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Abstract

Due to the exploding amount of available music in recent years, media collections
cannot be managed manually any more, which makes automatic audio analysis crucial
for content-based search, organisation, and processing of data.

This thesis focuses on the automatic extraction of a metrical grid, determined by
beats, downbeats, and time signature, from a music piece. I propose several algorithms
to tackle this problem, all comprising three stages: First, (low-level) features are ex-
tracted from the audio signal. Second, an acoustic model transfers these features into
probabilities in the music domain. Third, a probabilistic sequence model �nds the most
probable sequence of labels under the model assumptions.

This thesis provides contributions to the second and third stage. I (i) explore acous-
tic models based on machine learning methods, and (ii) develop models and algorithms
for e�cient probabilistic inference for both online and o�ine scenarios. Further, I de-
sign applications such as an automatic drummer which listens to and accompanies a
musician in a live setting.

The most recent algorithms developed in this thesis exhibit state-of-the-art per-
formance and clearly demonstrate the superiority of systems incorporating machine
learning over hand-designed systems, which were prevalent at the time of starting this
thesis. All algorithms developed in this thesis are publicly available as open-source
software. I also publish beat and downbeat annotations for the Ballroom dataset to
foster further research in this area.
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Kurzfassung

In den letzten Jahren ist die Menge verfügbarer Musik explodiert. Um diese Datenmen-
gen vernünftig organisieren und bearbeiten zu können, ist es essentiell, Methoden zu
entwickeln die automatisch den Inhalt einer Mediendatei analysieren können.

Diese Dissertation beschäftigt sich mit der automatischen Analyse des musikalis-
chen Metrums, einer Hierarchie von Pulsen unterschiedlicher Frequenzen. Zu diesem
Zweck präsentiere ich mehrere Systeme, die alle aus drei grundlegenden Komponen-
ten bestehen: Die erste Komponente extrahiert Merkmale aus dem Audiosignal. Diese
Merkmale werden dann von der zweiten Komponente, dem akustischen Modell, in
Wahrscheinlichkeiten in der musikalischen Domäne übersetzt. Die dritte Komponente
besteht aus einem probabilistischen Modell, das die Wahrscheinlichkeiten in eine Se-
quenz von semantischen Labels übersetzt.

Diese Dissertation beschäftigt sich mit der zweiten und dritten Komponente, den
akustischen und probabilistischen Modellen. Ich teste verschiedene Methoden des
maschinellen Lernens auf ihre Eignung als akustisches Modell und entwickle Algorith-
men die es erlauben e�ziente Inferenz mit probabilistischen Modellen durchzuführen.
Die beschriebenen Systeme werden dann in einen Schlagzeugroboter integriert, der
selbstständig den Rhythmus eines Musikstückes analysieren und somit einen Musiker
auf dem Schlagzeug begleiten kann.

Die präsentierten Methoden gehören zum aktuellen Stand der Technik im Bereich
der automatischen metrischen Analyse von Musik. Die dargelegten Ergebnisse unter-
streichen die Überlegenheit von maschinell gelernten Systemen gegenüber Systemen
die hauptsächlich aus manuell gesetzten Regeln bestehen. Sowohl die entwickelten Al-
gorithmen, als auch die im Laufe der Dissertation entstandenen Annotationen werden
ö�entlich zugänglich gemacht.
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Chapter 1

Introduction

1.1 Motivation and vision

The automatic extraction of rhythmic information from an audio signal is a research
topic that has become more and more important over the last years. Due to the ex-
ploding amount of available audio data, current media collections cannot be managed
manually any more, which makes it important for computers to ‘understand’ music in
order to perform content-based search, organisation or processing of music. The goal
of this thesis is to teach a computer to ‘understand’ the rhythmic structure in music,
an ability that humans start to develop already in an early age (Winkler et al., 2009). I
aim at developing a computer program that while listening to music, can identify the
most salient levels of the metrical hierarchy, the beats and downbeats. To this end,
a musical grammar mimicking the human perception has to be de�ned, in order to
guide the computer’s analysis. As rules and conventions for this musical grammar
vary across di�erent cultures (Stobart and Cross, 2000; Cameron et al., 2015) and are
not always well de�ned (Parncutt, 1994), I want to use machine learning methods in
order to learn these rules automatically from data. Music is also often ambiguous in its
interpretation, therefore I believe that probabilistic models are a great tool to express
this variability and ambiguity in a natural way.

1.2 Organisation

After giving background information on the content of this thesis in Chapter 2, I
present my scienti�c contributions in Chapters 3-7, where each chapter represents
one peer-reviewed publication. Small modi�cations to the papers were applied for
formatting reasons, to make the appearance more uniform throughout the thesis, as
well as in cases where errors in the original version were found. All modi�cations

15



16 Introduction

Figure 1.1: The three stages of a meter analysis system.

are mentioned at the beginning of each chapter, together with the co-authors and the
conference/journal the publication appeared in. As all of the works were developed in
team-work with other people, I also clarify my personal contributions at the beginning
of each chapter. Chapter 8 describes how the proposed algorithms can be used to build
an online rhythm analysis system. Chapter 9 shows applications, software toolboxes
and datasets that have been developed in the course of this thesis. In Chapter 10, I
�nally draw conclusions and sketch ideas for future research.

1.3 Outline
As it happens often in scienti�c research, the path to the �nal state of this thesis has
by no means been following a straight line. In this section, I illustrate how this path
developed over the years by giving a chronological overview of my research and high-
lighting the connections between the various works.

The overall goal of this thesis is to develop a model that automatically performs a
metrical analysis of a music piece, using only the audio signal. To tackle this problem,
I propose several algorithms, all comprising three stages (see Fig. 1.1 for an overview):
First, (low-level) features are extracted from the audio signal. Second, an acoustic model
transfers these features into probabilities in the music domain. For example, this can
be the probability that a certain audio frame contains a beat. Third, a probabilistic
language model introduces prior musical knowledge and �nds the most probable se-
quence of labels under the model assumptions. These labels are rhythmic descriptors
like beats, downbeats, or time signature. The low-level feature extraction stage is de-
scribed in Chapter 3 for the earlier systems, and in Chapter 7 for the most recent sys-
tem. This thesis then mainly contributes to the development of the acoustic model
(second stage; Chapters 3, 7) and the de�nition of the post-processing probabilistic
model and inference methods (third stage; Chapters 4, 5, and 6).

In the following, I summarise each chapter and highlight the connections between
them:

Chapter 3 I present a model for beat and downbeat tracking which explicitly mod-
els rhythmic patterns, in order to overcome shortcomings of existing methods. So
far, rhythmic patterns for beat and downbeat detection had been either designed by
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hand (Goto, 2001; Klapuri et al., 2006; Whiteley et al., 2006), or encompass only a single
pattern (Peeters and Papadopoulos, 2011), mostly due to the lack of big representative
datasets. For my work, I have annotated the Ballroom dataset (Section 2.4) with beat
and downbeat times and use this data to learn rhythmic patterns from data, modelling
each given dancestyle with one pattern. I extend the Dynamic Bayesian network (DBN)
of Whiteley et al. (2006) by introducing a new acoustic model based on Gaussian mix-
ture models (GMMs) and evaluate it on the Ballroom set. I show that in music with
constant rhythm (like in Ballroom dance music), the incorporation of prior knowledge
about rhythmic patterns improves the performance in downbeat tracking and reduces
tempo octave errors in beat tracking.

Chapter 4 As a next step, I remove the dependency on given rhythmic pattern labels
(e.g., dancestyle, as in chapter 3) for training the model. I present a training procedure,
which learns the model parameters from partially annotated data (only a subset of the
hidden variables are annotated), instead of requiring all hidden variables to be anno-
tated. This allows using all available annotations for training the models, even if only a
subset of the hidden variables are labeled. The annotations are converted into a ‘plau-
sibility’ distribution over the hidden states and then fed into the subsequent Viterbi
training stage to yield the model parameters. I use the proposed training method to
�nd rhythmic patterns in music, for which beat and downbeat annotations are avail-
able, but rhythmic pattern labels are missing: First, the data is clustered via k-means,
then the clusters are re�ned in several iterations of Viterbi training. With the pro-
posed training method, I achieve a beat and downbeat tracking performance that is
comparable to the case where pattern labels are provided by manual annotations.

Chapter 5 As the computational cost of exact inference in discrete-state DBNs grows
with an increasing size of the state space, I investigate the application of approximate
particle �lter (PF) methods to perform e�cient inference in the proposed meter anal-
ysis model. PFs are known to su�er from the so-called degeneracy problem (Doucet
and Johansen, 2009), especially when dealing with long sequences and multi-modal
probability distributions. These multi-modalities appear frequently in music due to its
inherent ambiguity. To �ght this degeneracy problem, I develop a method based on
mixture PFs (Vermaak et al., 2003) which is able to track the most relevant modes in
the posterior distribution over the state space throughout a music piece. In compar-
isons with a discrete-state DBN-based inference I achieve a beat and downbeat tracking
accuracy that is only slightly lower at a drastically reduced computational cost.

Chapter 6 In this chapter, I revise the probabilistic model of Whiteley et al. (2006),
which was the basis of all my previous publications. By modifying the state space and
the way tempo transitions are implemented, I can halve the number of states of the
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model and therefore can reduce the computation time by a factor up to 10 for discrete-
state DBNs. At the same time, the beat and downbeat tracking performance is slightly
improved. I test the proposed model with two observation models and on various mu-
sics, including Ballroom dance music, Pop/Rock music, and traditional Indian, Cretan
and Turkish music.

Chapter 7 Due to the success of recurrent neural networks (RNNs) at detecting
beats (Böck and Schedl, 2011), I explore RNNs for downbeat estimation. Given the
beats, I aim at analysing the higher level of metrical structure, the downbeats and the
time signature. Beat-synchronous features are processed by two parallel RNNs to com-
pute a downbeat activation function. This function is then further post-processed by
a DBN. In combination with a previously published beat tracker (Böck et al. (2014),
Chapter 6), I am able to report state-of-the-art downbeat estimation results on seven
datasets of Western music.

Chapter 8 In this chapter, I give technical details on how to make the so far described
systems online-capable. I discuss several post-processing strategies and evaluate the
beat tracking performance on three datasets. This material emerged while developing
the applications described in Chapter 9 and has not been published.

Chapter 9 Together with students, I have created two prototype applications using
the proposed meter analysis system: The �rst one is the Automatic Dance Instructor. It
recognises dancestyle and position within a bar and synchronises a dance instruction
video to the music. The second one is Drumotron 3000, a drum robot which listens
to the music, analyses the meter, and accompanies a musician live. In this chapter,
I shortly describe the systems and the graphical user interfaces. In addition, I intro-
duce two software toolkits which contain most of the material of this thesis, as well as
two datasets that have been generated for this thesis. Both software and datasets are
publicly available.

1.4 Main contributions

Below, I summarise the main contributions of this thesis:

i) I propose two systems that infer beats, downbeats, and time signature from the
audio signal of a music piece (Chapter 3). The parameters of the model can be
learned automatically from annotated datasets, preventing potential biases in-
duced by hand-crafted system components. I test the system on various musics,
including Ballroom dance music (Chapter 3-7), Pop/Rock music (Chapter 4-7),
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and traditional Indian, Cretan and Turkish music (Chapter 6-7, Holzapfel et al.
(2014)). The systems are capable of both online and o�ine meter estimation.
Building on the model of Whiteley et al. (2006), I propose several fundamental
improvements and extensions:

i) Acoustic models (observation models) using GMMs (Chapter 3) and RNNs
(Chapter 7), both operating on low-level features derived from the audio
signal.

ii) Reformulated discretisation of the state space and de�nition of the tempo
transitions (Chapter 6).

iii) A training method that can make use of partially-labelled data, based on
Viterbi training (Chapter 4).

iv) A scalable inference method that allows to track multiple modes of a poste-
rior distribution by adapting mixture PFs to the problem of meter tracking
(Chapter 5).

ii) I test the system in applications such as an automatic dance instructor, as well
as a drum-playing robot.

iii) I publish the developed code (MATLAB and Python) to be used for further re-
search (Chapter 9).

iv) I publish beat and downbeat annotations of the Ballroom dataset (Chapter 9),
which comprises 685 audio excerpts with a total length of 5h 57m and currently
43 838 beat annotations.

1.5 MIREX evaluation results
Since 2005, the International Music Information Retrieval Systems Evaluation Laboratory
(IMIRSEL) at the Graduate School of Library and Information Science (GSLIS), University
of Illinois at Urbana-Champaign (UIUC) organises a yearly evaluation of music infor-
mation retrieval (MIR) systems, which is called MIREX (MIR Evaluation eXchange).
Participants submit their systems, which are then evaluated on (mostly) non-public
data on the servers of the UIUC. I have submitted most algorithms of this thesis to the
MIREX evaluation tasks Audio Beat Tracking and Audio Downbeat Estimation. The best
results (F-measure metric (FM)) of our systems are shown in Tables 1.1 - 1.2. For other
metrics please consult the MIREX webpage 1.

In the taskAudio Beat Tracking, there have been about 100 submissions to theAudio
Beat Tracking task since its �rst taking place in 2006, although the number of unique

1http://www.music-ir.org/mirex

http://www.music-ir.org/mirex
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participating teams is signi�cantly lower (One team usually submits several versions
of a system). The algorithms developed in this thesis achieved several �rst places
throughout the years (see Table 1.1). In the MCK dataset, our system BK1 (Chapter
6) performs only 0.3% worse than the current (2016) best system, a di�erence which
is not statistically signi�cant. In the SMC dataset, which contains especially di�cult
excerpts for beat tracking, our systems obtained �rst and second rank in 2012. After
2012, our systems still are among the best performing ones, but the results are not re-
ported here as the RNNs were trained on the SMC dataset as well and thus might be
over-�tted.

In the task Audio Downbeat Estimation, I have counted 20 submissions to the Audio
Downbeat Estimation task in the period between 2014 and 2016. The submitted systems
perform best in �ve of eight datasets (see Table 1.2). Results for the three missing
datasets are not listed here, as the beat tracker was trained on these sets and thus a
comparison with other systems is not fair. More realistic results for these datasets can
thus be found in our publications (Holzapfel et al. (2014), Chapter 7).

Dataset Year System FM Rank
MCK 2012 FK1 (Chapter 3) 56.7 (56.7) 1
MCK 2014 BK6 (Böck et al., 2014) 61.3 (61.3) 1
MCK 2015-2016 BK1 (Chapter 6) 63.6 (63.9) 3
SMC 2012 KB1 (Krebs and Böck, 2012) 40.7 (40.7) 1
SMC 2012 FK1 (Chapter 3) 39.7 (40.7) 2
MAZ 2012 FK1 (Chapter 3) 58.4 (66.6) 2

Table 1.1: MIREX results Audio Beat Tracking; The results in parentheses (in column
"FM") give the performance of the best system up to the corresponding year. FM is the
beat tracking F-measure.

Dataset Year System FM Rank
Carnatic 2014 KSH1 (Holzapfel et al. (2014), 40.0 (40.0) 1

Chapter 3)
Carnatic 2015-2016 FK4 (Chapter 6) 47.4 (47.4) 1
Cretan 2014-2016 FK3 (Chapter 4) 53.5 (53.5) 1
HJDB 2015-2016 FK3 (Chapter 6) 82.4 (82.4) 1
RWC classical 2016 KB1 (Chapter 7) 43.6 (43.6) 1
GTZAN 2016 KB2 (Chapter 7) 64.7 (64.7) 1

Table 1.2: MIREX results Audio Downbeat Estimation; The results in parentheses (in
column "FM") give the performance of the best system up to the corresponding year.
FM is the downbeat tracking F-measure.



Chapter 2

Background

2.1 De�nition of musical terms

In this section, I will de�ne some terms that are used throughout this thesis.

Meter Musical meter is de�ned by a hierarchy of pulses, which occur at integer-
related frequencies. These di�erent pulses can also be referred to as metrical levels metrical levels
(Lerdahl and Jackendo�, 1987). Three of these metrical levels are of particular interest
(see Fig. 2.1 for an illustration): (i) The tatum, originating from ‘temporal atom’ (Bilmes, tatum
1993), is the lowest metrical level and is associated with the highest pulse frequency.
(ii) The beat, is rather loosely-de�ned as the pulse that humans perceive as being the beat
most salient and choose to tap their feet to. Its frequency is an integer fraction of the
tatum rate. (iii) The downbeat, measure or bar pulse has a frequency which is an integer downbeat
fraction of the beat rate, and is related to the time signature of a piece (and hence the
length (in beats) of a musical bar). In the example shown in Fig. 2.1 the frequency ratio
between tatum and beat is two, and between beat and downbeat frequency is four.
Bar lines indicate the beginning of a bar and de�ne the downbeats (which happen
to coincide with a musical event only in the �rst of the three bars in this particular
example).

The integer ratio between the beat frequency and the next lower level determines
the type of the meter: In simple meters (e.g., 2/4, 3/4, 4/4), the beat interval is divided simple meter
into two groups (the next lower metrical level has a frequency which is twice the beat
frequency), whereas in compound meters (e.g., 6/8, 9/8), each beat is divided into three compound meter
groups (the next lower metrical level has a frequency that is three times the beat fre-
quency). As beats and downbeats are a perceptional construct, listeners di�er in their
interpretation of meter, caused by individual and cultural factors (Stobart and Cross,
2000).

21
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Figure 2.1: Illustration of tatums, beats and downbeats in a musical score

Time signature The time signature (only used in Western music notation) de�nes
both the length of a measure in terms of note values (e.g., quarter notes or eighth notes)
as well as the number of beats per measure. E.g., a time signature of 3/4 means that a
measure contains three beats, and each beat lasts one quarter note. The convention of
representing time signatures as a fraction of two numbers can be confusing in the case
of compound meters: E.g., a time signature of 6/8 means that the measure lasts sixth
eighth notes, but the most salient pulse period (the beat period) does not necessarily
have to be an eighth note long. In most 6/8 measures, the beat period is a dotted
quarter note, meaning that there are only two beats per measure. In the score shown
in Fig. 2.1 the time signature is denoted by the ‘common time’ symbol after the clef,
which stands for 4/4.

Tempo The tempo of a music piece is the frequency of the beat pulse, measured in
beats per minute.

2.2 Dynamic Bayesian Networks
Data is often the observable result of a temporal process and comes in the form of
sequences, e.g., the stock price, audio signals, or a recording of human brain activity.
Music is obviously a sequential phenomenon as well, because the single notes of a mu-
sic piece do not make sense without their sequential ordering. In the following, I will
introduce a class of sequential probabilistic models called dynamic Bayesian networks
(DBNs), which I will use to model musical meter.

2.2.1 De�nition
In a (latent) state-space model, it is assumed that the data sequences (also called obser-
vations or measurements) are generated by some underlying hidden state of the world,
and that this hidden state evolves in time. Dynamic Bayesian Networks (DBNs) (see
Murphy (2002) for a good overview) are a powerful class of state-space models which
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represent these ‘states’ and ‘observations’ by random variables and provide algorithms
for training and probabilistic inference. For example, Hidden Markov Models (HMMs)
are a popular special case of DBNs, where the hidden states consist only of a single ran-
dom variable (which is mostly discrete). DBNs extend HMMs by modelling sets of both
discrete and continuous random variables. In the following, I will denote the hidden
states as xik where k is the time index, and i is the index of a speci�c random variable.
DBNs can be represented by a graph where the nodes represent random variables and

x3x2x1

y3y2y1

Figure 2.2: Dynamic Bayesian network; The gray nodes are observed, and the white
nodes represent the hidden variables.

the edges represent dependencies between the variables. Fig. 2.2 shows an example of
such a graph. A DBN is de�ned by the conditional probability distributions (CPDs) of
each node given its parents. To make inference tractable in DBNs, three assumptions
are generally made (see also Fig. 2.2):

1. The hidden states at time k depend only on the hidden states of time k−1. Then,
the model becomes �rst-order Markov (Markov assumption).

2. Observations at time k depend only on the hidden states at time k. This means,
given the hidden states, the observations are conditionally independent.

3. Both P (xk|xk−1) (the transition model) and P (yk|xk) (the observation model) are
supposed to be the same for all time steps k (Stationarity assumption).

In our example, this means the model is de�ned by specifying P (x1), P (xk|xk−1), and
P (yk|xk). Exploiting the three assumptions mentioned above, the joint distribution joint distribution
over the hidden states xk = [x1

k, ..., x
Nh
k ] and the observations yk = [y1

k, ..., y
No
k ] can be

written compactly as

P (x1:K ,y1:K) = P (x1,y1)
K∏
k=2

P (xk|xk−1)P (yk|xk). (2.1)
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2.2.2 Inference
Often, we are interested in inferring the hidden states at each time point from a set of
observations. This corresponds to computing or maximising the posterior P (x|y) and
is described in the following, for online and o�ine scenarios.

Online inference

For online applications, we want to compute P (xk|y1:k), the distribution over the hid-
den states given only observations that have happened until the current time k. This
can be computed recursively byFiltering

P (xk|y1:k) ∝ P (yk|xk)
∫
xk−1

P (xk|xk−1)P (xk−1|y1:k−1). (2.2)

In case of discrete distributions, the integral in Eq. 2.2 can be replaced by a sum. We
use proportional instead of equal in Eq. 2.2 since the distribution would have to be
divided by P (yk|y1:k−1) in order to be a valid probability distribution. With discrete
probability distributions, this is trivial as it corresponds to simply normalising the dis-
tribution by its sum. Most of the times, however, we are interested in simply �nding
the most probable state and do not care about its actual probability, so the normali-
sation constant can be neglected. An example of how the most probable hidden state
can be selected from the �ltering distribution is given in Chapter 8 for an online beat
tracking scenario.

O�line inference

For o�ine applications, we are mostly interested in �nding the sequence of hidden
states x1:K that maximises the posterior probability distribution P (x1:K |y1:K), given
the whole sequence of observations. This is often called the MAP estimate (maximumMAP estimate
a-posterior) estimate of a sequence of hidden states x∗1:K and is computed by

x∗1:K = arg max
x1:K

P (x1:K | y1:K). (2.3)

MAP estimates of models with discrete hidden state variables can be e�ciently com-
puted by the Viterbi algorithm (Viterbi, 1967) and will be used in Chapters 3-7.

Exact Inference

Exact inference according to Equations 2.2 and 2.3 is only possible under certain condi-
tions. One example is the Kalman Filter (KF) model (Kalman, 1960; Roweis and Ghahra-Kalman �lter
mani, 1999). It assumes that all random variables are continuous-valued and all distri-
butions (e.g., the transition and observation model) are from the exponential family,
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such as the Gaussian distribution. These distributions have the property ‘closure under
multiplication’, which means computing the integral in Equation 2.2 only changes the
parameters of the distributions, but does not make them more complex (Minka, 1999).
E.g., if both transition and observation densities are Gaussian, the �ltering density is
guaranteed to stay Gaussian as well.

Another example are grid-based methods, where the state space is divided into grid-based methods
cells (Arulampalam et al., 2002). This produces a discrete state space where inference
can be executed exactly, by replacing all integrals by summations. Obviously, in the
case of continuous state spaces, a discretisation always means a loss of accuracy and
hence the solutions are not ‘exact’ anymore. One example of this class are HMMs HMMs
which have been very popular in the speech recognition community. Like in KF mod-
els, there exist e�cient algorithms for solving Equation 2.2 (Forward algorithm) and
Equation 2.3 (Viterbi algorithm) (Rabiner, 1989).

Approximate Inference

In cases where the above-mentioned conditions do not hold (e.g., continuous random
variables with distributions outside the exponential family, or mixed discrete / contin-
uous state spaces), an approximate solution can still be found. One possibility is to use
variational inference, where the complex distributions of the model are approximated
by simpler variational distributions, but this is outside the scope of this thesis. Another
popular class of algorithms are Monte Carlo (MC) methods, which represent a continu- Monte Carlo meth-

odsous distribution by a set of samples (‘particles’) that are drawn from this distribution. If
the number of particles is large, it can be assumed that the approximation is su�cient.
This can be seen as another discretisation of the state space, but using a dynamic grid
instead of a �xed grid. The problem with MC methods is that it is usually di�cult to
sample from the distribution of interest (e.g., the �ltering distribution). In these cases,
Markov Chain Monte Carlo (MCMC) or Particle �lters (PF) can be applied to obtain
samples that approximate any target distribution. A more detailed description of PF
methods can be found in Section 5.4.2 or in Arulampalam et al. (2002); Doucet and
Johansen (2009).

