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Abstract

Voice Activity Detection in movies is a non-trivial and chal-
lenging task. The different emotional states of the speakers, as
well as the variety of soundscapes and noises contribute to the
complexity of the task. In this paper, we propose a set of light-
weight features that are specifically designed to perform under
such conditions, while at the same time preventing confusions
of singing voice with speech. For evaluation, we use four full-
length movies, previously unseen to the system and painstak-
ingly annotated. We compare our detector to a state-of-the-art
reference system. The new approach performs better, yielding
just about half the Equal Error Rate (EER). Furthermore, since
the ground truth annotation task is extremely tedious, and to
help with advancing in this topic, we release the annotations of
all four movies to the research community.
Index Terms: Voice Activity Detection, Speech Detection

1. Introduction
Voice Activity Detection (VAD), sometimes also referred to
as Speech Activity Detection (SAD), is an important pre-
processing method to increase the performance of many appli-
cations, like Automatic Speech Recognition (ASR).

In movies, one of the challenges for VAD is due to the
various emotional states of the speakers, ranging from anger
to fear to sadness and everything in between. Those emo-
tional states correspond to vocal effort categories like whis-
per, soft voice, normal voice, loud voice, and shouting [1],
and directly impact the performance of VAD and ASR sys-
tems. Another factor that contributes to the difficulty, is
the extremely diverse soundscape of movies. Music, wind,
rain, traffic, battle, and crowds are just a few examples of
noises that occur in movies (audio examples are available at
http://www.cp.jku.at/misc/is2015vad/).

This paper presents a method that is specifically designed
to detect the presence of speech under such difficult conditions.
This could be useful for tasks like automatic subtitle alignment,
and pave the way to an automatic subtitle generator system.

Furthermore, we will show, that promising results can be
achieved despite a relatively small training set of just 4 h au-
dio material. This is useful, since publicly available data sets
are scarce, and annotating ground truth is a tedious task. By
using radio broadcasts (see Sec. 4.1) for the development of
our method, we were additionally able to consider the capa-
bility to discriminate between speech and singing voice. We
consider this ability important, because a speech recogniser fed
with singing voice, will most probably behave erroneous [1].
After all, in many movies there is singing voice present, be
it as part of the soundtrack, or even sung by the actors them-
selves, like in movie musicals. Finally, besides music, vocals,

and speech, radio broadcasts contain ads, which can be a good
resource of speech mixed with highly non-stationary noise.

Another contribution, besides the proposed feature set, is
the release of the ground truth annotations of four full-length
movies to the research community (see Sec. 4.2).

2. Related Work
Often, VAD algorithms utilise features relating to energy [2],
zero crossing rate [3], spectral flatness [4], or periodicity [5].
However, the challenging conditions in movies render such fea-
tures less useful. Therefore, more sophisticated – or a fusion
of several – features could improve VAD results. Recently, the
methods from the data-driven category (where a classifier com-
pares acoustic features to a previously trained model) yielded
promising results, especially under highly corrupted conditions.

Our starting point and baseline is the method by Eyben et al.
[6], where results on four Hollywood movies were published,
and compared to three different state-of-the-art VAD algorithms
[7, 8, 9], which they clearly outperformed.

Supposedly to avoid the tedious task of annotating more
movies to be used as training data, they synthesise audio data by
mixing speech data from the Buckeye [10] and the TIMIT [11]
corpus with the following types of noise: babble, city, white and
pink noise, and music. The training set comprises 34:54 h of
audio, where 15:08 h are speech. The validation set comprises
3:00 h, where 1:22 h are speech. The strategies involved to
create such a large and diverse amount of data are described
in detail in [6], and a discussion of these would go beyond the
scope of this work.

As features, they use standard RASTA-PLP coefficients 1-
18, along with their first order derivatives (deltas), yielding a
36 dimensional feature vector. The features are extracted with
the open-source toolkit openSMILE [12], with a frame size of
25 ms, and a step size of 10ms. As classifier, they use Long
Short-Term Memory Recurrent Neural Networks (LSTM-RNNs)
[13], which have access to the complete past, and are capable of
modelling long-range temporal context.

They introduce two different network topologies, from
which we only reimplement the one giving the better results:
the uni-directional RNN with one hidden layer and 50 LSTM
units. For increased robustness, they train three networks with
different weight initialisations, which are then combined by av-
eraging their outputs. Since we use a relatively small training
set, we adapt this strategy to increase robustness even further.
In our implementation, we train four networks with different
training and validation sets (according to a four-fold cross vali-
dation split), and combine them by averaging their outputs. Z-
normalisation is applied per fold to avoid too optimistic results.

