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Inferring metrical structure in music using

particle filters
Florian Krebs, Andre Holzapfel, Ali Taylan Cemgil and Gerhard Widmer

Abstract

In this work, we propose a new state-of-the-art particle filter (PF) system to infer the metrical

structure of musical audio signals. The new inference method is designed to overcome the problem of

PFs in multi-modal probability distributions, which arise due to tempo and phase ambiguities in musical

rhythm representations. We compare the new method with a hidden Markov model (HMM) system and

several other PF schemes in terms of performance, speed and scalability on several audio datasets. We

demonstrate that using the proposed system the computational complexity can be reduced drastically in

comparison to the HMM while maintaining the same order of beat tracking accuracy. Therefore, for the

first time, the proposed system allows fast meter inference in a high-dimensional state space, spanned

by the three components of tempo, type of rhythm, and position in a metric cycle.

Index Terms

Particle filters, Beat tracking, Downbeat tracking, Bayesian modeling, Approximate inference

I. INTRODUCTION

Automatic inference of metrical structure from musical audio has been an active research topic over

the last few decades. Especially, estimating the perceptually most salient pulsation in musical meter, i.e.,

the beat, is one of the aspects that has attracted a significant amount of research work (see [1] for an
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overview). While also interesting in its own right, the automatic determination of the metrical grid from

an audio recording is a fundamental ingredient for other, high-level Music Information Retrieval (MIR)

tasks, such as music genre recognition [2], chord estimation [3], and music transcription [4].

Over the last decade, probabilistic state-space models have become a popular framework to tackle the

metrical inference problem (e.g., [5], [6], [7]). In these models it is attempted to infer a set of hidden

states (such as beat times, tempo, meter) from a set of observed states (such as estimated note onset times

and/or other audio features). Bayesian methods allow to easily represent the ambiguity that is inherent

to musical meter and offer a consistent framework to combine multiple sources of information (e.g.,

preferred tempi, knowledge about note onset locations). Nevertheless, exact inference in these models is

only feasible in a few simple cases, e.g., in discrete state spaces using hidden Markov models (HMMs) [8]

or for linear Gaussian conditional distributions [9].

To overcome these limitations, approximative methods such as particle filters (PF) [10] have been

proposed. Particle filters are a highly efficient method that can be applied to arbitrary, high-dimensional,

non-linear, non-Gaussian state-spaces. Consequently, the use of particle methods makes it possible to

use more complex models, which has also been exploited for the beat tracking task: [11], [12] and [13]

model the beat times and tempo jointly, taking into account their mutual dependency. Furthermore,

[14] introduced a rhythmic pattern state, which allows modeling various meters and rhythmic styles

explicitly. In any case, the great flexibility of the PFs comes at a prize: Simple PF schemes are known

to perform poorly with multi-modal probability distributions, which arise from ambiguity in the hidden

state-sequence that generated the data [15]. Therefore, much work has been devoted to resolving this

problem, and several extensions to the simple PF have been proposed [16], [15], [10]. However, although

multi-modal distributions appear frequently in analysis of musical rhythm due to inherent tempo and

phase ambiguities, dealing with this multi-modality with PFs in a robust way has never been addressed

in the meter tracking literature.

In this work, we aim at setting a new state-of-the-art in PF based meter inference systems. We propose a

new particle filter based inference method to overcome the problem of tracking a multi-modal distribution

by combining the auxiliary (APF) [16] and the mixture particle filter (MPF) [15], and compare the

resulting auxiliary MPF (AMPF) with the HMM system proposed in [17] and several other PF schemes

in terms of performance, speed and scalability on several audio datasets. We demonstrate that using the

AMPF the computational complexity can be reduced drastically compared to the HMM while maintaining

the same order of beat tracking accuracy. Apart from beat tracking, our system is capable of determining

downbeat times, time signature and type of rhythm of an audio piece using one integrated approach.
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Thus, for the first time, the proposed AMPF permits fast inference in the high-dimensional state-space

spanned by variables describing tempo, position within a metric cycle, and type of the metric cycle.

The structure of the underlying model presented in this paper can be easily adapted to the music

style under investigation, and parameters of the model can be learned off-line from rhythmic patterns

encountered in a representative music corpus. This will be described in more detail in Section III-D2. In

most existing approaches, parameters and structure of the beat tracking systems are tailored by experts,

with the goal to cope well with the demands of specific annotated evaluation datasets. This is problematic

under at least two aspects. First, the manual adaption to a specific style is time-consuming and hence

is not a viable solution for covering a wider variety of styles. Second, such systems are not suited

for later adaption by users, and therefore incorporate the risk to include a bias [18] that systematically

discriminates musical styles not considered during development. Therefore, our approach represents an

important step towards flexible representations of musical concepts that can be adapted by incorporating

available knowledge of musical style in a straight-forward way, as demanded in [19].

In the following sections, we will introduce basic notions of the metrical structure of music, and explain

the structure of our dynamic Bayesian network by defining the hidden variables, the transition model

and the observation model. In Section IV we describe different ways to perform inference in this model.

First, the HMM (Section IV-A) represents an accurate inference approach with high computational cost.

To reduce this cost, we describe several inference schemes based on PFs in Section IV-B. Section V

describes datasets and evaluation metrics and the default settings for all system parameters. Experimental

results are presented in Section VI, with a focus on the comparison of the HMM inference with the PF

schemes. Section VII provides the reader with a detailed summary and discussion of the experimental

results. The final Section VIII concludes the paper and outlines future directions of research motivated

by our results.

II. METRICAL STRUCTURE OF MUSIC

Meter as defined by [20] is organized pulsation functioning as a framework for rhythmic design.

Especially in the context of Eurogenetic music, this pulsation is considered to be stratified into a hierarchy,

with the period of pulsation increasing towards higher layers. The pulsation of the beat is situated in a

layer in the middle of this hierarchy, and represents the rate that listeners choose to synchronize their body

movements to the music. Beats are grouped into segments with a constant number of beats (bars), defined

by the time signature. The first beat of each bar is denoted the downbeat (see Fig. 1 for an illustration).

Listeners differ in their perception of meter, caused by individual or cultural factors [21]. For instance,
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the perceived beat can be related to different metrical layers, which results in perceived tempi that are

typically related by a factor of two. This variability must be considered both in the implementation of

inference systems and in their evaluation.

