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Abstract. Music is usually highly structured and it is still an open question how
to design models which can successfully learn to recognize and represent musi-
cal structure. A fundamental problem is that structurally related patterns can have
very distinct appearances, because the structural relationships are often based on
transformations of musical material, like chromatic or diatonic transposition, in-
version, retrograde, or rhythm change. In this preliminary work, we study the
potential of two unsupervised learning techniques—Restricted Boltzmann Ma-
chines (RBMs) and Gated Autoencoders (GAEs)—to capture pre-defined trans-
formations from constructed data pairs. We evaluate the models by using the
learned representations as inputs in a discriminative task where for a given type of
transformation (e.g. diatonic transposition), the specific relation between two mu-
sical patterns must be recognized (e.g. an upward transposition of diatonic steps).
Furthermore, we measure the reconstruction error of models when reconstructing
musical transformed patterns. Lastly, we test the models in an analogy-making
task. We find that it is difficult to learn musical transformations with the RBM
and that the GAE is much more adequate for this task, since it is able to learn
representations of specific transformations that are largely content-invariant. We
believe these results show that models such as GAEs may provide the basis for
more encompassing music analysis systems, by endowing them with a better un-
derstanding of the structures underlying music.

1 Introduction

An important notion in western music is that of structure: the phenomenon that a musi-
cal piece is not an indiscriminate stream of events, but can be decomposed into tempo-
ral segments, often in a hierarchical manner. An important factor determining what we
regard as structural units is the relation of these units to each other. The most obvious
relation is the literal repetition of a segment of music on multiple occasions in the piece.
However, more complex music tends to convey structure not only through repetition,
but also through other types of relations between structural units, such as chromatic or
diatonic transpositions, or rhythmical changes. We refer to these relations in general as
transformations.

Figure 1 shows an example of mid-level structure induced by transformations in an
excerpt of a rondo by W. A. Mozart where related phrases are marked by boxes in the
same color. The yellow boxes mark the input and output of a function f0 performing a
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Fig. 1: Beginning of the “Rondo in D major” by W. A. Mozart in Western music notation and in
a piano roll representation, where transformation functions fn constitute diatonic transpositions
(best viewed in color). Green horizontal lines mark the diatonic pitches in the scale of D major.

diatonic transposition by -1 scale step. The same function is applied in the bass section,
marked with red boxes. Likewise, f1 performs a diatonic transposition by +1 scale
step in the melody section (blue boxes) and in the bass section (purple boxes). The
transformations defined in f0 and f1 constitute structural relationships which may be
applied to any musical material and in that sense are content-invariant. Note how this
view on music as a collection of basic musical material that is transformed in a variety
of ways can provide very concise and schematically simple representations of a musical
piece. Finding such a representation may be a goal in itself (music analysis), or it may
serve as the basis for other tasks, such as music summarization, music classification and
similarity estimation, or computer-assisted composition.

There are some fundamental challenges to automated detection of structure in mu-
sic however. Firstly, although there are a few common types of transformations such as
chromatic and diatonic transposition, it is not easy to give an exhaustive list of trans-
formation types that should be considered when comparing potential structural units of
a musical piece. Ideally, rather than relying on human intuition, we would like to in-
fer transformations from actual music that can account for a large portion of structure
in that music. A second challenge is that the definition of musical structure in terms
of transformations between structural units is descriptive, not prescriptive. Composers
may use transformation as a compositional tool, but in their artistic freedom they may
perform further ad-hoc alterations at will. The resulting musical material may thus ex-
hibit approximate transformations, deviating from exact transformations in subtle but
unpredictable ways.

State of the art methods for motivic analysis of music, such as the compression-
based methods discussed in [Louboutin and Meredith, 2016], do not directly address
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these issues. We believe that a more data-driven approach is needed, where transfor-
mations are learned from data in an unsupervised manner. This naturally leads us to
consider connectionist models for unsupervised learning, such as restricted Boltzmann
machines (RBMs) [Hinton et al., 2006], and autoencoders [Bengio, 2009]. A partic-
ularly promising approach towards unsupervised learning of content-invariant musi-
cal transformations are bilinear models like Gated Autoencoders (GAEs) [Memisevic,
2011] or Factored Boltzmann Machines [Memisevic and Hinton, 2010]. By employing
multiplicative interactions, these models can learn typical correlations between pairs
of data instances. It was shown that GAEs are effective at encoding transformations
between image pairs, such as spatial translation and rotation of objects [Memisevic,
2013].