2.2.3 Learning

Learning in DBNs is a wide topic and has many dimensions as sketched by Murphy
(2002). In this thesis, I concentrate on learning the parameters of a model, but do not
learn the structure of a model. Learning the structure of a model is computationally
expensive and would need a huge amount of training data. Therefore, I decided to
engineer the structure by hand, and use it as a means of incorporating prior musical
knowledge into the model.
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The parameters of a DBN can be learned either in a completely unsupervised way
(when no information about the hidden states is available), in a completely supervised
way (when we have a dataset where all the hidden states are labeled), or by a mixture
of both cases (when only a fraction of the hidden variables are labeled). In the com-
pletely supervised case, learning becomes trivial and mainly reduces to counting the
occurrences of each hidden state and converting them to probabilities. In contrast, in
the completely unsupervised case, learning usually employs the iterative Expectation-
Maximisation (EM) algorithm (Dempster et al., 1977) and is therefore more complex.
An alternative to the EM algorithm is Viterbi training or segmental k-means (Rabiner
et al., 1986) which instead of computing the forward-backward path (Rabiner, 1989)
only computes the Viterbi path at each iteration, and is therefore faster and computa-
tionally less expensive. For the purpose of this thesis, I will either learn the parameters
from fully-annotated data (Chapters 3, 5-7) or use a variation of Viterbi training that
allows to learn the model parameters from partially-labeled data (Chapter 4).

2.3 Previous work on probabilistic meter analysis
In recent years, there has been a growing interest in solving the problem of automatic
metrical analysis of music. In this section, I give a short review of relevant literature
for this thesis, especially publications on meter analysis with probabilistic models. For
a more detailed, publication-speci�c literature review I refer the reader to the intro-
ductions of the corresponding chapters.

Table 2.1 lists meter analysis systems based on probabilistic models.1 One of the
advantages of probabilistic models is that dependencies between variables can easily
be modelled by designing the structure of the model. As can be seen from Table 2.1,
most systems simultaneously infer multiple hidden variables. This has the advantage
of being able to exploit their mutual dependencies, but has the drawback of increasing
the state space and therefore the computational cost to do inference. E.g., Whiteley
et al. (2006) jointly infer tempo, beat phase, measure length and measure phase. In
practice, such a state space becomes huge and makes inference intractable, therefore
approximate inference schemes such as particle �lters (PFs) or Markov Chain Monte
Carlo (MCMC) are often employed.

Systems can be categorised according to their input features, the acoustic model,
and the type of language model.

1The list does not claim to be complete. It rather tries to cover a wide range of di�erent approaches.



2.3.
PREVIO

U
S
W
O
RK

O
N
PRO

BA
BILISTIC

M
ETER

A
N
A
LYSIS

27

system acoustic model language model joint inference
tempo beat measure measure

phase length phase
Beat estimation
Cemgil et al. (2000) tempogram Kalman �lter x x
Cemgil and Kappen (2003) onsets Monte Carlo methods x x

(PFs and MCMC)
Laroche (2003) beat template dynamic programming x x
Hainsworth and Macleod (2004) onset detector PF x x
Lang and de Freitas (2004) beat template PF / discrete DBN x x
Eck (2007) autocorrelation phase matrix discrete DBN x x
Degara et al. (2011) complex �ux HMM
Böck et al. (2014) RNN discrete DBN x x
Fillon et al. (2015) tempogram, beat template CRF x x
Beat and downbeat estimation
Klapuri et al. (2006) comb �lters discrete DBN x x
Whiteley et al. (2006) Gaussian process / Poisson model discrete DBN x x x x
Whiteley et al. (2007) Poisson model PFs x x x x
Papadopoulos and Peeters (2011) distance to chord template discrete DBN x x
Peeters and Papadopoulos (2011) bar template, spectral discrete DBN x x x

balance, chroma change
Khadkevich et al. (2012) spectral �ux, chroma variation HMMs x x x x
Krebs et al. (2015b) GMM PF x x x x
Böck et al. (2016b) RNN discrete DBN x x x x
Krebs et al. (2016) RNN discrete DBN x x
Holzapfel and Grill (2016) CNN discrete DBN x x x x
Downbeat estimation
Durand et al. (2016) CNN discrete DBN x x

Table 2.1: Comparison of meter analysis systems based on probabilistic models.
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Input features The �rst approaches to meter analysis used discrete onset times as
input. These were either derived from MIDI recordings (Cemgil et al., 2000; Cemgil
and Kappen, 2003), or were computed by an onset detector (Hainsworth and Macleod,
2004; Lang and de Freitas, 2004). Now, continuous features are usually extracted from
the audio stream. The most common ones are variations of the Spectral Flux with one
frequency band (Laroche, 2003; Eck, 2007; Degara et al., 2011; Peeters and Papadopou-
los, 2011; Khadkevich et al., 2012; Fillon et al., 2015), two frequency bands (Krebs et al.,
2015a,b), three frequency bands (Durand et al., 2016), four frequency bands (Klapuri
et al., 2006), and more than four bands (Böck et al., 2016b; Krebs et al., 2016). For
downbeat detection, chroma features (Papadopoulos and Peeters, 2011; Peeters and
Papadopoulos, 2011; Khadkevich et al., 2012; Durand et al., 2016; Krebs et al., 2016) are
popular features to detect harmonic change which often happens at the beginning of
a bar. In recent years, automatic feature learning from raw (�ltered) spectrograms has
become feasible and popular (Böck and Schedl, 2011; Böck et al., 2016b) and the result-
ing features have been shown to outperform hand-crafted features, as demonstrated
in the yearly MIREX evaluation of beat tracking systems2. Spectrogram-based features
have also been adopted in my most recent work on downbeat tracking (Chapter 7).

Acousticmodel The acoustic model converts the input features to observation prob-
abilities. The correlation between a beat template and the spectral �ux is used directly
as observation probability by Laroche (2003); Peeters and Papadopoulos (2011); Fillon
et al. (2015). The value of the (complex) �ux is used directly as observation probability
by Degara et al. (2011). The strengths of periodicities in the input features are used as
observation probabilities by Cemgil et al. (2000); Klapuri et al. (2006); Eck (2007); Fillon
et al. (2015). Recently, due to the increasing computing power and amount of avail-
able data, systems contain complex acoustic models, whose numerous parameters are
learned from data. These models are usually more powerful and can easily be adapted
to any style by providing annotated training data. Examples of such acoustic models
encompass my own work using GMMs (Chapters 3-6) and RNNs (Chapters 6-7, Böck
et al. (2016b)), as well as work by Durand et al. (2015) and Holzapfel and Grill (2016)
using convolutional neural networks (CNNs).

Language model The language model implements the dynamics of the model and
converts a sequence of observation probabilities into a sequence of musical parameters
(beats, downbeats, time signature, etc.). Cemgil et al. (2000) use a Kalman �lter to detect
beats given a sequence of onset times. Another popular model family are particle �lters
(PF) (Cemgil and Kappen, 2003; Hainsworth and Macleod, 2004; Lang and de Freitas,
2004; Sethares et al., 2005; Whiteley et al., 2007; Krebs et al., 2015b), which, in contrast
to Kalman �lters, do not place high demands on the type of state variables (continuous,

2http://www.music-ir.org/mirex

http://www.music-ir.org/mirex
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discrete, mixed) and probability distributions. A third approach is to discretise the
(naturally continuous-valued) variables and use HMMs (Degara et al., 2011; Peeters and
Papadopoulos, 2011; Khadkevich et al., 2012) or, in the case of several hidden variables,
discrete DBNs (Klapuri et al., 2006; Whiteley et al., 2006; Eck, 2007; Papadopoulos and
Peeters, 2011; Krebs et al., 2015a; Durand et al., 2016; Krebs et al., 2016). Furthermore,
undirected probabilistic models such as conditional random �elds (CRFs) have been
proposed for beat tracking by Lang and de Freitas (2004); Korzeniowski et al. (2014);
Fillon et al. (2015).

The methods in this thesis are all based on DBNs, which provide an intuitive and
elegant way to model the dependencies between multiple random variables, such as
tempo, the position in a bar, and time signature. I cover DBNs consisting only of dis-
crete states (Chapters 3-7), as well as DBNs which consist of a mixture of continuous
and discrete states (PF models, Chapter 5). While the discrete DBNs are usually com-
putationally more complex than the PF models, they often provide higher accuracy
and have the advantage of being deterministic.

2.4 Datasets
For development and evaluation of the proposed methods, various datasets have been
used in this thesis. Table 2.2 lists the datasets and some of their characteristics.
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Dataset Reference # pieces Length Annotations Genre
Ballroom Gouyon et al. (2006); 685 3 5h 57 beats, downbeats mixed

Krebs et al. (2013);
Beatles Davies et al. (2009) 180 8h 09 beats, downbeats rock
Carnatic_1184 Srinivasamurthy and Serra (2014) 118 3h 55 beats, downbeats Carnatic music
Cretan Holzapfel et al. (2014) 42 2h 20 beats, downbeats Cretan dances
Hainsworth Hainsworth and Macleod (2004) 222 3h 19 beats, downbeats5 mixed
HJDB Hockman et al. (2012) 235 3h 19 beats, downbeats Electronic dance

music
Klapuri Klapuri et al. (2006) 320 4h 54 downbeats mixed
RWC Pop Goto et al. (2002) 100 6h 47 beats, downbeats rock
Robbie Williams Giorgi et al. (2013) 65 4h 31 beats, downbeats rock
Rock De Clercq and Temperley (2011) 200 12h 53 beats, downbeats rock
SMC Holzapfel et al. (2012) 217 2h 25 beats mixed
Turkish / Usul6 Srinivasamurthy et al. (2014) 82 1h 22 beats, downbeats Turkish music
1360-song7 Gouyon (2005) 1360 11h 02 beats mixed

Table 2.2: Datsets used in this thesis.

3Duplicates have been removed as pointed out by Sturm (2014).
4This is a subset of the original Carnatic dataset, which has 176 full-length pieces.
5Downbeat annotations have been added later by Sebastian Böck.
6This is a subset of the original Turkish dataset, which has 93 full-length pieces.
7This is a collection of several other datasets, including SIMAC, Hainsworth, Cuidado, and Klapuri.



Chapter 3

Rhythmic Pattern Modeling
for Beat and Downbeat
Tracking in Musical Audio

Published In Proceedings of the 14th International Society for Music Information
Retrieval Conference (ISMIR) (Krebs et al., 2013).

Authors Florian Krebs, Sebastian Böck, and Gerhard Widmer

Personal contributions I did all the implementations and ran the experiments. Se-
bastian later integrated my MATLAB code into the madmom (Böck et al., 2016a) frame-
work written in Python and assisted me in annotating the Ballroom dataset.

Changes to the original paper I have modi�ed the results section of the original
paper in order to make it consistent with the rest of this thesis: First, for the evaluation,
we do not skip any pauses at the beginning of a song. Second, we show here the
same evaluation metrics that are used in the rest of this thesis: F-measure, CMLt, and
AMLt for beat tracking, and F-measure for downbeat tracking. Third, we leave out 13
replicated songs in the Ballroom dataset which were identi�ed by Sturm (2014). Finally,
in Section 3.3.4, I corrected a typo in the footnote: We use eight components for the
GMM with PS8 instead of four as stated in the original paper.

Abstract Rhythmic patterns are an important structural element in music. This pa-
per investigates the use of rhythmic pattern modeling to infer metrical structure in
musical audio recordings. We present a Hidden Markov Model (HMM) based system
that simultaneously extracts beats, downbeats, tempo, meter, and rhythmic patterns.
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Our model builds upon the basic structure proposed by Whiteley et al. (2006), which
we further modi�ed by introducing a new observation model: rhythmic patterns are
learned directly from data, which makes the model adaptable to the rhythmical struc-
ture of any kind of music. For learning rhythmic patterns and evaluating beat and
downbeat tracking, 685 ballroom dance pieces were annotated with beat and measure
information. The results show that explicitly modeling rhythmic patterns of dance
styles drastically reduces octave errors (detection of half or double tempo) and sub-
stantially improves downbeat tracking.

3.1 Introduction

From its very beginnings, music has been built on temporal structure to which humans
can synchronize via musical instruments and dance. The most prominent layer of this
temporal structure (which most people tap their feet to) contains the approximately
equally spaced beats. These beats can, in turn, be grouped into measures, segments
with a constant number of beats; the �rst beat in each measure, which usually carries
the strongest accent within the measure, is called the downbeat. The automatic analy-
sis of this temporal structure in a music piece has been an active research �eld since the
1970s and is of prime importance for many applications such as music transcription,
automatic accompaniment, expressive performance analysis, music similarity estima-
tion, and music segmentation. However, many problems within the automatic analy-
sis of metrical structure remain unsolved. In particular, complex rhythmic phenomena
such as syncopations, triplets, and swing make it di�cult to �nd the correct phase
and period of downbeats and beats, especially for systems that rely on the assumption
that beats usually occur at onset times. Considering all these rhythmic peculiarities, a
general model no longer su�ces.

One way to overcome this problem is to incorporate higher-level musical knowl-
edge into the system. For example, Hockman et al. (2012), proposed a genre-speci�c
beat tracking system designed speci�cally for the genres hardcore, jungle, and drum
and bass. Another way to make the model more speci�c is to model explicitly one or
several rhythmic patterns. These rhythmic patterns describe the distribution of note
onsets within a prede�ned time interval, e.g., one bar. For example, Goto (2001) ex-
tracts bar-length drum patterns from audio signals and matches them to eight pre-
stored patterns typically used in popular music. Klapuri et al. (2006) proposed a HMM
representing a three-level metrical grid consisting of tatum, tactus, and measure. Two
rhythmic patterns were employed to obtain an observation probability for the phase
of the measure pulse. The system of Whiteley et al. (2006) jointly models tempo, me-
ter, and rhythmic patterns in a Bayesian framework. Simple observation models were
proposed for symbolic and audio data, but were not evaluated on polyphonic audio
signals.
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Although rhythmic patterns are used in some systems, no systematic study exists
that investigates the importance of rhythmic patterns for analyzing the metrical struc-
ture. Apart from the approach presented by Peeters and Papadopoulos (2011), which
learns a single rhythmic template from data, rhythmic patterns to be used for beat
tracking have so far only been designed by hand and hence depend heavily on the in-
tuition of the developer.

This paper investigates the role of rhythmic patterns in analyzing the metrical
structure in musical audio signals. We propose a new observation model for the HMM-
based system described by Whiteley et al. (2006), whose parameters are learned from
real audio data and can therefore be adapted easily to represent any rhythmic style.

3.2 Rhythmic Patterns
Although rhythmic patterns could be de�ned at any level of the metrical structure, we
restrict the de�nition of rhythmic patterns to the length of a single measure.

3.2.1 Data
As stated in Section 3.1, strong deviations from a straight on-beat rhythm constitute
potential problems for automatic rhythmic description systems. While pop and rock
music is commonly concentrated on the beat, Afro-Cuban rhythms frequently contain
syncopations, for instance in the clave pattern – the structural core of many Afro-
Cuban rhythms. Therefore, Latin music represents a serious challenge to beat and
downbeat tracking systems.

The ballroom dataset1 contains eight di�erent dance styles (Cha cha, Jive, Quick-
step, Rumba, Samba, Tango, Viennese Waltz, and (slow) Waltz) and has been used by
several authors, for example, for genre recognition (Dixon et al., 2004; Pohle et al.,
2009). It consists of 685 unique (Sturm, 2014) 30 seconds-long audio excerpts and has
tempo and dance style annotations. The dataset contains two di�erent meters (3/4 and
4/4) and all pieces have constant meter. The tempo distributions of the dance styles
are displayed in Fig. 3.4.

We have annotated both beat and downbeat times manually. In cases of disagree-
ment on the metrical level we relied on the existing tempo and meter annotations. The
annotations can be downloaded from https://github.com/CPJKU/BallroomAnnotations.

3.2.2 Representation of rhythmic patterns
Patterns such as those shown in Fig. 1 are learned in the process of inducing the likeli-
hood function for the model (cf. Section 3.3.3), where we use the dance style labels of

1The data was extracted from www.ballroomdancers.com.

https://github.com/CPJKU/BallroomAnnotations
www.ballroomdancers.com
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the training songs as indicators of di�erent rhythmic patterns. To model dependencies
between instruments in our pattern representations, we split the audio signal into two
frequency bands and compute an onset feature for each of the bands individually as
described in Section 3.3.3. To illustrate the rhythmic characteristics of di�erent dance
styles, we show the eight learned representations of rhythmic patterns in Fig. 3.1. Each
pattern is represented by a distribution of onset feature values along a bar in two fre-
quency bands.

For example, the Jive pattern displays strong accents on the second and fourth beat,
a phenomenon usually referred to as backbeat. In addition, the typical swing style is
clearly visible in the high-frequency band. The Rumba pattern contains a strong ac-
cent of the bass on the 4th and 7th eighth note, which is a common bass pattern in
Afro-Cuban music and referred to as anticipated bass (Manuel, 1985). One of the char-
acteristics of Samba is the shu�ed bass line, a pattern originally played with the Surdo,
a large Brazilian bass drum. The pattern features bass notes on the 1st, 4th, 5th, 9th,
12th, and 13th sixteenth note of the bar. Waltz, �nally, is a triple meter rhythm. While
the bass notes are located mainly on the downbeat, high-frequency note onsets are
also located at the quarter and eighth note level of the measure.

3.3 Method

In this section, we describe the dynamic Bayesian network (DBN) (Murphy, 2002) we
use to analyze the metrical structure. We assume that a time series of observed data
y1:K = {y1, ..., yK} is generated by a set of unknown, hidden variables x1:K =
{x1, ...,xK}, where K is the length of an audio excerpt in frames. In a DBN, the joint
distribution P (y1:K ,x1:K) factorizes as

P (y1:K ,x1:K) = P (x1)
K∏
k=2

P (xk|xk−1)P (yk|xk) (3.1)

where P (x1) is the initial state distribution, P (xk|xk−1) is the transition model, and
P (yk|xk) is the observation model.

The proposed model is similar to the model proposed by Whiteley et al. (2006) with
the following modi�cations:

• We assume that the tempo depends on the rhythmic pattern (cf., Section 3.3.2), which
is a valid assumption for ballroom music as shown in Fig. 3.4.

• As the original observation model was mainly intended for percussive sounds, we
replace it by a Gaussian Mixture Model (GMM) as described in Section 3.3.3.
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Figure 3.1: Illustration of learned rhythmic patterns. For each pattern, two frequency
bands are shown (Low/High from bottom to top).
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mkmk−1

nk−1 nk

rkrk−1

ykyk−1

Figure 3.2: Dynamic Bayesian network; circles denote continuous variables and rect-
angles discrete variables. The gray nodes are observed, and the white nodes represent
the hidden variables.

3.3.1 Hidden variables

The dynamic bar pointer model (Whiteley et al., 2006) de�nes the state of a hypothetical
bar pointer at time tk = k · ∆, with k ∈ {1, 2, ..., K} and ∆ the audio frame length,
by the following discrete hidden variables:

1. Position inside a bar mk ∈ {1, 2, ...,M}, where
mk = 1 indicates the beginning and mk = M the end of a bar;

2. Temponk ∈ {1, 2, ..., N} (unit bar positions
audio frame ), whereN denotes the number of tempo

states;

3. Rhythmic pattern rk ∈ {r1, r2, ..., rR}, whereR denotes the number of rhythmic
patterns.

For the experiments reported in this paper, we chose ∆ = 20 ms, M = 1216, N = 26,
and R (the number of rhythmic patterns) was 2 or 8 as described in Section 3.4.2.
Furthermore, each rhythmic pattern is assigned to a meter θ(rk)
∈ {3/4, 4/4}, which is important to determine the measure boundaries in Eq. 3.4. The
conditional independence relations between these variables are shown in Fig. 3.2.

As noted by Murphy (2002), any discrete state DBN can be converted into a regular
HMM by merging all hidden variables of one time slice into a ‘meta-variable’ xk, whose
state space is the Cartesian product of the single variables:

xk = [mk, nk, rk]. (3.2)
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3.3.2 Transition model

Due to the conditional independence relations shown in Fig. 3.2, the transition model
factorizes as

P (xk|xk−1) = P (mk|mk−1, nk−1, rk−1)×
× P (nk|nk−1, rk−1)× P (rk|rk−1)

(3.3)

where the three factors are de�ned as follows:

• P (mk|mk−1, nk−1, rk−1)
At time frame k the bar pointer moves from position mk−1 to mk as de�ned by

mk = [(mk−1 + nk−1 − 1)mod(Nm · θ(rk−1))] + 1. (3.4)

Whenever the bar pointer crosses a bar border it is reset to 1 (as modeled by the
modulo operator).

• P (nk|nk−1, rk−1)
If the tempo nk−1 is inside the allowed tempo range
{nmin(rk−1), ..., nmax(rk−1)}, there are three possible transitions: the bar pointer
remains at the same tempo, accelerates, or decelerates:

if nmin(rk−1) ≤ nk−1 ≥ nmax(rk−1),

P (nk|nk−1) =


1− pn, nk = nk−1;
pn
2
, nk = nk−1 + 1;

pn
2
, nk = nk−1 − 1.

(3.5)

Transitions to tempi outside the allowed range are assigned a zero probability. pn is
the probability of a change in tempo per audio frame, and the step-size of a tempo
change per audio frame was set to one bar position per audio frame.

• P (rk|rk−1)
For this work, we assume a musical piece to have a characteristic rhythmic pattern
that remains constant throughout the song; thus we obtain

rk+1 = rk. (3.6)

3.3.3 Observation model

For simplicity, we omit the frame indices k in this section. The observation model
P (y|x) reduces to P (y|m, r) due to the independence assumptions shown in Fig. 3.2.
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Observation features

Since the perception of beats depends heavily on the perception of played musical
notes, we believe that a good onset feature is also a good beat tracking feature. There-
fore, we use a variant of the LogFiltSpecFlux onset feature, which performed well in
recent comparisons of onset detection functions (Böck et al., 2012b) and is summarized
in the top part of Fig. 3.3. We believe that the bass instruments play an important role
in de�ning rhythmic patterns, hence we compute onsets in low-frequencies (< 250
Hz) and high-frequencies (> 250 Hz) separately. In Section 3.5.1 we investigate the
importance of using the two-dimensional onset feature over a one-dimensional one.
Finally, we subtract the moving average computed over a window of one second and
normalize the features of each excerpt to zero mean and unity variance.

z(t) STFT �lterbank
(81 bands) log di�

sum over fre-
quency bands

subtract
mvavg normalize y[k]

Figure 3.3: Computing the onset feature y[k] from the audio signal z(t)

State tying

We assume the observation probabilities to be constant within a 64th note grid. All
states within this grid are tied and thus share the same parameters, which yields 64
(4/4 meter) and 48 (3/4 meter) di�erent observation probabilities per bar and rhythmic
pattern.

Likelihood function

To learn a representation of P (y|m, r), we split the training dataset into pieces of one
bar length, starting at the downbeat. For each bar position within the 64th grid and
each rhythmic pattern, we collect all corresponding feature values and �t a GMM. We
achieved the best results on our test set with a GMM of I = 2 components. Hence, the
observation probability is modeled by

P (y|m, r) =
I∑
i=1

wm,r,i · N (y;µm,r,i,Σm,r,i), (3.7)

where µm,r,i is the mean vector, Σm,r,i is the covariance matrix, and wm,r,i is the mix-
ture weight of component i of the GMM. Since, in learning the likelihood function
P (y|m, r), a GMM is �tted to the audio features for every rhythmic pattern (i.e., dance
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Figure 3.4: Tempo distributions of the ballroom dataset dance styles. The displayed
distributions are obtained by (Gaussian) kernel density estimation for each dance style
separately.

style) label r, the resulting GMMs can be interpreted directly as representations of
rhythmic patterns. Fig. 1 shows the mean values of the features per frequency band
and bar position for the GMMs corresponding to the eight rhythmic patterns r ∈ {Cha
cha, Jive, Quickstep, Rumba, Samba, Tango, Viennese Waltz, Waltz}.

3.3.4 Initial state distribution

The bar position and the rhythmic patterns are assumed to be distributed uniformly,
whereas the tempo state probabilities are modeled by �tting a GMM2 to the tempo
distribution of each ballroom style shown in Fig. 3.4.

3.3.5 Inference

We are looking for the state sequence x∗1:K with the highest posterior probability
p(x1:K |y1:K):

x∗1:K = arg max
x1:K

p(x1:K |y1:K). (3.8)

We solve Eq. 3.8 using the Viterbi algorithm (Viterbi, 1967; Rabiner, 1989). Once
x∗1:K is computed, the set of beat and downbeat times are obtained by interpolating
m∗1:K at the corresponding bar positions.

2We use two (PS2), and eight (PS8) mixture components repectively.
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3.4 Experimental setup
We use di�erent settings and reference methods to evaluate the relevance of rhythmic
pattern modeling for the beat and downbeat tracking performance.

3.4.1 Evaluation measures
A variety of measures for evaluating beat tracking performance is available (Davies
et al., 2009). Based on their popularity and relevance for our experiments we chose to
report the metrics F-measure, CMLt, and AMLt for beat tracking as well as F-measure
for downbeat tracking:

• FM (F-measure) is computed over a commonly used detection window of +/- 70 ms
around a beat/downbeat annotation.

