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Abstract 

English Version: 
Nowadays computers start to replace the hi-fi system in living rooms all over 
the world. This opens up more and more possibilities for the user to gain addi-
tional information for the song currently played. One kind of information is the 
lyrics; that is what my diploma thesis deals with. The goal is to provide a pro-
gram that is able to automatically align the lyrics to the audio signal. This way 
the annoying scrolling of the lyrics while listening to a song is not necessary 
anymore. 
 

Deutsche Version: 
Heutzutage verdrängen Computer mehr und mehr die HiFi-Anlage im Wohn-
zimmer. Dadurch ergeben sich immer mehr neue Möglichkeiten für den Benut-
zer, zusätzliche Informationen zu dem gerade gespielten Lied zu erlangen. Eine 
dieser Informationen ist der Liedtext, der das Hauptthema in meiner Diplomar-
beit darstellt. Der Text eines Songs soll dabei automatisch mit dem Audiosignal 
synchronisiert werden. Das ermöglicht es dem Benutzer, den Text beim Anhö-
ren des Songs mitzulesen, ohne, dass dabei ein manuelles Scrollen notwendig 
wäre. 
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"Music is everything one listens to with the intention of listening to music." – 
(Luciano Berio, pioneer of electronic music) 
 



1 Introduction 

1.1 Development of Intelligent Music Processing 

Nowadays the computer is more and more replacing the hi-fi systems. This is a 
development which can mainly be observed in the last ten years only. During 
the 1980s nobody even thought about storing music on a computer. One song 
would have filled the whole hard drive of an average computer system. But in 
the early 1980s the “Big Bang” of the digital audio revolution was reached with 
the invention of the Audio CD. Until then audio data could only be stored in an 
analogue way, which often suffered from quality loss after every play back (e.g. 
music cassettes). However, audio files in CD quality were still too big to be 
stored on hard disks. This changed immediately when the Fraunhofer Institute 
released the first software MP3 encoder in 1994. Because then also the hard 
disks reached an acceptable size for storing multi media data, many people 
started to archive their music collection on their PC. Furthermore when Shawn 
Fanning and Sean Parker released the first version of their peer-to-peer file 
sharing tool “Napster” in 1999, people started to share their music collections 
with the whole world [WIK06].  
As a consequence music and computers were growing together very fast. This 
also means that there emerged more and more new application areas for digital 
music. We can now create our own compilations on recordable CDs, take our 
music with us wherever we want by using small mp3 players and so on. The 
computer is currently starting to replace the hi-fi system in our living rooms. 
Therefore many new research areas like e.g. “Automated Playlist Generation” 
arose in the last few years. One of these interesting research areas is the topic of 
my diploma thesis: “Automatic Audio & Lyrics Alignment”. 



Introduction  2

1.2 Motivation 

1.2.1 Application Areas for Automatic Lyrics Alignment 
Many people all over the world listen to music every day. But listening to music 
and understanding the lyrics of the song are two different things. Because it is 
sometimes very difficult to understand every word, people want to have the lyr-
ics of a song in a written form. However, often – especially for long lyrics – the 
user has to scroll through them manually while a song is played. So it would be 
more comfortable to only show the lyrics for the currently heard section instead 
of permanently displaying them for the whole song. 
This is one point leading to the topic of my diploma thesis – the automatic 
alignment between audio and lyrics. But there are two other important reasons 
for the need of an automatic way to align the lyrics to the audio data. The first – 
and perhaps most commercial one – is the automatic creation of karaoke songs. 
Manual annotation of the right lyrics timings is an exhausting work which 
would become much easier. Especially for large song collections an automatic 
approach would save much time. 
Another interesting application where alignment of lyrics and audio data can be 
useful is the possibility to search for or even jump to certain words in a song. 
So if it is known e.g. that the song contains the word “dog” it would be very 
hard to find it in the raw audio data. But if the lyrics are already aligned to it, it 
is much easier to find the right location. 