The purpose of this paper is not to show how such models can be used to perform
music analysis, but (rather more modestly) to investigate their ability to learn transfor-
mations from given pairs of musical fragments, more specifically n-grams of unit-sized
vertical slices from a pianoroll notation. To this end, we define common musical trans-
formations (chromatic transposition, diatonic transposition, tempo change, and retro-
grade) and construct n-gram pairs accordingly (see Section 4). Such a controlled setting
provides ground-truth data and allows for performing a proof-of-concept on the general
suitability of GAEs in music, and should be regarded as a first step towards identifying
and learning transformations implicit in a music corpus.

We compare a GAE with a standard RBM in learning the aforementioned pre-
defined musical transformations between n-gram pairs of symbolic polyphonic mu-
sic. We test the discriminative performance of the models in a classification task (see
Section 5.1) and their expressivity based on the reconstruction cross-entropy (see Sec-
tion 5.2). Furthermore, we test the performance of the GAE in applying learned rela-
tions to data instances not seen during training (see Section 5.3).

In Section 2 we discuss related models and concepts, and in Section 3 we describe
the GAE and the RBM models used in our experiments. The experiment setup including
data preparation, used model architectures, and training is introduced in Section 4. Re-
sults are presented and discussed in Section 5 and Section 6 gives an outlook on future
work and challenges.

2 Related work

The problem of detecting musical relations falls in the class of analogy-making [Hofs-
tadter and Mitchell, 1995], an important capability of the human brain in which the ob-
jective is to produce a data instance X given the three instances A, B, C, and the query X
is to A as B is to C. Nichols [2012] shows how analogy-making also plays an important
role in music cognition, and “Musicat”, a musical analogy-making model is presented.
Identifying analogies between musical sections exhibiting the same transformation is a
first step towards identifying similarities between transformed musical objects (i.e. by
utilizing transformation-invariant representations [Memisevic and Exarchakis, 2013]).

The problem of relating data instances is also tackled by some deep-learning meth-
ods, like in [Reed et al., 2015], where visual analogy-making is performed by a deep
convolutional neural network using a supervised strategy. Siamese architectures are
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used by Bromley et al. [1993] for signature verification, and by Chopra et al. [2005]
to identify identical persons from face images in different poses. With a GAE, an ex-
plicit mapping between two inputs is learned. In contrast, with common deep-learning
methods relations are often indirectly qualified by comparing representations of related
instances. For example, it is a common approach to construct a space in which op-
erations like addition and subtraction of data vectors imply some semantic meaning
[Mikolov et al., 2013; Pennington et al., 2014].

An analogy-making model similar to the GAE is the Transforming Autoencoder
introduced by Hinton et al. [2011]. In contrast to the GAE this model is supervised, as
during training the respective transformations have to be specified in a parameterized
way (e.g. rotation angle or distance of shift in image transformation). Another related
model is the Spatial Transformer Network, which transforms an input image (condi-
tioned on itself) before passing it on to classification layers [Jaderberg et al., 2015].

Bilinear models themselves are used for analogy-making on rotating 3D objects
[Memisevic and Exarchakis, 2013], for modeling facial expression [Susskind et al.,
2011], to learn transformation-invariant representations for classification tasks [Memi-
sevic, 2012], and for time-series prediction on accelerated movements and sine-sweeps
by stacking more than one GAE and learning higher-order derivatives [Michalski et al.,
2014].

The GAE is based on a method introduced by Adelson and Bergen [1985], where
motion patterns in the three-dimensional x-y-t space are modeled by filter pairs recep-
tive to distinct orientations in that space. It shows that mapping units in a GAE function
similar to complex cells in the visual cortex, which gives rise to important perceptual
processes like detecting fluent motion from series of static images.