• CMLt (Correct Metrical Level with no continuity required) assesses the percentage
of correct beats at the correct metrical level.

• AMLt (Allowed Metrical Level with no continuity required) assesses the percentage
of correct beats, also considering half and double tempo and o�beats as correct.

All metrics are used with standard settings (Davies et al., 2009), except that we do not
exclude the �rst �ve seconds of an excerpt from the evaluation. Due to lack of space,
we present only the mean values per measure across all �les of the dataset. Please visit
http://www.cp.jku.at/people/krebs/ISMIR2013.html for detailed results and other metrics.

3.4.2 Systems compared
To evaluate the use of modeling multiple rhythmic patterns, we report results for the
following variants of the proposed system (PS): PS2 uses two rhythmic patterns (one
for each meter), PS8 uses eight rhythmic patterns (one for each genre), PS8.genre has
the ground truth genre, and PS2.meter has the ground truth meter as additional input
features.

In order to compare the system to the state-of-the-art, we add results of six refer-
ence beat tracking algorithms: Ellis (2007), Davies and Plumbley (2007), Degara et al.
(2011), Böck and Schedl (2011), Peeters and Papadopoulos (2011), and Klapuri et al.
(2006). The latter two also output downbeat times.

3.4.3 Parameter training
For all variants of the proposed system PSx, the results were computed by a leave-one-
out approach, where we trained the model on all songs except the one to be tested.
System of Böck and Schedl (2011) has been trained on the data speci�ed in their paper,
the SMC (Holzapfel et al., 2012), and the Hainsworth dataset (Hainsworth and Macleod,

http://www.cp.jku.at/people/krebs/ISMIR2013.html
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2004). The beat templates used by Peeters and Papadopoulos (2011) have been trained
using their own annotated PopRock dataset. The other methods do not require any
training.

3.4.4 Statistical tests

In Section 3.5.1 we use an analysis of variance test (ANOVA) and in Section 3.5.2 a
multiple comparison test (Hochberg and Tamhane, 1987) to �nd statistically signi�cant
di�erences among the mean performances of the di�erent systems. A signi�cance level
of 0.05 was used to declare performance di�erences as statistically relevant.

3.5 Results and discussion

3.5.1 Dimensionality of the observation feature

As described in Section 3.3.3, the onset feature is computed for one (PSx.1d) or two
(PSx.2d) frequency bands separately. The top parts of Table 3.1 show the e�ect of
the dimensionality of the feature vector on the beat and downbeat tracking results
respectively.

For beat tracking, analyzing the onset function in two separate frequency bands
seems to help �nding the correct metrical level, as indicated by higher CMLt measures
in Table 3.1. Even though the improvement is not signi�cant, this e�ect was observed
for both PS2 and PS8.

For downbeat tracking, we have found a signi�cant improvement if two bands are
used instead of a single one, as evident from the rightmost column of Table 3.1. This
seems plausible, as the bass plays a major role in de�ning a rhythmic pattern (see
Section 3.2.2) and helps to resolve the ambiguity between the di�erent beat positions
within a bar.

Using three or more onset frequency bands did not improve the performance fur-
ther in our experiments. In the following sections we will only report the results for
the two-dimensional onset feature (PSx.2d) and simply denote it as PSx.

3.5.2 Relevance of rhythmic pattern modeling

In this section, we evaluate the relevance of rhythmic pattern modeling by comparing
the beat and downbeat tracking performance of the proposed systems to six reference
systems.
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System FM CMLt AMLt DBFM
PS2.1d 80.4 62.0 87.5 56.6
PS2.2d 81.8 65.7 87.4 64.0
PS8.1d 84.3 75.2 86.8 65.8
PS8.2d 85.4 78.3 86.3 70.8
PS2 81.8 65.7 87.4 64.0
PS8 85.4 78.3 86.3 70.8
Ellis (2007) 68.2 30.9 79.1 -
Davies and Plumbley (2007) 76.1 56.9 86.2 -
Degara et al. (2011) 78.9 62.9 84.5 -
Peeters and Papadopoulos (2011) 76.3 56.7 84.1 42.1
Böck and Schedl (2011) 81.6 63.1 88.9 -
Klapuri et al. (2006) 72.8 53.7 81.5 43.3
PS2.meter 82.5 67.4 88.1 67.9
PS8.genre 90.4 88.8 89.6 78.5

Table 3.1: Beat and downbeat detection performance on the ballroom dataset. Re-
sults printed in bold are statistically equivalent to the best result in each experiment.
FM, CMLt, and AMLt are beat tracking metrics, DBFM denotes downbeat tracking F-
measure.

Beat tracking

The beat tracking results of the reference methods are displayed together with PS2
(=PS2.2d) and PS8 (=PS8.2d) in the middle part of Table 3.1. As there is no single system
that performs best in all of the measures, we will look at the individual metrics in the
following.

For the CMLt and FM metric, PS8 outperforms all other systems. This is especially
clear for the CMLt metric (which requires the system to exactly report the annotated
metrical level), where PS8 achieves a relative improvement of 24% over the best refer-
ence system.

For the AMLt metric (which also allows detecting beats at half or double tempo
and o�beat), we found no advantage of using the proposed methods over most of the
reference methods. Böck and Schedl (2011) performs best in this metric, even though
the di�erence to PS2, PS8 and Davies and Plumbley (2007) is not signi�cant.

From the fact that the proposed model PS8 performs best if �nding the correct
tempo octave is required (as in CMLt), we conclude that modeling rhythm patterns
seems to be bene�cial for choosing the correct metrical level. This gets even clearer if
the correct dance style is supplied (PS8.genre). In this case, the CMLt score is almost
identical to the AMLt score. Apparently, the dance style provides su�cient rhythmic
information to resolve ambiguities in choosing the metrical level.
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Hence, if the correct metrical level is unimportant or even ambiguous, a general
model like Böck and Schedl (2011) or any other reference system might be preferable to
the more complex and speci�c PS8. On the contrary, in applications where the correct
metrical level matters (e.g., a system that detects beats and downbeats for automatic
ballroom dance instructions (Eyben et al., 2007)), PS8 is the best system to chose.

Knowing the meter a priori (PS2.meter) was not found to increase the performance
signi�cantly compared to PS2. It appeared that meter was identi�ed mostly correct by
PS2 (in 89% of the songs) and that for the remaining 11% songs both of the rhythmic
patterns �tted equally well.

Downbeat tracking

The rightmost column of Table 3.1 lists the results for downbeat tracking. As shown,
PS8 outperforms all other systems signi�cantly. In cases where the dance style is
known a priori (PS8.genre), the downbeat performance increases even more. The same
was observed for PS2 if the meter was known (PS2.meter). This leads to the thought
that downbeat tracking (as well as beat tracking with PS8) could improve even more
by including meter or genre detection methods. For instance, Pohle et al. (2009) report
a dance style classi�cation rate of 89% on the same dataset, whereas PS8 detected the
correct dance style in only 75% of the cases.

The poor performance of the systems Peeters and Papadopoulos (2011) and Kla-
puri et al. (2006) is probably caused by the fact that both systems were developed for
music with a completely di�erent metrical structure than present in ballroom data. In
addition, Klapuri et al. (2006) explicitly assumes a 4/4 meter, which is only true for 522
of 685 songs in the dataset.

3.6 Conclusion and future work

In this study, we investigated the in�uence of explicit modeling of rhythmic patterns on
the beat and downbeat tracking performance in musical audio signals. For this purpose
we have proposed a new observation model for the system proposed by Whiteley et al.
(2006), representing rhythmical patterns in two frequency bands.

Our experiments indicated that computing an onset feature for at least two di�erent
frequency bands increases the downbeat tracking performance signi�cantly compared
to a single feature covering the whole frequency range.

In a comparison with six reference systems, explicitly modeling dance styles as
rhythmic patterns was shown to drastically reduce octave errors (detecting half or
double tempo) in beat tracking. Besides, downbeat tracking was improved substan-
tially compared to a variant that only models meter and two reference systems.

Obviously, ballroom music is well structured in terms of rhythmic patterns and
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tempo distribution. If all the �ndings reported in this paper also apply to music genres
other than ballroom music has yet to be investigated.

In this work, the rhythmic patterns were determined by dance style labels. In future
work, we want to use unsupervised clustering methods to extract meaningful rhythmic
patterns from the audio features directly.
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SIPCO) (Krebs et al., 2014).

Authors Florian Krebs, Filip Korzeniowski, Maarten Grachten, and Gerhard Wid-
mer.

Personal contributions In discussions with Filip we developed the idea to gener-
alise our previous work towards unsupervised learning of rhythmic patterns using
Viterbi training. I did most of the implementation work.

Changes to the original paper

1. I have modi�ed the results section of the original paper in order to make it con-
sistent with the rest of this thesis: We report the same evaluation metrics that
are used in the rest of this thesis: F-measure, CMLt, and AMLt for beat tracking,
and F-measure for downbeat tracking.

2. Again, I leave out 13 replicated songs in the Ballroom dataset as identi�ed by
Sturm (2014).

3. As I found several errors in the beat annotations of the Hainsworth dataset after
the paper was published, I decided to re-evaluate the algorithms’ performance
using the new annotations.

45
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4. In the original paper we conducted a �xed number of iterations of Viterbi train-
ing, wheras in this thesis I report results for the iteration that yields the best beat
tracking score on a validation set.

5. Instead of showing results for 3 and 8 patterns on the Hainsworth set, I present
results for 2, 5, and 10 patterns now, as this more clearly illustrates the relation-
ship between the performance and the number of patterns.

All these changes did not a�ect the main conclusions of the paper, but did slightly
change the results.

Abstract In this paper, we propose a method of extracting rhythmic patterns from
audio recordings to be used for training a probabilistic model for beat and downbeat
extraction. The method comprises two stages: clustering and re�nement. It is able to
take advantage of any available annotations that are related to the metrical structure
(e.g., beats, tempo, downbeats, dance style). Our evaluation on the Ballroom dataset
showed that our unsupervised method achieves results comparable to those of a su-
pervised model. On another dataset, the proposed method performs comparable to the
reference systems, except for one beat tracking metric.

4.1 Introduction
A musical work can be regarded as a composition of sounds in time. Most musical
works are metrical, which means that the time at which sounds occur is organised
into a hierarchical structure consisting of multiple pulse levels. The perceptually most
prominent level is referred to as the beat, which coincides with the pulse most people
would naturally tap their foot to. These beats are in turn organised into groups of
equal numbers of beats (measures), with the downbeat denoting the �rst and strongest
beat of each measure. The distribution of sound events within the metrical structure
is referred to as rhythm.

Automatic analysis of the rhythmic structure of a musical work from an audio
recording facilitates many aspects of music information retrieval research, such as
music transcription, music similarity estimation, and music segmentation. The great
challenge when designing an automatic rhythm transcription system lies in the great
rhythmic variety of music. A general rhythm extraction system should work for all me-
tres; it should handle swing, syncopations, tuplets as well as di�erent tempo ranges.
It is therefore unlikely that simple approaches such as rule-based methods can satisfy
these requirements.

Whiteley et al. (2006) proposed a system that jointly models bar position, tempo,
metre, and rhythmic pattern using a hidden Markov model (HMM). Recently, Krebs
et al. (2013) have extended this model by incorporating eight rhythmic pattern states
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to model the eight dance styles in the data. We showed that it outperforms state-of-the-
art beat and downbeat detection systems on a dataset of 697 ballroom music excerpts.
However, the parameters of these rhythmic pattern states are learned in a supervised
manner: the system needs a list of rhythmic pattern labels as input.

In the present paper we describe an approach to learning the model parameters (see
Section 4.2) in a semi-unsupervised manner, using beat and downbeat annotated data
but no rhythmic pattern labels. Thus, rhythmic pattern labels are no longer necessary.
The proposed method is as follows: After clustering the bars of the dataset based on
onset features (Section 4.3.1), we re�ne the parameter estimation using Viterbi train-
ing (Section 4.3.2). Finally, we apply the system to a dataset for which rhythmic pattern
labels are not available (Section 4.4).

4.2 Model description

In this section, we describe the beat and downbeat detection system used in this work.
For a more detailed description, the interested reader is referred to Krebs et al. (2013).

We take features extracted from the audio signal as observed variables yk, and infer
the hidden variables xk of bar position, tempo, and rhythmic pattern on the basis of a
hidden Markov model (HMM). Here, k denotes the audio frame index with 1 ≤ k ≤ K ,
where K is the number of audio frames extracted for a piece. In an HMM, the joint
probability distribution of a sequence of hidden states x1:K and observed states y1:K

factorises as

P (x1:K ,y1:K) = P (x1)
K∏
k=2

P (xk|xk−1)P (yk|xk), (4.1)

where P (x1) is the initial distribution of the hidden states, P (xk|xk−1) is the transition
model, and P (yk|xk) is the observation model. The state space of the hidden variables
xk is the Cartesian product of three discrete sub-state spaces: the position inside a
bar m ∈ {1, 2, ...,M}, the tempo n ∈ {1, 2, ..., N}, and the rhythmic pattern r ∈
{r1, r2, ..., rR}.1 Thus, a state at audio frame k in this state space is written as xk =
[mk, nk, rk].

The sequence of hidden states with the maximum a posteriori probability x∗1:K is
computed using the Viterbi algorithm as

x∗1:K = arg max
x1:K

{P (x1:K | y1:K , λ) } , (4.2)

where λ are the parameters of the model.

1In this paper, we used M = 1216, N = 23.
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4.2.1 Transition model

To make inference in this large state space computationally feasible, the system is
restricted to a limited number of transitions per state. We allow for three possible
tempo state transitions, as modeled by the transition probabilities for n: if nk ∈
{nmin(rk), ..., nmax(rk)},

P (nk|nk−1) =


1− pn, nk = nk−1,
pn
2
, nk = nk−1 + 1,

pn
2
, nk = nk−1 − 1,

(4.3)

where pn is the probability of a tempo change, and nmin(rk) and nmax(rk) are respec-
tively the minimum and maximum tempo corresponding to the rhythmic pattern rk.
Transitions to tempi outside the allowed range are assigned a zero probability.

The bar position mk at time frame k is de�ned deterministically by the previous
bar position mk−1 and the previous tempo nk−1.

Finally, the rhythmic pattern state is assumed to change only at bar boundaries:

P (rk|rk−1,mk < mk−1) = pr(rk−1, rk). (4.4)

The transition probabilities of the rhythmic pattern states pr(rk−1, rk), the tempo
transition probability pn, and the allowed tempo ranges nmin(rk) and nmax(rk) are
learned from data as described in Section 4.3.

4.2.2 Observation model

The observed variables yk are computed using the LogFiltSpecFlux method introduced
by Böck et al. (2012b), calculated for two frequency bands (below 250 Hz and above 250
Hz). The observation likelihood P (yk|mk, rk) is modeled by a Gaussian mixture model
(GMM) with two components. In order to obtain a manageable number of parameters
to learn, the observation probabilities were assumed to be constant for the duration of
a 64th note.

4.3 Learning

The model’s rigid structure reduces the set of state transition parameters to nmin(rk),
nmax(rk), pn, and pr(rk−1, rk). Learning thus mainly focuses on extracting rhythmic
patterns in form of the observation likelihood P (yk | mk, rk) from the data. We obtain
all parameters in a two-phase process: First, a simple k-means approach gives us an
initial model; then, we re�ne this model via multiple runs of the segmental k-means
algorithm (Rabiner et al., 1986), also called Viterbi training.
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We chose the parameter estimation methods based on the available data (see Sec-
tion 4.4.1 for details). If we had fully annotated data samples, we could simply de-
termine all transition probabilities by counting, and learn the observation model by
a single maximum likelihood estimation. However, our training data is only partially
labelled: We have annotated beat and downbeat times, but no information on the bar
positions between those annotations2. Additionally, manual beat annotations tend to
be imprecise, as mentioned by Dixon et al. (2006). Therefore, we can determine neither
rhythmic patterns nor transitions directly.

We brie�y describe the initialisation process in Section 4.3.1 before detailing the
model re�nement in Section 4.3.2.

4.3.1 K-Means Initialisation
Algorithms for learning the parameters of a HMM usually modify a given initial model
towards a speci�ed goal by minimising an objective function. While a random initial
model will su�ce in some cases, an informed initialisation often provides the optimiser
with a better starting point, resulting in faster convergence. In our system, initial val-
ues for tempo transitions are set by hand (pn = 0.01). Parameters concerning rhythmic
patterns, however, are determined from training data.

Rhythmic patterns de�ne the observation likelihood P (yk | mk, rk) as described in
Section 4.2.2. Given many degrees of freedom, �nding sensible initial values is crucial.
To compute these, we apply the following steps:

1. Calculate the frequency split LogFiltSpecFlux for each audio �le in the training
corpus.

2. Split the feature values into single bars based on the ground truth annotation.

3. Group the features for each bar into 64 bins equally spaced in time within each
bar. This results in 128 values per bar, since we compute the onset feature for
two distinct frequency bands. Determined by the ground truth, for metres other
than 4/4, we use accordingly fewer bins (e.g., 48 bins for a 3/4 metre).

4. In addition to these ‘bar-level’ patterns, compute the average of all bars that
belong to a song to obtain a ‘song-level’ pattern. These will be bene�cial for
music with constant rhythm like Ballroom music.

5. Normalize each feature to have zero mean and unit standard deviation.

6. Divide bar- and song-level patterns into R clusters using the k-means method.
2We might know that audio frames k andm are at the �rst and second beat of a bar, but do not know

which bar position exactly an audio frame l, k < l < m, has.
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7. Using the cluster labels for each instance, learn the parameters of P (yk|mk, rk),
pr(rk−1, rk), nmin(rk) and nmax(rk), representing the rhythmic patterns, their
interaction and the tempo range of a pattern respectively.

The resulting patterns constitute the initial model that is fed into the model re�ne-
ment or learning process.

4.3.2 Model Re�nement

The semantics of the hidden state sequence for a data sample determine its segmenta-
tion. We thus aim to increase the probability of obtaining the correct state sequence
when decoding the given observation sequence. To this end, we apply Viterbi train-
ing (Rabiner et al., 1986), which adapts the model’s parameters such that the proba-
bility of the decoded state sequence increases. To ensure that the decoded state se-
quence corresponds to the desired (correct) segmentation result, we apply methods
for Partially-Hidden Markov Models (Ramasso, 2009), which allow us to narrow down
possible decoding paths to a speci�ed window around the annotated beat structure.

Viterbi Training

Viterbi training works similarly to the well-known Baum-Welch method, with mi-
nor but critical alterations. It was �rst described under the name segmental k-means
algorithm by Rabiner et al. (1986). The learning process repeats the following two
steps until convergence: 1) decoding using the Viterbi algorithm and 2) parameter re-
estimation. In doing so, at each step it selects new model parameters λ̄ such that

λ̄ = arg max
λ
{P (x∗1:K | y1:K , λ) } , (4.5)

where λ are the current model’s parameters, and x∗1:K is the decoded state sequence
given by the Viterbi algorithm as de�ned in Eq. 4.2.

After decoding, the algorithm re-estimates the parameters in a straightforward
way: pn and pr(rk−1, rk) are computed by counting the corresponding occurrences
in the decoded paths; similarly, we �nd pn, the parameter de�ning the probability of a
tempo change in tempo, and nmin(rk) and nmax(rk), which de�ne the possible tempo
range for a given pattern. Rhythmic patterns are created using the same method as in
the initialisation, with the respective rk instead of the clustering results as labels. The
re-estimated parameters maximise the probability of the decoded state sequence.

Compared to the Baum-Welch algorithm, Viterbi training has some favourable
properties for our use case. First and foremost, it uses a di�erent objective function, as
Eq. 4.5 shows. Instead of maximising the likelihood of the data (maximum likelihood
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estimation, MLE), it maximises the a-posteriori probability (MAP) of the most probable
state sequence. MLE is more closely related to a generative scenario - improvements
in segmentation quality come incidentally, but are not the target of the optimisation.
MAP maximisation, however, is related to the very problem we address in this paper
- we use it to increase the probability of obtaining a state sequence that corresponds
to the correct segmentation. Rodríguez and Torres (2003) also show that under certain
circumstances, Viterbi training can lead to better segmentation results. Allahverdyan
and Galstyan (2011) state that Viterbi training converges faster, and results in sparser
solutions.

Decoding in Partially-Hidden Markov Models

The standard formulations of the common inference algorithms for HMMs are based
upon the assumption that only the observed variables are known. Parameter learning
methods such as the Baum-Welch algorithm do not require – and cannot incorporate
– knowledge about the hidden variables of a model. Ramasso (2009) modi�ed these
algorithms such that uncertain and imprecise labels, in our case beat annotations, can
be utilised for inference and to support learning of HMMs. Here, we use evidential
Viterbi decoding in the model re�nement step of our training method. Due to space
limitations, we can only brie�y describe the di�erence from regular Viterbi decoding.
For an in-depth description, we refer to Ramasso (2009).

At each new time step k, the Viterbi algorithm computes Viterbi messages δk(s),
which represent the probability of the most probable state sequence that ends at state
s. Based on our belief of the true bar position at this time, we can also de�ne the
plausibility plk(s) of being at state s at time step k. As derived by Ramasso (2009), the
Viterbi messages in the evidential Viterbi algorithm are

δ′k(s) = δk(s) · plk(s),

while the remaining steps of the algorithm are unmodi�ed.
We de�ne the plausibilities based on the ground truth annotations. This results in

uniform plausibilities at time steps between beats, causing the algorithm to behave like
the standard decoding method. The behaviour changes within a range around the beat
annotations: We force the decoded path to hit the annotated beat within± 17.5% of the
current inter-annotation interval around it. To this end, we assign a plausibility of zero
to states corresponding to positions outside of this range, while keeping it uniform for
those within. The allowed range corresponds to the tolerance window of the CMLt
evaluation metric (see Section 4.4.2).

Thus we can alleviate the impact of imprecise annotations while forcing the algo-
rithm to follow the correct segmentation path within the allowed tolerance window.
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4.4 Experiments

In this section, we describe the experimental set-up to show the e�ect of the proposed
parameter learning scheme on beat and downbeat tracking accuracy. The experimental
results are obtained using a 10-fold cross-validation, where each fold was designed to
have the same distribution of dance styles or metre. We stoped the re�nement when
the beat tracking F-measure on the validation set began to decrease.

We used a multiple comparison using one-way anova with a tukey-kramer cor-
rection (as provided by the multcompare tool of MATLAB (Hochberg and Tamhane,
1987)) to determine whether the di�erence between the group means are statistically
signi�cant with an alpha level of 0.05. All results which are statistically equivalent to
the best result are printed in bold. Because of the rhythmic continuity, we used ‘song-
level’ patterns for the Ballroom dataset, and ‘bar-level’ patterns for the Hainsworth
dataset, in the training stage. The datasets are described in the following.

4.4.1 Datasets

We evaluated the proposed learning scheme on two datasets which provide beat and
downbeat annotations.

The Ballroom dataset comprises ballroom dance music and is expected to consist
of clear and constant rhythmic patterns, which makes it suitable for pattern extrac-
tion and modeling tasks. It was originally assembled for the tempo induction contest
organised during the International Conference on Music Information Retrieval (ISMIR
2004) (Gouyon et al., 2006). The dataset consists of 685 unique excerpts of music, each
30 seconds long. 3

In order to investigate whether the proposed learning scheme also works for mu-
sic with less constant rhythmic patterns, we chose to use the Hainsworth dataset,
which has also been used by several other authors, e.g. (Hainsworth and Macleod,
2004; Peeters and Papadopoulos, 2011). It consists of 222 audio �les of various genres,
each between 30 and 60 seconds long.

4.4.2 Evaluation metrics

A variety of measures for quantifying the performance of beat tracking systems exist
(Davies et al., 2009). We give results for the following four metrics:

FM is the generic F-measure often used in the �eld of information retrieval applied
to the beat detection task. A detected beat is considered correct if it falls within a ±
70ms window around an annotated one.

3Annotations available at https://github.com/CPJKU/BallroomAnnotations (v1.1)
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(a) Dance style, initial (b) K-means, initial

(c) Dance style, re�ned (d) K-means, re�ned

Figure 4.1: Two learned rhythmic patterns, before (Figs. a, b) and after re�nement
(Figs. c, d). The x-axis de�nes the position within a bar in a 64th note grid, the y-axis
represents the normalised mean onset values for a position. Each pattern consists of
two frequency bands: the lower, darker plots represent the low band, the lighter, upper
plots the high band.

CMLt is a continuity-based metric that describes the percentage of beats that be-
long to a continuous group. For a beat to belong to a continuous group, the previous
and the current beat have to be within the tolerance window of± 17.5% of the current
inter-annotation interval around the annotations. Only beats at the correct metrical
level are taken into account.

