instead

the separation happens iteratively with a small lookahead.

When determining the best configuration and assignment

(ca) for gi we consider for example all possible configura-

tions and assignments for gi, gi+1, and gi+2. Each ca has a

cost so the total cost of the lookahead is ca(gi)+ca(gi+1)+
ca(gi+2). The ca for gi leading to the cheapest solution

when including the lookahead is finally applied.

In a given iteration, the well-formedness part of the algo-

rithm makes sure that enough voices will be open (at least

as many voices as there are notes in the group have to be

open). Different configurations of incrementally opening

more voices (up to the size of the group) and closing voices

that are not needed are all evaluated.

The notes in g then have to be assigned to the open voices.

Rests are added to open voices that have not been assigned

any note (in the case there are more voices than notes to be

assigned). All possibilities of assigning notes to the voices

are evaluated. The cost of assigning a note to a voice is

the pitch difference (or a function of the pitch difference)

between that note and the previous note in the voice. The

cost of assigning a rest is proportional to the duration of the

group; the duration of a group is the time span to the follow-

ing group.

The search algorithm uses a ‘branch and bound’ heuristic

to prune the search space. When a solution is found, its

cost is stored. Other possible solutions are not evaluated to

the end if their cost-so-far already exceed the best solution’s

cost.

5. Evaluation methods

We have tested the algorithm mainly on the 15 two and 15

three part inventions by J. S. Bach (BWV 772-801) as well

as the 48 fugues from the Well Tempered Clavier (BWV

846-893) from the same composer – the ‘chewBach’ data

set also used by Chew and Wu in [5]. The inventions were

obtained from www.bachcentral.com and the fugues from

www.musedata.org. Voices are stored on different tracks in

the midi file, providing the ground truth.

The separation algorithm assigns notes to voices. The

question is now how well the voices correlate to the actual

voices in the input data. Two evaluation procedures will

be used: soundness and completeness as suggested by Kir-

lin [4].

Soundness is calculated by running through the notes in

the ground truth streams, and for each adjacent pair deter-

mine if the notes were really assigned to the same voice.
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Table 1. Evaluation in soundness and completeness

Exp. Soundness (errors) Completeness

1 94.25 % (4077) 66.70 %

2 94.34 % (4013) 69.47 %

3 94.79 % (3692) 73.76 %

4 97.21 % (1979) 67.83 %

5 97.44 % (1812) 71.31 %

6 97.58 % (1717) 71.58 %

A percentage will be returned. Soundness thus counts the

percentage of ‘right transitions’ between notes.

Completeness on the other hand indicates how well the

algorithm actually assigns notes from the same voice to the

same stream. To give an example: consider two ground

truth melodies consisting of 50 notes each. They do not

cross. If a separation makes the streams cross exactly af-

ter the 25th note in each stream (let’s assume that’s pos-

sible), and otherwise makes no errors, soundness will be

97.96 % (96/98) and completeness 50%. Completeness is

comparable to Chew and Wu’s average voice consistency

measure [5].

As in [5] we also end the separation where a ground truth

voice becomes non-monophonic.

6. Experiments and results

To reduce calculation time for the experiments in this sec-

tion, we adopted the policy of only opening up to one more

stream than needed (instead of op to the number of the notes

in the group) in the voice configuration unit. Thus if two

streams are present, and two notes are to be assigned, we

check the possibilities of opening none and opening one ad-

ditional stream – not two more, which in theory would also

be possible, since any note can start a stream. When more

streams are present than notes to be assigned, we do not try

opening new streams (but only closing).

To run the algorithm we need to specify cost values for

opening and closing voices together with a cost value for

rests (the value is per second). In the first experiment we

set copen, cclose, and crest to 50 and lookahead to 3 groups.

The leap cost is simply the number of semitones. The re-

sult of Experiment 1 is shown in Table 1. A total of 70874

note transitions were examined in the soundness evaluation.

The algorithm seems to perform better when evaluated for

soundness than completeness. One factor influencing this is

that the number of voices found necessary to separate the

files (from 2 to 24) are higher than the actual number of

voices in the inventions and fugues (2-5).