Thresholds resulting in an Equal Error Rate (EER) are fixed
according to the validation set results, and the test set is left
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Figure 1: a) Sorted Spectrogram of male speech and b) of male
singing. Brighter regions correspond to higher harmonicity; c)
sorted spectrum of a single frame of male speech and d) of male
singing. PSSC is a 3rd order polynomial fitted on such sorted
spectra, and allows to distinguish speech and singing voice.

unseen. Non-speech segments shorter than 5 frames are then
smoothed out to be speech segments.

3. Features
In order to detect speech when the additive noise is non-
stationary, we propose a set of features, that target two different
aspects of speech: First, the temporal characteristic descriptors,
that quantify how the signal evolves in time (Fluctogram along
with Spectral Flatness and Spectral Contraction). The Fluc-
togram reveals the variation of pitch, and was originally used
for Singing Voice Detection [14]. However, the different into-
nations in speech and singing voice often enable a classifier to
distinguish both, when trained with proper data sets. In order to
allow standard classifiers like Random Forest (RF) or Support
Vector Machine (SVM) to consider temporal characteristics of
the signal, those feature values are summarised over time, by
calculating means or variances over several frames.

Second, we propose a modified version of Spectral Contrast
(Polynomial Shape Spectral Contrast), that serves as harmonic-
ity descriptor, hence corresponding to timbre. The vowel-to-
consonant duration ratio of speech is generally lower than that
of singing voice, yielding a lower long-term (we use 800ms
frames) harmonicity for speech. In Fig. 1, we compare Spec-
tral Contrast of male speech and male singing, normalised w.r.t.
energy. Clearly, the differences in harmonicity (brighter frames
represent higher harmonicity) allow for discrimination between
speech and singing voice, at least to a certain extent.

These temporal and harmonicity descriptors complement
each other, and enable a classifier to deal with some of the chal-
lenging situations in movies.

3.1. Fluctogram

The harmonic (voiced) parts of speech are often clearly visible
in the spectrogram, characterised by fluctuations of partials in
a continuous manner. To detect such fluctuations without the
necessity of error-prone pitch estimation, several attempts have
already been made, but only in the context of speech processing,
e.g. by Laskowsky and Jin [15], and Ma et al. [16]. In order to
deal with the presence of musical accompaniment – which is an
integral part of movies –, the Fluctogram [14] was introduced.It
is a modification of the method of Sonnleitner et al. [17], where
the cross correlation is utilised in an intuitive way to detect the
presence of speech: Each spectrum of a time frame Xt is com-
pared to the spectrum of its successor Xt+1, and the index of

the maximum correlation when Xt+1 is shifted±n bins, is cal-
culated.

We first compute the magnitude spectrum by performing a
DFT on audio frames for every 20ms. The actual window over
which the DFT is applied is 100 ms long, and always placed
symmetrically around the current frame. A zero padding of 23

is applied, to assure the proper resolution in the lower frequency
region of the spectrum. Afterwards, the spectrum is mapped
to a scale that relates to pitch, where the range of one semi-
tone comprises 10 bins. Our pitch scale comprises five octaves
from E3 (164 Hz) to E8 (5274 Hz). We then divide the re-
sulting 600-bin spectrum into 13 overlapping bands, each band
120 bins wide, resulting in a bandwidth of one octave. The
distance from one band to the next is 40 bins, which equals
four semitones. In order to reduce the influence of partials near
the boundaries that are potentially leaving a frequency band,
each band is then weighted by a triangle window that matches
the bandwidth. The harmonic fluctuations within each band are
then revealed by identifying the maximum cross correlation at
shifts of ±5 bins.

Finally, each frame of audio is then characterised by com-
puting the variance over a window of 40 successive Fluctogram
values, centered on the current frame, separately for each of the
13 frequency bands.

3.2. Spectral Flatness and Spectral Contraction

When we analyse e.g. the signal of a pitch-discrete instrument
– like a piano –, the Fluctogram should reveal no fluctuations
whatsoever. However, a small amount of fluctuation is still be-
ing detected, mostly due to a percussive onset characteristic of
the sound source. Therefore, two reliability indicators were in-
troduced to accompany the Fluctogram. First, the Fluctogram
is most reliable when the signal is not noise-like, which is char-
acterised for each frequency band by the Spectral Flatness (SF)
measure [18].Each frame of audio is then represented by the
mean over a window of 40 successive values, centered on the
current frame, yielding another 13 feature values.