AMLt is computed the same way as CMLt, but beats are also allowed to occur at
half or double the correct tempo, as well as on the o�beat.

DBFM is the downbeat F-measure, computed the same way as the beat F-measure,
but using downbeats instead of beats.

4.5 Results and discussion

In Tables 4.1 and 4.2 we show results for the following systems: For the Ballroom
dataset, PS8_dancestyles, the model proposed by Krebs et al. (2013), where dance
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System FM CMLt AMLt DBFM
Krebs et al. (2013) 85.7 75.1 88.3 69.7
Krebs et al. (2013) (re�ned) 87.5 78.5 89.1 69.9
PS8_kmeans_b 85.3 74.0 87.4 63.3
PS8_kmeans_b (re�ned) 87.3 78.2 88.4 70.7
Peeters and Papadopoulos (2011) 76.3 56.7 84.1 42.1
Böck and Schedl (2011) (retrained) 89.4 80.7 84.4 -

Table 4.1: Beat and downbeat tracking accuracy on the Ballroom dataset. Bold printed
results are statistically equivalent to the best performing one.

style labels are used to learn the rhythmic patterns4; PS8_kmeans_b, which uses our
proposed pattern learning method withK=8 patterns trained on the Ballroom dataset;
For the Hainsworth dataset, PS2_metre, which uses K=2 patterns, where each cor-
responds to a time signature present in the dataset (3/4 and 4/4); PS5_kmeans and
PS10_kmeans, with 5 and 10 patterns respectively, all trained only on the Hainsworth
dataset. Systems that use the proposed re�nement stage (Section 4.3.2) are marked by
the word re�ned in brackets. Additionally, we show results for the systems proposed
by Peeters and Papadopoulos (2011) and Böck and Schedl (2011) as reference. We ob-
tained beat detections for the reference systems directly from the respective authors.
According to Böck and Schedl (2011), their system has been retrained since its �rst
publication and uses now both Ballroom and Hainsworth dataset (among others) for
training.

Ballromdataset As can be seen from Table 4.1, the proposed PS8_kmeans_b method
performs equally well as the PS8_dancestyles model in all metrics except DBFM. This
is an interesting �nding and suggests that with the proposed training method we no
longer require dance-style labels for training the model. In addition, the re�nement
based on Viterbi training led to an improvement of the accuracies in all cases, even
the ones that used dance-style labels for initialisation. However, the improvement
was only found to be statistically signi�cant for the CMLt and DBFM metric. A vi-
sual inspection of the learned rhythmic patterns reveals that the unsupervised train-
ing process yields patterns that are similar to those using the dance-style labels for
initialisation (compare left and right columns of Fig. 4.1, for example).

In comparison to the reference systems, the proposed system performs comparable
to the system of Böck and Schedl (2011) in the metrics FM and CMLt, while outper-
forming both Böck’s and Peeter’s system in the AMLt metric. It also achieves higher

4Results vary from those published earlier because of a di�erent training strategy (10-fold cross-
validation vs. leave-one-out).
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DBFM scores than Peeter’s system. However, the comparison with Peeters and Pa-
padopoulos (2011) is somewhat unfair as their system did not have access to ballroom
music for training.

System FM CMLt AMLt DBFM
PS2_metre 73.2 55.6 79.4 40.7
PS2_metre (re�ned) 73.5 57.3 80.1 40.6
PS5_kmeans 75.4 61.3 82.6 44.6
PS5_kmeans (re�ned) 75.1 62.2 82.6 45.5
PS10_kmeans 76.4 64.3 83.9 43.5
PS10_kmeans (re�ned) 76.0 61.9 82.8 43.5
Peeters and Papadopoulos (2011) 72.0 60.6 84.3 43.8
Böck and Schedl (2011) 85.4 75.5 83.2 -

Table 4.2: Beat and downbeat tracking accuracy on the Hainsworth dataset. Bold
printed results are statistically equivalent to the best performing one.

Hainsworth dataset Table 4.2 shows the results on the Hainsworth dataset. Com-
paring the models with 2, 5, and 10 rhythmic patterns, we can see that the more pat-
terns we use, the higher the accuracy gets, at least for the beat tracking metrics. Ap-
parently, the k-means clustering is able to �nd musically relevant rhythmic patterns
also in this dataset. Interestingly, the proposed re�nement stage does not increase the
average performance of our model on the Hainsworth dataset.

Compared to the other reference systems, we �nd that Böck’s system outperforms
all other systems in the metrics FM and CMLt, although the di�erence to the PS10_k-
means system is only statistically signi�cant for the CMLt metric. One reason for the
superior performance of Böck’s system might be that it was trained on a larger dataset
than the PS8_kmeans model, which was trained only on the Hainsworth dataset. Fu-
ture work should therefore concentrate on learning rhythmic patterns on a larger
dataset. Peeter’s system scores best in the AMLt metric, but the di�erence to the other
systems is not statistically signi�cant. Also for the DBFM metric we do not �nd any
signi�cant di�erences among the systems.

4.6 Conclusion
In this paper, we have proposed a method of learning the parameters of the rhythm
analysis model described by Krebs et al. (2013). The new method learns suitable pat-
terns in an unsupervised way, given only downbeat and beat locations. We have shown
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that the proposed unsupervised method achieves results comparable to those of the
supervised model on the Ballroom dataset. On the Hainsworth dataset, the proposed
method performs comparable to the reference systems, but is outperformed by Böck
and Schedl (2011) in the CMLt metric.

While the clustering stage of our methods performs as expected, it is still un-
clear under which conditions the proposed re�nement increases the performance of a
model. While we found a signi�cant improvement in the CMLt and the DBFM metrics
when using Viterbi re�nement on the Ballroom dataset, results are less clear-cut on
the Hainsworth dataset.

In future work we will therefore concentrate on learning rhythmic patterns from a
larger dataset and will investigate how the optimal number of rhythmic patterns can
be found for a given dataset.
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Abstract In this work, we propose a new state-of-the-art particle �lter (PF) system to
infer the metrical structure of musical audio signals. The new inference method is de-
signed to overcome the problem of PFs in multi-modal probability distributions, which
arise due to tempo and phase ambiguities in musical rhythm representations. We com-
pare the new method with a hidden Markov model (HMM) system and several other
PF schemes in terms of performance, speed and scalability on several audio datasets.
We demonstrate that using the proposed system the computational complexity can be
reduced drastically in comparison to the HMM while maintaining the same order of
beat tracking accuracy. Therefore, for the �rst time, the proposed system allows fast
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meter inference in a high-dimensional state space, spanned by the three components
of tempo, type of rhythm, and position in a metric cycle.

5.1 Introduction

Automatic inference of metrical structure from musical audio has been an active re-
search topic over the last few decades. Especially, estimating the perceptually most
salient pulsation in musical meter, i.e., the beat, is one of the aspects that has attracted
a signi�cant amount of research work (see Müller et al. (2011) for an overview). While
also interesting in its own right, the automatic determination of the metrical grid from
an audio recording is a fundamental ingredient for other, high-level Music Informa-
tion Retrieval (MIR) tasks, such as music genre recognition (Dixon et al., 2004), chord
estimation (Mauch and Dixon, 2010), and music transcription (Cemgil et al., 2006).

Over the last decade, probabilistic state-space models have become a popular frame-
work to tackle the metrical inference problem (e.g., Klapuri et al. (2006); Peeters and
Papadopoulos (2011); Degara et al. (2011)). In these models it is attempted to infer a set
of hidden states (such as beat times, tempo, meter) from a set of observed states (such
as estimated note onset times and/or other audio features). Bayesian methods allow to
easily represent the ambiguity that is inherent to musical meter and o�er a consistent
framework to combine multiple sources of information (e.g., preferred tempi, knowl-
edge about note onset locations). Nevertheless, exact inference in these models is only
feasible in a few simple cases, e.g., in discrete state spaces using hidden Markov models
(HMMs) (Rabiner, 1989) or for linear Gaussian conditional distributions (Roweis and
Ghahramani, 1999).

To overcome these limitations, approximative methods such as particle �lters (PF)
(Doucet and Johansen, 2009) have been proposed. Particle �lters are a highly e�cient
method that can be applied to arbitrary, high-dimensional, non-linear, non-Gaussian
state-spaces. Consequently, the use of particle methods makes it possible to use more
complex models, which has also been exploited for the beat tracking task: Cemgil and
Kappen (2003); Hainsworth and Macleod (2004); Lang and de Freitas (2004) model the
beat times and tempo jointly, taking into account their mutual dependency. Further-
more, Whiteley et al. (2007) introduced a rhythmic pattern state, which allows mod-
elling various meters and rhythmic styles explicitly. In any case, the great �exibility
of the PFs comes at a prize: Simple PF schemes are known to perform poorly with
multi-modal probability distributions, which arise from ambiguity in the hidden state-
sequence that generated the data (Vermaak et al., 2003). Therefore, much work has
been devoted to resolving this problem, and several extensions to the simple PF have
been proposed (Pitt and Shephard, 1999; Vermaak et al., 2003; Doucet and Johansen,
2009). However, although multi-modal distributions appear frequently in analysis of
musical rhythm due to inherent tempo and phase ambiguities, dealing with this multi-
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modality with PFs in a robust way has never been addressed in the meter tracking
literature.

In this work, we aim at setting a new state of the art in PF based meter inference
systems. We propose a new particle �lter based inference method to overcome the
problem of tracking a multi-modal distribution by combining the auxiliary (APF) (Pitt
and Shephard, 1999) and the mixture particle �lter (MPF) (Vermaak et al., 2003), and
compare the resulting auxiliary MPF (AMPF) with the HMM system proposed by Krebs
et al. (2013) and several other PF schemes in terms of performance, speed and scalabil-
ity on several audio datasets. We demonstrate that using the AMPF the computational
complexity can be reduced drastically compared to the HMM while maintaining the
same order of beat tracking accuracy. Apart from beat tracking, our system is capa-
ble of determining downbeat times, time signature and type of rhythm of an audio
piece using one integrated approach. Thus, for the �rst time, the proposed AMPF per-
mits fast inference in the high-dimensional state-space spanned by variables describing
tempo, position within a metric cycle, and type of the metric cycle.

The structure of the underlying model presented in this paper can be easily adapted
to the music style under investigation, and parameters of the model can be learned o�-
line from rhythmic patterns encountered in a representative music corpus. This will be
described in more detail in Section 5.3.4. In most existing approaches, parameters and
structure of the beat tracking systems are tailored by experts, with the goal to cope well
with the demands of speci�c annotated evaluation datasets. This is problematic under
at least two aspects. First, the manual adaption to a speci�c style is time-consuming
and hence is not a viable solution for covering a wider variety of styles. Second, such
systems are not suited for later adaption by users, and therefore incorporate the risk to
include a bias (Bozdag, 2013) that systematically discriminates musical styles not con-
sidered during development. Therefore, our approach represents an important step
towards �exible representations of musical concepts that can be adapted by incorpo-
rating available knowledge of musical style in a straight-forward way, as demanded
by Serra et al. (2013).

In the following sections, we will introduce basic notions of the metrical struc-
ture of music, and explain the structure of our dynamic Bayesian network by de�ning
the hidden variables, the transition model and the observation model. In Section 5.4
we describe di�erent ways to perform inference in this model. First, the HMM (Sec-
tion 5.4.1) represents an accurate inference approach with high computational cost. To
reduce this cost, we describe several inference schemes based on PFs in Section 5.4.2.
Section 5.5 describes datasets and evaluation metrics and the default settings for all
system parameters. Experimental results are presented in Section 5.6, with a focus on
the comparison of the HMM inference with the PF schemes. Section 5.7 provides the
reader with a detailed summary and discussion of the experimental results. The �nal
Section 5.8 concludes the paper and outlines future directions of research motivated
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by our results.

5.2 Metrical structure of music
Meter as de�ned by Kolinski (1973) is organized pulsation functioning as a framework
for rhythmic design. Especially in the context of Eurogenetic music, this pulsation
is considered to be strati�ed into a hierarchy, with the period of pulsation increasing
towards higher layers. The pulsation of the beat is situated in a layer in the middle of
this hierarchy, and represents the rate that listeners choose to synchronize their body
movements to the music. Beats are grouped into segments with a constant number of
beats (bars), de�ned by the time signature. The �rst beat of each bar is denoted the
downbeat (see Fig. 5.1 for an illustration). Listeners di�er in their perception of meter,
caused by individual or cultural factors (Stobart and Cross, 2000). For instance, the
perceived beat can be related to di�erent metrical layers, which results in perceived
tempi that are typically related by a factor of two. This variability must be considered
both in the implementation of inference systems and in their evaluation.

Beats
Downbeats

1 bar

Figure 5.1: Illustration of beats and downbeats in a musical score

Computational inference of meter can either be approached in an on-line or o�-
line fashion. On-line tracking requires inference at the same moment of observing
the musical sound, without the possibility of looking into the future. On the other
hand, o�-line processing assumes that a recording of the whole piece is given, and
for the meter inference at a speci�c moment in the recording the future can be taken
into account. In this paper, we evaluate our system in o�-line mode but the proposed
methodology can be applied to on-line scenarios as well.

5.3 Model structure
In this section, we formulate the metrical structure analysis problem using a Bayesian
model. We assume that a time series of observed data y1:K = {y1, ..., yK} (the audio
signal as a sequence of audio features) is generated by a set of unknown, hidden vari-
ables x1:K = {x1, ...,xK} (the parameters describing tempo and meter throughout the
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progression of a piece), whereK is the length of an audio excerpt in analysis frames. In
a dynamic Bayesian network (DBN) (Murphy, 2002), the joint probability distribution
of hidden and observed variables P (y1:K ,x1:K) then factorizes as

P (y1:K ,x1:K) = P (x1)
K∏
k=2

P (xk|xk−1)P (yk|xk), (5.1)

where P (x1) is the initial state distribution, P (xk|xk−1) is the transition model, and
P (yk|xk) is the observation model. We will describe these three terms in more detail
in Sections 5.3.2 to 5.3.4, after presenting the internal structure of the hidden variables
in x in subsection 5.3.1.

5.3.1 Hidden variables
The model described in this paper closely follows the bar pointer model proposed by
Whiteley et al. (2006). In this model, the observation at each time step k is a short audio
frame, and the hidden variables describe the state of a hypothetical bar pointer xk =
[φk φ̇k rk] corresponding to the k-th audio frame; the variable φk is the current location
in a bar, φ̇k is the instantaneous tempo (denoting the rate at which the bar pointer
traverses a bar), and rk is a rhythmic pattern indicator that can be used to di�erentiate
between time signatures or between rhythmic styles of identical time signature. Below,
we make these de�nitions more precise:

Bar position

We de�ne the bar position φ ∈ [0, θmax), where θmax is the length of a bar related to
the longest considered metric cycle in the data. For example, if the time signatures of
the considered meters are 9/8, 4/4, and 3/4, we set θmax = 9/8.

Tempo

We de�ne tempo φ̇k ∈ [φ̇min(rk), φ̇max(rk)] in terms of beats per minute (bpm); The
tempo limits are assumed to depend on the rhythmic pattern state rk and are learned
from data (e.g., for the rhythmic pattern variable rk assigned to a Tango pattern we
may �nd φ̇k ∈ [118bpm, 136bpm]).

Rhythmic pattern

The rhythmic pattern variable rk ∈ [1...R] is an indicator, which selects one of the
R underlying observation models. Each observation model is associated with a time
signature θ(r) (e.g., θ(r) = 3/4) and a speci�c rhythmic structure that is learned from
data. Note that there can be several rhythmic patterns sharing the same time signature.
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φkφk−1

φ̇k−1 φ̇k

rkrk−1

ykyk−1

Figure 5.2: Dynamic Bayesian network; circles denote continuous variables and rect-
angles discrete variables. The gray nodes are observed, and the white nodes represent
the hidden variables.

An example of two such learned patterns is given in Fig. 5.4, along with a detailed
description of the observation models in Section 5.3.4.

The conditional independence relations between these variables are shown in Fig.
5.2. The hidden state sequence, inferred from an audio piece, can �nally be translated
into a sequence of time signature(s) θ(rk), downbeat times (time frames that correspond
toφk = 0), and beat times (time frames that correspond toφk = i·(denom(θ(rk)))

−1, i =
1, 2, ..., num(θ(rk)), where denom and num are the denominator and numerator, re-
spectively).

5.3.2 Initial state distribution
Using the initial state distribution P (x1), a priori knowledge regarding rhythmic as-
pects can be introduced into the system. The case that certain rhythmic patterns are
encountered more frequently can be modeled, or certain tempo values can be preferred
using a weighting function (Klapuri et al., 2006). For the experiments in this paper, we
have simply assumed uniformly distributed bar position, tempo, and rhythmic patterns
states within the learned tempo ranges [φ̇min(rk), φ̇max(rk)].

5.3.3 Transition model
Due to the conditional independence relations shown in Fig. 5.2, the transition model
factorizes as

P (xk|xk−1) = P (φk|φk−1, φ̇k−1, rk−1)×
× P (φ̇k|φ̇k−1, rk−1)× P (rk|rk−1) (5.2)
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where the three factors are de�ned by Equations 5.3-5.5:
P (φk | φk−1, φ̇k−1, rk−1) = 1x, (5.3)

where 1x is an indicator function that equals one if φk = (φk−1 + φ̇k−1 · ∆ · (60 ·
denom(θ(rk−1)))−1) mod θ(rk−1), and zero otherwise, with ∆ = 0.02s the audio frame
length used in this paper. This means that the bar position at frame k is obtained by
increasing the bar position of the previous frame by a term that depends on the tempo
of the previous frame. The tempo transition from one frame to the next is assumed to
follow a normal distribution and is given by

P (φ̇k|φ̇k−1, rk−1) ∝ N (φ̇k−1, σ
2
φ̇
)× 1y, (5.4)

where σφ̇ is the standard deviation of the tempo transition model and 1y is an indicator
function that equals one if φ̇min(rk−1) ≤ φ̇k ≤ φ̇max(rk−1), and zero otherwise.

P (rk|rk−1) = 1z, (5.5)
where 1z is an indicator function that equals one if rk+1 = rk, and zero otherwise. This
means that we assume a musical piece to have a characteristic rhythmic pattern that
remains constant throughout the song. This rather strict assumption can be relaxed by
de�ning a rhythmic pattern transition probability that is non-zero at bar boundaries
(Whiteley et al., 2006).

5.3.4 Observation model
As proposed by Krebs et al. (2013), we use an onset feature as observed variable yk,
which we assume to be independent of the current tempo φ̇k. Therefore, the obser-
vation model P (yk|xk) reduces to P (yk|φk, rk), which means that the probability of
observing a certain feature value at a given time-point depends only on the rhythmic
style and the position in a bar. In order to obtain the parameters of P (yk|φk, rk), a
collection of beat- and downbeat annotated audio samples is needed (see Section 5.5.3
for details on the training set we use in this paper).

Observation features

As observation feature, we use a variant of the LogFiltSpecFlux onset feature, which
performed well in recent comparisons of onset detection functions (Böck et al., 2012b)
and is summarized in Fig. 5.3. Assuming that the bass instruments play an important
role in de�ning rhythmic patterns, we compute the sum over frequency bands sepa-
rately in low frequencies (below 250 Hz) and high frequencies (above 250 Hz). Finally,
we subtract the moving average computed over a window of one second and normalize
the features of each excerpt to zero mean and unit variance, again separately for the
low and high frequencies. The resulting onset feature yk has therefore two dimensions.
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z[n] STFT �lterbank
(81 bands) log di�

sum over fre-
quency bands

subtract
mvavg normalize yk

Figure 5.3: Computing the onset feature yk from the audio signal z[n]

Likelihood function

The parameters of the observation model are obtained in an o�-line (supervised) rhy-
thm pattern learning process. In order to get a modest (and computationally feasible)
number of probability distributions to represent P (yk|φk, rk), we discretize the bar
position Φ into 64th note cells. In order to learn the parameters of the likelihood func-
tion, a set of training pieces must be available that is annotated at the beat and bar
layers of the metrical hierarchy. Using these annotations, we can assign each feature
vector yk to the corresponding rhythmic pattern and bar position within the 64th note
grid. Then, for each bar position within this 64th grid and each rhythmic pattern, we
compute the maximum likelihood estimates of the parameters in a Gaussian mixture
model (GMM). As suggested by Krebs et al. (2013), we use I = 2 mixture components
in this work. Hence, the observation probability is modelled by

P (y|φ, r) =
I∑
i=1

wφ,r,i · N (y;µφ,r,i,Σφ,r,i), (5.6)

where µφ,r,i is the (2-dimensional) mean vector, Σφ,r,i is the (2× 2) covariance matrix,
and wφ,r,i is the mixture weight of component i of the GMM. Since, in learning the
likelihood function P (y|φ, r), a GMM is �tted to the audio features for every rhythmic
pattern r and each 64th note bar position cell, the resulting GMMs can be interpreted
directly as representations of the rhythmic patterns in the domain of the observation
variables. Fig. 5.4 shows the mean values of the features per frequency band and bar
position for the GMMs corresponding to the rhythmic patterns of a Waltz (3/4) and
a Tango dance (4/4), respectively. For illustration purposes we only display the mean
value of the features instead of the mean values per mixture component.

5.4 Inference methods
Our goal is to �nd the hidden state sequence that maximizes the (posterior) probability
of the hidden states given the observations P (x1:K |y1:K). If we discretize the contin-
uous tempo and bar pointer variables (see Section 5.3.1), we can in principle perform
an exact inference using an HMM (Section 5.4.1).
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Figure 5.4: Illustration of two learned rhythmic patterns. Two frequency bands are
shown (Low/High from bottom to top).

However, in order to avoid the high computational complexity of the HMM in-
ference illustrated in Section 5.4.1, we describe approaches for inference using PFs in
Section 5.4.2. We begin with PF approaches widely discussed in literature, and then
present novel approaches capable of tracking the metrical structure in the highly multi-
modal posterior distributions typical for musical rhythm.

5.4.1 Hidden Markov Model (HMM)

Inference in the model discussed in Section 5.3 can be performed using an HMM by
dividing the state space into discrete cells and using Viterbi decoding (Rabiner, 1989)
to obtain the maximum a posteriori (MAP) sequence of states. In Fig. 5.5 we show a
realization of a bar position/tempo trajectory and a possible discretization.

In this work, we use the discretization proposed by Whiteley et al. (2006), which
we further explain in this section. By replacing the continuous variables φ and φ̇ by
their discretized counterparts m ∈ {1, ...,M} and n ∈ {1, ..., N} respectively, Equa-
tions 5.2, 5.3 and 5.5 remain valid. We only de�ne a new tempo transition probability
as:
If nmin(rk) ≤ nk ≤ nmax(rk),

P (nk|nk−1) =


1− pn, nk = nk−1;
pn
2
, nk = nk−1 + 1;

pn
2
, nk = nk−1 − 1,

(5.7)

otherwise P (nk|nk−1) = 0.
Here, pn is the probability of a tempo change and nmin(rk) and nmax(rk) are the

discrete tempo limits that correspond to φ̇min and φ̇max.
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Figure 5.5: Illustration of discretization of the tempo and bar pointer variables. The
continuous line depicts a tempo trajectory that might be encountered in the expressive
timing throughout a musical phrase, and the the dashed line demarks the trajectory
through the discretized states.

The HMM is most accurate when the discretization grid is dense, but this can be-
come computationally prohibitive. For instance, discretizing the bar position φ of a
4/4 bar into M = 1200 points (300 per quarter note) and the tempo φ̇ into 23 points,
results in a state-space of S = M ·N = 27 968. Adding more rhythmic pattern states
increases the dimensionality to M ·N ·R, which quickly surpasses the computational
and memory limits of a current personal computer. This problem can be overcome by
applying approximate inference schemes instead of the exact HMM inference, and we
will present such schemes in the following parts of this section.