1.2.2 Main Reason for Choosing this Topic 
Many online lyrics portals have emerged in the last years. However, there are 
some problems when trying to find the lyrics for a certain song. The portals do 
not contain lyrics for all songs and if lyrics for the same song are found on sev-
eral portals, they are mostly different. This can be caused by simple typos, dif-
ferent words, different annotation styles or even different versions of the same 
song. 
Peter Knees, Markus Schedl and Gerhard Widmer from the Department of 
Computational Perception at the Johannes Kepler University Linz developed an 
approach to automatically retrieve and extract lyrics of arbitrary songs from the 
internet [KNE05]. In addition to this basic search feature their method also 
compares all found lyrics and returns the most probable version of them. This 
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makes a lot of sense since the lyrics often contain different spellings for the 
same word. A good example of this is the slang term cause which is often writ-
ten as ‘cause, ‘coz, cuz, or even correctly as because. Another problem the sys-
tem has to face is that people who submit lyrics to the online portals often do 
not understand the same words while listening to a song and writing down its 
lyrics. This is a well-known issue and the lyrics pages have already reacted to it 
by providing the possibility to rate the quality of lyrics or to allow the users to 
submit corrections. Very common problems are different versions and transla-
tions of a song, because the artist and the title stay the same but the returned 
lyrics will often differ significantly. A further barrier when comparing lyrics is 
that they often contain annotations like for example information about the sec-
tion (e.g. [Chorus]) or the performing artist (e.g. [Snoop – singing]). To avoid 
redundancies and unnecessary typing effort, lyrics mostly are not written com-
pletely. Instead of writing the full chorus out three times it is often written only 
once. Later chorus sections are simply expressed by annotations like Chorus or 
repeat chorus. The approach of Knees et al. respects all these issues in order to 
extract the best possible lyrics. It then estimates the quality of the predicted text 
so the user is able to decide if he will be satisfied with the results.  
This existing system could perhaps be improved by a good alignment between 
audio and lyrics. It could decide better if certain sections, lines or even words 
make sense at the estimated position. This is the main reason why I chose this 
topic for my diploma thesis. 
There are enough useful application areas which can be improved by a good 
alignment between audio data and lyrics. Therefore we will now take a closer 
look what the actual goal of my work is. 

1.3 Goal 

Aligning lyrics to the audio signal is anything but a trivial task. Many people 
cannot believe that it is hard to find out the lyrics the performer is singing. For 
us it is no problem indeed to hear what a singer is singing, but for a computer it 
is often nearly impossible to distinguish between human voice and other in-
struments. This becomes clear very fast when speech recognition software is 
used in a normal office environment. The ringing phones and talking people can 
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already be enough to make the software produce unsatisfying results. However, 
in contrast to the singer’s voice in a tune these are almost perfect conditions.  

Figure 1-1: Frequency spectrum of a drum. 

The aligning system has to face many disturbing factors in a song. Accompany-
ing instruments confuse the speech recognition algorithms. Especially percus-
sion instruments such as drums occupy a broad range of frequencies (see Figure 
1-1). Therefore they also overlay the frequencies of the human voice.  
But even if an acapella version of a song were used it would be impossible to 
extract the lyrics with a speech recognition algorithm. The reason for this is that 
there are big differences between spoken and sung voice. When a closer look is 
taken at sung voice the phonemes are either stretched or jolted in comparison to 
normal speech [WAN04]. But because speech recognition software was opti-
mized for recognizing speech, it is clear that it will not work for sung voice. 
 
Another naïve approach is to try it the other way round. This means to synthe-
size the speech from the lyrics and try to find similar patterns of the resulting 
audio data in the original song’s audio data. Although the algorithms for syn-
thesizing human speech got really powerful in the last years [TTS06], this is 
almost impossible.  
There are several reasons why this approach does not work well. The main 
problem again is that the synthesized voice is speech and therefore very hard to 
match against the sung vocals in a song. Although there already exist algo-
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rithms that can synthesize sung vocals [YAM06] the results will not be of suffi-
cient quality to use it for the alignment. I already tried out the demo version of 
this software.2 After that I came to the conclusion that it would be much more 
effort to handle this synthesizer and rebuild the vocals of the whole song than to 
align the lyrics manually. Furthermore the right timings for all the sung words 
would have to be known in order to synthesize the vocals of the songs. This 
leads to a vicious circle because to find the right timings is the goal of the 
aligning method. Another reason why this approach does not work is that it is 
very hard to find the right locations for the lyrics in the audio signal even if a 
perfect acapella version would be used. However, the synthesized vocals will 
never reach the quality of an acapella version. 
Consequently a better solution is needed to solve the lyrics alignment exercise. 
A very promising approach was done by Ye Wang et al. In their paper “Lyri-
cAlly: Automatic Synchronization of Acoustic Musical Signals and Textual 
Lyrics” [WAN04] they present a method that divides the task into two subtasks. 
First they try to figure out the structure of the song by finding sections like In-
tro, Verse, Chorus, Bridge and Outro. This leads to a rough alignment of the 
lyrics and audio sections. After that they complete the alignment process with a 
per line alignment. This means that in each section every single text line is also 
aligned to the audio data. Since this would go beyond my time capacities, the 
main goal of my diploma thesis is to achieve the rough section alignment. More 
details about this approach are described in chapter 3 .  
 

2 http://www.zero-g.co.uk/media/mp3/Vocaloid_Demo_Version.zip, 08 2006 



2 Basic Knowledge 

2.1 Digital Representation of Audio Data 

Audio in nature is simply the oscillation of air reaching the human ear. The 
variations of air pressure are analogue (see Figure 2-1). 
 

Figure 2-1: Continuous analogue signal. 

 
If this signal should be stored in a digital way an infinite memory would be 
needed because of its analogue character. To avoid this, an abstraction layer has 
to be inserted. It reduces memory usage and approximates the original signal as 
well as possible. The first idea is to only save the amplitude value at certain 
time positions. Instead of infinite data points now only a finite set of values has 
to be stored. The frequency at which the sample values are fetched is also called 
sampling rate [STE96] or sampling frequency [VAS00]. It is shown as green 
vertical lines in Figure 2-2. 
 