3 Method

3.1 Gated Autoencoder

A Gated Autoencoder (GAE) learns mappings between data pairs x,y ∈ RP using
lateral mapping units m ∈ RL as

m = σ(W(Ux ·Vy)), (1)

where U,V ∈ RP×O and W ∈ RO×L are weight matrices, and · denotes the element-
wise product (see Figure 2 for an illustration). In our experiments, σ is the sigmoid
function, but other non-linearities, like the square-root or softplus are also reported in
the literature [Adelson and Bergen, 1985; Alain and Olivier, 2013; Memisevic, 2012].
The element-wise (i.e. pairwise) product between filter responses Ux and Vy, leads to
filter pairs in U and V encoding correspondences between the inputs x and y. GAEs
are very expressive in representing transformations, with the potential to represent any
permutation in the input space (”shuffling pixels”) [Memisevic, 2013]. The resulting fil-
ter pairs show transformation-specific features, like phase-shifted Fourier components
when learning transposition between n-grams of polyphonic music in our experiments
(see Figure 3). Such phase-shifted filter pairs are then receptive to corresponding shifts
between pairs of data instances.
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Fig. 2: Schematic illustration of a Gated Autoencoder.

An interesting aspect of a GAE is its symmetry when solving Equation 1 for its
inputs, allowing for a reconstruction of an input given the other input and a mapping
code. The reconstruction for binary data is given by

x̃ = σ(U>(W>m ·Vy)), (2)

and likewise
ỹ = σ(V>(W>m ·Ux)). (3)

A commonly used training loss [Memisevic, 2013; Michalski et al., 2014] is the sym-
metric reconstruction error

L = ||x− x̃||2 + ||y − ỹ||2. (4)

When using additive interactions in neural networks, units resemble logical OR-
gates which accumulate evidence. In contrast, multiplicative interactions resemble AND-
gates that can detect co-occurrences. Multiplicative interactions enable the model to
ignore input that does not exemplify a known transformation, making it less content-
dependent [Memisevic, 2013]. Ideally, learned representations encode fully content-
invariant transformations between data pairs. In practice, there is always some content-
dependence in the resulting codes, and it is a future challenge to tackle this issue (see
Figure 4, where the variance along the first principal component is content-dependent,
as it is not correlated with transformation classes).

3.2 Restricted Boltzmann Machine

An RBM is an energy-based stochastic neural network with two layers, a visible layer
with units v ∈ {0, 1}r and a hidden layer with units h ∈ {0, 1}q [Hinton, 2002]. The
units of both layers are fully interconnected with weights W ∈ Rr×q , while there are no
connections between the units within a layer. Given a visible vector v, the free energy
of the model is calculated as
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Fig. 3: Some complementary filters of U (top) and V (bottom) learned from transposed pairs of
musical n-grams.

a b

Fig. 4: First two principal components (a) and second and third principal component (b) of
mappings resulting from unsupervised learning of pairs exhibiting the chromatic transposition
(TransC) relation. Points are colored and cluster centers are named according to the different
classes within the TransC relation type (i.e. distances of note shifts).
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F(v) = −aᵀv −
∑
i

log
(
1 + e(bi+Wiv)

)
, (5)

where a ∈ Rr and b ∈ Rq are bias vectors, and Wi is the i-th row of the weight matrix.
The model is trained by minimizing the free energy given the training data, and by
maximizing the free energy for samples from the model—a method called Contrastive
Divergence [Hinton, 2002].

Reconstruction is performed by projecting a data instance into the hidden space,
followed by a projection of the resulting hidden unit activations back into the input
space. The reconstruction cross-entropies–as presented in Section 5.2–arise from the
error between the input before and after the projection.

4 Experiment

The aim of the current experiment is to test the performance of a GAE in learning
musical relations between pairs of n-grams. As a baseline, we train an RBM with ap-
proximately the same number of parameters on concatenated pairs of n-grams, like in
[Susskind et al., 2011]. In order to have a controlled setting and labels for the trans-
formation classes, we construct pairs where one item is an original n-gram selected at
random from a set of polyphonic Mozart sonatas (see Figure 5(A) for n-gram exam-
ples), and the other item is constructed by applying a randomly selected transformation
to this n-gram. The experiment is unsupervised in that there are no targets or labels
when training the GAE, but we only present one type of transformation per training
session. The goal of the GAE is to cluster the classes within each type of transforma-
tion. For example, within the transformation type chromatic transposition (TransC), the
classes are the different semitone intervals by which the items in a pair are shifted with
respect to each other.