5.4.2 Particle �lter (PF)
Even though the exact computation of the posterior P (x1:K |y1:K) in the continuous
parameter space is intractable, it can nevertheless be evaluated point-wise. This fact is
exploited in the PF where the posterior is approximated by a weighted sum of points
(i.e., particles) in the state space as

P (x1:K |y1:K) ≈
Ns∑
i=1

w
(i)
K δ(x1:K − x

(i)
1:K). (5.8)

Here, {x(i)
1:K , i = 1, ..., Ns} is a set of points with associated weights {w(i)

K , i = 1, ..., Ns}
and x1:K is the set of all states until time frame K , while δ(x) denotes the Dirac Delta
function

δ(x) =

{
1 if x = 0

0 if x 6= 0.
(5.9)
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In order to approximate P (x1:K |y1:K) we need a strategy to draw samples x
(i)
k and

compute appropriate weightsw(i)
k recursively for each time k. A simple algorithm to do

that for sequential data is sequential importance sampling (SIS) (Doucet and Johansen,
2009). In SIS, we sample from a proposal distribution Q(x1:K |y1:K) which should be
as similar as possible to the true (target) distribution P (x1:K |y1:K). To correct for the
fact that we sampled from the proposal instead of the target distribution, we assign an
importance weight w(i)

K to each particle, which is computed by

w
(i)
K =

P (x1:K |y1:K)

Q(x1:K |y1:K)
. (5.10)

If a suitable proposal density is chosen, these weights can be computed recursively by

w
(i)
k ∝ w

(i)
k−1

P (yk|x(i)
k )P (x

(i)
k |x

(i)
k−1)

Q(x
(i)
k |x

(i)
k−1,yk)

. (5.11)

In this work, we chose to sample from the transition probability Q(x
(i)
k |x

(i)
k−1,yk) =

P (x
(i)
k |x

(i)
k−1), which reduces Eq. 5.11 to

w
(i)
k ∝ w

(i)
k−1P (yk|x(i)

k ). (5.12)

Then, the SIS algorithm derives samples and weights for time k by �rst drawing from
the proposal, in our case P (x

(i)
k |x

(i)
k−1), and then assigning weights according to (5.12).

Once the particle trajectories {x1:K} have been determined, we select the particle
trajectory x

(i)
1:K with the highest weight w(i)

K as the MAP state sequence. We have not
attempted to improve the obtained state sequence by particle Viterbi decoding (Godsill
et al., 2001) or particle smoothing (Doucet and Johansen, 2009) and leave this for future
work.

Several extensions to the SIS �lter have been proposed over the years (Doucet and
Johansen, 2009). In the following, we will describe those approaches that we will eval-
uate for their applicability to metrical inference.

The sequential importance sampling/resampling (SISR) �lter

The most challenging problem in particle �ltering is to cope with the so called degener-
acy problem (Doucet and Johansen, 2009): After some time, most of the particles have
a weight close to zero, and thus represent very unlikely regions of the state space.
This is in contrast to the ideal case with a perfect match between the proposal and
target distribution, where the weights are uniformly distributed and thus have a low
variance. In order to reduce the variance of the particles, it has been recommended
to use resampling or rejuvenation steps, in order to replace particles with low weights



68 Inferring Metrical Structure in Music Using Particle Filters

by particles with a higher weight. This is usually done by selecting particles with a
probability that is proportional to their weights. Several schemes have been proposed
in the literature, for a comparison see Douc et al. (2005). The most common resampling
method is systematic resampling (Kitagawa, 1996) and has also been used in this paper.
As recommended by Doucet and Johansen (2009), we do not resample at each iteration
(bootstrap �lter), but only perform resampling when the e�ective sample size

NESS = (
Ns∑
i=1

(w
(i)
k )2)−1 (5.13)

is below a threshold of ρ · Ns. The value of ρ will be determined together with other
system parameters in Section 5.5.3.

Algorithm 1 Outline of the sequential importance sampling/resampling (SISR) �lter,
ξ

(i)
k denotes (φ

(i)
k , r

(i)
k )

for i = 1 to Ns do
Sample (φ

(i)
0 , φ̇

(i)
0 , r

(i)
0 ) ∼ P (φ0)P (φ̇0)P (r0)

Set w(i)
0 = 1/Ns

end for
for k = 1 to K do

for i = 1 to Ns do . Proposal and weight computation
Sample ξ(i)

k ∼ P (ξ
(i)
k |ξ

(i)
k−1)

w̃
(i)
k = w

(i)
k−1 × P (yk|ξ(i)

k )
end for
for i = 1 to Ns do . Normalize weights

w
(i)
k =

w̃
(i)
k∑Ns

i=1 w̃
(i)
k

end for
Compute the e�ective sample size NESS (5.13)
if NESS ≤ ρ ·Ns then

for i = 1 to Ns do
Resample {ξ(i)

k , w
(i)
k } to obtain {ξ′(i)k , 1/Ns}

end for
for i = 1 to Ns do

ξ
(i)
k = ξ

′(i)
k

end for
end if
Sample φ̇(i)

k ∼ P (φ̇k|φ̇(i)
k−1, r

(i)
k )

end for

The essential di�erence between SIS and SISR is therefore the resampling. The
SISR algorithm is outlined in Algorithm 1. Note that we sample the tempo state φ̇ at
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the end of each iteration (after the resampling step). This is motivated by the general
principle that any operation that does not in�uence the weights should take place
after the resampling step in order to increase the diversity of the particles (Doucet and
Johansen, 2009).

The Auxiliary Particle Filter (APF)

Although the introduction of resampling steps reduces the variance of the importance
weights, the degeneracy problem is not yet solved. Resampling tends to lead to an
extreme concentration of the particles at one particular mode of the posterior distri-
bution, whereas the remaining distribution remains uncovered. This is particularly
critical if the probability distribution has multiple modes as it is the case in our appli-
cation.

One way to alleviate this problem is to compress the weights wk = {w(j)
k , j =

1, ..., Ns} by a monotonically increasing function g1 before resampling. This increases
the weights of particles at low probability regions and therefore makes it more prob-
able that these particles survive the resampling. After resampling, the weights have
to be uncompressed again in order to yield a valid probability distribution. This can
be formulated in the terminology of the auxiliary particle �lter (APF) (Johansen and
Doucet, 2008), which can be summarized as follows:

• Compute the compressed weights by applying g(· ), which causes a decrease of
variance in the weights.

• Resample particles according to the compressed weights.

• Set each weight to the quotient of the uncompressed and the compressed weight.

The resampling procedure of the APF is sketched in Algorithm 2.
As an example, imagine a distribution of two particles {p1, p2}with corresponding

weights w = {0.01, 0.99}. If we drew two samples from this distribution, it would
be probable that p1 vanishes from the particle set at the resampling step. However, if
we modify the weights by the function f(x) = x

1
4 yielding ŵ ≈ {0.32, 1.00}, draw-

ing p1 becomes much more probable. Let us assume, we draw four samples from this
(unnormalized) distribution ŵ and obtain the set {p2, p1, p2, p2}). In order to still rep-
resent the same distribution as before the sampling, we have to set the weight of each
resampled particle to x/f(x), which yields w ≈ {0.99, 0.03, 0.99, 0.99}.

Mixture particle �lter (MPF)

As mentioned before, one major problem with applying particle �ltering to the musical
meter tracking problem is that the posterior distribution P (xk|y1:k) is highly multi-

1In this work, we restrict g(w) to functions of the form wβ where 0 ≤ β < 1.
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Algorithm 2 Outline of the resampling procedure of the auxiliary particle �lter (APF),
ξ

(i)
k denotes (φ

(i)
k , r

(i)
k )

Compute the e�ective sample size NESS (5.13)
if NESS ≤ ρ ·Ns then

for i = 1 to Ns do
ŵ

(i)
k = w

(i)
k g(ξ

(i)
k )

end for
for i = 1 to Ns do

Resample {ξ(i)
k , ŵ

(i)
k } to obtain {ξ′(i)k , w

(i)
k /ŵ

(i)
k }

end for
for i = 1 to Ns do

ξ
(i)
k = ξ

′(i)
k

end for
end if

modal. A system that is able to cope with metrical ambiguities should maintain this
multi-modality and track several hypotheses over a longer time.

Vermaak et al. (2003) proposed a system that tracks multiple football players in a
video sequence using a mixture PF. Each particle is assigned to a cluster based on its
location within the state space. Whenever it comes to resampling, particles interact
only with particles of the same cluster (resampling of one cluster is performed inde-
pendently of all other clusters). In this way, all modes that are covered by a cluster can
be tracked successfully. In the following we describe an adaption of this method to the
problem of �nding the metrical structure in music.

At the beginning, we cluster the particles into C0 clusters2 by a run of the k-means
clustering algorithm using a distance measure which takes into account the cyclic na-
ture of the bar position φ. This means that a point at the beginning of a bar (φ ≈ 0)
should be close to a point at the bar ending (φ ≈ θ). Therefore, we represent the bar
position as a complex phasor on the unit circle and compute the corresponding angle
by

αk(φk, rk) =
2πφk
θ(rk)

. (5.14)

This angle can further be expressed by the periodic functions cos(α) and sin(α) using
Euler’s formula

ejα = cos(α) + j sin(α). (5.15)

Using this transformation we de�ne the distance measure for the k-means clustering

2In this paper, we start with 16 clusters per rhythmic pattern (C0 = 16 ·R).
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algorithm as

d(i, j) =λφ · [(cos(α(i))− cos(α(j)))2 + (sin(α(i))− sin(α(j)))2]+

λφ̇ · (φ̇
(i) − φ̇(j))2 + λr · (r(i) − r(j))2,

where [α(i), φ̇(i), r(i)] are the coordinates of the ith particle, and λφ, λφ̇, λr are coe�-
cients that control the relative distance between the hidden variables. The assignment
of particles to clusters is preserved until the next resampling step. Then, before re-
sampling, the particles are reclustered in another run of k-means, using the old cluster
assignments as initialization. Additionally, clusters are split, if the average distance
from particle to cluster centroid is above a threshold τs and/or merged if the distance
between two centroids is below a threshold τm. If the number of clusters exceeds a
constant τc3, the clusters with the lowest total weight are removed, assigning the af-
fected particles to other clusters. These three operations are important to control the
number of clusters, which should ideally represent the number of modes of the poste-
rior distribution. In order to have a balanced number of particles per cluster, we draw
the same number of particles for each cluster in the resampling step.

In contrast to the SISR and APF approaches, it does not make sense to determine
the timing of the resampling based on the e�ective sample size NESS . If we computed
theNESS on the whole particle set, mixture components with low total weights would
constantly lead to a lowNESS and therefore to more frequent resampling steps. There-
fore, we chose to perform the resampling step with a �xed interval d.

Auxiliary Mixture particle �lter (AMPF)

The AMPF combines the compression/decompression of the importance weights of the
APF with the mixture tracking of the MPF.

5.5 Experimental Setup

5.5.1 Datasets

The performance evaluation of the PF algorithms and the HMM reference system re-
quires annotated music recordings. We use three datasets for evaluation, which are
frequently used in the MIR research community, and one for training:

The SMC dataset was presented by Holzapfel et al. (2012) and consists of 217 pieces
that were considered to be di�cult for automatic tempo tracking. Musical styles cover,
e.g., French Chanson, classical orchestra music, and contemporary guitar music. For
the SMC dataset, only beat annotations are available.

3Here, we used a maximum number of 50 clusters per rhythmic pattern (τc = 50 ·R).
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The largest dataset consists of 1360 songs and was compiled by Gouyon (2005)
combining collections from various sources. We will refer to this dataset as the 1360-
song dataset throughout the text. It contains a wide range of musical styles of mainly
Eurogenetic music, covering choral works of classical music as well as rock or jazz.
The dataset is only annotated at the beat-level.

The third dataset used for evaluation is the Ballroom dataset, introduced by Gouyon
et al. (2004) and annotated with beats and downbeats by Krebs et al. (2013). It contains
698 excerpts of ballroom dance music, along with dance style, beat, and downbeat
annotations, which enables us to evaluate at both metrical levels. We removed 13
replicated excerpts (Sturm, 2014) to yield 685 unique ones. For some experiments, the
dataset was split randomly into a test set (denoted Ballroom_test) of 204 songs and a
training set (Ballroom_train) which consists of the remaining 481 songs, both having
roughly the same genre distribution. The audio quality of this dataset is quite low
(RealAudio format with high compression).

The fourth dataset which was used for training only is a collection of 97 �les from
the MIREX 2006 beat tracking contest, from Bello et al. (2005), and from Böck et al.
(2012b). We denote this dataset as the MBB dataset. It covers the genres pop, rock and
electronic music and is beat and downbeat annotated.

Due to the lack of downbeat annotations for the SMC and 1360-song datasets, down-
beat detection is only evaluated on the Ballroom dataset.

Train set Test set
Ballroom+MBB SMC
Ballroom+MBB 1360-song
Ballroom_train Ballroom_test

Table 5.1: Train and corresponding test datasets.

5.5.2 Evaluation measures
We evaluate the HMM and PF inference schemes with respect to both tracking accuracy
and runtime.

A variety of measures for beat and downbeat tracking performance is available
(Davies et al., 2009). We chose four metrics that are characterized by a set of diverse
properties and that are widely used in beat/downbeat tracking evaluation4. Further-
more, their choice enables for a direct comparison of the results on the SMC and the
1360-song dataset with 16 reference systems (Holzapfel et al., 2012).

4We used the MATLAB evaluation code available at http://code.soundsoftware.ac.uk/projects/

beat-evaluation/ with standard settings to ensure reproducibility.

http://code.soundsoftware.ac.uk/projects/beat-evaluation/
http://code.soundsoftware.ac.uk/projects/beat-evaluation/
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As our focus in this paper lies on a proof-of-concept for PF-based methods, we
present the mean values across all �les of a dataset, without analyzing correlations
between accuracies and certain musical styles. We postpone such a more musical in-
terpretation and its implications to a future publication. As the result of a PF is a
random variable itself (due to the stochastic nature of a PF), we have carried out each
experiment in the next section ten times and give the mean and the standard deviation
across these ten trials for all PF approaches.

F-measure (FM)

The F-measure (FM) is computed from correctly detected beats within a window of
±70 ms by

F-measure =
2pr

p+ r
(5.16)

where p (precision) denotes the ratio between correctly detected beats and all detected
beats, and r (recall) denotes the ratio between correctly detected beats and the total
number of annotated beats. The range of this measure is from 0% to 100%.

Allowed Metrical Level with no continuity required (AMLt)

In this method an estimated beat is counted as correct, if it lies within a small tolerance
window around an annotated pulse, and the previous estimated beat lies within the
tolerance window around the previous annotated pulse. The value of this measure is
then the ratio between the number of correctly estimated beats divided by the number
of annotated beats (as percentage between 0% and 100%). Beat sequences are also
considered as correct if the beats occur on the o�-beat, or are tapped at double or half
the annotated tempo.

Information gain (InfG)

This measure is computed by calculating the timing errors between an annotation and
all beat estimations within a one-beat length window around the annotation. Then,
a beat error histogram is created from the resulting timing error sequence. A nu-
merical score is derived by measuring the K-L divergence between the observed error
histogram and the uniform distribution. This method gives a measure of how much
information the beats provide about the annotations. The range of values for the In-
formation Gain is 0 bits to approximately 5.3 (= log2(40)) bits, for 40 histogram bins.

Downbeat F-measure (DBFM)

For measuring the downbeat tracking performance, we use the same F-measure as for
beat tracking (using a ±70 ms tolerance window).
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Runtime

The speci�ed runtimes were measured using a MATLAB implementation of the sys-
tems on a PC with an Intel Core i5-2400 CPU with 3.1GHz. They include the computa-
tion of beats, downbeats and meter from the test dataset and exclude feature extraction
and training which is the same for all models (e.g., for the Ballroom dataset feature ex-
traction takes approximately 10 minutes and training the GMMs takes 30 seconds).

5.5.3 Determining system parameters

Both HMM and PF systems have a set of parameters that need to be determined. In
the following we explain them in detail:

Observation model

For each test set, we learned the parameters of the observation model (see Section 5.3.4)
from a non-overlapping training set, as shown in Table 5.1. This implies that for a given
test set all PF and HMM methods use the same observation model.

Number of discrete states of the HMM

As explained in Section 5.4.1, the performance of the HMM depends on the density of
the grid formed by the discretized variables. To visualize this dependency we illustrate
the beat tracking accuracy and runtime of the HMM system for various state space
sizes on the MBB training set in Fig. 5.6. In experiment 1, we will use two rhythmic
patterns (R = 2, one for each of the two time signatures in the data), and in exper-
iment 2, we will use eight rhythmic patterns (R = 8, one for each ballroom dance
style). Considering both beat tracking accuracy and runtime, we chose to report re-
sults for three con�gurations of the HMM (depicted as HMM1-HMM3 in Table 5.2).
Note that the largest model (HMM3) with R = 2 has a number of discrete states equal
to M × N × R = 209 152 and is therefore situated in the middle range of values
depicted in Fig. 5.6.

Number of particles of the PFs

In all PF variants we used NS = 2 000 particles in experiment 1, and NS = 8 000 in
experiment 2. As can be seen in Fig. 5.7, increasing the number of particles above this
value did not further improve the performance. Also note the di�erences in runtime
between AMPF and HMM by comparing Fig. 5.7 with Fig. 5.6, with a clear advantage
for the PF which will be further documented in the next section on the larger evaluation
datasets.



5.5. EXPERIMENTAL SETUP 75

0 1 2 3 4 5 6

x 10
5

64

65

66

67

68

69

70

Number of discrete states

F
−

M
e

a
s
u

re

0 1 2 3 4 5 6

x 10
5

0

20

40

60

80

100

120

140

Number of discrete states

R
u
n
ti
m

e
 [
m

in
]

Figure 5.6: F-measure and runtime vs. number of discrete states for the HMM on the
MBB set (total 41.9 minutes of audio).
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Figure 5.7: F-measure and runtime vs. number of particles for the AMPF on the MBB
dataset (total 41.9 minutes). The obtained standard deviation across ten runs is depicted
by the shaded gray area.

Apart from the design choices above, we obtained parameter values by performing
a simple grid search over the parameter space using the MBB dataset and selecting
the overall best performing parameters according to the three beat and one downbeat
tracking measures. The determined parameters are:

• Tempo transition probability pn of the HMM

• Resampling threshhold ρ of the SISR and APF approaches

• Parameters of the MPF/AMPF λφ, λφ̇, λr, τm, τs, d, β (see Section 5.4.2)

For the PFs, we repeated each experiment ten times and averaged the results. The
selected parameters are shown in Table 5.2.
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ρ d σφ̇ λφ λφ̇ λr τm τs β

SISR 0.02 - 1.2 - - - - - -
APF 0.1 - 1.2 - - - - - 1/5
MPF - 30 1.2 1 1.4 1000 1 1.2 -
AMPF - 30 1.2 1 1.4 1000 1 1.2 1/4

M N pn
HMM1 640 12 0.02
HMM2 1216 23 0.02
HMM3 2432 43 0.02

Table 5.2: Selected parameters for the experiments.

5.6 Experiments

5.6.1 Experiment 1: PF against HMM

Experiment 1 compares the four PF inference schemes (SISR, APF, MPF, AMPF) with
the HMM inference, in terms of their runtime complexity, beat (all datasets) and down-
beat (only Ballroom dataset) tracking accuracy. Tables 5.3 to 5.5 summarize the mean
accuracies (and standard deviations for PF schemes) using all evaluation metrics on
the three evaluation datasets.

FM AMLt InfG Runtime
µ σ µ σ µ σ [minutes]

SISR 36.8 0.48 31.3 0.40 0.87 0.013 12.5
APF 38.7 0.46 32.8 0.64 0.91 0.014 19.0
MPF 38.8 0.48 32.7 0.90 0.89 0.022 17.8
AMPF 40.8 0.18 35.8 0.45 0.95 0.013 18.1
HMM1 39.6 - 31.7 - 0.87 - 11.1
HMM2 40.5 - 35.1 - 0.94 - 42.1
HMM3 42.7 - 38.7 - 1.08 - 164.0

Table 5.3: Beat tracking results and (average) runtimes on the SMC dataset (total 144.7
minutes). For the PF systems (SISR, APF, MPF, AMPF) we show the mean (µ) and the
standard deviation (σ) over ten runs.

As a �rst conclusion, we can see that the four PF schemes improve in accuracy ac-
cording to their ability to �exibly follow multi-modal distributions, with the proposed
AMPF scheme showing superior performance compared to the other three schemes on
all datasets and using all metrics. All standard deviations of the PF schemes are moder-
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FM AMLt InfG Runtime
µ σ µ σ µ σ [minutes]

SISR 62.4 0.43 72.3 0.32 1.93 0.0075 74.9
APF 64.6 0.33 74.9 0.35 1.98 0.0068 100.6
MPF 64.9 0.20 75.1 0.27 1.98 0.0059 115.7
AMPF 66.1 0.27 76.6 0.33 2.00 0.0063 120.1
HMM1 62.9 - 69.8 - 1.73 - 69.0
HMM2 65.4 - 76.2 - 1.94 - 264.0
HMM3 67.4 - 79.9 - 2.09 - 1016.4

Table 5.4: Beat tracking results and (average) runtimes on the 1360-song dataset (total
861.6 minutes). For the PF systems (SISR, APF, MPF, AMPF) we show the mean (µ) and
the standard deviation (σ) over ten runs.

ate, which indicates that their performance can be expected to be reliable throughout
individual evaluations. Comparing the best particle �ltering inference scheme, AMPF,
with the three HMM parametrizations, it is apparent that the largest HMM3 slightly
outperforms the AMPF on all three datasets. However, this comes at a high price in
terms of runtimes, as can be seen from the rightmost columns in Tables 5.3 to 5.5.
This result was expected, since it con�rms that the HMM on a su�ciently dense grid
is able to perform accurate inference that cannot be outperformed using approximate
methods (such as the PF) using the same underlying model. Comparing the perfor-
mance of HMM3 and AMPF in the SMC and 1360-song datasets with the performances
of other algorithms on the same dataset (Holzapfel et al., 2012), it becomes apparent
that the HMM3 generally outperforms all other approaches, while the AMPF simply
performs as good as the most performing systems. This �nding implies that the under-
lying bar pointer model is a relatively accurate model for meter inference in music in
comparison to the state of the art (for the SMC and 1360-song datasets), and the AMPF
represents a fast and accurate approximation to the best performance of HMM3. In
the following experiment we will evaluate the potential of increasing the number of
rhythmic patterns.

5.6.2 Experiment 2: Increasing pattern diversity

In the second experiment we enlarge the state space by introducing eight style spe-
ci�c rhythmic pattern states into the model, one for each dance style in the Ballroom
dataset (due to the low number of samples we merged all three Rumba dance styles into
one Rumba category). The resulting eight rhythmic patterns are learned on the Ball-
room_train subset using the dance style labels that come with the data. We compare
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FM AMLt InfG DBFM Runtime
µ σ µ σ µ σ µ σ [minutes]

SISR 74.5 0.99 84.8 0.94 2.39 0.034 37.8 2.11 8.7
APF 76.9 0.88 87.5 0.18 2.49 0.017 45.0 1.32 10.9
MPF 82.7 0.70 89.9 0.50 2.52 0.020 53.4 1.19 12.7
AMPF 83.6 0.46 90.5 0.23 2.52 0.012 55.8 1.56 13.7
HMM1 77.5 - 83.0 - 2.11 - 54.9 - 8.1
HMM2 83.2 - 90.2 - 2.49 - 60.6 - 28.9
HMM3 85.1 - 92.1 - 2.68 - 63.3 - 111.8

Table 5.5: Beat and downbeat tracking results and average runtimes on the Ball-
room_test dataset (total 106.4 minutes). For the PF systems (SISR, APF, MPF, AMPF)
we show the mean (µ) and the standard deviation (σ) over ten runs.

the beat and downbeat tracking accuracy of the PF and HMM inference methods ap-
plied to this enlarged state space in Table 5.6. For the MPF, AMPF, and HMM methods,
and all evaluation measures except AMLt a clear performance improvement over the
accuracies depicted in Table 5.5 can be seen. The reason for stagnation in the AMLt is
easy to explain: The inclusion of more accurate rhythmic patterns leads to less tempo
halving or doubling errors, and to less o�-beat estimations in Table 5.6. While such an
improvement can be important in certain applications such as transcription or chord
estimation, it does not a�ect AMLt. Furthermore, the SISR and APF seem to have dif-
�culties to handle the enlarged state-space, as indicated by a drastic decrease of beat
tracking performance. In contrast, the MPF, AMPF, and HMMs seem to bene�t from
the more precise model. We can therefore conclude that a more precise modeling of
the rhythmic style in a collection (by using a higher number of rhythmic patterns) has
the potential to further increase the performance of our model. However, this might be
no longer feasible using the HMM with the highest resolution. The HMM3 takes about
three times real time to process the data as shown in the rightmost column of Table 5.6.
Therefore, the inference using a model with several rhythmical pattern states marks
the point where approximate inference with PFs becomes necessary, at least with the
computational power at the time of writing this paper.