Beats
Downbeats

1 bar

Fig. 1. Illustration of beats and downbeats in a musical score

Computational inference of meter can either be approached in an on-line or off-line fashion. On-line

tracking requires inference at the same moment of observing the musical sound, without the possibility

of looking into the future. On the other hand, off-line processing assumes that a recording of the whole

piece is given, and for the meter inference at a specific moment in the recording the future can be taken

into account. In this paper, we evaluate our system in off-line mode but the proposed methodology can

be applied to on-line scenarios as well.

III. MODEL STRUCTURE

In this section, we formulate the metrical structure analysis problem using a Bayesian model. We

assume that a time series of observed data y1:K = {y1, ..., yK} (the audio signal as a sequence of

audio features) is generated by a set of unknown, hidden variables x1:K = {x1, ...,xK} (the parameters

describing tempo and meter throughout the progression of a piece), where K is the length of an audio

excerpt in analysis frames. In a dynamic Bayesian network (DBN) [22], the joint probability distribution

of hidden and observed variables P (y1:K ,x1:K) then factorizes as

P (y1:K ,x1:K) = P (x1)

K∏
k=2

P (xk|xk−1)P (yk|xk), (1)

where P (x1) is the initial state distribution, P (xk|xk−1) is the transition model, and P (yk|xk) is the

observation model. We will describe these three terms in more detail in Sections III-B to III-D, after

presenting the internal structure of the hidden variables in x in subsection III-A.
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A. Hidden variables

The model described in this paper closely follows the bar pointer model proposed in [17]. In this

model, the observation at each time step k is a short audio frame, and the hidden variables describe the

state of a hypothetical bar pointer xk = [φk φ̇k rk] corresponding to the k-th audio frame; the variable

φk is the current location in a bar, φ̇k is the instantaneous tempo (denoting the rate at which the bar

pointer traverses a bar), and rk is a rhythmic pattern indicator that can be used to differentiate between

time signatures or between rhythmic styles of identical time signature. Below, we make these definitions

more precise:

1) Bar position: We define the bar position φ ∈ [0, θmax), where θmax is the length of a bar related

to the longest considered metric cycle in the data. For example, if the time signatures of the considered

meters are 9/8, 4/4, and 3/4, we set θmax = 9/8.

2) Tempo: We define tempo φ̇k ∈ [φ̇min(rk), φ̇max(rk)] in terms of beats per minute (bpm); The

tempo limits are assumed to depend on the rhythmic pattern state rk and are learned from data (e.g., for

the rhythmic pattern variable rk assigned to a Tango pattern we may find φ̇k ∈ [118bpm, 136bpm]).

3) Rhythmic pattern: The rhythmic pattern variable rk ∈ [1...R] is an indicator, which selects one of

the R underlying observation models. Each observation model is associated with a time signature θ(r)

(e.g., θ(r) = 3/4) and a specific rhythmic structure that is learned from data. Note that there can be

several rhythmic patterns sharing the same time signature. An example of two such learned patterns is

given in Fig. 4, along with a detailed description of the observation models in Section III-D.

The conditional independence relations between these variables are shown in Fig. 2. The hidden state

sequence, inferred from an audio piece, can finally be translated into a sequence of time signature(s) θ(rk),

downbeat times (time frames that correspond to φk = 0), and beat times (time frames that correspond to

φk = i · (denom(θ(rk)))
−1, i = 1, 2, ..., num(θ(rk)), where denom and num are the denominator and

numerator, respectively).

B. Initial state distribution

Using the initial state distribution P (x1), a priori knowledge regarding rhythmic aspects can be

introduced into the system. The case that certain rhythmic patterns are encountered more frequently can

be modeled, or certain tempo values can be preferred using a weighting function [5]. For the experiments

in this paper, we have simply assumed uniformly distributed bar position, tempo, and rhythmic patterns

states within the learned tempo ranges [φ̇min(rk), φ̇max(rk)].
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φkφk−1

φ̇k−1 φ̇k

rkrk−1

ykyk−1

Fig. 2. Dynamic Bayesian network; circles denote continuous variables and rectangles discrete variables. The gray nodes are

observed, and the white nodes represent the hidden variables.

C. Transition model

Due to the conditional independence relations shown in Fig. 2, the transition model factorizes as

P (xk|xk−1) = P (φk|φk−1, φ̇k−1, rk−1)×

× P (φ̇k|φ̇k−1, rk−1)× P (rk|rk−1) (2)

where the three factors are defined by Equations 3-5:

P (φk | φk−1, φ̇k−1, rk−1) = 1x, (3)

where 1x is an indicator function that equals one if φk = (φk−1+φ̇k−1·∆·(60·denom(θ(rk−1)))
−1) mod θ(rk−1),

and zero otherwise, with ∆ = 0.02s the audio frame length used in this paper. This means that the bar

position at frame k is obtained by increasing the bar position of the previous frame by a term that depends

on the tempo of the previous frame. The tempo transition from one frame to the next is assumed to follow

a normal distribution and is given by

P (φ̇k|φ̇k−1, rk−1) ∝ N (φ̇k−1, σ
2
φ̇
)× 1y, (4)

where σφ̇ is the standard deviation of the tempo transition model and 1y is an indicator function that

equals one if φ̇min(rk−1) ≤ φ̇k ≤ φ̇max(rk−1), and zero otherwise.

P (rk|rk−1) = 1z, (5)

where 1z is an indicator function that equals one if rk+1 = rk, and zero otherwise. This means that we

assume a musical piece to have a characteristic rhythmic pattern that remains constant throughout the
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song. This rather strict assumption can be relaxed by defining a rhythmic pattern transition probability

that is nonzero at bar boundaries as in [17].

D. Observation model

As proposed in [23], we use an onset feature as observed variable yk, which we assume to be

independent of the current tempo φ̇k. Therefore, the observation model P (yk|xk) reduces to P (yk|φk, rk),

which means that the probability of observing a certain feature value at a given timepoint depends only

on the rhythmic style and the position in a bar. In order to obtain the parameters of P (yk|φk, rk), a

collection of beat- and downbeat annotated audio samples is needed (see Section V-C for details on the

training set we use in this paper).

