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ABSTRACT

We present a study that indicates that singing voice de-
tection – the problem of identifying those parts of a poly-
phonic audio recording where one or several persons sing(s)
– can be realised with substantially fewer (and less expen-
sive) features than used in current state-of-the-art methods.

Essentially, we show that MFCCs alone, if appropri-
ately optimised and used with a suitable classifier, are suffi-
cient to achieve detection results that seem on par with the
state of the art – at least as far as this can be ascertained
by direct, fair comparisons to existing systems. To make
this comparison, we select three relevant publications from
the literature where publicly accessible training/test data
were used, and where the experimental setup is described
in enough detail for us to perform fair comparison experi-
ments.

The result of the experiments is that with our simple,
optimised MFCC-based classifier we achieve at least com-
parable identification results, but with (in some cases much)
less computational effort, and without any need for exten-
sive lookahead, thus paving the way to on-line, real-time
voice detection applications.

1. INTRODUCTION

Identifying the regions in a song where a singing voice is
present does not seem to be a difficult task for humans,
regardless of the singer’s specific voice characteristics, dy-
namics of articulation, instrumental background, or even
the language. However, the automatic classification of vo-
cals remains difficult, to a considerable degree due to the
extreme extent of vocal tone diversity. At the same time,
automatic singing voice detection would be extremely use-
ful for many applications such as audio segmentation and
indexing, language detection, singer recognition, vocal ex-
traction, query-by-lyrics, real-time tracking and synchro-
nisation, etc.

Consequently, there has been a lot of research recently
into this problem. A multitude of diverse audio features
have been proposed, along with many (and sometimes com-
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plex) detection methods. In extensive experimental work,
where we tried to reproduce some of this work and deter-
mine what the most useful features are, we were surprised
to find that, when we invested a lot of effort into search-
ing for optimal parametrisations of the features, in the end
simple MFCCs always turned out to be at least as good as
larger and more complex sets of features.

That is the starting point for this paper, in which we
will demonstrate that singing voice detection of state-of-
the-art quality can be done in a very light-weight way, us-
ing only appropriately parametrised MFCCs. We will as-
certain this by comparing our very simple method to three
selected methods from the literature where publicly acces-
sible training/test data were used, and where the experi-
mental setup is described in enough detail for us to perform
fair comparison experiments.

The result of the experiments is that with our simple,
optimised MFCC-based classifier we achieve at least com-
parable identification results, but with (in some cases much)
less computational effort, and without any need for exten-
sive lookahead, thus paving the way to on-line, real-time
voice detection applications.

The paper is structured as follows: Section 2 gives an
overview of previous work on singing voice detection and
on publicly available corpora for this task, and motivates
the choice of state-of-the-art methods that we choose to
compare our method to. Section 3 presents our own simple
method and describes how we experimentally optimised
the MFCC and classifier parameters. Section 4 compares
our method to the other methods selected above, and Sec-
tion 5 outlines what we consider to be the most important
direction for further improvement.

2. PREVIOUS WORK AND AVAILABLE DATA

We start with a brief overview of selected existing meth-
ods, and of publicly available data corpora. Finally, we
identify the methods we chose to compare our results to,
along with the reasons why we chose those methods.

2.1 Problem statement

The signal consists only of music and the problem is to
detect the presence of singing voice therein. Hence, no
discrimination of normal speech and singing voice is done,
in contrast to the speech/music discrimination task done by
Chou and Gu in [4].



2.2 Previous Work on Singing Voice Detection

In [21], Rocamora and Herrera compared MFCCs, Percep-
tually derived LPC (PLPC), Log Frequency Power Coef-
ficients (LFPC) and Harmonic Coefficient (HC). Spectral
features often utilised for instruments classification were
also combined into one vector, namely Centroid, Roll-off,
Flux, Skewness, Kurtosis, and Flatness. Additionally, pitch
as the only non-spectral feature, extracted with the mono-
phonic f0-estimator YIN [5] was used. Several empiri-
cally motivated post-processing strategies were also imple-
mented. In their setting, MFCCs are the most suitable fea-
tures, and an SVM the best performing classifier for sing-
ing voice detection. Although they tried to combine dif-
ferent descriptors, this did not improve the classification
performance of 78.5% accuracy on a test set of 46 man-
ually annotated songs. Since this material is not publicly
available, it is not possible to conduct a fair comparison.