5.7 Discussion
Our results on the largest available annotated datasets support that the bar pointer
model described in Section 5.3 is a relatively accurate model for inferring metrical
structure from (metered) musical audio signals. Using an exact inference scheme (HMM)
in a densely sampled discretized space, we achieve beat tracking accuracies that outper-
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FM AMLt InfG DBFM Runtime
µ σ µ σ µ σ µ σ [minutes]

SISR 66.0 0.94 72.4 1.11 2.23 0.044 39.6 2.14 26.9
APF 70.2 1.26 76.0 1.05 2.37 0.025 46.4 2.07 43.2
MPF 88.3 1.04 90.1 0.52 2.79 0.028 63.9 1.41 43.8
AMPF 89.3 0.54 90.9 0.22 2.78 0.014 67.6 1.22 44.9
HMM1 85.5 - 87.5 - 2.39 - 68.1 - 24.0
HMM2 89.4 - 90.3 - 2.70 - 72.1 - 87.2
HMM3 90.5 - 91.9 - 2.90 - 73.5 - 337.3

Table 5.6: Beat and downbeat tracking results and average runtimes on the Ball-
room_test dataset (total 106.4 minutes) using eight rhythmic pattern states. For the
PF systems (SISR, APF, MPF, AMPF) we show the mean (µ) and the standard deviation
(σ) over ten runs.

form those documented for the best state-of-the-art approaches (comparing Tables 5.3
and 5.4 with Tables I and II in Holzapfel et al. (2012)). The approximate AMPF scheme
still achieves accuracies as high as the best state-of-the-art approaches, slightly infe-
rior to the best evaluated HMM. However, good performance with the HMM inference
comes at a high price. We need to use HMMs with a large state space (HMM3 in our ex-
periments), which becomes even larger for experiments with several rhythmic pattern
states, as in our experiment on the Ballroom dataset (Table 5.6).

Furthermore, our results indicate that modeling several rhythmic patterns improves
the performance for music collections with diverse rhythmical content, at least in mu-
sic with limited expressiveness as investigated in this paper. However, with the result-
ing enlargement of the discretized state space the usage of a HMM becomes computa-
tionally prohibitive and our proposed AMPF is a fast and accurate alternative.

The experiments show that the AMPF scheme (and to some extend also the MPF)
handles the degeneracy problem much better than other PF methods because it main-
tains the diverse multi-modal probability distribution that is crucial for the tracking of
multiple tempo modes that occur in music.

In Fig. 5.8 we demonstrate for an exemplary audio �le that the proposed AMPF
and MPF, in contrast to the APF and SISR, are able to track the multiple modes of
the posterior (light gray regions in Fig. 5.8) throughout a recording. The �gure shows
that both SISR and APF concentrate their particles on a few modes of the posterior
after only �ve seconds of the recording (see bottom row of Fig. 5.8). In contrast, the
AMPF is characterized by the most diverse particle distribution throughout a song.
This diversity depicted for the example is typical for the approach, and is the reason
for the improved performance of the AMPF compared to the other PF schemes.
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It is worth to point out that the results reported in this paper might be further
improved if the rhythmic patterns were learned from music that is rhythmically more
similar to the test set. For instance, this could be achieved by downbeat annotating a
smaller subset of a certain style (e.g., the Greek music samples present in the 1360-song
collection), and then attempting to track the meter in the other Greek music samples.
Nevertheless, in order to adapt our model to a certain style, a representative set of
songs has to be beat and downbeat annotated. However, apart from such annotation
work, no changes to the structure of the model or its inference need to be performed.

5.8 Conclusion
In this paper we presented for the �rst time a particle �ltering scheme for beat tracking
in music that takes into account multiple modes of the posterior probability, along with
a systematic evaluation on larger datasets. The comparison with the HMM inference
demonstrates its superiority in terms of computational load, while the accuracy of
the system is as high as the state-of-the-art in beat tracking. While the presented
results prove the applicability of the approach, we need to do further steps in modeling
style speci�c rhythmic patterns in order to better understand the true potential of the
method.

Perhaps most importantly, we can claim that the separation of observation model
and the hidden variables causes a decoupling of the internal inference from the actual
musical sound. This means that the model can potentially be adapted without parame-
ter tweaking or engineering knowledge to new musical styles. By means of this design,
the presented method avoids a systematic bias that can result from a hard-coding of
music properties into system parameters. It represents a method that can be used for
style speci�c estimation in a straight-forward way by annotating a representative mu-
sic corpus. Therefore, the system is consistent with the demands of the recent MIR
roadmap (Serra et al., 2013) for systems which are able to incorporate expert knowl-
edge.
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Figure 5.8: Particle locations (white dots) within the state-space (tempo and bar posi-
tion sub-space) after one second (top row) and after �ve seconds (bottom row) of the
song Lemon Tree by Fool’s Garden plotted on top of the (log) posterior probability com-
puted by the HMM. Light gray tones indicate a high posterior probability while dark
gray tones indicate a low probability. The cross marks the groundtruth (bar position
and tempo for the corresponding time points).
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Abstract Dynamic Bayesian networks (e.g., Hidden Markov Models) are popular
frameworks for meter tracking in music because they are able to incorporate prior
knowledge about the dynamics of rhythmic parameters (tempo, meter, rhythmic pat-
terns, etc.). One popular example is the bar pointer model, which enables joint in-
ference of these rhythmic parameters from a piece of music. While this allows the
mutual dependencies between these parameters to be exploited, it also increases the
computational complexity of the models. In this paper, we propose a new state-space
discretisation and tempo transition model for this class of models that can act as a
drop-in replacement and not only increases the beat and downbeat tracking accuracy,
but also reduces time and memory complexity drastically. We incorporate the new
model into two state-of-the-art beat and meter tracking systems, and demonstrate its
superiority to the original models on six datasets.
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6.1 Introduction
Building machines that mimic the human understanding of music is vital for a variety
of tasks, such as organising and managing today’s huge music collections. In this
context, automatic inference of metrical structure from a musical audio signal plays an
important role. Generally, the metrical structure of music builds upon a hierarchy of
approximately regular pulses with di�erent frequencies. In the centre of this hierarchy
is the beat, a pulse to which humans choose to tap their feet. These beats are again
grouped into bars, with the downbeat denoting the �rst beat of each bar.

Several approaches have been proposed for tackling the problem of automatic in-
ference of meter (or subcomponents such as beats and downbeats) from an audio sig-
nal, with approaches based on machine learning currently being the most success-
ful(Zapata et al., 2014; Korzeniowski et al., 2014; Böck et al., 2014; Holzapfel et al.,
2014; Durand et al., 2015). All of these approaches incorporate probabilistic models,
but with di�erent model structures: the systems introduced by Zapata et al. (2014); Ko-
rzeniowski et al. (2014); Durand et al. (2015) decouple tempo detection from the detec-
tion of the beat/downbeat phase, which has the advantage of reducing the search space
of the algorithms but can be problematic if the tempo detection is erroneous. Others
(Böck et al., 2014; Holzapfel et al., 2014) model tempo and beat/downbeat jointly, taking
into account their mutual dependency, which leads to increased model complexity.

One popular model that jointly models tempo and bar position is the bar pointer
model, �rst proposed by Whiteley et al. (2006). In addition to tempo and bar position,
the model also integrates various rhythmic pattern states. It has been extended by
various authors: Krebs et al. (2013); Holzapfel et al. (2014) demonstrated the bene�t of
using rhythmic pattern states to analyse rhythmically diverse music, Srinivasamurthy
et al. (2015) proposed a simpli�cation for models with multiple rhythmic pattern states,
Şimşekli et al. (2012) additionally modelled the label of an acoustic event in order to en-
able a drum robot to distinguish di�erent instruments, and Dzhambazov (2014) applied
it to a drum transcription task. These algorithms share the problem of a high space and
time complexity because of the huge state-space in which they perform inference. In
order to make inference tractable, the state-space is usually divided into discrete cells,
with either �xed (Whiteley et al., 2006; Krebs et al., 2013; Holzapfel et al., 2014; Böck
et al., 2014; Şimşekli et al., 2012; Dzhambazov, 2014) or dynamic (Whiteley et al., 2007;
Krebs et al., 2015b; Srinivasamurthy et al., 2015) locations in the state-space. While
the former approach can be formulated as a hidden Markov model (HMM), which per-
forms best but is prohibitively complex, the latter uses particle �ltering (PF), which is
fast but performs slightly worse in sub-tasks such as downbeat tracking (Krebs et al.,
2015b).

In this paper, we propose a modi�ed bar pointer model which not only increases
beat and downbeat tracking accuracy, but also reduces drastically time and memory
complexity. In particular, we propose (a) a new (�xed grid) discretisation of the joint
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Figure 6.1: Toy example with M = 16 and N = 6: Each dot corresponds to a (hidden)
state in the tempo-bar-position state-space. The arrows indicate examples of possible
state transitions.

tempo and beat/bar state-space and (b) a new tempo transition model. We incorpo-
rated the new model into two state-of-the-art beat and meter tracking systems, and
demonstrate its superiority on six datasets.

6.2 Method

In this section, we describe how we tackle the problem of metrical structure anal-
ysis using a probabilistic state-space model. In these models, a sequence of hidden
variables, which in our case represent the meter of an audio piece, is inferred from a
sequence of observed variables, which are extracted from the audio signal. For ease
of presentation, we now consider a state-space of two hidden variables, the position
within a bar and the tempo. Including additional hidden variables, e.g., a rhythmical
pattern state (Whiteley et al., 2006, 2007; Krebs et al., 2013; Holzapfel et al., 2014; Srini-
vasamurthy et al., 2015) or an acoustic event label (Şimşekli et al., 2012; Dzhambazov,
2014) is straightforward. In the following, we describe the original bar pointer model
(Whiteley et al., 2006), its shortcomings, and the proposed improvements.

6.2.1 The original bar pointer model

The bar pointer model (Whiteley et al., 2006) describes the dynamics of a hypothetical
pointer which moves through the space of the hidden variables throughout a piece
of music. At each time frame k, we refer to the (hidden) state of the bar pointer as
xk = [Φk, Φ̇k], with Φk ∈ {1, 2, ...,M} denoting the position within a bar, and Φ̇k ∈
{Φ̇min, Φ̇min + 1, ..., Φ̇max} the tempo in bar positions per time frame. M is the total
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number of discrete positions per bar, N = Φ̇max − Φ̇min + 1 is the total number of
distinct tempi, Φ̇min and Φ̇max are respectively the lowest and the highest tempo. See
Fig. 6.1a for an illustration of such a state space. Finally, we denote the observation
features as yk.

Overall, we want to compute the most likely hidden state sequence x∗1:K = {x∗1,
x∗2, ..., x

∗
K} given a sequence of observations {y1,y2, ...,yK} for each audio piece as

x∗1:K = arg max
x1:K

P (x1:K | y1:K). (6.1)

with

P (y1:K |x1:K) ∝ P (x1)
K∏
k=2

P (xk|xk−1)P (yk|xk). (6.2)

Here, P (x1) is the initial state distribution, P (xk|xk−1) is the transition model, and
P (yk|xk) is the observation model, which we further describe in the bottom of this
section. Eq. 6.1 can be solved using the well-known Viterbi algorithm (Rabiner, 1989).
Finally, the set of downbeat frames D can be extracted from the sequence of bar posi-
tions as

D = {k : Φ∗k = 1}, (6.3)

and the set of beat frames can be obtained analogously by selecting the time frames
which correspond to a bar position that matches a beat position.

Initial distribution

Here, any prior knowledge (e.g., about tempo distributions) can be incorporated into
the model. Like most systems, we use a uniform distribution in this work.

Transition model

The transition model P (xk | xk−1) can be further decomposed into a distribution for
each of the two hidden variables Φk, and Φ̇k by:

P (xk | xk−1) = P (Φk | Φk−1, Φ̇k−1)·
· P (Φ̇k | Φ̇k−1). (6.4)

The �rst factor is
P (Φk | Φk−1, Φ̇k−1) = 1x, (6.5)

where 1x is an indicator function that equals one if Φk = (Φk−1+Φ̇k−1−1) mod M+1,
and zero otherwise. The modulo operator makes the bar position cyclic (the last, light
grey column in Fig. 6.1a is identical to the �rst column).
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The second factor P (Φ̇k | Φ̇k−1) is implemented by
If Φ̇min ≤ Φ̇k ≤ Φ̇max,

P (Φ̇k | Φ̇k−1) =


1− pΦ̇, Φ̇k = Φ̇k−1;
pΦ̇

2
, Φ̇k = Φ̇k−1 + 1;

pΦ̇

2
, Φ̇k = Φ̇k−1 − 1,

(6.6)

otherwise P (Φ̇k|Φ̇k−1) = 0.
pΦ̇ is the probability of a tempo change. From Eq. 6.6 it can be seen that the pointer
can perform three tempo transitions from each state (indicated by arrows in Fig. 6.1a).

Observation model

In this paper, we use two di�erent observation models: The �rst one uses recurrent
neural networks to derive a probability of a frame being a beat or not (Böck et al., 2014).
The second one models the observation probabilities with Gaussian mixture models
from a two-dimensional onset feature (Krebs et al., 2013; Holzapfel et al., 2014). As
the focus of this paper lies on the state discretisation and the tempo transition model,
the reader is referred to (Krebs et al., 2013; Holzapfel et al., 2014; Böck et al., 2014) for
further details.

6.2.2 Shortcomings of the original model

Previous implementations of the bar pointer model (Şimşekli et al., 2012; Krebs et al.,
2013; Holzapfel et al., 2014; Böck et al., 2014; Collins et al., 2014; Dzhambazov, 2014)
followed Whiteley et al. (2006) in dividing the tempo-position state space into equidis-
tant points, with each point aligned to an integer-valued bar position and tempo (see
Fig. 6.1a). This discretisation has a number of drawbacks, which are further explained
in the following.

Time resolution

As shown in Fig. 6.1a, the number of position grid points per bar is constant across
the tempi. This means that the grid of a bar played at a low tempo has a lower time
resolution than of a bar played at high tempo, because both are divided into the same
number of cells. In contrast, there are more observations available for a bar at a low
tempo than for a bar at a high tempo, since the observations are extracted at a con-
stant frame rate. This causes a mismatch between the time resolution of the feature
extraction and the time resolution of the discretised bar position.
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Tempo resolution

As shown in Fig. 6.1a, the distance between two adjacent tempo grid points is constant
across the grid. This is inconsistent with tempo sensitivity experiments on humans,
which have shown that the human ability to notice tempo changes is proportional to
the tempo, with the JND (just noticeable di�erence) being around 2-5% of the inter beat
interval (Drake and Botte, 1993). Therefore, in order to get a su�ciently high tempo
resolution at lower tempi, a huge number of tempo states has to be chosen.

Tempo stability

As the tempo model (see Eq. 6.6) forms a �rst-order Markov chain, the current tempo
state is independent of all tempo states given the past tempo state. This means that the
tempo model is not able to re�ect any long term dependencies between tempo states,
which may result in unstable tempo trajectories.

6.2.3 Proposed model
This section introduces a solution to the problems described above. To simplify no-
tation we assume a bar has four beats. Extending to other time signatures (Whiteley
et al., 2006) or modelling beats instead of bars (Böck et al., 2014) is straightforward.

Time resolution

We propose making the number of discrete bar positionsM dependent on the tempo by
using exactly one bar position state per audio frame (and thus per observation feature
value). The number of observations per bar (four beats) at a tempo T in beats per
minute (BPM) is

M(T ) = round(
4× 60

T ∗∆
) (6.7)

with ∆ being the audio frame length. Using Eq. 6.7, we compute the number of bar
positions of the tempo limits M(Tmin) and M(Tmax).

Tempo resolution

We can now either model all Nmax tempi that correspond to integer valued bar posi-
tions in the interval [M(Tmax), M(Tmin)], with

Nmax = M(Tmin)−M(Tmax) + 1, (6.8)

or select only a subset of N tempo states. In Section 6.3, we evaluate the performance
of the transition model for various numbers of tempo states. For N < Nmax, we
choose the tempo states by distributing N states logarithmically across the range of
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beat intervals, trying to mimic the JNDs of the human auditory system (Drake and
Botte, 1993).

Tempo stability

To increase the stability of the tempo trajectories we only allow transitions at beat
positions within a bar. This is illustrated in Fig. 6.1b with the arrows showing examples
of possible state transitions. In contrast to the original model which allows three tempo
transitions at every time step, we allow transitions to each tempo, but only at beat
times. The new tempo transition model then becomes:
If Φk ∈ B,

P (Φ̇k|Φ̇k−1) = f(Φ̇k, Φ̇k−1)
else

P (Φ̇k|Φ̇k−1) =

{
1, Φ̇k = Φ̇k−1;
0, otherwise (6.9)

B is the set of bar positions that corresponds to beats, and f(·) is a function that models
the tempo change probabilities. We experimented with various functions (Gaussian,
Log-Gaussian, Gaussian mixtures), but found this exponential distribution to be per-
forming best:

f(Φ̇k, Φ̇k−1) = exp(−λ× | Φ̇k

Φ̇k−1

− 1|) (6.10)

where the rate parameter λ ∈ Z≥0 determines the steepness of the distribution. A
value of λ = 0 means that transitions to all tempi are equally probable. In practice,
for music with roughly constant tempo, we set λ ∈ [1, 300]. Fig. 6.2 shows the tempo
transition probabilities for various values of λ.
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Figure 6.2: Tempo change probability density (Eq. 6.10) for various values of λ.
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6.2.4 Complexity of the inference algorithm

In this section, we investigate time and memory complexity of the bar pointer model,
considering only the complexity of the (Viterbi) inference and ignoring the contribu-
tion of computing the observation features and observation probabilities.

Both time and space complexity depend on the number of states of the model. The
number of states, in turn, depends on the number of bar positions, the tempo ranges,
the audio frame length, and the tempo resolution that we chose to model. Let us assume
that we have a model with S hidden states, T possible state transitions per frame, and
an audio excerpt with K frames. The memory requirement of the algorithm is then
simply S ×K , as we have to store the best predecessor state for each of the S states
for each time frame during Viterbi decoding. The time complexity, on the other hand,
is T ×K , as we have to compute T transitions at each time step. In Table 6.1 we show
the values of S and T of the models used in this paper.

6.3 Experimental setup
In this section, we evaluate the proposed model with real-world music data in two ex-
periments1. In the �rst experiment, we investigated the e�ect of the number of tempo
statesN and the rate parameter λ of the tempo transition function on the meter track-
ing performance on a training set. We evaluated only the beat tracking performance, as
this is the most fundamental task that we wanted to solve. In the second experiment,
we integrated the proposed model with the parameters determined in Experiment 1
into two state-of-the-art systems and compared the meter tracking performance in
terms of accuracy and complexity with the original models. Below, we describe the
datasets, the evaluation metrics, and the meter tracking models.

6.3.1 Datasets

In this work, we used seven test datasets, one for Experiment 1 and the remaining
six for Experiment 2. For more details about each datasets, see the corresponding
references:

Experimental dataset: This dataset is a subset of the 1360-songs dataset (Gouyon,
2005) excluding the Hainsworth dataset, because it was used in Experiment 2. In total,
it includes 1139 excerpts (total length 662 minutes).

Ballroom dataset (Gouyon et al., 2006): A dataset of 685 30-second excerpts of ball-
room dance music (total length 364 minutes). It was annotated with beat and downbeat
times by Krebs et al. (2013).

1Additional information as well as the code to reproduce the results of this paper are available at
http://www.cp.jku.at/people/krebs/ismir2015/

http://www.cp.jku.at/people/krebs/ismir2015/
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Hainsworth dataset (Hainsworth and Macleod, 2004): A dataset with 222 pieces
(total length 199 minutes), covering a wide spectrum of genres.

SMC dataset (Holzapfel et al., 2012): A dataset with 217 pieces which are considered
di�cult for meter inference (total length 145 minutes). This set is also part of the
MIREX evaluation.

Greek dataset (Holzapfel et al., 2014): 42 full songs of Cretan leaping dances in 2/4
meter (total length 140 minutes).

Turkish dataset (Holzapfel et al., 2014): 82 one-minute excerpts of Turkish Makam
music (total length 82 minutes).

Indian dataset (Srinivasamurthy and Serra, 2014): The same subset of 118 two-
minute long pieces (total length 235 minutes) as used by Holzapfel et al. (2014).

6.3.2 Evaluation metrics

To assess the ability of an algorithm to infer metrical structure, we used �ve evaluation
metrics - four for beat tracking and one for downbeat tracking.

F-Measure (FM): computed from the number of true positives (correctly detected
beats within a window of ±70ms around an annotation), the false positives, and the
false negatives.

CMLt: quanti�es the percentage of correctly tracked beats at the correct metrical
level. In order to count a beat as correct, both previous and next beats have to match
an annotation within a tolerance window of ±17.5% of the annotated beat interval.

AMLt: the same as CMLt, but the detected beats are also considered to be correct
if they occur on the o�-beat or at double or half of the ground-truth tempo.

Cemgil: places a Gaussian function with standard deviation of 40 ms around the
annotations and computes the average likelihood of the corresponding beat closest
to each annotation. In contrast to the other measures with hard decision boundaries
(due to rectangular tolerance windows), this measure is also sensitive to small timing
di�erences between annotated and detected beats.

Downbeat F-Measure (DBFM): is the same F-measure as used for beats, but considers
only downbeats.

We implemented the evaluation metrics according to Davies et al. (2009) with stan-
dard settings. To make them comparable with other work, we excluded the �rst �ve
seconds in Experiment 2 when comparing with the model by Holzapfel et al. (2014)
but did not exclude them when comparing with the results from (Böck et al., 2014).

6.3.3 Meter tracking models

To compare the proposed to the original model, we tested its performance with two
state-of-the-art meter tracking systems:
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RNN-BeatTracker (Böck et al., 2014): This model uses a recurrent neural network to
compute the probability of a frame being a beat. This probability is used as an obser-
vation probability for an HMM which jointly models tempo and the position within
a beat period. We used the same MultiModelBeatTracker model as described by Böck
et al. (2014), with a frame rate of 100 fps. Only beats are detected with this model.

GMM-BarTracker (Krebs et al., 2013; Holzapfel et al., 2014): Gaussian Mixture Mod-
els (GMMs) are used to compute the observation probabilities for an HMM that jointly
models tempo, position within a bar and a set of rhythmic bar-patterns. For Experi-
ment 1, the GMMs were trained on the Ballroom, the Beatles (Davies et al., 2009), the
Hainsworth and the RWC_Popular (Goto, 2006) datasets, using three rhythmic patterns
that correspond to the time signatures 2/4, 3/4 and 4/4. Pieces with other time sig-
natures were excluded. For Experiment 2, we used an updated2 version of the model
described by Holzapfel et al. (2014). The model uses a frame length of 20 ms and inte-
grates eight rhythmic pattern states, one for each of the rhythmic classes. It outputs
beats and downbeats.

Note that the di�erence between original and proposed lies only in the de�nition
of the hidden states and the transition model; both use the same observation model,
initial distribution, and tempo ranges.

6.4 Results and discussion

6.4.1 Experiment 1
In this experiment, we evaluated the in�uence of two parameters of the proposed tran-
sition model on the meter tracking performance. These parameters are the width of
the tempo change distribution parametrised by the rate λ (Section. 6.2.3, Fig. 6.3) and
the number of tempo states N (Section 6.2.3, Fig. 6.4). We chose to display the Cemgil
accuracy in Figs. 6.3 and 6.4, because it is the only measure that makes a soft decision
to count a beat as correct by using a Gaussian window and thus also takes into account
small timing variations. Generally, the plots for the other measures were similar.

Fig. 6.3 shows the e�ect of the parameter λ on the Cemgil beat tracking accuracy
for both the RNN-BeatTracker and the GMM-BarTracker on the experimental dataset,
using the maximum number of tempo statesNmax. The maximum Cemgil values were
obtained with λ = 125, and λ = 95 respectively.

Using these settings for λ, we investigated the e�ect of the number of tempo states
N on the beat tracking performance, which is shown in Fig. 6.4. As the two systems use
a di�erent audio frame rate, the maximum number of tempo statesNmax is di�erent too
(see Section 6.2.3). Using a tempo range of [55, 215] BPM as in (Böck et al., 2014), the
RNN-BeatTracker has at most Nmax = 82 tempo states, while for the GMM-BarTracker

2http://www.cp.jku.at/people/krebs/ismir2014/

http://www.cp.jku.at/people/krebs/ismir2014/


6.4. RESULTS AND DISCUSSION 93

0 100 200 300 400 500
45

50

55

60

65

Lambda

C
em

gi
l

 

 

RNN−BeatTracker
GMM−BarTracker
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Figure 6.4: E�ect of the number of
tempo states on beat tracking Cemgil
metric on the experimental dataset.

Nmax = 41. As can be seen from Fig. 6.4, the Cemgil accuracy converges at ≈ 75
tempo states for the RNN-BeatTracker and at ≈ 40 for the GMM-BarTracker. This
�nding suggests that the BarTracker might also bene�t from a higher audio frame rate
and therefore a higher number of tempo states. In addition, the number of tempo states
is a suitable parameter to select a trade-o� between speed and accuracy.

6.4.2 Experiment 2
In this experiment, we integrated the proposed model into two state-of-the-art meter
tracking systems (Section 6.3.3) and compared them to the original models. The beat
and downbeat accuracy scores of the original (Böck et al., 2014; Holzapfel et al., 2014)
and proposed models, together with the number of states and transitions, are shown in
Table 6.1. The proposed model used the parameters λ andN obtained in Experiment 1.