Second, the most appropriate estimations of fluctuations are
provided, when the trajectory of the partial that dominates the
result of the cross-correlation, resides near the center of the fre-
quency band. To account for that, the Spectral Contraction (SC)
[14] relates the energy in the center to the total amount of energy
in the spectrum. The SC feature is simply the energy-wise ra-
tio of a Chebyshev-windowed spectrum to the spectrum itself,
computed separately for each frequency band. Each frame is
then quantified by the variance over a window of 40 successive
values, centered on the current frame, yielding again 13 feature
values.

3.3. Polynomial Shape Spectral Contrast

Spectral Contrast relates the peaks to the valleys of the spectrum
in several sub-bands, and could be considered a harmonicity
descriptor.

We suggest a modification of the already existing Octave
Based Spectral Contrast (OBSC) [19] and Shape-Based Spec-
tral Contrast (SBSC) [20], both of which were successfully used
for a music genre classification task. In [19], the authors sug-
gest the following procedure to compute OBSC: Each frame of
audio is transformed into the frequency domain by utilising the
DFT. Afterwards, the resulting spectrum is divided into six sub-
bands (0-200 Hz, 200-400 Hz, 400-800 Hz, 800-1600 Hz, 1600-
3200 Hz, and 3200-8000 Hz), and the bins of each sub-band are
sorted according to their magnitude in descending order. The
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neighbourhood parameter α is then used to control the percent-
age of bins that are used to compute a log-scaled mean of the
magnitudes at the beginning as well as the end of the sorted
spectrum. Those means are referred to as Peak and Valley re-
spectively, and their difference is the actual Spectral Contrast
feature. The final feature vector is then composed from both the
Spectral Contrast and the Valley for each band separately, re-
sulting in 12 attributes. Additionally, a Karhunen-Loeve Trans-
form (KLT) is applied to de-correlate the raw feature values,
which requires the training of orthogonal base vectors.

SBSC itself is a modification of the OBSC, to increase ro-
bustness and appropriateness of the spectral contrast represen-
tation, and the following procedure is suggested in [20]: Similar
to the computation of OBSC, every frame is transformed with
the DFT, and the resulting spectrum is divided into sub-bands,
but with a different scheme. For six bands, this results in bound-
aries at 20 Hz, 330 Hz, 704 Hz, 1256 Hz, 2303 Hz, 4729 Hz,
and 11 kHz. Equation 1 is then suggested to calculate Spectral
Contrast, where k is the index of the sub-band, µ is the mean
of the whole sub-band, P and V the peak and valley values re-
spectively.

Ck =

(
Pk
Vk

)1/logµk

(1)

By including the mean of the sub-band µ in the equation,
the characteristic of the sorted spectrum between peak and val-
ley is also considered. This allows to differentiate between
shapes that would result in the same Spectral Contrast, when
computed with the procedure for OBSC. The final feature vec-
tor is then composed from both the Spectral Contrast and the
Valley for each band separately, resulting in 12 attributes. Com-
pared to OBSC, the KLT is also applied for de-correlation, but
the required covariance matrices are not based on the complete
data set, but computed for each individual song.

In our modification, we simplify this approach by removing
the necessity to compute both peak and valley values, as well as
removing the neighbourhood parameter α. Similar to the pre-
viously discussed methods, we transform every frame of audio
(window length=800 ms, symmetrically placed around a 200
ms frame) with a DFT, and subdivide the resulting spectrum
in six bands (using the same boundaries as with OBSC), and
sort the bins of every sub-band according to their magnitudes
in descending order. Afterwards, we fit a third-order polyno-
mial to the resulting shape. Therefore, we refer to this feature
as Polynomial Shape Spectral Contrast (PSSC). It is computed
for every band, yielding a feature vector with 24 attributes (we
include the offset of the resulting polynomial). Contrary to the
procedure to compute OBSC and SBSC, we don’t utilise any
de-correlation measures to the raw features, hence reducing the
complexity even further. According to the results of a four-
fold cross validation on our internal data set (see Sec. 4.1), the
suggested approach outperforms OBSC and SBSC, despite its
simplicity. OBSC performed at 0.753, SBSC at 0.761, and the
suggested PSSC at 0.803 F-measure for the class of interest,
speech. More traditional features like PLP, MFCC, and LPC
reached F-measures of 0.725, 0.664, and 0.720 respectively,
hence supporting the choice of PSSC even further.