In [16], HA-LFPCs (harmonic attenuated LFPC) are
proposed for singing voice detection. For the construc-
tion of the attenuation filter, the key determination tech-
nique from [23] is used. Compared to MFCCs, the LFPCs
performed better, with a Multi-Model HMM (taking song
structure into account) as classifier (86.7% vs. 81.3% ac-
curacy). The experiments were carried out on 20 unknown
popular songs from different artists and time spans, with
six songs used for training and the remaining 14 songs for
testing. Since this material is not publicly available, it is
not possible to conduct a fair comparison.

Li and Wang [14] used a singing voice detection stage
for the separation of singing voice from instrumental ac-
companiment. They used MFCCs, LPCs, PLPs, and the
4-Hz harmonic coefficient as features. A HMM and the
Viterbi algorithm [18] were used to classify clips from five
rock and five country songs via a 10-fold CV. Again, this
musical material is not publicly available.

Regnier and Peeters’ method [20] involves thresholds
for vibrato and tremolo to detect singing voice. They
reached an f-value of 76.8% for singing voice compared
to a (more sophisticated) machine learning approach us-
ing MFCCs, SFM, and their first and second derivatives
for both features and a GMM as classifier, which yielded
77.4% f-measure. The experiments were conducted on the
Jamendo corpus [19], with 63 songs as training set, and 32
songs as the test set. Since the results reported are not as
good as those reported in [19], which were also obtained
on the Jamendo corpus, we will compare our method to the
latter.

Hsu and Jang [11] used GMMs as states in a fully con-
nected HMM and the Viterbi algorithm [18] to decode mu-
sic signals into the three classes accompaniment, unvoiced
and voiced. They achieved an accuracy of 77.95% with a
39-dimensional feature vector containing 12 MFCCs, the
log energy, and their first and second derivatives. They
used all 1000 clips of the MIR-1K data set [11] for train-
ing and evaluating, divided into two subsets of similar sizes
(487 versus 513, recorded by disjoint subjects) for a 2-fold
CV. Since the precise split of the data set is not publicly
available, it is not possible to conduct a fair comparison.

In [12], Hsu et al. used basically the same setting as
in [11], except that they used Harmonic/percussive source
separation (HPSS) as a preprocessing step. Additionally,
their HMM decodes into just vocal and nonvocal sections.
The usage of the preprocessed signal showed significant
improvement compared to the raw signal, especially in low-
er SNR levels. For an -5, 0, and 5 dB SNR they reached
accuracies of ∼ 80%, ∼ 85%, and ∼ 89% respectively.

The three methods of Vembu and Baumann [25], Mauch
et al. [15] and Ramona et al. [19], to which we will com-
pare our own method, will be described in more detail in
3.4, 4.2, and 4.1 respectively. The reasons why we chose
them are explained in Section 2.4.

2.3 Publicly Available Corpora

As outlined above, numerous very different approaches
have been taken to the problem of singing voice detection.
Unfortunately, due to a lack of commonly used corpora, the
results are often not directly comparable. To our knowl-
edge, there are three corpora along with vocal activity an-
notations publicly available:

1. RWC Music Database: Popular Music (RWC-
MDB-P-2001): 100 songs released by Goto et al.
[8], with singing voice annotations provided by
Mauch et al. [15]. Along with the annotations a
novel method was introduced which will be described
in more detail in Section 4.2.

2. Jamendo Corpus: 93 copyright-free songs from the
Jamendo music sharing website [9], collected and
annotated by Ramona et al. [19]. Also used for sing-
ing voice detection by Regnier and Peeters in [20].