As can be seen, the proposed transition model outperforms the original model with
respect to all performance metrics on all datasets (except AMLt (-0.2%) on the Ballroom
dataset), with the added advantage of drastically reduced complexity. The CMLt met-
ric in particular seems to bene�t from the proposed model, with up to 20% relative
improvement on the Greek dataset. Apparently, the restriction to change tempo only
at beat times results in higher stability and therefore better performance in measures
that are sensitive to continuity, such as CMLt and AMLt.

A comparison of the state-space sizes of the original and proposed models shows
that the latter uses far fewer states and transitions. This is particularly apparent for
the GMM-BarTracker, which has a priori a larger state space because it models (a) bars
instead of beats and (b) eight rhythmic patterns. With the original GMM-BarTracker,



94
A
n
E�

cientState
Space

M
odelfor

JointTem
po

and
M
eter

Tracking

# tempo FM CMLt AMLt DBFM States Transitions
RNN-BeatTracker states
Ballroom
Böck et al. (2014) 20 91.0 83.0 92.4 11 520 33 280
Proposed 82 91.9 85.4 92.2 5 617 8 343
Proposed 55 91.7 84.8 92.1 3 369 4 496
Hainsworth
Böck et al. (2014) 20 84.0 80.3 88.1 11 520 33 280
Proposed 82 85.1 80.5 88.5 5 617 8 343
Proposed 55 85.1 79.1 88.6 3 369 4 496
SMC
Böck et al. (2014) 20 52.9 42.8 56.7 11 520 33 280
Proposed 82 54.0 46.0 61.3 5 617 8 343
Proposed 55 54.3 45.8 61.3 3 369 4 496

GMM-BarTracker
Greek
Holzapfel et al. (2014) 18 91.6 77.8 95.2 77.7 133 200 376 800
Proposed 35 95.6 93.5 +96.5 81.2 26 716 41 708
Indian
Holzapfel et al. (2014) 18 79.9 61.3 84.5 47.6 133 200 376 800
Proposed 35 85.0 +70.3 94.2 + 51.5 26 716 41 708
Turkish
Holzapfel et al. (2014) 18 86.1 69.4 84.0 61.7 133 200 376 800
Proposed 35 87.7 73.2 87.7 63.2 26 716 41 708

Table 6.1: Performance of the original and proposed transition model and state space. The + symbol denotes signi�cant
(p < 0.05) improvement over the result in the row above, using a one-way analysis of variance (ANOVA) test.
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processing a four-minute piece (12 000 frames at 50 fps), required remembering 1.60×
109 state ids in the Viterbi algorithm, which needs 6.39 GB stored as 32-bit integers. In
contrast, using the proposed model, only 0.32× 109 states must be stored - a demand
that can be met using 16-bit integers in only 0.64 GB of memory. With a MATLAB
implementation and an Intel Core i5-2400 CPU with 3.1 GHz, we can therefore reduce
the computation time for the Turkish dataset from 45.8 minutes to 4.2 minutes, includ-
ing the computation of the audio features (which takes only 18 seconds). Additionally,
as already shown in Experiment 1, we can further reduce the number of tempo states
from 82 (the maximum number of tempo states as computed in Section 6.2.3) to 55
with the RNN-BeatTracker, with only marginal performance decrease. Compared to
the original model, this implies a reduction of the numbers of states and transitions
by factors of three and seven, respectively. Since in the proposed model most position
states are needed to model lower tempi, the lower tempo limits mainly determine the
size of the state space.

6.5 Conclusions
In this paper, we have proposed a new discretisation and tempo transition model that
can be used as a drop-in replacement for variants of the bar pointer model. We have
shown that our model outperformed the original one in 32 of 33 test cases, while sub-
stantially reducing space and time complexity. We believe that this is an important step
towards lightweight, real-time capable, high-performance meter inference systems.

As part of future work, we plan to investigate whether changing tempo only at
beat positions also stabilises the particle �lter versions of the bar pointer model (Krebs
et al., 2015b; Srinivasamurthy et al., 2015), which would further facilitate reducing
computational complexity.
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Abstract In this paper, we propose a system that extracts the downbeat times from
a beat-synchronous audio feature stream of a music piece. Two recurrent neural net-
works are used as a front-end: the �rst one models rhythmic content on multiple fre-
quency bands, while the second one models the harmonic content of the signal. The
output activations are then combined and fed into a dynamic Bayesian network which
acts as a rhythmical language model. We show on seven commonly used datasets of
Western music that the system is able to achieve state-of-the-art results.

7.1 Introduction
The automatic analysis of the metrical structure in an audio piece is a long-standing,
ongoing endeavour. A good underlying meter analysis system is fundamental for var-
ious tasks like automatic music segmentation, transcription, or applications such as
automatic slicing in digital audio workstations.
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The meter in music is organised in a hierarchy of pulses with integer related fre-
quencies. In this work, we concentrate on one of the higher levels of the metrical
hierarchy, the measure level. The �rst beat of a musical measure is called a downbeat,
and this is typically where harmonic changes occur or speci�c rhythmic pattern begin
(Klapuri et al., 2006).

The �rst system that automatically detected beats and downbeats was proposed
by Goto and Muraoka (1999). It modelled three metrical levels, including the measure
level by �nding chord changes. Their system, built upon hand-designed features and
rules, was reported to successfully track downbeats in 4/4 music with drums. Since
then, much has changed in the meter tracking literature. A general trend is to go from
hand-crafted features and rules to automatically learned ones. In this line, rhythmic
patterns are learned from data and used as observation model in probabilistic state-
space models (Klapuri et al., 2006; Peeters and Papadopoulos, 2011; Krebs et al., 2013).
Support Vector Machines (SVMs) were �rst applied to downbeat tracking in a semi-
automatic setting (Jehan, 2005) and later used in a fully automatic system that operated
on several beat-synchronous hand-crafted features (Durand et al., 2014). The latter
system was later re�ned by using convolutional neural networks (ConvNets) instead
of SVMs and a new set of features (Durand et al., 2015, 2016) and is the current state-
of-the-art in downbeat tracking on Western music.

Recurrent neural networks (RNNs) are Neural Networks adapted to sequential data
and therefore are the natural choice for sequence analysis tasks. In fact, they have
shown success in various tasks such as speech recognition (Hannun et al., 2014), hand-
writing recognition (Graves et al., 2009) or beat tracking (Böck and Schedl, 2011). In
this work, we would like to explore the application of RNNs to the downbeat tracking
problem. We describe a system that detects downbeats from a beat-synchronous input
feature sequence, analyse the performance of two di�erent input features, and discuss
shortcomings of the proposed model. We report state-of-the-art performance on seven
datasets.

The paper is organised as follows: In Section 7.2 we describe the proposed RNN-
based downbeat tracking system, in Section 7.3 we explain the experimental set-up of
our evaluation and present and discuss the results in Section 7.4.

7.2 Method

An overview of the system is shown in Fig. 7.1. Two beat-synchronised feature streams
(Section 7.2.1) are fed into two parallel RNNs (Section 7.2.2) to obtain a downbeat acti-
vation function which indicates the probability whether a beat is a downbeat. Finally,
the activation function is decoded into a sequence of downbeat times by a dynamic
Bayesian network (DBN) (Section 7.2.3).
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Figure 7.1: Model overview

7.2.1 Feature extraction

In this work we assume that the beat times of an audio signal are known, by using
either hand-annotated or automatically generated labels. We believe that the segmen-
tation into beats makes it much more easy for the subsequent stage to detect down-
beats because it does not have to deal with tempo or expressive timing on one hand
and it greatly reduces the computational complexity by both reducing the sequence
length of an excerpt and the search space. Beat-synchronous features have success-
fully been used before for downbeat tracking (Davies and Plumbley, 2006; Papadopou-
los and Peeters, 2011; Durand et al., 2015). Here, we use two features: A spectral �ux
with logarithmic frequency spacing to represent percussive content (percussive fea-
ture) and a chroma feature to represent the harmonic progressions throughout a song
(harmonic feature).

Percussive feature

As a percussive feature, we compute a multi-band spectral �ux: First, we compute the
magnitude spectrogram by applying the Short-time Fourier Transform (STFT) with
a Hann window, hopsize of 10ms, and a frame length of 2048 samples, as shown in
Fig. 7.2a. Then, we apply a logarithmic �lter bank with 6 bands per octave, covering
the frequency range from 30 to 17 000 Hz, resulting in 45 bins in total. We compress the
magnitude by applying the logarithm and �nally compute for each frame the di�er-
ence between the current and the previous frame. The feature sequence is then beat-
synchronised by only keeping the mean value per frequency bin in a window of length
∆b/np, where ∆b is the beat period and np = 4 is the number of beat subdivisions, cen-
tred around the beginning of a beat subdivision. An example of the percussive feature
is shown in Fig. 7.2b.



100Downbeat Tracking Using Beat Synchronous Features and Recurrent Neural Networks

12 13 14 15 16 17 18 19
0

2153

4306

6459

8613

10766

12919

15073

Fr
e
q
u
e
n
cy

 [
H

z]

(a) Spectrogram

12 13 14 15 16 17 18 19
43

258

882

2799

8871
Fr

e
q
u
e
n
cy

 [
H

z]

(b) Beat-synchronous percussive feature
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Figure 7.2: Visualisation of the two feature streams and their corresponding network output of an 8-
second excerpt of the song Media-105701 (Ballroom dataset). The dashed line in (c) and (e) represents the
target (downbeat) sequence, the solid line the networks’ activations. The x-axis shows time in seconds.
The time resolution is one fourth of the beat period in (b), and half a beat period in (d).
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Harmonic feature

As harmonic feature, we use the CLP chroma feature (Müller and Ewert, 2011) with
a frame rate of 100 frames per second. We synchronise the features to the beat by
computing the mean over a window of length ∆b/nh, yielding nh = 2 feature values
per beat interval. We found that for the harmonic feature the resolution can be lower
than for the percussive feature, as for chord changes the exact timing is less critical.
An example of the harmonic feature is shown in Fig. 7.2d.

7.2.2 Recurrent Neural Network

RNNs are the natural choice for sequence modelling tasks but often di�cult to train due
to the exploding and vanishing gradient problems. In order to overcome these prob-
lems when dealing with long sequences, Long-Short-Term memory (LSTM) networks
were proposed (Hochreiter and Schmidhuber, 1997). Later, Cho et al. (2014) proposed
a simpli�ed version of the LSTMs named Gated Recurrent Units (GRUs), which were
shown to perform comparable to the traditional LSTM in a variety of tasks and have
less parameters to train. Therefore, we will use GRUs in this paper.

The time unit modelled by the RNNs is the beat period, and all feature values that
fall into one beat are condensed into one vector. E.g., using the percussive feature
with 45 frequency bins and a resolution of np = 4 beat subdivisions yields an input
dimension of 45 × 4 = 180 for the rhythmic RNN. In comparison to an RNN that
models subdivisions of the beat period as underlying time unit, this vectorisation of
the temporal context provided an important speed-up of the network training due to
the reduced sequence length, while maintaining the same level of performance.

In preliminary tests, we investigated possible architectures for our task and com-
pared their performances on the validation set (see Section 7.3.3). We made the fol-
lowing discoveries: First, adding bidirectional connections to the models was found to
greatly improve the performance. Second, the use of LSTMs/GRUs further improved
the performance compared to the standard RNN. Third, using more than two layers
did not further improve the performance.

We therefore chose to use a two layer bidirectional network with GRU units and
standard tanh non-linearity. Each hidden layer has 25 units. The output layer is a
dense layer with one unit and a sigmoid non-linearity. Due to the di�erent number
of input units the rhythmic model has approximately 44k, and the harmonic model
approximately 19k parameters.

The activations of both the rhythmic and harmonic model are �nally averaged to
yield the input activation for the subsequent DBN stage.
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7.2.3 Dynamic Bayesian Network
The language model incorporates musical prior knowledge into the system. In our case
it implements the following assumptions:

1. Beats are organised into bars, which consist of a constant number of beats.

2. The time signature of a piece determines the number of beats per bar.

3. Time signature changes are rare within a piece.

The DBN stage is similar to the one used by Durand et al. (2015), with three di�er-
ences: First, we model beats as states instead of tatums. Second, as our data mainly
contains 3/4 and 4/4 time signatures, we only model these two. Third, we force the
state sequence to always transverse a whole bar from left to right, i.e., transitions from
beat 2 to beat 1 are not allowed. In the following we give a short review of the DBN
stage.

A state s(b, r) in the DBN state space is determined by two hidden state variables:
the beat counter b and the time signature r. The beat counter counts the beats within
a bar b ∈ {1..Nr} where Nr is the number of beats in time signature r. E.g., r ∈ {3, 4}
for the case where a 3/4 and a 4/4 time signature are modelled. The state transition
probabilities can then be decomposed using

P (sk|sk−1) = P (bk|bk−1, rk−1)× P (rk|rk−1, bk, bk−1) (7.1)

where
P (bk|bk−1, rk−1) =

{
1 if bk = (bk−1 mod rk−1) + 1
0 otherwise. (7.2)

Eq. 7.2 ensures that the beat counter can only move steadily from left to right. Time
signature changes are only allowed to happen at the beginning of a bar ((bk < bk−1)),
as implemented by

if (bk < bk−1)

P (rk|rk−1, bk, bk−1) =

{
1− pr if (rk = rk−1)
pr/R if (rk 6= rk−1)

else
P (rk|rk−1, bk, bk−1) = 0

(7.3)

where pr is the probability of a time signature change. We learned pr on the validation
set and found pr = 10−7 to be an overall good value, which makes time signature
changes improbable but possible. However, the exact choice of this parameter is not
critical, but it should be greater than zero as mentioned in Section 7.4.5.

As the sigmoid of the output layer of the RNN yields a value between 0 and 1, we
can interpret its output as the probability that a speci�c beat is a downbeat and use
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it as observation likelihood for the DBN. As the RNN outputs a posterior probability
P (s|features), we need to scale it by a factor λ(s) which is proportional to 1/P (s) in
order to obtain

P (features|s) ∝ P (s|features)/P (s), (7.4)

which is needed by the observation model of the DBN. Experiments have shown that
a value of λ(s(b = 1, r)) = 100 for downbeat states and λ(s(b > 1, r)) = 1 for the
other states performed best on our validation set, and will be used in this paper.

Finally, we use a uniform initial distribution over the states and decode the most
probably state sequence with the Viterbi algorithm.

7.3 Experiments

System Ballr. Beatl. Hain. RWC Rob. Klap. Rock Mean
With annnotated beats:
Rhythmic 83.9 87.1 75.7 91.9 93.4 - 87.0 84.4
Harmonic 77.2 89.9 80.1 92.9 92.6 - 86.0 82.2
Combined 91.8 89.6 83.6 94.4 96.6 - 89.4 90.4
With detected beats:
Combined 80.3 79.8 71.3 82.7 83.4 69.3 79.0 77.3
Durand et al. (2016) 77.8 81.4 65.7 86.1 83.7 68.9 81.3 76.1

Beat tracking results:
Krebs et al. (2015a) 89.0 88.4 88.2 88.6 88.2 85.2 90.5 88.3

Table 7.1: Mean downbeat tracking F-measures across all datasets. The last column
shows the mean over all datasets used. The last row shows beat tracking F-measure
scores of the beat tracking system (Böck et al., 2014; Krebs et al., 2015a).

7.3.1 Data

In this work, we restrict the data to Western music only and leave the evaluation of
Non-Western music for future work. The following datasets are used:

Ballroom (Gouyon et al., 2006; Krebs et al., 2013): This dataset consists of 685
unique 30 second-long excerpts of Ballroom dance music. The total length is 5h 57m.

Beatles (Davies et al., 2009): This dataset consists of 180 songs of the Beatles. The
total length is 8h 09m.

Hainsworth (Hainsworth and Macleod, 2004): This dataset consists of 222 ex-
cerpts, covering various genres. The total length is 3h 19m.
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RWC Pop (Goto et al., 2002): This dataset consists of 100 American and Japanese
Pop songs. The total length is 6h 47m.

Robbie Williams (Giorgi et al., 2013): 65 full songs of Robbie Williams. The total
length is 4h 31m

Rock (De Clercq and Temperley, 2011): This dataset consists of 200 songs of the
Rolling Stone magazine’s list of the ‘500 Greatest Songs of All Time’. The total length
is 12h 53m.

Klapuri (Klapuri et al., 2006): This dataset consists of 320 excerpts, covering vari-
ous genres. The total length is 4h 54m. The beat annotations of this dataset have been
made independently of the downbeat annotations and therefore do not always match.
Hence, we cannot use the dataset in experiments that rely on annotated beats.

7.3.2 Evaluation measure

For the evaluation of downbeat tracking we follow Durand et al. (2015); Krebs et al.
(2015a) and report the F-measure which is computed by F = 2RP/(R + P ), where
the recall R is the ratio of correctly detected downbeats within a ±70ms window and
the total number of annotated downbeats, and the precision P is the ratio of correctly
detected downbeats within this window and all the reported downbeats.

7.3.3 Training procedure

All experiments in this section have been carried out using the leave-one-dataset-out
approach, to be as comparable as possible with the setting of Durand et al. (2016).
After removing the test dataset, we use 75% of the remaining data for training and
25% for validation. To cope with the varying lengths of the audio excerpts, we split
the training data into segments of 15 beats and an overlap of 10 beats. For training,
we use cross entropy cost, and AdaGrad (Duchi et al., 2011) with a constant learn rate
of 0.04 for the rhythmic model and 0.02 for the harmonic model. The hidden units
and the biases are initialised with zero, and the weights of the network are randomly
sampled from a normal distribution with zero mean and a standard deviation of 0.1.
We stop the learning after 100 epochs or when the validation error does not decrease
for 15 epochs. For training the GRUs, we used the Lasagne framework (Dieleman et al.,
2015).
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7.4 Results and Discussion

7.4.1 In�uence of features
In this section we investigate the in�uence of the two di�erent input features described
in Section 7.2.1.

The performance of the two di�erent networks is shown in the upper part of Ta-
ble 7.1. Looking at the mean scores over all datasets, the rhythmic and harmonic net-
work achieve a comparable performance. The biggest di�erence between the two was
found in the Ballroom and the Hainsworth dataset, which we believe is mostly due
to di�ering musical content. While the Ballroom set consists of music with clear and
prominent rhythm which the percussive feature seems to capture well, the Hainsworth
set also includes chorales with less clear-cut rhythm but more prominent harmonic
content which in turn is better represented by the harmonic feature. Interestingly,
combining both networks (by averaging the output activations) yields a score that is
almost always higher than the score of the single networks. Apparently, the two net-
works concentrate on di�erent, relevant aspects of the audio signal and combining
them enables the system exploiting both. This is in line with the observations by Du-
rand et al. (2016) who similarly combined the output of three networks in their system.

7.4.2 Estimated vs. annotated beat positions
In order to have a fully automatic downbeat tracking system we use the beat tracker
proposed by Böck et al. (2014) with an enhanced state space (Krebs et al., 2015a) as
a front-end to our system.1 We show the beat tracking F-measures per dataset in the
bottom row of Table 7.1. With regard to beat tracking, the datasets seem to be balanced
in terms of di�culty.

The detected beats are then used to synchronise the features of the test set.2 The
downbeat scores obtained with the detected beats are shown in the middle part of
Table 7.1. As can be seen, the values are around 10% − 15% lower than if annotated
beats were used. This makes sense, since an error in the beat tracking stage cannot be
corrected in a later stage. This might be a drawback of the proposed system compared
to Durand et al. (2016), where the tatum (instead of the beat) is the basic time unit and
the downbeat tracking stage can still decide whether a beat consists of one, two or
more tatums.

Although the beat tracking performance is balanced among the datasets, we �nd
clear di�erences in the downbeat tracking performance. For example, while the beat
tracking performance on the Hainsworth and the Robbie Williams dataset are similar,
the downbeat accuracy di�ers more than 12%. Apparently, the mix of genres, including

1We use the DBNBeatTracker included in madmom (Böck et al., 2016a) version 0.13.
2We took care that there is no overlap between the train and test sets.
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time signatures of 2/2, 3/2, 3/4 and 6/8, in the Hainsworth set represents a challenge
to downbeat tracking compared to the more simple Robbie Williams, which mostly
contains 4/4 time signatures.

7.4.3 Importance of the DBN stage

System annotated detected
RNN 85.0 73.7
RNN+DBN 90.4 77.3

Table 7.2: Mean downbeat tracking F-measures across all datasets of the proposed,
combined system. annotated and detected means that annotated or detected beats were
respectively used to synchronise the features. RNN uses peak-picking to select the
downbeats, while RNN+DBN uses the DBN language model.

To assess the importance of the DBN stage (Section 7.2.3) we implemented a simple
baseline, which simply reports downbeats if the resulting (combined) RNN activations
exceed a threshold. A threshold of 0.2 was found to yield the best results on the val-
idation set. In Table 7.2, we show the results of the baseline (RNN) and the results of
the combined system (RNN+DBN). As can be seen, the combination of RNN and DBN
signi�cantly outperforms the baseline, con�rmed by a Wilcoxon signed-rank test with
p < 0.01.

7.4.4 Comparison to the state-of-the-art
In this section we investigate the performance of our system in relation to the state-
of-the-art in downbeat tracking, represented by Durand et al. (2016). Unfortunately,
a direct comparison is hindered by various reasons: The datasets used for training
the ConvNets (Durand et al., 2016) are not freely available and the beat tracker at
their input stage is di�erent to the one that we use in this work. Therefore, we can
only check whether the whole end-to-end system is competitive and leave a modular
comparison of the approaches to future work.

In the middle of Table 7.1 we show the results of the system described by Durand
et al. (2016), as provided by the authors. The last column shows the mean accuracy
over all 1771 excerpts in our dataset. A paired-sample t-test did not show any statis-
tically signi�cant di�erences in the mean performance between the two approaches
considering all data points. However, a Wilcoxon signed-rank test revealed that there
is a signi�cant (p < 0.01) di�erence in the median F-measure over all data points,
which is 89.7% for Durand et al. (2016) and 96.2% for the proposed system. Looking
at histograms of the obtained scores (see Fig. 7.3), we found a clear peak at around
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66% F-measure, which is typically caused by the beat tracking stage reporting half or
double of the correct tempo. The peak is more prominent for the system by Durand
et al. (2016) (Fig. 7.3b), hence we believe the system might bene�t from a more accurate
beat tracker.

From this we conclude that overall the proposed system (in combination with the
beat tracker proposed by Böck et al. (2014); Krebs et al. (2015a)) performs comparable
to the state of the art when looking at the mean performance and even outperforms
the state of the art in terms of the median performance.
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Figure 7.3: Histogram of the downbeat F-measures of the proposed system (a) and the
reference system (Durand et al., 2016) (b)

7.4.5 Error analysis

In order to uncover the shortcomings of the proposed model we analysed the errors
of a randomly-chosen, small subset of 30 excerpts. We identi�ed two main factors
that lead to a low downbeat score. The �rst one, obviously, are beat tracking errors
which get propagated through to the downbeat stage. Most beat tracking errors are
octave errors, and among them, the beat tracker mostly tapped twice as fast as the
groundtruth tempo. In some cases this is acceptable and therefore would make sense
to also allow these metrical levels as, e.g., done by Klapuri et al. (2006). The second
common error is that the downbeat tracker chooses the wrong time signature or has
problems following time signature changes or coping with inserted or removed beats.
Phase errors are relatively rare. Changing time signatures appear most frequently in
the Beatles dataset. For this dataset, reducing the transition probability of time signa-
ture changes pr from 10−7 to 0 leads to a relative performance drop of 6%, while the
results for other datasets remain largely una�ected. Besides, the used datasets mainly
contain 3/4 and 4/4 time signatures making it impossible for the RNN to learn some-
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thing meaningful about other time signatures. Here, creating a more balanced training
set regarding time signatures would surely help.

7.5 Conclusions and future work
We have proposed a downbeat tracking back-end system that uses recurrent Neural
networks (RNNs) to analyse a beat-synchronous feature stream. With estimated beats
as input, the system performs comparable to the state of the art, yielding a mean down-
beat F-measure of 77.3% on a set of 1771 excerpts of Western music. With manually
annotated beats the score goes up to 90.4%.

For future work, a good modular comparison of downbeat tracking approaches
needs to be undertaken, possibly with collaboration between several researchers. In
particular, standardised dataset train/test splits need to be de�ned. Second, we would
like to train and test the model with non-Western music and ‘odd’ time signatures,
such as done by Holzapfel et al. (2014).