We use the resulting representations as an input to a classification feed-forward Neu-
ral Network (FFNN), in order to assess their discriminativity with respect to the given
classes. Furthermore, we measure the reconstruction cross-entropies for both models,
and we apply transformations extracted from single examples to new data.

4.1 Data

We use MIDI files encoding the scores of Mozart piano sonatas from the Mozart/Batik
data set [Widmer, 2003]. From those pieces, we create binary piano-roll representations,
using the MIDI pitch range [36, 100] and a temporal resolution of 1/16th note. From
those representations we create 8-grams (i.e. any consecutive eight 1/16th slices from
the piano-roll representation) and for each 8-gram we construct a counterpart which
exhibits the respective transformation. In order to remove potential peculiarities of the
corpus with respect to absolute shifts and keys, we start by shifting the notes of the orig-
inal n-grams by k semitones taken randomly from the set [−12, 11]. In the following,
we describe how the respective counterparts are constructed.
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Chromatic Transposition (TransC) Chromatic transposition is performed by shifting
every pitch in a set of notes by a fixed number of semitones (cf. Figure 5(1)). For each
n-gram, we construct a counterpart by shifting all notes by k semitones taken from the
set [−12, 11]. Note that this also includes the transposition by 0 semitones, which is the
special case “exact repetition”. The resulting 24 classes for testing the discriminative
performance of our models are consequently the elements of the set [−12, 11].

Diatonic Transposition (TransD) Diatonic transposition is the transposition within
a key. This is, any pitch in a set of notes is shifted by a fixed number of scale steps
(i.e. transposition using only allowed notes, e.g. depicted as green lines in Figure 1).
This operation may change the intervals between notes (see Figure 5(2) for examples
of diatonic transposition). At first, we estimate the key for each n-gram by choosing the
one with the least accidentals from the set of keys for which all pitches of the n-gram
are “allowed”, omitting n-grams which do not fit in a key. Using this method, we obtain
n-grams which are assigned to a unique key and can be unambiguously transformed
into another key. That way, a unique transformation can be learned for any constructed
instance pair. We create counterparts for each n-gram by shifting each pitch by k scale
steps of the estimated scale, taken from the set [−7, 6]. Thus, the resulting 14 classes
the models are trained on are the elements of the set [−7, 6].

Half time / double time (Tempo) ”Half time” means doubling the durations of all
notes, and “double time” is the inverse operation. We realize the half time relation by
scaling each n-gram to double width and then taking only the first half of the result (cf.
Figure 5(3)), and for the inverse operation we swap such pairs. Consequently, we assess
the performance of the models in discriminating between the relations {double time,
half time, identity}.

Retrograde (Retro) In music, retrograde means to reverse the temporal order of given
notes. We can simply create pairs exhibiting the retrograde relation by flipping n-grams
horizontally. This results in two classes: {retrograde, identity (¬retrograde)}