1) Observation features: As observation feature, we use a variant of the LogFiltSpecFlux onset feature,

which performed well in recent comparisons of onset detection functions [24] and is summarized in Fig. 3.

Assuming that the bass instruments play an important role in defining rhythmic patterns, we compute the

sum over frequency bands separately in low frequencies (below 250 Hz) and high frequencies (above 250

Hz). Finally, we subtract the moving average computed over a window of one second and normalize the

features of each excerpt to zero mean and unit variance, again separately for the low and high frequencies.

The resulting onset feature yk has therefore two dimensions.

z[n] STFT
filterbank

(81 bands)
log diff

sum over

frequency bands

subtract

mvavg
normalize yk

Fig. 3. Computing the onset feature yk from the audio signal z[n]

2) Likelihood function: The parameters of the observation model are obtained in an off-line (super-

vised) rhythm pattern learning process. In order to get a modest (and computationally feasible) number of

probability distributions to represent P (yk|φk, rk), we discretize the bar position Φ into 64th note cells.

In order to learn the parameters of the likelihood function, a set of training pieces must be available that

is annotated at the beat and bar layers of the metrical hierarchy. Using these annotations, we can assign

each feature vector yk to the corresponding rhythmic pattern and bar position within the 64th note grid.

Then, for each bar position within this 64th grid and each rhythmic pattern, we compute the maximum

likelihood estimates of the parameters in a Gaussian mixture model (GMM). As suggested in [23], we
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use I = 2 mixture components in this work. Hence, the observation probability is modeled by

P (y|φ, r) =

I∑
i=1

wφ,r,i · N (y;µφ,r,i,Σφ,r,i), (6)

where µφ,r,i is the (2-dimensional) mean vector, Σφ,r,i is the (2 × 2) covariance matrix, and wφ,r,i is

the mixture weight of component i of the GMM. Since, in learning the likelihood function P (y|φ, r), a

GMM is fitted to the audio features for every rhythmic pattern r and each 64th note bar position cell,

the resulting GMMs can be interpreted directly as representations of the rhythmic patterns in the domain

of the observation variables. Fig. 4 shows the mean values of the features per frequency band and bar

position for the GMMs corresponding to the rhythmic patterns of a Waltz (3/4) and a Tango dance (4/4),

respectively. For illustration purposes we only display the mean value of the features instead of the mean

values per mixture component.

M
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0.5

Waltz

10 20 30 40
0.5

2

0
0.5

Tango

10 20 30 40 50 60
0.5

2

Position inside a bar (64th grid)

Fig. 4. Illustration of two learned rhythmic patterns. Two frequency bands are shown (Low/High from bottom to top).

IV. INFERENCE METHODS

Our goal is to find the hidden state sequence that maximizes the (posterior) probability of the hidden

states given the observations P (x1:K |y1:K). If we discretize the continuous tempo and bar pointer vari-

ables (see Section III-A), we can in principle perform an exact inference using an HMM (Section IV-A).

However, in order to avoid the high computational complexity of the HMM inference illustrated in

Section IV-A, we describe approaches for inference using PFs in Section IV-B. We begin with PF

approaches widely discussed in literature, and then present novel approaches capable of tracking the

metrical structure in the highly multi-modal posterior distributions typical for musical rhythm.
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A. Hidden Markov Model (HMM)

Inference in the model discussed in Section III can be performed using an HMM by dividing the

state space into discrete cells and using Viterbi decoding [8] to obtain the maximum a posteriori (MAP)

sequence of states. In Fig. 5 we show a realization of a bar position/tempo trajectory and a possible

discretization.

50

55

60

65

70
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80

(unwrapped) Bar Position φ

T
em

p
o
φ̇
(b
p
m
)

Fig. 5. Illustration of discretization of the tempo and bar pointer variables. The continuous line depicts a tempo trajectory

that might be encountered in the expressive timing throughout a musical phrase, and the the dashed line demarks the trajectory

through the discretized states.

In this work, we use the discretization proposed in [17], which we further explain in this section.

By replacing the continuous variables φ and φ̇ by their discretized counterparts m ∈ {1, ...,M} and

n ∈ {1, ..., N} respectively, Equations 2, 3 and 5 remain valid. We only define a new tempo transition

probability as:

If nmin(rk) ≤ nk ≤ nmax(rk),

P (nk|nk−1) =


1− pn, nk = nk−1;

pn
2 , nk = nk−1 + 1;

pn
2 , nk = nk−1 − 1,

(7)
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otherwise P (nk|nk−1) = 0.

Here, pn is the probability of a tempo change and nmin(rk) and nmax(rk) are the discrete tempo limits

that correspond to φ̇min and φ̇max.

The HMM is most accurate when the discretization grid is dense, but this can become computationally

prohibitive. For instance, discretizing the bar position φ of a 4/4 bar into M = 1200 points (300 per

quarter note) and the tempo φ̇ into 23 points, results in a state-space of S = M ·N = 27 968. Adding

more rhythmic pattern states increases the dimensionality to M · N · R, which quickly surpasses the

computational and memory limits of a current personal computer. This problem can be overcome by

applying approximate inference schemes instead of the exact HMM inference, and we will present such

schemes in the following parts of this section.

B. Particle filter (PF)

Even though the exact computation of the posterior P (x1:K |y1:K) in the continuous parameter space

is intractable, it can nevertheless be evaluated point-wise. This fact is exploited in the PF where the

posterior is approximated by a weighted sum of points (i.e., particles) in the state space as

P (x1:K |y1:K) ≈
Ns∑
i=1

w
(i)
K δ(x1:K − x

(i)
1:K). (8)

Here, {x(i)
1:K , i = 1, ..., Ns} is a set of points with associated weights {w(i)

K , i = 1, ..., Ns} and x1:K is

the set of all states until time frame K, while δ(x) denotes the Dirac Delta function

δ(x) =

1 if x = 0

0 if x 6= 0.

