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ABSTRACT 
This paper examines the assumption that we continuously 
while listening tend to focus on the most complex (least 
repetitive) voice, experiencing this as foreground. We pre-
sent a computational model calculating the level of attrac-
tion a voice in a score is likely to require at a given time. 
The model is based on a music information complexity 
measure. Calculating the complexity in each voice over a 
short time window, the model predicts the most complex 
voice to be the most interesting to listen to. The capability 
of the model is evaluated in terms of melody prediction. 
With promising results the predicted notes are compared to 
melody annotated scores. We discuss how to measure mu-
sic complexity of pitch and rhythm, and examine which 
factors are the most important in the perception of music. 
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INTRODUCTION 
Music can be seen as a carrier of information. In this paper 
we present ideas for calculating the amount of information 
present in different parts in a composition at a given time. 
The information measures will be calculated from the struc-
tural core of music alone: the score – not considering tim-
bre and performance aspects of the music. 

 
 

CALCULATING COMPLEXITY 
The music information measures are intended to calculate 
whether a voice in a short period is a carrier of continuity or 
change. Continuity should lead to a low complexity rate and 
change will lead to a high complexity value. 

A voice introducing new material will potentially become 
interesting to listen to. However if the new material is con-
stantly repeated, we will pay less and less attention to it – 
become habituated or accustomed to the stimulus. Less at-
tention is required from the listener and the voice will fall 
into the background (Snyder 2000, p. 208). 

The model we present here will try to balance novelty and 
repetition by using entropy as information measure. 

Sliding Window 
The algorithm operates by in turn examining a small subset 
of the notes in the score. A fixed size (with respect to dura-
tion) window is slid from left to right over the score and the 
notes in the window are considered as present in that win-
dow. Different window sizes have been examined. 

The window is advanced to where the next ‘change’ hap-
pens (so no windows will contain exactly the same set of 
notes). The next window will begin at the first occurring of 
the following two possibilities: 

1. onset of next note after current window 

2. right after next ending note in current window 

In each window, we calculate a complexity value for each 
voice present. The most complex voice is expected to be 
the one preferred to listen to in this time period. The com-
plexity measures and the melody note prediction method 
are explained below. 

Entropy 
Shannon’s entropy (Shannon 1948) is a measure of ran-
domness or uncertainty in a signal. If the predictability is 
high, the entropy is low, and if the predictability is low, the 
entropy is high. 
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  p(x) = Pr(X = x) 

then the entropy H(X) is defined as: 
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X could for example be the set of MIDI pitch numbers and 
p(x) would then be the probability or frequency of a certain 
pitch. In the case that only one type of event (one pitch) is 
present in the window, that event is highly predictable or 
not surprising at all, and the entropy is 0 since the probabil-
ity of this pitch p(x) is 1 (and log2(1) is zero). If however 
different events are present the entropy will grow. Entropy 
is maximised when the probability distribution is uniform – 
when no events are repeated. 

1.1.1 Music features 
We are going to calculate entropy of ‘features’ extracted 
from notes in monophonic melodies. We will use features 
related to pitch and duration of the notes. A lot of features 
are possible: MIDI pitch number, MIDI interval, pitch con-
tour, pitch class, note duration, inter onset interval etc. We 
have used the following three measures in the model pre-
sented here: 

1. Pitch class (C): count the occurrences of different 
pitch classes present 

2. MIDI Interval (I): count the occurrences of each 
interval present 

3. Note duration (D): count the number of note dura-
tion classes present (a duration is given it’s own 
class if it is not within 10% of an existing class) 

With each measure we extract events from a given sequence 
of notes, and calculate entropy from the frequencies of 
these events (HC, HI, HD). 

HC and HI are thought to capture opposite cases. HC will 
result in high entropy when calculated on notes in a scale 
while HI will result in low entropy. HI will result in rela-
tively high entropy on an arpeggio chord and HC will pro-
duce a lower value.  

So far rhythm and pitch are treated separately. We have 
also included a measure weighting the three defined meas-
ures above HCID: 

DICCID HHHH
2
1

)(
4
1

++=  

Entropy is also defined for a pair of random variables with 
joint distribution: 
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We will test two joint entropy measures: Pitch class in rela-
tion to duration (HC,D) and interval in relation to duration 
(HI,D). These are expected to be more specific discrimina-
tors. 

The model is not using information related to any perform-
ance aspect of the score although an actual performance of 
the music piece might influence the listeners experience of 
the piece. What we try to measure is solely the information 
present in the voices in the score, although a performance 
of the piece might be useful in the melody prediction task 
used for evaluation. 

Although the entropy measures in principle can be applied 
to any set of notes, we shall for practical reasons apply 
these measures only to monophonic sequences of music. 
First of all, the MIDI interval measure, measuring jumps 
between notes in a melody, is not well defined for chords. 
Furthermore, the sheer number of notes can make the en-
tropy grow. This could reduce the entropy measure to be-
come a measure of event density. 