3.4. Complete Feature Set and Classifier

Our final feature vector contains 63 attributes, 13 Fluctogram
variances, 13 Spectral Flatness means, and 13 Spectral Contrac-
tion variances, and 24 PSSCs. The units of audio to be classified

are 200 ms frames, resulting in five classifications per second.
As classifier, we choose the SVM implementation of the Weka
toolkit [21] (complexity = 0.4, γ = 0.9).

4. Datasets
4.1. Internal Data Set for Training

In order to determine a proper feature set and classifier param-
eters, we use an internal set of 4 h radio broadcasts from four
different stations, exactly 1 h each. The amount of speech is 75
min (31.3%), and the language spoken is mainly German with
occasional English. The decision to use this was based on two
considerations: First, we do not have ground truth annotations
for additional in-domain data besides the movies, which will be
described in the next section, and radio broadcasts are the next
best thing available to us. Second, they allow for an – at least
coarse – estimation of the capability to discriminate speech and
singing voice, since both are an integral part of radio.

4.2. Movie Data Set

We manually annotated the ground truth on four full-length
movies in the original English versions by labeling speech and
non-speech segments as precisely as possible. These annota-
tions were used exclusively for testing the final detector, and
are made openly available to the research community. In Table
1, the statistics regarding length and speech content are given.
We also include the statistics reported from the authors of the
baseline in [6] (col. EYB) to demonstrate the difficulties in ob-
taining a proper ground truth: clearly, their amount of speech is
much higher than in our annotations (col. NEW), most certainly
due to the coarse annotation style, which the authors mention.
Depending on what the annotator considers speech, screaming
and singing could possibly also be labeled as speech. There-
fore, it is important to provide the annotator with a set of rules,
preferably with an application already in mind. Unfortunately,
although the authors responded quickly to our requests, and
were very supportive by offering to share the annotations, we
could not get our hands on their data in time to include a more
detailed analysis of the differences. Additionally, there seem to
be differences regarding the length of the movies. Obviously,
if one wants to use the annotations provided by us, the audio
tracks need to be extracted from the same version of the movie
to assure proper aligned segment boundaries.

While annotating, we followed a set of rules, mainly with
an ASR system in mind. Thus, we did not annotate singing,
non-articulated screams, laughing, and breathing as speech. We
tried to annotate speech, as soon as we were able to recognise it
as such, and it would make sense to show subtitles along, even
when it was barely perceivable. Pauses, even small ones, were
annotated as often as possible.

5. Results
We present the results of two experiments. First, we perform
a leave-one-out cross-validation (CV) on the before mentioned
internal data set of 4 h radio broadcasts, with the baseline
method (Eyben et al. [6], as well as our suggested approach.
The thresholds resulting in equal false negative rate (FNR), and
false positive rate (FPR), are then fixed and left unchanged for
the second experiment. Here, we train the baseline system, and
our novel approach with the complete (previously splitted for
cross-validation), 4 h radio data set (see Sec. 4.1). The result-
ing classifiers are then presented with previously unseen audio
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[hh:mm:ss] speech [%]
EYB NEW EYB NEW

Bourne Id. 1:53:– 1:58:24 40.7 26.7
I Am Leg. 1:36:– 1:40:22 39.2 18.3
Kill Bill 1 1:46:– 1:46:08 33.9 19.2
Saving P. 2:42:– 2:42:27 48.6 32.1
ALL 7:57:– 8:07:21 41.6 25.2

Table 1: Statistics of the four full-length movies, used as chal-
lenging test set. Clearly, the amount of speech we annotated
(col. NEW) differs from what was reported in [6] (col. EYB)

AUC FNR FPR EER ACC PREC REC F
EYB .857 .202 .202 .202 .798 .643 .799 .712
NEW .979 .059 .059 .059 .941 .880 .941 .910

Table 2: CV-Results of the proposed method on four radio
broadcasts, compared to those of Eyben et al. in [6], always
trained and tested with the same audio data. A fixed threshold
corresponding to the EER is used.

tracks from four movies (see Sec. 4.2).