(9)

In order to approximate P (x1:K |y1:K) we need a strategy to draw samples x
(i)
k and compute appropriate

weights w(i)
k recursively for each time k. A simple algorithm to do that for sequential data is sequential

importance sampling (SIS) [10]. In SIS, we sample from a proposal distribution Q(x1:K |y1:K) which

should be as similar as possible to the true (target) distribution P (x1:K |y1:K). To correct for the fact that

we sampled from the proposal instead of the target distribution, we assign an importance weight w(i)
K to

each particle, which is computed by

w
(i)
K =

P (x1:K |y1:K)

Q(x1:K |y1:K)
. (10)

If a suitable proposal density is chosen, these weights can be computed recursively by

w
(i)
k ∝ w

(i)
k−1

P (yk|x
(i)
k )P (x

(i)
k |x

(i)
k−1)

Q(x
(i)
k |x

(i)
k−1,yk)

. (11)
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In this work, we chose to sample from the transition probability Q(x
(i)
k |x

(i)
k−1,yk) = P (x

(i)
k |x

(i)
k−1), which

reduces Eq. 11 to

w
(i)
k ∝ w

(i)
k−1P (yk|x

(i)
k ). (12)

Then, the SIS algorithm derives samples and weights for time k by first drawing from the proposal, in

our case P (x
(i)
k |x

(i)
k−1), and then assigning weights according to (12).

Once the particle trajectories {x1:K} have been determined, we select the particle trajectory x
(i)
1:K with

the highest weight w(i)
K as the MAP state sequence. We have not attempted to improve the obtained state

sequence by particle Viterbi decoding [25] or particle smoothing [10] and leave this for future work.

Several extensions to the SIS filter have been proposed over the years (see [10] for a good overview).

In the following, we will describe those approaches that we will evaluate for their applicability to metrical

inference.

1) The sequential importance sampling/resampling (SISR) filter: The most challenging problem in

particle filtering is to cope with the so called degeneracy problem [10]: After some time, most of the

particles have a weight close to zero, and thus represent very unlikely regions of the state space. This is

in contrast to the ideal case with a perfect match between the proposal and target distribution, where the

weights are uniformly distributed and thus have a low variance. In order to reduce the variance of the

particles, it has been recommended to use resampling or rejuvenation steps, in order to replace particles

with low weights by particles with a higher weight. This is usually done by selecting particles with a

probability that is proportional to their weights. Several schemes have been proposed in the literature,

for a comparison see [26]. The most common resampling method is systematic resampling [27] and has

also been used in this paper. As recommended in [10], we do not resample at each iteration (bootstrap

filter), but only perform resampling when the effective sample size

NESS = (

Ns∑
i=1

(w
(i)
k )2)−1 (13)

is below a threshold of ρ ·Ns. The value of ρ will be determined together with other system parameters

in Section V-C.

The essential difference between SIS and SISR is therefore the resampling. The SISR algorithm is

outlined in Algorithm 1. Note that we sample the tempo state φ̇ at the end of each iteration (after the

resampling step). This is motivated by the general principle that any operation that does not influence the

weights should take place after the resampling step in order to increase the diversity of the particles [10].
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Algorithm 1 Outline of the sequential importance sampling/resampling (SISR) filter, ξ(i)k denotes

(φ
(i)
k , r

(i)
k )

for i = 1 to Ns do

Sample (φ
(i)
0 , φ̇

(i)
0 , r

(i)
0 ) ∼ P (φ0)P (φ̇0)P (r0)

Set w(i)
0 = 1/Ns

end for

for k = 1 to K do

for i = 1 to Ns do . Proposal and weight computation

Sample ξ(i)k ∼ P (ξ
(i)
k |ξ

(i)
k−1)

w̃
(i)
k = w

(i)
k−1 × P (yk|ξ

(i)
k )

end for

for i = 1 to Ns do . Normalize weights

w
(i)
k =

w̃
(i)
k∑Ns

i=1 w̃
(i)
k

end for

Compute the effective sample size NESS (13)

if NESS ≤ ρ ·Ns then

for i = 1 to Ns do

Resample {ξ(i)k , w
(i)
k } to obtain {ξ′(i)k , 1/Ns}

end for

for i = 1 to Ns do

ξ
(i)
k = ξ

′(i)
k

end for

end if

Sample φ̇(i)k ∼ P (φ̇k|φ̇
(i)
k−1, r

(i)
k )

end for

2) The Auxiliary Particle Filter (APF): Although the introduction of resampling steps reduces the

variance of the importance weights, the degeneracy problem is not yet solved. Resampling tends to lead

to an extreme concentration of the particles at one particular mode of the posterior distribution, whereas

the remaining distribution remains uncovered. This is particularly critical if the probability distribution

has multiple modes as it is the case in our application.
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One way to alleviate this problem is to compress the weights wk = {w(j)
k , j = 1, ..., Ns} by a

monotonically increasing function g1 before resampling. This increases the weights of particles at low

probability regions and therefore makes it more probable that these particles survive the resampling. After

resampling, the weights have to be uncompressed again in order to yield a valid probability distribution.

This can be formulated in the terminology of the auxiliary particle filter (APF) [28], which can be

summarized as follows:

• Compute the compressed weights by applying g(· ), which causes a decrease of variance in the

weights.

• Resample particles according to the compressed weights.

• Set each weight to the quotient of the uncompressed and the compressed weight.

The resampling procedure of the APF is sketched in Algorithm 2.

As an example, imagine a distribution of two particles {p1, p2} with corresponding weights w =

{0.01, 0.99}. If we drew two samples from this distribution, it would be probable that p1 vanishes from

the particle set at the resampling step. However, if we modify the weights by the function f(x) = x
1

4

yielding ŵ ≈ {0.32, 1.00}, drawing p1 becomes much more probable. Let us assume, we draw four

samples from this (unnormalized) distribution ŵ and obtain the set {p2, p1, p2, p2}). In order to still

represent the same distribution as before the sampling, we have to set the weight of each resampled

particle to x/f(x), which yields w ≈ {0.99, 0.03, 0.99, 0.99}.

3) Mixture particle filter (MPF): As mentioned before, one major problem with applying particle

filtering to the musical meter tracking problem is that the posterior distribution P (xk|y1:k) is highly

multi-modal. A system that is able to cope with metrical ambiguities should maintain this multi-modality

and track several hypotheses over a longer time.