3. MIR-1K Corpus: 1000 song clips taken from 110
karaoke songs, and released by Hsu and Jang in [11].
The songs were recorded in their lab, and sung by 8
females and 11 males. Also used for singing voice
detection by Hsu et al. in [12].

2.4 Algorithms Selected for Comparison

Eventually, we selected three different methods as bench-
marks for our proposed method.

2.4.1 Vembu and Baumann [25]

This method is relatively simple and achieved remarkable
results on an unknown test set. The method is described
in such detail that it can be re-implemented. It will be
described in more detail in subsection 3.4. Thus, our re-
implementation of it will be used as a “baseline” to com-
pare our simple optimised MFCC-only classifier to (see
Section 3.4). We will show that MFCCs alone can achieve
better performance, if appropriately parametrised.

2.4.2 Ramona et al. [19]

For this method, a very large and diverse set of features
is used. They precisely report (also song-wise) results on
a publicly available corpus (Jamendo) with exact infor-
mation regarding which pieces were used for training and



evaluation. This allows for the most fair and precise com-
parison. The method will be described in more detail in
subsection 4.1.

2.4.3 Mauch et al. [15]

This is one of the most recent publications on this topic.
The authors report excellent results on (parts of) the pub-
licly available RWC corpus, with a rather complex pro-
cedure. This method will be described in more detail in
subsection 4.2.

3. A SIMPLE MFCC-BASED RECOGNISER

In this section, we describe how we designed and opti-
mised our simple singing voice detector using solely MFCC
features. The optimisation was done in three phases, and
we will show, for each phase, how the improvements com-
pare to our “baseline” algorithm from Vembu and Bau-
mann [25]. This will give a first impression of results
achievable with MFCCs alone.

3.1 Classification Setting and Basic Features

Our classification setting is as follows. The units of audio
to be classified are frames of 200 ms duration. Thus, we
have 5 classifications per second of audio. The actual win-
dow over which the features for classifying a frame F are
computed, may be larger than that. We will call this the ob-
servation window. It will always be placed symmetrically
around a classification frame F . We use the VOICEBOX
toolbox [3] to extract a D-dimensional MFCC feature vec-
tor from the observation window. As the standard param-
eters we used 30 triangle shaped filters and extracted 13
coefficients, without the 0th coefficient.

For the parameter optimisation phase, we used a set of
75 annotated songs by 75 different artists, which come
from a different source than the corpora we will use for
the comparison experiments below. All songs were uni-
fied, i.e. downsampled to 22kHz and converted to mono.
Approximately 52% of the frames are annotated as vocal,
and the amount of pure singing, i.e. without instrumental
accompaniment, is negligible. All optimisation decisions
in the following are based on 15-fold cross validation (CV)
experiments, where the data set was randomly split into 15
subsets of 5 songs each.

3.2 Classifier and Post-Processing

Among the most popular classifiers for singing voice de-
tection are Gaussian Mixture Models (GMM), Support Vec-
tor Machines (SVM) and Multi-layer perceptron neural net-
works (MLP). Random forests [2] have proven to deliver
good results in other contexts, for instance in speech detec-
tion in [24] or music detection in [22]. Compared to SVMs
and MLPs they perform much faster in both the training
and testing phase. Also, there is no need to determine an
appropriate kernel function in order to obtain the best per-
formance. Thus, we chose to use a random forest as clas-
sifier, and the implementation from WEKA [10].

For post-processing (smoothing of the prediction se-
quence), a simple median filter with a window length of
seven frames (1.4s) was found to give the best trade-off
between complexity and accuracy.

3.3 Optimising the MFCC Features

In this subsection we describe the task of the parameter
optimisation, which was done in three phases:

3.3.1 Phase I:

The number of coefficients as well as the size of the filter-
bank was optimised. The best results were achieved with
30 coefficients (including the 0th) and a filterbank with 30
triangular shaped filters.