5.1. Cross Validation Results on Internal Data Set

In Table 2 the results of the leave-one-out CV are listed. The
columns AUC, FNR, FPR, and EER list the area under ROC
curve, false negative rate, false positive rate, and equal error
rate, respectively. Furthermore we added the results regarding
accuracy, precision, recall, and F-measure in the columns ACC,
PREC, REC, and F respectively. The row EYB contains the
results from the baseline method [6], and row NEW contains
the results from our proposed method.

Compared to the results of our suggested method, one can
observe a lower FPR in general (20.2% vs. 5.9%). This supports
our claim, that the feature set we propose, is indeed better capa-
ble to discriminate between speech and other harmonic sources
like vocals and music. The high amount of the latter two classes
in radio broadcasts reveals such a potential weakness.

From previously conducted experiments, we experienced
that RASTA-PLPs (as used in the baseline method) are not
suited to discriminate between speech, singing voice and some
instruments, even pure piano music produces some false posi-
tives. In [6], the authors of the baseline method also report a
relatively high combined error rate (FNR+FPR=31%) on their
synthetic test set for the segments, where they mixed speech and
music.

5.2. Results on Movie Data Set

In Table 3, we can see the results on the previously unseen four
full-length movies. The columns EYB and NEW refer to the
baseline [6] and our proposed method respectively. The rows
list the results of the four movies, as well as the averaged results
(row ALL), weighted by the length of the movies respectively.

Compared to the results on the cross-validated radio broad-
casts, the performance of both methods drops considerably.
This is expected, and partly due to out-of-domain training, and
was also reported by the authors of the baseline method [6],
where the EER dropped from 10.4% on the synthetic, unseen
test set down to 33.2% on the same four movies.

The proposed approach outperforms the baseline in every
aspect, reducing the overall equal error rate (col. EER, row

AUC FNR FPR EER
EYB NEW EYB NEW EYB NEW EYB NEW

Bourne Id. .658 .897 .720 .297 .094 .074 .262 .134
I Am Leg. .688 .922 .655 .225 .098 .062 .200 .092
Kill Bill 1 .688 .914 .480 .186 .240 .109 .286 .124
Saving P. .644 .880 .707 .306 .127 .084 .313 .155
ALL .652 .895 .665 .271 .139 .082 .271 .130

ACC PREC REC F
EYB NEW EYB NEW EYB NEW EYB NEW

Bourne Id. .738 .866 .520 .776 .280 .703 .364 .738
I Am Leg. .800 .908 .443 .738 .345 .775 .388 .756
Kill Bill 1 .715 .877 .340 .640 .521 .814 .411 .717
Saving P. .687 .845 .522 .797 .293 .695 .375 .742
ALL .729 .870 .447 .748 .335 .729 .383 .738

Table 3: Results of the proposed method on four full-length
movies, compared to those of Eyben et al. in [6], trained with
the same audio data. Thresholds for EER were ascertained after
cross-validation of the training set, hence FPR and FNR are not
equal. Results in row ALL are length-weighted.

ALL) to less than half (27.1% vs. 13%). In terms of FNR,
the movies Bourne Identity and Saving Private Ryan seem to be
the most challenging. This is due to the high amount of noise,
like shooting, tanks or cars driving, and rain, which deteriorates
speech to an extend, that it is often not recognised as such. In
our opinion, simply adding similar examples to the training set
would not solve this problem. We think, specific sets of fea-
tures need to be composed, to specialise on smaller problems,
currently not covered by the proposed method. To give an ex-
ample, we see room for improvement for screaming and whis-
pering, which is clearly different than speech w.r.t. harmonic-
ity. On the other hand, one has to be careful with the design
of a possible solution, since every specific detector added to the
system holds a potential risk to further increase the FPR (e.g.
whispering vs. wind).

6. Conclusions
We have presented a set of light-weight acoustic features,
specifically designed for VAD in the challenging conditions in
movies. First, we performed a CV on four different radio broad-
casts to demonstrate the capability to detect speech without con-
fusing it with singing voice or music. With the result of this CV,
the threshold at the EER was fixed.

Second, we trained a SVM with the complete set, previ-
ously used in the first experiment, and reuse the threshold to
make sure the test set is left unseen. As test set, we use four
different movies, and compare the results to a state-of-the-art
baseline system. The new approach outperforms the baseline,
yielding just about half the EER (27.1% vs. 13%).

Furthermore, since the ground truth annotation task is ex-
tremely tedious, and to help with advancing in this topic, we
release the annotations of all four movies to the research com-
munity.
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