In [15] a system was proposed that tracks multiple football players in a video sequence using a mixture

PF. Each particle is assigned to a cluster based on its location within the state space. Whenever it comes

to resampling, particles interact only with particles of the same cluster (resampling of one cluster is

performed independently of all other clusters). In this way, all modes that are covered by a cluster can be

tracked successfully. In the following we describe an adaption of this method to the problem of finding

the metrical structure in music.

At the beginning, we cluster the particles into C0 clusters2 by a run of the k-means clustering algorithm

1In this work, we restrict g(w) to functions of the form wβ where 0 ≤ β < 1.
2In this paper, we start with 16 clusters per rhythmic pattern (C0 = 16 ·R).
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Algorithm 2 Outline of the resampling procedure of the auxiliary particle filter (APF), ξ(i)k denotes

(φ
(i)
k , r

(i)
k )

Compute the effective sample size NESS (13)

if NESS ≤ ρ ·Ns then

for i = 1 to Ns do

ŵ
(i)
k = w

(i)
k g(ξ

(i)
k )

end for

for i = 1 to Ns do

Resample {ξ(i)k , ŵ
(i)
k } to obtain {ξ′(i)k , w

(i)
k /ŵ

(i)
k }

end for

for i = 1 to Ns do

ξ
(i)
k = ξ

′(i)
k

end for

end if

using a distance measure which takes into account the cyclic nature of the bar position φ. This means that

a point at the beginning of a bar (φ ≈ 0) should be close to a point at the bar ending (φ ≈ θ). Therefore,

we represent the bar position as a complex phasor on the unit circle and compute the corresponding angle

by

αk(φk, rk) =
2πφk
θ(rk)

. (14)

This angle can further be expressed by the periodic functions cos(α) and sin(α) using Euler’s formula

ejα = cos(α) + j sin(α). (15)

Using this transformation we define the distance measure for the k-means clustering algorithm as

d(i, j) =λφ · [(cos(α(i))− cos(α(j)))2 + (sin(α(i))− sin(α(j)))2]+

λφ̇ · (φ̇(i) − φ̇(j))2 + λr · (r(i) − r(j))2,

where [α(i), φ̇(i), r(i)] are the coordinates of the ith particle, and λφ, λφ̇, λr are coefficients that control

the relative distance between the hidden variables. The assignment of particles to clusters is preserved

until the next resampling step. Then, before resampling, the particles are reclustered in another run of

k-means, using the old cluster assignments as initialization. Additionally, clusters are split, if the average

distance from particle to cluster centroid is above a threshold τs and/or merged if the distance between
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two centroids is below a threshold τm. If the number of clusters exceeds a constant τc3, the clusters

with the lowest total weight are removed, assigning the affected particles to other clusters. These three

operations are important to control the number of clusters, which should ideally represent the number of

modes of the posterior distribution. In order to have a balanced number of particles per cluster, we draw

the same number of particles for each cluster in the resampling step.

In contrast to the SISR and APF approaches, it does not make sense to determine the timing of the

resampling based on the effective sample size NESS . If we computed the NESS on the whole particle set,

mixture components with low total weights would constantly lead to a low NESS and therefore to more

frequent resampling steps. Therefore, we chose to perform the resampling step with a fixed interval d.

4) Auxiliary Mixture particle filter (AMPF): The AMPF combines the compression/decompression of

the importance weights of the APF with the mixture tracking of the MPF.

V. EXPERIMENTAL SETUP

A. Datasets

The performance evaluation of the PF algorithms and the HMM reference system requires annotated

music recordings. We use three datasets for evaluation, which are frequently used in the MIR research

community, and one for training:

The SMC dataset was presented in [29] and consists of 217 pieces that were considered to be difficult

for automatic tempo tracking. Musical styles cover, e.g., French Chanson, classical orchestra music, and

contemporary guitar music. For the SMC dataset, only beat annotations are available.

The largest dataset consists of 1360 songs and was compiled by Gouyon [30] combining collections

from various sources. We will refer to this dataset as the 1360-song dataset throughout the text. It contains

a wide range of musical styles of mainly Eurogenetic music, covering choral works of classical music

as well as rock or jazz. The dataset is only annotated at the beat-level.

The third dataset used for evaluation is the Ballroom dataset, introduced in [31] and annotated in [23].

It contains 698 excerpts of ballroom dance music, along with dance style, beat, and downbeat annotations,

which enables us to evaluate at both metrical levels. We removed 13 replicated excerpts4 to yield 685

unique ones. For some experiments, the dataset was split randomly into a test set (denoted Ballroom test)

of 204 songs and a training set (Ballroom train) which consists of the remaining 481 songs, both having

3Here, we used a maximum number of 50 clusters per rhythmic pattern (τc = 50 ·R).
4http://media.aau.dk/null space pursuits/2014/01/ballroom-dataset.html
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roughly the same genre distribution. The audio quality of this dataset is quite low (RealAudio format

with high compression).

The fourth dataset which was used for training only is a collection of 97 files from the MIREX 2006

beat tracking contest, from [32], and from [24]. We denote this dataset as the MBB dataset. It covers the

genres pop, rock and electronic music and is beat and downbeat annotated.

Due to the lack of downbeat annotations for the SMC and 1360-song datasets, downbeat detection is

only evaluated on the Ballroom dataset.

B. Evaluation measures

We evaluate the HMM and PF inference schemes with respect to both tracking accuracy and runtime.

A variety of measures for beat and downbeat tracking performance is available (see [33] for a detailed

overview). We chose four metrics that are characterized by a set of diverse properties and that are widely

used in beat/downbeat tracking evaluation5. Furthermore, their choice enables for a direct comparison of

the results on the SMC and the 1360-song dataset with 16 reference systems [29].

1) F-measure: The F-measure is computed from correctly detected beats within a window of ±70 ms

by

F-measure =
2pr

p+ r
(16)

where p (precision) denotes the ratio between correctly detected beats and all detected beats, and r

(recall) denotes the ratio between correctly detected beats and the total number of annotated beats. The

range of this measure is from 0% to 100%.

2) AMLt (Allowed Metrical Level with no continuity required): In this method an estimated beat is

counted as correct, if it lies within a small tolerance window around an annotated pulse, and the previous

estimated beat lies within the tolerance window around the previous annotated pulse. The value of this

measure is then the ratio between the number of correctly estimated beats divided by the number of

annotated beats (as percentage between 0% and 100%). Beat sequences are also considered as correct if

the beats occur on the off-beat, or are tapped at double or half the annotated tempo.