3.3.2 Phase II:

The length of the observation window was optimised. In
all cases, the observation window, when it was larger than
the current classification frame, was placed symmetrically
around the frame. Best results were achieved with a total
window of 800ms around the 200ms center frame. The rel-
atively long observation window has the effect that the con-
tribution of percussive components (which are only active
for a short period of time) to the spectrum is diminished.
Before the last phase was conducted, the first derivatives
(deltas) of the MFCCs were also added to the feature vec-
tor.

3.3.3 Phase III:

The parameters of the classifier were optimised. A good
trade-off between computational complexity and the re-
sults was found to be a random forest with 128 trees, each
with five attributes. Additionally, the threshold for the vo-
cal class was raised to 55% to reduce some of the false
positives.

3.4 Comparison to Vembu and Baumann

Vembu and Baumann [25] extracted 13 MFCCs, 39 PLPs,
and 12 LFPCs, resulting in a feature vector with 64 el-
ements. They achieved the best results with all features
combined and using a SVM as classifier (93.47% accuracy
on an unknown data set). Additionally, they provide the pa-
rameters of the optimised RBF kernel they used (C = 28,
σ = 22). They do not mention any post-processing. Since
there is enough information available to implement this
method, it will be used as a baseline for further compari-
son. Although theirs is an online algorithm, it turns out that
training and testing is extremely time consuming (about 75
times slower than with our optimised random forest).

Table 1 shows the results of the 15-fold CV on our data
set (see Section 3.1), at different stages of the optimisation
procedure, along with the results of the VB method (com-
puted on exactly the same data splits). To illustrate the ef-
fectiveness of every optimisation stage, we begin with the
results achieved with standard MFCCs (see Section 3.1)
and a standard random forest classifier (column MFCC).
After the first optimisation stage (I), where we use 30 co-
efficients instead of just 13, there is an improvement in



MFCC I II PROP VB
acc [%] 69.14 74.51 78.74 82.36 77.16
recall 0.727 0.783 0.834 0.883 0.819
precision 0.712 0.757 0.788 0.810 0.774
f-measure 0.719 0.770 0.810 0.845 0.796

Table 1. Results of the parameter optimisation compared
to the baseline method VB. The columns are as follows:
MFCC: “standard” (unoptimised) MFCCs. I: after opti-
misation stage I (number of MFCCs; filterbank). II: after
optimisation stage II (observation window; delta MFCCs).
PROP: proposed method after optimisation III (optimised
random forest; median filter). VB: Vembu & Baumann
trained and tested in the same way. Recall, precision, and
f-measure relate to our class of interest, vocals.

accuracy of more than 5 percentage points. The second
optimisation regarding the observation time (II) yields an
improvement of almost 10 points compared to the standard
MFCCs, and already better results than the baseline algo-
rithm of Vembu and Baumann [25] (VB). The final pro-
posed method (PROP.) with the optimised random forest
classifier and median-filter post-processing, reaches an ac-
curacy 13 percentage points higher than standard MFCCs,
and more than 5 points better than the VB method.

4. COMPARISON TO STATE-OF-THE-ART
METHODS

In this section our proposed simple method is compared to
two other methods. In Section 2.4 we already explained
the motivation behind the selection of the algorithms; now
we explain them in more detail.

To recapitulate, our proposed method uses just the opti-
mised long-term MFCCs (800ms, 30 coefficients incl. the
0th, and a filterbank with 30 triangular shaped filters) along
with their first derivatives. There is no pre-processing in-
volved, and a simple median filter over seven frames
(1.4sec) is used to smooth out the predictions of a random
forest classifier (128 trees with five features each).

4.1 Ramona et al.

Ramona et al. [19] use an SVM classifier with a com-
bination of the most diverse set of features compared to
the other methods discussed in this paper. These include
MFCCs, LPCs, ZCR, sharpness, spread, f0 and aperiod-
icity measure extracted with the monophonic YIN library
[5]. Furthermore, short-scale frames contain spectral de-
scriptors like centroid, width, asymmetry, slope, decreas-
ing, flux, and similar temporal statistical moments. Ad-
ditionally, long-scale frames contain features that do not
represent an instantaneous characteristic. Those include
(again) the ZCR, tremolo and granularity for the frequen-
cies 4-8Hz and 10-40Hz, and some temporal statistical mo-
ments. Those features add up to a vector with 116 compo-
nents.