In the music used in our experiments, it does happen that a 
voice is playing more notes simultaneously (e.g. a violin). 
In these cases, only the top voice is used in our entropy 
calculation. 

Complexity via compression 
The entropy function is a purely statistical measure of oc-
currences of events. No relationships between events will 
be measured. For example the events abcabcabc and 
abcbcacab will result in the same entropy value. How-
ever if we were to remember the first string we would 
probably think of something like three occurrences of the 
substring abc – we infer a structure. The entropy function 
just counts the number of occurrences of each letter so no 
structure is taken into account. According to Snyder, we 
perceive music in the most structured way possible (Snyder 
2002). 

To account for this, complexity measures based on com-
pression could be a possibility. Music that can be com-
pressed a great deal (lossless) can then be considered less 
complex than music that cannot be compressed. Methods 
exist that substitute recurring patterns with a new event, and 
stores the description of that pattern only once, e.g. run-
length encoding or LZW compression based on the ideas of 
(Lempel and Ziv 1977). However since these algorithms are 
not really effective for compressing such small things that 
we are dealing with (but rather digital images), we have not 
yet dug further into this field. 

Predicting prominent notes 
Given the set of windows described above and an entropy 
value for each voice present in each window we are now 
ready to predict the notes expected to belong to the most 
prominent voice. We consider in turn the notes in the inter-
val between two consecutive windows. The notes belong to 



 

voices present in this period. We want to mark the notes in 
this period that come from the most complex voice. The 
complexity value of each voice from all windows the notes 
are present in, are averaged and the notes of the winning 
voice are marked as the most prominent in this period. 

Thus the predicted notes may from period to period belong 
to different voices – the role as the most prominent voice 
may change quickly. We are not just predicting an entire 
voice to be the most interesting. 

Similarly to calculating entropy of non-monophonic voices: 
when a predicted voice is non-monophonic (more notes 
onsetting at the same time in the same voice), only the top 
notes are marked.  

We have developed a graphical interface allowing the user 
to listen to the music while watching the MIDI files in a 
piano roll layout. The predicted notes are emphasized, and 
the prominence curves of all voice can be observed. 

EXPERIMENTS 
To perform experiments we need music, which is composed 
for different parts, and encoded in such a way that each part 
is separately available. Furthermore, since our complexity 
measure assumes monophonic music, each voice in the 
piece should be close to monophonic. This lays some re-
strictions on the experiments we are able to do. A typical 
piano sonata, lacking the explicit voice annotation (or being 
one non-monophonic part), will not be an appropriate 
choice. 

Since the model presented here is not taking any perform-
ance aspect of the music into account but only the musical 
surface (score), we will use MIDI files generated from the 
MuseData format (http://www.musedata.org). The duration 
of the notes in these files are nicely quantised. The model 
will however run on all types of MIDI files, but performed 
music tends to bias the rhythm complexity. 

Two pieces of music were chosen to be annotated and used 
in the experiment: 

1. Haydn, F.J.: String quartet op. 54, No. 2, 1st move-
ment 

2. Mozart, W.A.: Symphony No 40 in G minor (KV 
550), 1st movement 

This is not an awful lot of data, but since the music will 
have to be annotated manually, this will have to do for our 
initial experiments. 

Annotating melody notes 
We will test our model by means of melody prediction. The 
assumption is that the most prominent voice and the melody 
will often coincide. We believe that this is the best and 
maybe the only way to test our model. 

Asking a listener to point out the voice that he right away 
would be following while listening to a piece of music, 

would result in a very subjective judgment, since the lis-
tener is able to choose what to listen to. Listening to a piece 
more than once is also apt to affect your listening experi-
ence. In stead we asked our annotator to mark what she 
considers as being the melody. Due to the conventional 
listening perception, people mostly seem to agree about the 
melody of a piece much more that they agree on what they 
are actually focusing on while listening. Focus is often in-
tuitive, and it is therefore difficult for people to declare. 
The melody is then the criteria that we have used for test-
ing. 

In pieces where we assume that the melody is the most 
complex voice present, we expect our model will perform 
well. Such pieces can be used for evaluation. But in a 
fugue, where the voices are approximately equally complex, 
the evaluation method will fail. Assuming that the model 
works well, what we really are measuring is the degree of 
the melody being the most complex voice. In the experi-
ments section we shall see, that the melody is indeed com-
plex in the pieces we have chosen for evaluation. 

The task of defining the concept of melody was given to a 
musicologist and made explicit through the annotation of 
notes in the test pieces. The annotator was given a piano 
roll representation of the music with ‘clickable’ notes and 
simple playback options for listening to the MIDI sound. 
The annotator, who was not aware about the purpose of this 
task, was instructed to mark notes she would consider as 
‘melody’.  