3) Information gain: This measure is computed by calculating the timing errors between an annotation

and all beat estimations within a one-beat length window around the annotation. Then, a beat error

histogram is created from the resulting timing error sequence. A numerical score is derived by measuring

5We used the MATLAB evaluation code available at http://code.soundsoftware.ac.uk/projects/beat-evaluation/ with standard

settings to ensure reproducibility.
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the K-L divergence between the observed error histogram and the uniform distribution. This method gives

a measure of how much information the beats provide about the annotations. The range of values for the

Information Gain is 0 bits to approximately 5.3 (= log2(40)) bits, for 40 histogram bins.

4) Downbeat F-measure: For measuring the downbeat tracking performance, we use the same F-

measure as for beat tracking (using a ±70 ms tolerance window).

As our focus in this paper lies on a proof-of-concept for PF-based methods, we present the mean

values across all files of a dataset, without analyzing correlations between accuracies and certain musical

styles. We postpone such a more musical interpretation and its implications to a future publication. As

the result of a PF is a random variable itself (due to the stochastic nature of a PF), we have carried out

each experiment in the next section ten times and give the mean and the standard deviation across these

ten trials for all PF approaches.

The specified runtimes were measured using a MATLAB implementation of the systems on a PC with

an Intel Core i5-2400 CPU with 3.1GHz. They include the computation of beats, downbeats and meter

from the test dataset and exclude feature extraction and training which is the same for all models (e.g.,

for the Ballroom dataset feature extraction takes approximately 10 minutes and training the GMMs takes

30 seconds).

C. Determining system parameters

Both HMM and PF systems have a set of parameters that need to be determined. In the following we

explain them in detail:

1) Observation model: For each test set, we learned the parameters of the observation model (see

Section III-D) from a non-overlapping training set, as shown in Table I. This implies that for a given test

set all PF and HMM methods use the same observation model.

TABLE I

TRAIN AND CORRESPONDING TEST DATASETS.

Train set Test set

Ballroom+MBB SMC

Ballroom+MBB 1360-song

Ballroom train Ballroom test
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2) Number of discrete states of the HMM: As explained in Section IV-A, the performance of the HMM

depends on the density of the grid formed by the discretized variables. To visualize this dependency we

illustrate the beat tracking accuracy and runtime of the HMM system for various state space sizes on the

MBB training set in Fig. 6. In experiment 1, we will use two rhythmic patterns (R = 2, one for each of

the two time signatures in the data), and in experiment 2, we will use eight rhythmic patterns (R = 8,

one for each ballroom dance style). Considering both beat tracking accuracy and runtime, we chose to

report results for three configurations of the HMM (depicted as HMM1-HMM3 in Table II). Note that

the largest model (HMM3) with R = 2 has a number of discrete states equal to M ×N ×R = 209 152

and is therefore situated in the middle range of values depicted in Fig. 6.
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Fig. 6. F-measure and runtime vs. number of discrete states for the HMM on the MBB set (total 41.9 minutes of audio).

3) Number of particles of the PFs: In all PF variants we used NS = 2 000 particles in experiment

1, and NS = 8 000 in experiment 2. As can be seen in Fig. 7, increasing the number of particles above

this value did not further improve the performance. Also note the differences in runtime between AMPF

and HMM by comparing Fig. 7 with Fig. 6, with a clear advantage for the PF which will be further

documented in the next section on the larger evaluation datasets.

Apart from the design choices above, we obtained parameter values by performing a simple grid search

over the parameter space using the MBB dataset and selecting the overall best performing parameters

according to the three beat and one downbeat tracking measures. The determined parameters are:

• Tempo transition probability pn of the HMM

• Resampling threshhold ρ of the SISR and APF approaches
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• Parameters of the MPF/AMPF λφ, λφ̇, λr, τm, τs, d, β (see Section IV-B3)

For the PFs, we repeated each experiment ten times and averaged the results. The selected parameters

are shown in Table II.

TABLE II

SELECTED PARAMETERS FOR THE EXPERIMENTS.

ρ d σφ̇ λφ λφ̇ λr τm τs β

SISR 0.02 - 1.2 - - - - - -

APF 0.1 - 1.2 - - - - - 1/5

MPF - 30 1.2 1 1.4 1000 1 1.2 -

AMPF - 30 1.2 1 1.4 1000 1 1.2 1/4

M N pn

HMM1 640 12 0.02

HMM2 1216 23 0.02

HMM3 2432 43 0.02
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Fig. 7. F-measure and runtime vs. number of particles for the AMPF on the MBB dataset (total 41.9 minutes). The obtained

standard deviation across ten runs is depicted by the shaded gray area.

VI. EXPERIMENTS

A. Experiment 1: PF against HMM

Experiment 1 compares the four PF inference schemes (SISR, APF, MPF, AMPF) with the HMM

inference, in terms of their runtime complexity, beat (all datasets) and downbeat (only Ballroom dataset)
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tracking accuracy. Tables III to V summarize the mean accuracies (and standard deviations for PF

schemes) using all evaluation metrics on the three evaluation datasets.

TABLE III

BEAT TRACKING RESULTS AND (AVERAGE) RUNTIMES ON THE SMC DATASET (TOTAL 144.7 MINUTES). FOR THE PF

SYSTEMS (SISR, APF, MPF, AMPF) WE SHOW THE MEAN (µ) AND THE STANDARD DEVIATION (σ) OVER TEN RUNS.

FM AMLt InfG Runtime

µ σ µ σ µ σ [minutes]

SISR 36.8 0.48 31.3 0.40 0.87 0.013 12.5

APF 38.7 0.46 32.8 0.64 0.91 0.014 19.0

MPF 38.8 0.48 32.7 0.90 0.89 0.022 17.8

AMPF 40.8 0.18 35.8 0.45 0.95 0.013 18.1

HMM1 39.6 - 31.7 - 0.87 - 11.1

HMM2 40.5 - 35.1 - 0.94 - 42.1

HMM3 42.7 - 38.7 - 1.08 - 164.0

TABLE IV

BEAT TRACKING RESULTS AND (AVERAGE) RUNTIMES ON THE 1360-SONG DATASET (TOTAL 861.6 MINUTES). FOR THE PF

SYSTEMS (SISR, APF, MPF, AMPF) WE SHOW THE MEAN (µ) AND THE STANDARD DEVIATION (σ) OVER TEN RUNS.