4.2 Model Architectures

Architecture of the GAE and the RBM In order to obtain comparable results for
the GAE and the RBM, for each test we choose the same number of parameters and
layers for each model. The GAE may be seen as a two-layered model, where the factors
constitute the hidden units of the first layer, and the mapping units constitute the hidden
units of the second layer. Consequently, we also use a two-layered RBM architecture
where the number of hidden units in the first layer is equal to the number of factors in the
GAE, and the number of hidden units in the top layer is equal to the number of mapping
units in the GAE. We test three different model sizes for every type of transformation.
The smallest model (128/64) has 128 units in the first layer and 64 units in the second
layer. The next bigger model has 256/128 units, and the biggest model has 512/256
units in the respective layers.
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Architecture of the Classification FFNN For all classification tasks, the same archi-
tecture is used: A three-layered feed-forward Neural Network (FFNN) with 512 Recti-
fied Linear units (ReLUs) in the first layer, 256 ReLUs in the second layer, and Softmax
units in the output layer. The size of the output layer is equal to the number of classes.
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-7 7187 1 1 1 3 3 0 10 1 2 1 0 4 0
-6 6 6943 2 14 2 7 9 1 30 1 30 0 7 6 0
-5 15 21 7043 14 26 13 6 3 3 29 0 6 10 3 10
-4 1 10 3 7055 7 5 0 0 6 1 17 0 5 0 10
-3 2 1 6 55 7090 6 11 0 2 3 8 34 1 9 11
-2 5 4 3 16 11 6960 10 2 4 0 12 2 20 0 52
-1 1 8 1 1 6 3 7050 5 6 3 6 7 13 24 3
0 7 0 2 0 0 4 0 7124 0 6 0 3 3 0 164
1 0 46 3 14 7 5 18 6 7028 0 23 1 4 13 28
2 13 1 25 3 16 8 3 0 2 7082 15 16 4 2 59
3 1 5 0 12 10 9 5 2 5 0 6972 39 6 1 33
4 1 2 6 0 12 3 6 2 3 7 19 7027 1 1 29
5 9 7 5 17 0 89 11 8 7 4 48 11 6874 35 117
6 2 21 5 4 17 6 41 1 36 6 7 23 4 7053 135∑
diag 2 30 13 12 58 7 232 32 104 42 30 158 141 98488

Table 1: Confusion Matrix for classifier FFNN trained on representations of GAE TransD 128/64.

4.3 Training

In the following, we report how the GAE, the RBM, and the FFNN are trained in our
experiments. For each transformation type, we train on 490 000 pairs using a validation
set of 10 000 pairs. The final testing is done on a test set of size 100 000 per transfor-
mation type.

Training the Gated Autoencoder The model parameters of the GAE are trained using
stochastic gradient descent to minimize the symmetric reconstruction error (see Equa-
tion 4). We train the model on the data pairs for 1000 epochs, using a mini-batch size of
500, a learning rate of 3× 10−5 and a momentum of 0.93. Learning improves when the
input (i.e. y and x in Equations 2 and 3, respectively) is corrupted during training, as it
is done in de-noising autoencoders [Vincent et al., 2010]. We achieve this by randomly
setting 35% of the input bits to zero and train the GAE to reconstruct an uncorrupted,
transformed version of it (i.e. x̃ and ỹ in Equations 2 and 3, respectively). For the first
100 epochs, the input weights are re-scaled after each parameter update to their average
norm, as described by Susskind et al. [2011]; Memisevic [2011, 2012]. We use L1 and
L2 weight regularization on all weights, and Lee’s sparsity regularization [Lee et al.,
2007] on the mapping units and on the factors.



10 Stefan Lattner, Maarten Grachten, Gerhard Widmer

Training the Restricted Boltzmann Machine We train two RBM layers on concate-
nated data pairs with greedy layer-wise training using persistent contrastive divergence
(PCD) [Tieleman, 2008], a variation of the standard contrastive divergence (CD) algo-
rithm [Hinton, 2002], which is known to result in a better approximation of the likeli-
hood gradient. We use a learning rate of 3× 10−3 which we reduce to zero during 300
training epochs. We use a batch size of 100, and we reset (i.e. randomize) the weights
of neurons, whose average activity over all training examples exceeds 85%. We use
L1 and L2 weight regularization and the sparsity regularization proposed by Goh et al.
[2010] setting µ = 0.08 and φ = 0.75.

Training the Classification FFNN The FFNN is trained in a supervised manner on the
representations (i.e. the neural activation patterns) resulting from unsupervised training
of the GAE and the RBM on related data pairs, using the categorical cross-entropy
loss. The network is trained for 300 epochs with a learning rate of 0.005, a batch size
of 100 and a momentum of 0.93. We apply L2 weight regularization on all weights,
sparsity regularization as in [Lee et al., 2007], 50% dropout [Srivastava et al., 2014] on
all except the top-most layer, as well as batch normalization [Ioffe and Szegedy, 2015].