To compensate for this we introduce a small post process-

ing step, trying to recombine ended voices with voices be-

ginning later on. The assumption that closed streams will

later reappear seems to be somewhat plausible in the chew-

Bach data set, but it might not hold in all types of music.

The concatenation of streams has a greater impact on com-

pleteness than on soundness, see Experiment 2 in the table.

This approach is used in all experiments below.

A side effect of allowing voices to cross is the following:

when two voices jump in the same direction, and the lower

voice ends above the previous pitch of the upper voice, the

sum of the leaps will be the same whether the voices cross

or not. Adding a small non-linear term will make the algo-

rithm prefer two intermediate-sized leaps over a large and a

small, and thus prefer the shortest path for both voices. Ex-

periment 3 was done with the leap cost function: cost(d) =
d + 0.05d2. This function will be used in the remaining ex-

periments. Again the improvement primarily concerns com-

pleteness.

Other cost parameters might be a better choice. In Exper-

iment 4 we have chosen the following parameters: copen =
100, cclose = 20, and crest = 50. An improvement in

soundness is introduced, but completeness drops. These val-

ues will be used in the remaining experiments.

Notes sharing both pitch and duration (group) are unsep-

arable. We can only hope that they will be assigned to cor-

rect voices. There are 78 occurrences of this phenomenon

in the data. We can expect our separation to handle these

situations correctly in half of the occurrences. In 273 situ-

ations notes from different voices begin on the same pitch,

and in 135 situations voices end on the same pitch – in both

cases the durations are not equal. Voices coming together in

unison are furthermore likely to cross, which result in errors

primarily influencing the completeness measured. A way to

avoid this could be by preferring a voice to continue close

to the previous pitch it possessed. So when two voices jump

into unison, they will try to part again without crossing. By

adding 1/20 of the leap cost between this note and the sec-

ond last note, we notice an improvement in completeness –

see Experiment 5 in Table 1. This strategy is also used in

the following experiment.

In Experiment 6 a new strategy is introduced: pattern

matching. The idea is that previously heard sequences will

be perceived in that way again. When a solution is consid-

ered, the solution is preferred, if the intervals between the

last 5 notes in the voice(s) are already present somewhere

in existing voices. We simply perform a search in all ex-

isting voices at the given time to see if the sequence previ-

ously occurred. Exact matching of pitches is used and no

duration information is taken into account in this simple ap-

proach. On some files the effect is more positive than on

other. By letting pattern matching compete with or overrule

the pitch proximity rule in this way, new errors are naturally

introduced. Overall only a small improvement is obtained

in both soundness and completeness.

Changing the cost parameters in Experiment 4 caused a

large impact on both soundness and completeness. With

the danger of overfitting, we plan to do a stochastic search,

optimizing soundness and completeness respectively in or-

der to see how far we can go on this data set by using the



‘right’ parameters. Many pieces can be quite nicely sepa-

rated with the tools at hand, but by using file specific pa-

rameters. Preliminary experiments show that when mini-

mizing the total number of errors (optimizing soundness)

using an evolutionary algorithm, we are not likely to get

much further. Using the settings from Experiment 5, but

with the values (copen, cclose, crest) = (96.4, 9.2, 95.2) we

get a soundness of 97.60% and a completeness of 71.13%.

However, when optimizing completeness, it is possible to

reach at least 79.68% by using the values (64.0, 98.5, 21.3)

(soundness is then 94.62%).

We did a final attempt to improve the performance with

respect to completeness. It can be noted that voices that

cross tend to cross back again after a (short) while. We have

run a few experiments preferring voices that cross each other

an even number of times. Experiments showed it possible to

gain some completeness (81.70%) while losing some sound-

ness (94.73%).