FM AMLt InfG Runtime

µ σ µ σ µ σ [minutes]

SISR 62.4 0.43 72.3 0.32 1.93 0.0075 74.9

APF 64.6 0.33 74.9 0.35 1.98 0.0068 100.6

MPF 64.9 0.20 75.1 0.27 1.98 0.0059 115.7

AMPF 66.1 0.27 76.6 0.33 2.00 0.0063 120.1

HMM1 62.9 - 69.8 - 1.73 - 69.0

HMM2 65.4 - 76.2 - 1.94 - 264.0

HMM3 67.4 - 79.9 - 2.09 - 1016.4

As a first conclusion, we can see that the four PF schemes improve in accuracy according to their

ability to flexibly follow multi-modal distributions, with the proposed AMPF scheme showing superior

performance compared to the other three schemes on all datasets and using all metrics. All standard

deviations of the PF schemes are moderate, which indicates that their performance can be expected to

be reliable throughout individual evaluations. Comparing the best particle filtering inference scheme,
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TABLE V

BEAT AND DOWNBEAT TRACKING RESULTS AND AVERAGE RUNTIMES ON THE BALLROOM TEST DATASET (TOTAL 106.4

MINUTES). FOR THE PF SYSTEMS (SISR, APF, MPF, AMPF) WE SHOW THE MEAN (µ) AND THE STANDARD DEVIATION

(σ) OVER TEN RUNS.

FM AMLt InfG Db-FM Runtime

µ σ µ σ µ σ µ σ [minutes]

SISR 74.5 0.99 84.8 0.94 2.39 0.034 37.8 2.11 8.7

APF 76.9 0.88 87.5 0.18 2.49 0.017 45.0 1.32 10.9

MPF 82.7 0.70 89.9 0.50 2.52 0.020 53.4 1.19 12.7

AMPF 83.6 0.46 90.5 0.23 2.52 0.012 55.8 1.56 13.7

HMM1 77.5 - 83.0 - 2.11 - 54.9 - 8.1

HMM2 83.2 - 90.2 - 2.49 - 60.6 - 28.9

HMM3 85.1 - 92.1 - 2.68 - 63.3 - 111.8

TABLE VI

BEAT AND DOWNBEAT TRACKING RESULTS AND AVERAGE RUNTIMES ON THE BALLROOM TEST DATASET (TOTAL 106.4

MINUTES) USING EIGHT RHYTHMIC PATTERN STATES. FOR THE PF SYSTEMS (SISR, APF, MPF, AMPF) WE SHOW THE

MEAN (µ) AND THE STANDARD DEVIATION (σ) OVER TEN RUNS.

FM AMLt InfG Db-FM Runtime

µ σ µ σ µ σ µ σ [minutes]

SISR 66.0 0.94 72.4 1.11 2.23 0.044 39.6 2.14 26.9

APF 70.2 1.26 76.0 1.05 2.37 0.025 46.4 2.07 43.2

MPF 88.3 1.04 90.1 0.52 2.79 0.028 63.9 1.41 43.8

AMPF 89.3 0.54 90.9 0.22 2.78 0.014 67.6 1.22 44.9

HMM1 85.5 - 87.5 - 2.39 - 68.1 - 24.0

HMM2 89.4 - 90.3 - 2.70 - 72.1 - 87.2

HMM3 90.5 - 91.9 - 2.90 - 73.5 - 337.3

AMPF, with the three HMM parametrizations, it is apparent that the largest HMM3 slightly outperforms

the AMPF on all three datasets. However, this comes at a high price in terms of runtimes, as can be

seen from the rightmost columns in Tables III to V. This result was expected, since it confirms that the

HMM on a sufficiently dense grid is able to perform accurate inference that cannot be outperformed using

approximate methods (such as the PF) using the same underlying model. Comparing the performance of

HMM3 and AMPF in the SMC and 1360-song datasets with the performances of other algorithms on
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the same datasets [29], it becomes apparent that the HMM3 generally outperforms all other approaches,

while the AMPF simply performs as good as the most performing systems. This finding implies that the

underlying bar pointer model is a relatively accurate model for meter inference in music in comparison

to the state of the art (for the SMC and 1360-song datasets), and the AMPF represents a fast and accurate

approximation to the best performance of HMM3. In the following experiment we will evaluate the

potential of increasing the number of rhythmic patterns.

B. Experiment 2: Increasing pattern diversity

In the second experiment we enlarge the state space by introducing eight style specific rhythmic pattern

states into the model, one for each dance style in the Ballroom dataset (due to the low number of samples

we merged all three Rumba dance styles into one Rumba category). The resulting eight rhythmic patterns

are learned on the Ballroom train subset using the dance style labels that come with the data. We compare

the beat and downbeat tracking accuracy of the PF and HMM inference methods applied to this enlarged

state space in Table VI. For the MPF, AMPF, and HMM methods, and all evaluation measures except

AMLt a clear performance improvement over the accuracies depicted in Table V can be seen. The reason

for stagnation in the AMLt is easy to explain: The inclusion of more accurate rhythmic patterns leads

to less tempo halving or doubling errors, and to less off-beat estimations in Table VI. While such an

improvement can be important in certain applications such as transcription or chord estimation, it does

not affect AMLt. Furthermore, the SISR and APF seem to have difficulties to handle the enlarged state-

space, as indicated by a drastic decrease of beat tracking performance. In contrast, the MPF, AMPF, and

HMMs seem to benefit from the more precise model. We can therefore conclude that a more precise

modeling of the rhythmic style in a collection (by using a higher number of rhythmic patterns) has the

potential to further increase the performance of our model. However, this might be no longer feasible

using the HMM with the highest resolution. The HMM3 takes about three times real time to process the

data as shown in the rightmost column of Table VI. Therefore, the inference using a model with several

rhythmical pattern states marks the point where approximate inference with PFs becomes necessary, at

least with the computational power at the time of writing this paper.