Ramona et al. PROP VB
Acc% F% Acc% F% Acc% F%

03 - Say me Good Bye 80.1 85.8 91.4 83.6 90.6 82.7
03 - School 84.3 87.3 84.8 86.6 71.5 77.8
03 - Si Dieu 76.4 80.7 87.2 89.4 76.2 66.7
03 - Une charogne 85.3 91.7 89.8 93.5 78.8 85.9
03 - castaway 79.0 87.3 71.3 80.5 73.0 80.0
04 - Believe 80.0 88.5 94.1 95.6 83.0 87.2
04 - Healing Luna 85.5 81.6 87.8 84.4 72.7 70.8
04 - Inside 83.3 68.2 79.4 66.0 75.3 58.0
04 - You are 87.0 91.9 87.9 90.6 74.4 77.7
05 - 05 LIrlandaise 57.7 64.2 65.0 68.6 61.7 60.5
05 - 16 ans 91.5 84.8 87.3 79.8 70.8 60.3
05 - 2003-Circons[. . . ] 87.6 88.2 75.5 77.7 79.8 79.6
05 - A Poings Fermes 93.7 92.2 89.7 83.0 86.9 81.2
05 - Crepuscule 85.2 88.8 80.1 83.6 76.8 80.0
05 - Dance 77.0 83.2 84.1 88.7 75.7 82.2
05 - Elles disent 71.8 78.7 84.4 87.4 69.6 77.0
ALL 82.2 84.3 84.8 84.6 77.4 76.9

Table 2. Results of the proposed method on the Jamendo
corpus, compared to those of Ramona et al. in [19] and
Vembu and Baumann’s method trained and tested in the
same way.

Afterwards, the dimensionality is reduced to d=40 with
the IRMFSP algorithm [17], leaving only the most dis-
criminating features. A silence detection is applied as a
pre-processing step. Finally, a HMM and the Viterbi al-
gorithm are used for post-processing the SVM output, and
instrumental segments shorter than 0.5s are discarded.

The authors report 82.2% accuracy on a precisely de-
scribed split of the Jamendo corpus, with a training set
consisting of 63 given songs, and validation and test sets
of 16 songs each. Thus, a fair comparison of the results is
possible.

In Table 2, the results of Ramona et al. are compared
to those of the proposed method. All in all, better results
regarding both accuracy and f-measure are achieved with
the proposed method (82.2% vs. 84.8% accuracy). Never-
theless, there are some songs that get better classified with
the method of Ramona et al.; the biggest difference is with
the song 05 - 2003-Circons[. . . ] (87.6% vs. 75.5% accu-
racy). It would be interesting to have a feature with which
we could determine the better suited method for a specific
song, or even a shorter segment.

4.2 Mauch et al.

Mauch et al. [15] utilise four features in total, among them
MFCCs. Additionally, they use Goto’s polyphonic funda-
mental frequency(f0)-estimator PreFEst [7] to isolate the
predominant melody. They propose three novel features
which are based on it:
Pitch fluctuation, which is basically the frame-wise stan-
dard deviation of intra-semitone f0 differences. First, the
estimated f0 is mapped to pitch space. Afterwards, these
estimations are shifted based on a song-wide inferred tun-
ing. As a last step, the frequency differences are calculated,
and the frame-wise Hamming-weighted standard deviation
of those differences yields the pitch fluctuation. Since a
song-wide lookahead is necessary to infer its tuning, this
method is not an online algorithm. Pitch fluctuation is



found to be the most salient feature for singing voice de-
tection.

In addition to the MFCCs of the signal as it is, the au-
thors also introduce MFCCs of the re-synthesised predom-
inant voice to capture its timbre. The re-synthesis employs
sinusoidal modelling based on the predominant melody as
well as the estimated amplitudes of its harmonics as de-
scribed in [6].