5 Results and discussion

5.1 Discriminative performance

Table 2 shows the mis-classification rates of the FFNN, trained on representations of
the GAE and the RBM. The models are trained separately for each transformation type,
chromatic transposition (TransC), diatonic transposition (TransD), half-time/double-
time (Tempo), and retrograde (Retro) where training data pairs of each type contain
several type-specific classes (see Section 4.1).

The GAE is clearly better at learning discriminative representations of musical
relations. The mis-classification rates of the largest architecture (512/256) are below
0.3% for all relations. In contrast, the RBM is less suitable for unsupervised learning
of relations–in the case of Retro it does not even outperform random guessing. Note
furthermore that in contrast to the GAE, increasing the capacity of the RBM does not
always improve results. This suggests that the architecture itself is a limiting factor: As
the activations of units in an RBM only depend on additive accumulation of evidence, it
attempts to learn all combinations of mutually transformed data instances it is presented
with during training. For transposition relations, learning such combinations results in
representations which are informative enough that the classification FFNN can infer the
transformation class from it. Retrograde and Tempo, however, are too complex trans-
formations to grasp for content-dependent representation learner.

In contrast, the GAE separates the problem in representing characteristics of the
input n-grams with additive input connections on the one hand, and modeling transfor-
mations using multiplicative interactions on the other hand. In addition, when training
the GAE on reconstructing an input, the other input provides content information allow-
ing the mapping units to represent only the content-invariant transformation. It is still
a non-trivial result that the GAE is able to learn all pre-defined transformation types.
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Transformation
Model TransC TransD Tempo Retro

# Classes 24 14 3 2

Random 95.83 92.86 66.67 50.00

RBM
128/64 23.10 87.55 50.09 50.06

256/128 6.12 51.05 47.52 50.11
512/256 2.18 19.47 40.33 50.19

GAE
128/64 1.88 1.51 2.47 3.24

256/128 0.02 0.26 0.89 1.10
512/256 0.03 0.23 0.11 0.28

Table 2: Mis-classified rates (in percent) from the classification Feed-Forward Neural Network
trained on representations of the Restricted Boltzmann Machine (RBM) and the Gated Autoen-
coder (GAE) in different architecture sizes and for different transformation types. Random de-
notes the random guessing baseline dependent on the number of classes.

In particular diatonic transposition (TransD) is a very relevant transformation in music
and it is an interesting finding that the GAE is capable of learning it.

Table 1 shows a confusion matrix for the GAE TransD 128/64 relation. To interpret
the table, it is instructive to realize that two diatonic transpositions of the same ngram
yield another pair of n-grams that are also diatonically transposed versions of each other.
For instance, the diatonic transposition pairs 0 and -7, 1 and -6, 2 and -5, and so on, all
yield a resultant transposition of -7 (a downward octave). Analog equivalences hold for
resultant transpositions of upward octave, the upward/downward fifth, third, and so on.
The equivalent resultant transpositions have been marked by colored arrows in the table.
The arrows clearly highlight that the model is biased toward confusions by one octave
from the correct shift (red arrows). For example, when the actual shift between n-gram
pairs is +5, the classifier frequently estimates a shift of−2, which is 7 scale steps or one
octave away from the correct target. Similarly, frequently confused targets are a third
(green arrows), a fifth (blue arrows), and an octave plus a third (orange arrows) away
from the correct target. Since the data pairs are uniformly distributed over all classes, it
follows that these confusions are caused by covariances within single n-grams, where
thirds, fifths, and octaves occur frequently. The mis-classifications of second interval
shifts (i.e. the entries directly above and below to the diagonal) most likely result from
second-order covariances. For example, shifts by -3 and -4 are sometimes confused
because their sum is -7, which is again an octave.