VII. DISCUSSION

Our results on the largest available annotated datasets support that the bar pointer model described in

Section III is a relatively accurate model for inferring metrical structure from (metered) musical audio

signals. Using an exact inference scheme (HMM) in a densely sampled discretized space, we achieve beat
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tracking accuracies that outperform those documented for the best state-of-the-art approaches (comparing

Tables III and IV with Tables I and II in [29]). The approximate AMPF scheme still achieves accuracies as

high as the best state-of-the-art approaches, slightly inferior to the best evaluated HMM. However, good

performance with the HMM inference comes at a high price. We need to use HMMs with a large state

space (HMM3 in our experiments), which becomes even larger for experiments with several rhythmic

pattern states, as in our experiment on the Ballroom dataset (Table VI).

Furthermore, our results indicate that modeling several rhythmic patterns improves the performance

for music collections with diverse rhythmical content, at least in music with limited expressiveness as

investigated in this paper. However, with the resulting enlargement of the discretized state space the

usage of a HMM becomes computationally prohibitive and our proposed AMPF is a fast and accurate

alternative.

The experiments show that the AMPF scheme (and to some extend also the MPF) handles the

degeneracy problem much better than other PF methods because it maintains the diverse multi-modal

probability distribution that is crucial for the tracking of multiple tempo modes that occur in music.

In Fig. 8 we demonstrate for an exemplary audio file that the proposed AMPF and MPF, in contrast

to the APF and SISR, are able to track the multiple modes of the posterior (light gray regions in Fig. 8)

throughout a recording. The figure shows that both SISR and APF concentrate their particles on a few

modes of the posterior after only five seconds of the recording (see bottom row of Fig. 8). In contrast,

the AMPF is characterized by the most diverse particle distribution throughout a song. This diversity

depicted for the example is typical for the approach, and is the reason for the improved performance of

the AMPF compared to the other PF schemes.

It is worth to point out that the results reported in this paper might be further improved if the rhythmic

patterns were learned from music that is rhythmically more similar to the test set. For instance, this could

be achieved by downbeat annotating a smaller subset of a certain style (e.g., the Greek music samples

present in the 1360-song collection), and then attempting to track the meter in the other Greek music

samples. Nevertheless, in order to adapt our model to a certain style, a representative set of songs has to

be beat and downbeat annotated. However, apart from such annotation work, no changes to the structure

of the model or its inference need to be performed.

VIII. CONCLUSION

In this paper we presented for the first time a particle filtering scheme for beat tracking in music

that takes into account multiple modes of the posterior probability, along with a systematic evaluation
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Fig. 8. Particle locations (white dots) within the state-space (tempo and bar position sub-space) after one second (top row)

and after five seconds (bottom row) of the song Lemon Tree by Fool’s Garden plotted on top of the (log) posterior probability

computed by the HMM. Light gray tones indicate a high posterior probability while dark gray tones indicate a low probability.

The cross marks the groundtruth (bar position and tempo for the corresponding time points).

on larger datasets. The comparison with the HMM inference demonstrates its superiority in terms of

computational load, while the accuracy of the system is as high as the state-of-the-art in beat tracking.

While the presented results prove the applicability of the approach, we need to do further steps in

modeling style specific rhythmic patterns in order to better understand the true potential of the method.

Perhaps most importantly, we can claim that the separation of observation model and the hidden

variables causes a decoupling of the internal inference from the actual musical sound. This means that

the model can potentially be adapted without parameter tweaking or engineering knowledge to new

musical styles. By means of this design, the presented method avoids a systematic bias that can result

from a hard-coding of music properties into system parameters. It represents a method that can be used for

style specific estimation in a straight-forward way by annotating a representative music corpus. Therefore,

the system is consistent with the demands of the recent MIR roadmap [19] for systems which are able

to incorporate expert knowledge.

February 27, 2015 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2015.2409737

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 25

REFERENCES

[1] M. Müller, D.P.W. Ellis, A. Klapuri, and G. Richard, “Signal processing for music analysis,” IEEE Journal of Selected

Topics in Signal Processing, vol. 5, no. 6, pp. 1088–1110, 2011.

[2] S. Dixon, F. Gouyon, and G. Widmer, “Towards characterisation of music via rhythmic patterns,” in Proceedings of the

5th International Conference on Music Information Retrieval (ISMIR), Barcelona, 2004.

[3] M. Mauch and S. Dixon, “Simultaneous estimation of chords and musical context from audio,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 18, no. 6, pp. 1280–1289, 2010.

[4] A. T. Cemgil, H. J. Kappen, and D. Barber, “A generative model for music transcription,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 14, no. 2, pp. 679–694, 2006.

[5] A. Klapuri, A. Eronen, and J. Astola, “Analysis of the meter of acoustic musical signals,” IEEE Transactions on Speech

and Audio Processing, vol. 14, no. 1, pp. 342–355, 2006.

[6] G. Peeters and H. Papadopoulos, “Simultaneous beat and downbeat-tracking using a probabilistic framework: theory and

large-scale evaluation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 99, pp. 1–1, 2011.

[7] N. Degara et al., “Reliability-informed beat tracking of musical signals,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 20, no. 99, pp. 1–1, 2011.

[8] L.R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,” Proceedings of the

IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[9] S. Roweis and Z. Ghahramani, “A unifying review of linear gaussian models,” Neural computation, vol. 11, no. 2, pp.

305–345, 1999.

[10] A. Doucet and A.M. Johansen, “A tutorial on particle filtering and smoothing: Fifteen years later,” Handbook of Nonlinear

Filtering, 2009.

[11] A.T. Cemgil and B. Kappen, “Monte carlo methods for tempo tracking and rhythm quantization,” Journal of Artificial

Intelligence Research, vol. 18, no. 1, pp. 45–81, 2003.

[12] S. Hainsworth and M. Macleod, “Particle filtering applied to musical tempo tracking,” EURASIP Journal on Applied

Signal Processing, vol. 2004, pp. 2385–2395, 2004.

[13] D. Lang and N. de Freitas, “Beat tracking the graphical model way,” in NIPS, 2004.

[14] N. Whiteley, A.T. Cemgil, and S. Godsill, “Sequential inference of rhythmic structure in musical audio,” in International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, 2007, pp. IV–1321.
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