The test pieces turned out to have quite distinguishable me-
lodic lines. The annotator solved the task by marking the 
notes that she was humming during listening to the pieces. 
Some immediate differences between melody and our com-
plexity based melody prediction model were made clear 
after talking to the annotator: 

Our model assumes that there constantly is one most com-
plex voice present, but a melody was not found to be pre-
sent at all times. Furthermore, melodic lines sometimes 
have been marked as overlapping, which the model doesn’t 
allow. 

The annotator chose not to mark thematic lines that clearly 
were a (melodic) response in another voice to the melody 
rather than a continuation of the melody line. Our model 
might mark both the melody as well as the response. 

Another source of error is the situations where the melodic 
line consists of long sustained tones while the accompany-
ing notes are doing all the action. The model will errone-
ously predict an accompanying voice. (In these situations it 
is also difficult to tell what a listener is actually listening 
to). 

Despite of the differences between melody and most com-
plex voice, the annotated notes were stored as ground truth 
for the evaluation. Table 1 shows some information about 
the test data. 



 

Table 1. The test data 

 

Evaluation method 
We can now measure how well the predicted notes corre-
spond to the annotated melody in the score. We express this 
in terms of recall (R) and precision (P) values (van Rijsber-
gen 1979). Recall is the number of correctly predicted notes 
(true positives, TP) divided by the total number of notes in 
the melody. Precision is TP divided by the total number of 
notes predicted (TP + FP (false positives)). The F-measure 
combines recall and precision into one value (an a of 0.5 
used throughout this paper giving equal weight to precision 
and recall): 
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A high rate of correct predicted notes will result in high 
values of recall, precision and F-measure (close to 1.0). 

Results 
We performed prediction experiments with four different 
window sizes (1-4 seconds) and with the five different en-
tropy measures described above. Table 2 shows recall, pre-
cision and F-measure values from all experiments with the 
two evaluation pieces. For each experiment, the highest F-
measure value has been emphasized.  

The string quartet turned out to be the less complicated of 
the two pieces. This is not a surprise – it is easier to dis-
criminate between 4 than 10 voices. 

Overall the joint pitch class and duration measure (HC,D) 
was found to have the greatest predictive power. Pitch class 
seems to be the single most important measure in the string 
quartet. In total, the joint measures perform better than the 
measures based on a single feature. 

We can conclude that there do exist a correlation between 
melody and complexity in both pieces. The precision value 
of 0.602 in the best symphony experiment with a resulting 
F-measure of 0.514 (window size of 3 seconds) tells us that 
60.2 % of the predicted notes in the symphony were also 
annotated as melody notes. 

Table 2. Recall, precision, and F-measure 

for melody note predictions 

  Haydn Mozart 

  HC HI HD HCID HC,D HI,D HC HI HD HCID HC,D HI,D 

R .83 .80 .68 .85 .87 .80 .36 .31 .32 .43 .47 .32 

P .78 .73 .80 .82 .81 .74 .41 .31 .52 .53 .54 .32 

10
00

 m
s 

F .81 .76 .73 .83 .84 .77 .38 .31 .40 .47 .51 .32 

R .83 .80 .64 .82 .87 .81 .35 .33 .27 .40 .45 .37 

P .81 .75 .81 .83 .87 .76 .42 .36 .52 .55 .58 .41 

20
00

 m
s 

F .82 .77 .71 .82 .87 .78 .38 .35 .36 .46 .51 .39 

R .83 .79 .63 .83 .84 .80 .33 .28 .25 .37 .45 .36 

P .83 .75 .81 .86 .87 .78 .40 .31 .50 .53 .60 .42 

30
00

 m
s 

F .83 .77 .71 .85 .85 .79 .36 .29 .33 .43 .51 .38 

R .84 .76 .59 .78 .80 .79 .34 .24 .19 .37 .44 .33 

P .84 .74 .78 .85 .86 .78 .40 .28 .41 .59 .61 .41 
40

00
 m

s 

F .84 .75 .67 .82 .83 .79 .37 .26 .26 .45 .51 .36 

 

In the string quartet, after 287 seconds one voice is alternat-
ing between a single note and notes from a descending 
scale, making the voice very attractive (lots of different 
notes and intervals) while the real melody above is playing 
less different notes, but has a more varied rhythm. We took 
a closer look at this passage. Setting the window size to 2 
seconds, the measures HD, HCID, and HC,D solves the problem 
successfully whereas HC, HI, and HI,D does not. The meas-
ures based on intervals are naturally mistaking in this case, 
and the measure based solely on pitch class is also. Again, 
the joint measure HC,D proves to be robust.  

CONCLUSION 
Computational measures of music complexity were pre-
sented. The evaluation of the model showed promising re-
sults, although the amount of test data was small. We intend 
to continue our work by refining the complexity measures. 
New complexity measures based on compression tech-
niques are also to be examined. 
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 Haydn Mozart 

Number of melody notes 2555 2295 

Total number of notes 5832 13428 

Melody note percentage 43.8 % 17.1 % 

Number of voices 4 10 

Duration 11.30 min 7 min 
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