5.2 Reconstruction

Table 3 lists the reconstruction cross-entropies for each architecture versus transforma-
tion type. The error of the largest GAE architecture is about an order of magnitude
smaller than that of the best RBM architecture. Furthermore, the cross-entropies do not
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Transformation
Model TransC TransD Tempo Retro

RBM
128/64 0.131 0.122 0.098 0.110

256/128 0.122 0.119 0.084 0.095
512/256 0.113 0.112 0.075 0.086
GAE

128/64 0.026 0.032 0.025 0.033
256/128 0.018 0.024 0.015 0.017
512/256 0.012 0.016 0.007 0.009

Table 3: Reconstruction cross-entropies (per input unit) for the Restricted Boltzmann Machine
(RBM) and the Gated Autoencoder (GAE) in different sizes and for different transformation
types.

substantially improve with increasing capacity of the RBM, again suggesting an archi-
tectural advantage of the GAE over the RBM. Olshausen et al. [2007] suggest that the
advantage consists in the ability to separate content and its manifestation (the “what”
and the “where” ). Mapping units only have to encode the ”where” components leading
to a more efficient use of the model parameters.

5.3 Generation

Figure 5 shows analogy-making examples. Mappings are inferred from template n-gram
pairs (A) and applied to single instances which were not part of the training corpus. The
resulting pairs (B) should exhibit the same transformation as the template pairs from
which the transformation was inferred. For diatonic transposition (2), the mapping is
applied only to instances in the same key as the source instance (i.e. left instance) of the
template pairs, and valid pitches are marked with green lines.

The transformations of the template pairs shown in Figure 5 are chromatic trans-
position by −7 semitones (1), diatonic transposition by +5 scale steps in C major (2),
halftime (3), and retrograde (4). Depending on the type of transformation, the results
vary in their overall quality. The examples shown in Figure 5 have been selected to il-
lustrate both high and low quality transformations. We found that diatonic transposition
(TransD) transformation was generally of lower quality than the other transformation
types. In low-quality transformations, notes are frequently missing in generated coun-
terparts, which is a result of learned representations being not fully content-invariant.
Figure 4 shows that content-dependence in the first principal component, as this com-
ponent is not correlated with content-invariant classes. Note that the GAE is “conserva-
tive” when it comes to generating analogies, in that the reconstruction errors are caused
by omitting existing notes, but very rarely by incorrectly introduced notes. The reason
is that mapping units only take on large values when inputs comply with their transfor-
mations [Memisevic, 2012] and as a GAE is symmetric, this also holds for units in the
input space.
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6 Conclusion and future work

We have evaluated the ability of two unsupervised learning models to learn transforma-
tions from pairs of musical n-grams. We found that the Gated Autoencoder was more
effective than a standard RBM, both in an input reconstruction task, and in a discrimi-
native task in which the representations learned by the models were used to classify n-
gram pairs in terms of the transformation they exhibit. Ideally, transformations learned
by a GAE are fully content-invariant. We found that this is not the case in practice when
training the GAE using the classical objective function. In other recent work, we show
that the content-invariance of learned representations can be improved by a regulariza-
tion term that explicitly penalizes content-variance [Lattner and Grachten, 2017].

The results reported in this paper show that when given enough n-gram pairs ex-
hibiting transformations of a certain type, the GAE is able to learn these transforma-
tions. Future experiments in which n-gram pairs may exhibit multiple transformation
types (for example a diatonic transformation combined with rhythmic changes) should
tell to what degree a GAE can disentangle transformations of different types.

The purpose of this evaluation is to assess the suitability of the models for the sub-
sequent task of inferring transformations from a musical corpus. This poses the further
challenge of selecting n-gram pairs from the corpus to train the model on. Obviously the
majority of randomly selected n-gram pairs will be unrelated, and exhibit no meaning-
ful transformations at all. A possible way to address this issue is to use a bootstrapping
approach in which the selection of n-gram pairs for training the model is based on some
measure defined by the model itself, for example by greedily selecting the pairs for
which the model reconstruction error is lowest.
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Fig. 5: Results of the analogy-making task. Transformations are inferred by the GAE from pairs
of 8-grams (A) and applied to new n-grams, not seen during training (B, left parts) to gener-
ate counterparts with analogous transformations (B, right parts), where the level of blackness
indicates the certainty of the model that the respective note is part of the transformed result: 1)
Chromatic transposition, 2) diatonic transposition, 3) tempo change (halftime), and 4) retrograde.
Green horizontal lines mark scale notes in diatonic transposition, for visual guidance.
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