The source code will be released as part of the madmom library (Böck et al., 2016a),
including all trained models and can be found together with additional material under
http://www.cp.jku.at/people/krebs/ismir2016/index.html.

http://www.cp.jku.at/people/krebs/ismir2016/index.html


Chapter 8

Online Beat and Downbeat
Tracking

All the algorithms presented so far have been developed and evaluated for the o�ine
case, where a whole piece of music is fed into the system and the system outputs a
metrical analysis of the entire piece at once. In this chapter we will modify the system
to work online, meaning that the system processes an audio signal frame-by-frame
and analyses each frame using only information from the current and past frames. In
this case, it is not possible to correct a decision once it is made. Such a system can be
used for many applications, e.g., a synthetic drummer who listens to a musician and,
based on his analysis, accompanies him/her, or an application that shows the tempo of
a music piece while you listen to it. Two examples for such applications are given in
Chapter 9.

8.1 System description

In the following we will describe the steps that are necessary to turn the models pro-
posed so far into online-capable meter analysis systems. Both acoustic and language
model (see Fig. 1.1) have to work causally, i.e., it is not allowed to use future infor-
mation to make a decision about the current time. The GMM-based acoustic models
(Chapter 3-6) already satisfy this condition. In the case of RNN-based acoustic models
(Chapter 6 and 7) we have to use unidirectional RNNs instead of the bidirectional ones.
To obtain a causal language model, we simply have to replace the Viterbi algorithm by
the Forward algorithm when doing inference. In the following, we additionally re�ne
the language model to explicitly detect non-metric content and then investigate how
to select a hidden state from the �ltering distribution (Eq. 2.2) at each time step.
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8.1.1 Dealing with non-metric content

So far, we have assumed that an audio clip only consists of metrical content, and thus
will try to detect beats and downbeats, even if there is silence. To avoid these false
positive detections, we add a ‘silence state’ to our model. This state can be entered
from each tempo state at the end of a beat period with probability pto_silence. From
this state, there are transitions to the beginning of a beat in all tempi with probability
pfrom_silence. It also has a high self-transition probability. To obtain the observation
probabilities P (y|xs) (observing y being in the silence state xs) we can either learn
this distribution from data, or we simply re-use the observation probability of a non-
beat position in the state space. For convenience, we adapted the latter approach.

8.1.2 Inference

So far, we have computed the MAP-sequence either by Viterbi decoding in the discrete
state space (see Chapters 3-7) or by selecting the particle with highest weight at the
end of a piece in the mixed discrete-continuous state space (Chapter 5). For an online
system, we will need to compute the �ltering distribution P (xk|y1:k) (see Section 2.2)
for each time frame k which is the probability distribution over all hidden states xk
given all observations which have happened up to the current frame y1:k. Once we
have computed the �ltering distribution, we have to select one hidden state to �nally
report it. We will call this ‘winning’ state, which will be reported at each frame, the
win-state x̂. In the following we will present three methods how to compute x̂:

Max observation likelihood

The �rst and simplest method is to bypass the DBN and to use the observation proba-
bility directly to select the win-state by

x̂obst = arg max
xt

P (yk|xk). (8.1)

In this case the performance will depend highly on the quality of the observation
model. If complex observation models are used (e.g., RNNs as proposed by Böck and
Schedl (2011)) this method could work su�ciently well.

Max �ltering

The second method is to simply report the state with the highest �ltering probability
by computing

x̂maxt = arg max
xt

P (xk|y1:k). (8.2)
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This method will work well if P (xk|y1:k) has one clear peak. For multi-modal distri-
butions selecting the maximum at each time frame can yield states which jump from
one mode to another.

Constrained max �ltering

Finally, the third method tries to prevent the states from jumping by enforcing conti-
nuity between adjacent win-states. It does so by using another DBN, which uses the
�ltering distribution as ‘observation model’, and then select the win-state as the most
probably state given the last hidden state by

x̂dbnt = arg max
xt

[P (xk|y1:k) ∗Q(xk|x̂k−1)], (8.3)

where Q(xk|x̂k−1) are the probabilities of going from the previous win-state x̂k−1 to
xk. We �rst setQ(xk|xk−1) = P (xk|xk−1) but achieved better results with an extended
transition model: P (xk|x̂k−1) de�nes a set of possible target states x̃k, which can be
reached from x̂k−1 with a non-zero transition probability. We now add additional tran-
sitions from x̂k−1 to all neighbouring states of x̃k (states that sit left, right, above and
below in the state grid) to the transition model. The purpose of this extended tran-
sition model is to enlarge the space where the win-state is chosen from. However,
this method has the problem that the win-state can be stuck with one mode of the
distribution, even if globally this is not the best solution. To prevent this case, we re-
set the win-state to the state with the global maximum �ltering probability, whenever
the probability of the current win-state is below a certain threshold. This threshold
is de�ned as a fraction of the current maximum �ltering probability. I.e., as soon as
P (x̂dbnt |y1:k) < maxP (xk|y1:k)/f , we set the win-state to the state with the maximum
�ltering probability.

8.2 Evaluation

In the following, we will compare the performance of the online tracking model with
the o�ine variant, which uses Viterbi decoding. For the online systems, we compare
the three methods of choosing the win-state presented in Section 8.1.2. The methods
will be compared using the RNN-BeatTracker system described in Chapter 6, but are
applicable to all systems of this thesis.

Generally, there are two challenges for online meter estimation: First, gradual
tempo �uctuations are di�cult to recognize because information from the future is
not available, and second, sudden transitions (e.g., between songs) cause confusion as
the system needs time adapt to a new tempo and phase of beats/downbeats. To test
the system under these two conditions, we generated a special dataset for each case.
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We �rst chose the parameters to maximise the performance on a training set consist-
ing of a modi�ed Beatles and Rock dataset (Section 2.4). Then we give results on the
(modi�ed) Ballroom, and Hainsworth in Table 8.1 and 8.3. As the SMC dataset already
contains tempo variations, we did not modify it there.

8.2.1 Evaluation metrics
For a de�nition of FM, CMLt and AMLt, please see Sections 4.4.2 and 5.5.2. CMLc is
the ration of the duration of the longest correctly detected segment and the length of
a song. In AMLc, double and half of the annotated tempo are also counted as correct,
as well as tapping on the o�beat.

8.2.2 Observation model
For the evaluation, we will use RNNs similar to the ones proposed by Böck and Schedl
(2011). To make them online-capable, we use uni-directional RNNs, and the input
features are computed with a (single) frame length of 2048 bins and 6 bands per octave.
The RNNs were trained by Sebastian Böck.

8.2.3 Data modi�cations
Time-varying tempo

One challenge for an online beat tracking system is to follow a time-varying tempo tra-
jectory. As most datasets mostly contain excerpts with a more or less constant tempo,
we created new datasets: We took existing datasets and introduced a time-varying
tempo curve by time-stretching the audio (and the annotations) using the rubberband
library (Cannam, 2012).

The sequence of modi�ed beat periods {∆′(b) : b = 1, 2, 3, ...}) is de�ned by two
variables: First, the cycle length of the tempo variations in beatsB, which is computed
by

B = cycle_length [min] ∗ tempo [BPM], (8.4)

where we use a cycle length of one minute and tempo is the median tempo of a song.
The higherB, the slower are the induced tempo variations. Second, the extent of tempo
variation as fraction (∆min and ∆max) of the original tempo. Then, we can modify the
original sequence of beat periods {∆(b)} using

∆′(b) = ∆(b) ∗ (sin(2 ∗ π ∗ b
B

) + 1) ∗ ∆max −∆min

2
+ ∆min (8.5)

where ∆(b) is the original inter-beat interval between beat b and b− 1, B is the cycle
length in beats and ∆min, ∆max are the minimum and maximum stretching factors. For
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our experiments, we chose ∆min = 0.7 and ∆max = 1.3. An example of a modi�ed
tempo curve is shown in Figure 8.1, together with the original tempo curve.
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Figure 8.1: Original and modi�ed tempo curve of the song Feeling In My Heart of the
RWC dataset. Here, B = 100, ∆min = 0.7 and ∆max = 1.3

Streaming dataset

To test the reaction time of the system to changing inputs, we created two streaming
datasets, similar to Collins (2006); Oliveira et al. (2012). The dataset consists of 200 data
streams, which again consist of 5 di�erent concatenated excerpts, each 15 seconds long,
separated by 3 seconds of silence. The silence is important for the online use case, as
we do not want the tracker to report any meter events in pauses between songs. The
15-seconds-long excerpts were randomly chosen from any position within a piece. We
created two datasets, one for parameter tuning and one for testing.

8.2.4 Results and Discussion

For the experiments, we use the best performing parameter values on the training
set. These are a tempo transition coe�cient λ = 100 (Section 6.2.3), silence transi-
tion probabilities pfrom_silence = 1e−4, pto_silence = 1e−5, and a reset threshold for the
constrained max �ltering f = 1.5.

Time-varying tempo

The beat tracking results on datasets with varying tempo are shown in Table 8.1. As
expected, modifying the tempo did generally decrease the performance of the systems,
comparing with the scores on the original datasets (Table 8.2). This is clearest when
looking at the continuity-based metrics.
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FM CMLc CMLt AMLc AMLt
Ballroom-tempo

Max observation likelihood 83.5 40.3 60.0 43.1 64.8
Max �ltering 80.4 49.1 61.3 59.1 73.6
Constrained max �ltering 84.0 51.9 63.5 60.8 74.7
Viterbi 86.5 69.4 71.5 87.0 89.8

Hainsworth-tempo
Max observation likelihood 73.2 27.7 50.1 31.3 56.6
Max �ltering 76.7 45.4 60.9 50.9 68.5
Constrained max �ltering 80.0 44.7 60.1 50.8 67.9
Viterbi 83.3 68.1 72.3 79.6 84.3

SMC
Max observation likelihood 28.9 6.2 11.8 8.6 16.0
Max �ltering 39.9 17.2 28.3 22.1 36.7
Constrained max �ltering 40.7 13.4 24.2 17.6 30.6
Viterbi 44.3 27.0 37.5 37.2 53.9

Table 8.1: Beat tracking accuracies on the tempo modi�ed datasets.

The SMC set seems to be the most di�cult one, as the scores are drastically lower
than the other sets. This set contains expressive tempo curves which are apparently
less predictable than the tempo modulation that we have introduced.

Obviously, the o�ine version (using Viterbi) performs best in all metrics over all
datasets. Comparing the online systems, we �nd that the max-�ltering approach per-
forms best in most situations. Adding constraints on the possible target states (Con-
strained max �ltering) did not improve the performance in the majority of cases.

Streaming

The results on the streaming dataset are shown in Table 8.3. Obviously, the CMLc
and AMLc values are lower than on other datasets. Interestingly, the simple max-
observation-likelihood approach performs very well here. This can be explained by
the fact that in the streaming scenario, continuity is very di�cult to achieve for an
online system. Therefore, the impact of the post-processing DBN, which smooths the
beat trajectory, is lower. It is more important to follow fast changes in the music, and
the max-observation-likelihood approach has the lowest reaction time.
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FM CMLc CMLt AMLc AMLt
Ballroom

Max observation likelihood 84.8 50.8 67.6 53.1 71.8
Max �ltering 86.6 62.6 73.1 67.7 79.8
Constrained max �ltering 86.5 61.7 72.8 66.6 79.5
Viterbi 89.5 77.7 81.9 85.9 90.7

Hainsworth
Max observation likelihood 72.4 38.1 54.6 44.0 64.5
Max �ltering 78.1 52.9 62.0 63.1 76.0
Constrained max �ltering 78.0 52.2 61.9 61.9 75.7
Viterbi 82.4 67.2 71.8 83.8 90.0

Table 8.2: Beat tracking accuracies on the original (not tempo-modi�ed) datasets.

FM CMLc CMLt AMLc AMLt
Ballroom-stream

Max observation likelihood 83.2 21.7 64.1 21.9 64.4
Max �ltering 82.7 20.9 64.4 21.2 64.5
Constrained max �ltering 82.4 20.8 64.1 21.0 64.2
Viterbi 87.7 40.6 74.2 40.7 74.2

Table 8.3: Beat tracking accuracies on the streaming dataset.

8.3 Conclusions
Our meter analysis system can easily be turned into an online-capable system by re-
placing the Viterbi decoding by the forward path. We compared three methods to
select a ‘winning’ state which is then reported to the user online. We �nd that se-
lecting the most probable state based on the �ltering distribution leads in average to
the best performance in both conditions of changing tempo and concatenated excerpts
(streaming).





Chapter 9

Applications, Code, and Data

In this chapter, I present applications, code and a dataset that have been developed
during the time of writing this thesis.

9.1 Applications

9.1.1 The automatic ballroom instructor

The automatic ballroom instructor is a system that teaches people how to dance to the
(ballroom) music. With the technology presented in this thesis it is possible to obtain a
metrical analysis of an audio clip. This metrical analysis can then be used to synchro-
nise a video of dance moves to any given music piece. The synchronisation can either
be done o�ine (in order to study dance moves at home), or online (assisting while
you are dancing in a concert), similar to the system of Eyben et al. (2007). The system
described in Chapter 3 can discriminate between eight standard ballroom dances and
can therefore be used to automatically select the right dance moves.

An o�ine variant of such a system has been implemented by Martin Ennemoser
as part of a student’s project. Dance moves are prede�ned by storing the coordinates
of the feet at each metrical position in con�guration �les. The user can then load an
audio �le, run the meter analysis and �nally watch a video of the synchronised dance
videos along with the music. A screenshot of the application is shown in Figure 9.1.

9.1.2 Drumotron 3000

The Drumotron 3000 is a real-time drum accompaniment system, which is able to listen
to a live-musician, analyse the meter, and accompany the musician on an acoustic drum
set (see Figure 9.4a). The main components are depicted schematically in Figure 9.2.
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Figure 9.1: The automatic ballroom dance instructor

Figure 9.2: Drumotron 3000 system overview

A musician plays an instrument (usually guitar or piano). The sound is converted
to a digital signal by a microphone and a A-D converter within an audio interface. It
enters the perception model, where features are extracted, the observation likelihood is
computed and �nally metrical parameters such as tempo and bar position are inferred.
These musical attributes are then converted into instructions for the drum robot: Given
the bar position and a prede�ned drum pattern, it can be determined whether and
which drum should be hit at a certain time. If the case, the command to hit the drum
is sent to the control model. The control then sends signals to the servos which �nally
beat the speci�ed drum.

Perception Model

The main task of the perception model is to analyse the meter of the audio input. It
takes an audio signal as input, and outputs metrical parameters such as tempo, bar po-
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sition, and rhythmic patterns. Since the beginning of writing this thesis, two versions
(D2015 and D2016) of the perception model have been developed.
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Figure 9.3: Patterns of the D2015 perception model.

Software D2015 was developed in 2015 and is mainly based on the work presented
in Chapter 3 and 6. I use GMMs as observation model and model bars, tempo and
rhythmic patterns, using the improved state space of Chapter 6. D2015 was mainly
used in presentations for students, where I modelled the four rhythmic patterns shown
in Fig. 9.3. For inference, the constrained-max-�ltering approach (see Chapter 8) was
found to be the best performing and therefore has been used. D2015 is available in
MATLAB for prototyping as well as in C++ for live demonstrations.

D2016 is being developed while writing this thesis in 2016. It uses the RNN-based
observation model of Böck et al. (2016b) and models bars and tempo (no rhythmic
patterns). As outlined in Chapter 8, the max-�ltering inference approach was found to
work best with this con�guration.

Hardware D2015 runs on a MacBook Pro with i5 Dual-Core @2.4 GHz. D2016 is
expected to run on a Raspberry Pi 3 Model B with a quad-core CPU @1.2 GHz.

Control model

The control model processes the metrical parameters output by the perception model,
and sends commands to the drum robot whether and which drum to beat.

Software The control model of version D2015 was developed by Harald Frostel and
Rainer Kelz in C++ and Python. For each rhythmic pattern of the system, a drum
pattern has been de�ned, which determines which drum has to be beaten at which bar
position. Currently, Sebastian Böck and I are working on version D2016 of the control
model, which will run in pure Python/Cython.
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Hardware An Arduino microcontroller is connected to the MacBook / Raspberry Pi
via USB, and redirects the control signals to the servos which are attached to the single
drums of the drum set (see Figure 9.4b).

(a) Musician jamming with Drumotron 3000 (b) Robot’s snare arm

Figure 9.4: Drumotron 3000

Drum robot hardware

The hardware of the drum robot has been built by Rainer Kelz and Martin Preinfalk. It
features four actuators, three driven by Modelcraft RS-2 Servos (for hi-hat, snare and
one tom-tom drum), and one driven by a high power linear solenoid for the bass drum.

Practical issues

During the time of this thesis I did several demonstrations of the drumotron 3000 sys-
tem version D2015 accompanying a guitar player. Here are some subjective comments
on the performance in practice. I found that following the player worked very well,
even if the musician smoothly changes the tempo. Silence detection also worked very
well. The main limiting factor was the dependency on the trained rhythmic patterns.
Every time the musician played against the prede�ned patterns of the model, it would
fail tracking the meter. But adding more and more patterns to the model increases the
computational cost at one hand and leads to confusions between patterns on the other
hands. This is also the main reason for developing version D2016 of the system. D2016
employs RNNs as observation model and does not explicitly model rhythmic patterns
any more. I expect the new version to generalise much better over a variety of music
styles.
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9.2 Code
Most of the code which was developed for this thesis is published as part of two soft-
ware toolboxes

BayesBeat is a MATLAB package for inferring metrical structure from musical au-
dio using probabilistic models. It contains most of the material presented in Chap-
ters 3, 5, and 6, and was used by Holzapfel et al. (2014); Srinivasamurthy et al. (2015);
Holzapfel and Benetos (2016); Srinivasamurthy et al. (2016); Holzapfel and Grill (2016).
It is written in MATLAB/C++ and available for download1.

madmom is a PYTHON module for audio signal processing (Böck et al., 2016a). It
contains most of the material presented in Chapters 3, 6, 7 as well as other works I
contributed to, but which are not part of this thesis (Böck et al., 2012b,a; Böck et al.,
2014, 2015, 2016b). It is written in Python/Cython and available for download2.

9.3 Data

9.3.1 The Ballroom Dataset
Th Ballroom dataset was originally set up by Gouyon et al. (2004, 2006) for the purpose
of genre classi�cation and tempo estimation. The authors downloaded 698 publicly-
available music excerpts, each around 30 seconds long, including annotations of tempo
and dance style.3. Later, Dixon et al. (2004) annotated the �rst bar of each excerpt for
their work on genre classi�cation. For this thesis, I added beat and downbeat annota-
tions, which are publicly available for download.4 I use a version control system to be
able to correct the annotations once new errors are identi�ed. For the works in this
thesis, I use version 1.2 of the annotations.

Sturm (2014) discovered that the original dataset contained 13 replicas. Therefore,
I removed the replicated pieces and use only the remaining 685 unique excerpts in this
thesis.

Audio quality According to Gouyon et al. (2004), ‘the audio quality of this data is
quite low, it was originally fetched in real audio format, with a compression factor of
almost 22 with respect to the common 44.1 kHz 16 bits mono WAV format.’

1https://github.com/flokadillo/bayesbeat
2https://github.com/CPJKU/madmom
3The data was originally fetched from http://www.ballroomdancers.com/Music/style.as. Now the

dataset can be found under Gouyon (2006)
4https://github.com/CPJKU/BallroomAnnotations

https://github.com/flokadillo/bayesbeat
https://github.com/CPJKU/madmom
http://www.ballroomdancers.com/Music/style.as
https://github.com/CPJKU/BallroomAnnotations
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Meter annotation strategy It is a well known problem that annotators disagree on
the metrical level of a musical piece. For creating the meter annotations, I relied on
the tempo restrictions that are given by the dance style label of the ballroom dances.
I therefore chose the metrical level of the beats according to the provided tempo an-
notations. Note that this might cover only one part of the truth. Intros that do not
contain any musical content were skipped. Generally, the dataset was annotated using
two stages: First, I used the beat tracker of Böck and Schedl (2011) to interpolate the
(manual) bar annotations kindly provided by Dixon et al. (2004). Then, I went through
the dataset several times and manually corrected the beat and downbeat times.

Dance style # excerpts tempo mean tempo std
Cha-Cha-Cha 107 122.6 2.12
Jive 60 165.9 2.36
Quickstep 81 204.0 3.16
Rumba 95 99.0 2.52
Samba 83 100.0 1.99
Tango 86 127.3 3.28
Viennese 65 177.6 3.31
Waltz 108 85.9 4.23
All 685 130.0 2.89
RWC classical 61 112.9 16.91
SMC 217 78.0 12.98
Rock 200 115.9 5.93
Carnatic 176 120.7 5.84
Beatles 179 117.4 4.80
Hainsworth 222 114.9 4.57
GTZAN 999 119.6 3.79
Ballroom 685 130.0 2.89
RWC pop 100 113.7 2.35
HJDB 235 152.2 2.07

Table 9.1: Tempo statistics

Dataset statistics The number of excerpts, tempo mean and tempo standard devia-
tion for each dance style of the ballroom dataset as well as other datasets are shown in
Table 9.1. The tempo mean is determined by computing the median tempo of each song
and then computing the mean over the medians. For the tempo standard deviation, I
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�rst ‘normalise’ each song to a median tempo of 120 BPM, compute the standard devi-
ation for each song, and then compute the mean over the standard deviations. As can
be seen from Table 9.1, Waltz, Tango and Quickstep have the most expressive tempo,
as measured by the tempo standard deviation. But, in comparison to other datasets
(see bottom of Table 9.1), this expressiveness is low. In fact, only the HJDB and the
RWC pop dataset have less tempo variability. From this we can tell that the dataset is
rather easy for automatic beat tracking, due to small amount of tempo variation. In
this aspect, the SMC and RWC classical datasets pose a more di�cult and interesting
challenge.





Chapter 10

Conclusions

In this thesis, several methods for analysing the meter of music have been presented.
Below, I summarise the key �ndings, and give ideas for future work.

Feature learning is a must. Recent advances in machine learning have shown the
superiority of automatic feature learning over hand designed features. In the yearly
MIREX 1 audio beat tracking evaluation, approaches using automatic feature learning
outperform hand-designed approaches by a margin of 10% on average. For example,
the best F-measure score on the MCK dataset is 63.9 for SB9.2016 (the best score by
a machine learning approach) and 53.7 for the JZ2.2014 (the best score of a ‘hand-
designed’ approach so far). This is also valid for more complex tasks such as downbeat
tracking with usually more then 20% di�erence in F-measure2.

Use common data and splits for evaluation. For future developments in the �eld
of automatic meter analysis, it is indispensable to have common, open datasets with
prede�ned train/test splits to be able to compare systems and system components in a
rigorous way. For example, downbeat tracking systems using RNNs, CNNs, and GMMs
have been proposed, but so far no fair comparison has been undertaken. Such a com-
parison will need a pre-de�ned training/validation/test data protocol with public data
and a �xed low-level data representation in the style of the ImageNetchallenge (Rus-
sakovsky et al., 2015).

Guide the training process. During the evaluation of the systems I found that sim-
ple rules like ‘downbeats are more likely when the harmony changes’ or ‘time signa-
ture changes occur very rarely’ are not always captured by the learning method. This

1http://www.music-ir.org/mirex/wiki/MIREX_HOME
2http://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results
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is also the reason that the DBN post-processing still has such a big impact on the re-
sults (see for example Table 7.2). The ultimate goal is to have strong feature learners
that can solve a task in an end-to-end manner without any hand-designed intermedi-
ate stages, as it already has been pursued for speech recognition (Hannun et al., 2014).
One important prerequisite to achieve this is a representative training corpus. This
corpus should be tailored to contain enough stimuli for the feature learner to learn
certain rules. For example, if I want the RNN to learn that downbeats occur at har-
mony changes, I could, for example, design a dataset where harmonic change is the
only cue to recognize downbeats. Hopefully, this would force the learner to take it
into account. Or, one could apply multi-task learning (Caruana, 1997) and guide the
training process by solving two tasks at the same time. For example, joint training
of chords and downbeats detection could make it easier for the learner to capture the
relationship between harmony and downbeats. Another option is to design a feature
(by hand) that represents harmony and nothing else (e.g., normalised chroma vectors)
and feed this single feature to the learner (Papadopoulos and Peeters, 2011; Durand
et al., 2015; Krebs et al., 2016). Due to the restricted input, the system is forced to learn
the relation between harmony and meter.

Revisit the evaluation methods. Meter analysis is highly subjective, as well as
potentially ambiguous (Stobart and Cross, 2000). Often, it is hard to decide whether
a music piece is in 2/4 or 4/4. Sometimes, even both of them occur together at the
same time, e.g., the guitar plays in 4/4, while the drums play in 2/4. In these cases,
both annotations and evaluation metrics have to take into account this ambiguity and
subjectivity. In the long run it is unavoidable to have multiple annotations of a piece,
covering multiple annotators as well as multiple annotations per annotator. In ad-
dition, large-scale listening tests should be performed in order to test the perceptual
relevance of currently used evaluation metrics, in the line of Davies and Böck (2014).
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