6.1. Error analysis

The principle of pitch proximity is not enough to solve all

problems in voice separation completely. However some

of the mistakes committed by the algorithms making use of

the principle are not clear to the perceiver. A common sit-

uation is when a voice ends, and one of the other voices

present immediately jumps to a pitch close to the one the

ending voice was playing. This situation makes the algo-

rithm prefer to end the leaping voice and continue the end-

ing. Pattern matching was expected to be able to handle

some of these situations, by preferring that reoccurring ma-

terial should not be divided into different streams. The effect

of pattern matching on voice separation deserves a study on

its own – we expect to do more research along these lines.

In many cases the principle of ‘good continuation’ could

be a helping hand: prefer voices to have a logical continua-

tion of what they recently were ‘doing’: prefer to continue

in a way that reinforces any kind of musical ‘idea’ in pitch

and/or rhythm. Since the percept of parallelism in music can

be created by many compositional means, this heuristic will

be hard to implement. However in cases where a musical

idea is transferred from voice to voice, this approach would

fail.

A systematic approach of locating errors and categoriz-

ing them could be useful but has not yet been pursued. This

could give statistical evidence of which problems are most

fruitful to solve.

7. Conclusion

A stream separation algorithm has been presented. The al-

gorithm performs well on highly polyphonic music by Bach

– most convincing when measuring the performance in sound-

ness. Regarding completeness Chew and Wu’s algorithm is

clearly ahead (they report 88.98%, but provide no evaluation

directly comparable to our measure of soundness).

However our method has other advantages: the real time

processing ability including the dynamic opening and clos-

ing of streams. When connecting a MIDI instrument the in-

put can almost immediately be viewed as separated voices.

The border between single melody and pseudo-polyphony

(the fusion of alternating notes) can be demonstrated.

In performed music, onset and offset of notes are most

often not as strictly proportional to the notated values in

the scores, as is the case with our Bach files rendered from

scores. More intelligent means of quantizing the data are

required – for example beat tracking could be useful when

determining the onset groups (see [9]).

We are planning to use the separation algorithm for on-

line analysis of performed music.

8. Acknowledgments

This research was supported by the Viennese Science and

Technology Fund (WWTF, project CI010). The Austrian

Research Institute for AI acknowledges basic financial sup-

port from the Austrian Federal Ministries of Education, Sci-

ence and Culture and of Transport, Innovation and Technol-

ogy.

References

[1] Albert S. Bregman. Auditory Scene Analysis. The Perceptual

Organization of Sound. The MIT Press, Cambridge, Massa-

chusetts, 1990.

[2] Emilios Cambouropoulos. From midi to traditional musi-

cal notation. In In Proceedings of the AAAI’2000 Workshop

on Articial Intelligence and Music, Austin, TX, 2000. AAAI

Press.

[3] Jürgen Kilian and Holger H. Hoos. Voice separation: A

local optimisation approach. In Michael Fingerhut, editor,

Proceedings of the Third International Conference on Music

Information Retrieval: ISMIR 2002, pages 39–46, 2002.

[4] Phillip B. Kirlin and Paul E. Utgoff. VoiSe: Learning to seg-

regate voices in explicit and implicit polyphony. In Joshua D.

Reiss and Geraint A. Wiggins, editors, Proceeding of the

Sixth International Conference on Music Information Re-

trieval: ISMIR’05, pages 552–557, 2005.

[5] Elaine Chew and Xiaodan Wu. Separating voices in poly-

phonic music: A contig mapping approach. In Proceedings

of the Second International Symposium on Computer Music

Modeling and Retrieval (CMMR’04)), volume 3310 of Lec-

ture Notes in Computer Science, pages 1–20. Springer, 2004.

[6] David Temperley. The Cognition of Basic Musical Struc-

tures. MIT Press, Cambridge, MA, 2001.

[7] Fred Lerdahl and Ray Jackendoff. A Generative Theory of

Tonal Music. MIT Press, 1983.

[8] David B. Huron. Tone and voice: A derivation of the rules of

voice-leading from perceptual principles. Music Perception,

19(1):1–64, 2001.

[9] Fabien Gouyon and Simon Dixon. A review of auto-

matic rhythm description systems. Computer Music Journal,

29(1):34–54, 2005.