The normalised amplitude of harmonic partials is also
extracted from the predominant voice, and is considered
to add information on another dimension of timbre which
is not provided by MFCCs. It is a vector-shaped feature
(d=12), and calculated by normalising the estimated har-
monic amplitudes according to the Euclidean norm.

A SVM-HMM [1,13] is used as classifier. Additionally,
segments shorter than 0.5s are merged with the preceding
regions.

The best result (87.2% accuracy) was achieved with all
four features combined, employing a 5-fold CV on a 102
song data set that is composed of 90 songs from the RWC
music database [8] (exactly which 90 of the 100 is un-
known to us and could, unfortunately, not be found out),
and 12 additional (also unknown) songs. Since we had
only access to the 100 song RWC music database, our re-
sults are only comparable to a certain extent. Nevertheless,
to allow for the best comparison possible, we matched their
decision frequency of one feature instance every 100ms
and utilised a 5-fold CV.

In Table 3, the results of Mauch et al. are compared
to those of the proposed method. To illustrate the differ-
ence of the data set used by Mauch et al. to the original
RWC data set, we also give the results achieved with stan-
dard MFCCs (see Section 3.1). Additionally, to reveal the
amount of vocals, we give the results of the mode, i.e. the
proportion of the majority class (which is vocals). As can
be seen, there is a difference of 5 percentage points regard-
ing the vocal content, which indicates a limited compara-
bility.

All in all, our proposed method performs not much worse
than the method of Mauch et al. (85.9% vs. 87.2% accu-
racy). This difference virtually disappears when we apply a
more complex post-processing strategy involving a HMM
and the Viterbi algorithm (row PROP+).

5. CONCLUSION AND FUTURE WORK

This paper has proposed an extremely simple method to
detect the presence of singing voice in mixed audio sig-
nals. By comparing the results to those of three well se-
lected algorithms, we could show that regarding the fea-
tures, appropriately parametrised MFCCs along with their
first derivatives are sufficient to achieve results as good as
those of sometimes much more complicated state-of-the-
art systems. Our method is simple, fast, and requires no
look-ahead, making it a good candidate for on-line, real-
time singing voice detection applications.

Our main goal for further improvement is precision, that
is, a reduction of the number of false positives. A detailed
inspection of the results of our classifier has shown that

Mauch accuracy precision recall f-measure
MODE 0.654 0.654 1.000 0.791
MFCC 0.738 0.739 0.926 0.822
FMRH 0.872 0.887 0.921 0.904
Proposed accuracy precision recall f-measure
MODE 0.604 0.604 1.000 0.753
MFCC 0.718 0.764 0.771 0.767
VB 0.813 0.827 0.808 0.818
PROP 0.859 0.858 0.918 0.887
PROP+ 0.868 0.879 0.906 0.892

Table 3. The results of our proposed method compared
to the methods of Mauch et al. and Vembu and Baumann.
Along with the methods the class distribution in the respec-
tive test set is given (row MODE – the overall proportion
of vocals), as well as the results achieved with the standard
MFCCs, and Vembu and Baumann’s Method (row VB).
Clearly, even though the majority of the data we used is
the same as used by Mauch et al., there are differences
regarding the content of vocals, which makes a fair com-
parison unfeasible. The results PROP+ are achieved with
a post-processing involving the Viterbi algorithm.

instruments mistaken for vocals have the biggest negative
impact on the results. This is especially true for string in-
struments like electric guitars, which can mimic the tem-
poral as well as the timbral characteristics of vocals. Cer-
tain effects commonly used to enhance the sound or ex-
tend the expressiveness of guitars like chorus, flanger, and
wah-wah are responsible for this. Unfortunately, experi-
ments reported in [21] indicate that features often utilised
for speech/music discrimination like harmonic coefficient
[4] are not able to distinguish between highly harmonic in-
struments and vocals. Therefore, it would be beneficial to
develop a method that is less sensitive to differences be-
tween singers’ specific voice characteristics, while main-
taining good discriminative properties for instruments that
resemble vocals.
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