Figure 2-2: Sampling rate. 

Time 

Amplitude 

Time 

Amplitude 
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Hence only 27 values have to be stored in this example to reconstruct an ap-
proximation of the original signal. The signal reconstructed by using the sample 
points (represented by the red line in Figure 2-3) does not completely match the 
original signal. But nevertheless it is a very good approximation. So the human 
ear will not notice the difference for a sufficiently high sampling rate. 
 

Figure 2-3: Reconstructed signal (red line). 

However, the lower the used sampling rate the more the reconstructed signal 
will differ from the original one. In Figure 2-4 a too low sampling rate is used. 
It can be observed that the reconstructed signal is totally different from the 
original one and that at the beginning even a whole valley is left out. 
 

Figure 2-4: Too low sampling rate. 

The reason for this behaviour is that the Nyquist sampling theorem [VAS00] 
was violated. This theorem is one of the basics of Digital Signal Processing. It 
says that the sampling rate has to be at least twice as high as the highest ob-
served frequency (=Nyquist Frequency) in the original signal. That is a quite 
logical fact because one oscillation always contains a hill and a valley. As a 
consequence at least two values (one positive and one negative) have to be 
sampled for each oscillation in order to not lose the information about one hill 
or valley (see Figure 2-5). 
 

Time 

Amplitude 

Time 

Amplitude 
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Figure 2-5: One oscillation. 

While now memory usage was reduced along the time axis, there are still infi-
nite possible values for the amplitude. Thus another abstraction has to be intro-
duced along the amplitude axis. This abstraction defines the accuracy of the 
stored amplitude values at the sampled time and is called bit rate. It defines 
how many positions the amplitude values may have. In Figure 2-6 some of the 
sampled amplitude values do not fit on the horizontal lines. These values will 
then get rounded off to the nearest integer which is also called quantising level 
[STE96] (blue lines in Figure 2-6). 

Figure 2-6: Bit rate. 

Of course this costs some precision but for good bit rates there is no noticeable 
quality loss. The lower the bit rate the lower the memory usage and the quality. 

Time 

Amplitude 

Hill 

Valley 
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An example of a common sampling rate and bit rate configuration is CD quality 
audio. It is defined by using a sampling rate of 44100 Hz (about twice the high-
est frequency the human ear is able to hear) and a bit rate of 16 bit. 16 bit 
means that the amplitude value can have 216 = 65536 possible values, which is 
enough for a crystal clear quality. But CD quality of course has the disadvan-
tage that it needs a lot of memory: 
 

� 44100 values in one second with 16 bit (= 2 bytes): 
44100  *  2 = 88200 bytes = 86.13 KB 

� For stereo we have to use two channels: 
86.13  *  2 = 172.26 KB/s 

� This means for one minute of audio in CD quality: 
172.26 * 60 = 10335.60 KB ≈ 10 MB 

 
As a summary it can be said that digitally stored audio data is a long sequence 
of amplitude values. So every channel is represented by a vector which can be 
used later to extract certain features from the audio signal. 

2.2 DFT, FFT & Inverse DFT 

2.2.1 DFT 
Digital audio is represented by a long numeric vector. However, the individual 
values in this vector only represent the value of the amplitude at a certain time. 
This information by itself is mostly useless for extracting helpful features from 
the audio data. But much more important is to know of which frequencies the 
signal consists. Therefore in digital signal processing the Discrete-Time Fourier 
Transformation (DFT) [STE96] is used to transform the signal from the time 
domain into the frequency domain. The DFT is given by the formula: 

Nitk
N

t
tk exX /2

1

0

π−
−

=
∑= 1,...,0 −= Nk

In this definition of the DFT e is the base of the natural logarithm, t is the index 
for the current value in the input vector x and i is the imaginary unit (i2 = -1). 
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Here the finite sequence of N numbers (representing the signal) x0,…,xN-1 is 
transformed into a sequence of N complex numbers X0,…,XN-1, representing the 

frequency spectrum of the signal. The returned values kX correspond to the 

energy measured at a certain frequency of the spectrum. The frequency spec-
trum of the DFT ranges from zero to the sampling rate. Therefore it is important 
that the measuring frequencies for the returned values must all reside equally 
spaced in this interval.  

Figure 2-7: Measuring frequencies shown at the unit circle. 

Figure 2-7 visualises the placement of the measuring frequencies (red points) at 
the unit circle with 8=N . The frequencies from zero up to the sampling rate 
are wrapped around the circle counter-clockwise, starting at the measuring point 
labelled with “0”. Because in the unit circle the radius is 1, the circumference of 
this circle is π2 . By splitting it into 8=N equal parts, the distance between 

two parts is 8
2π . Hence in this example the energy values returned by the DFT 

are measured at the frequencies 8
20 π⋅ , 8

21 π⋅ , 8
22 π⋅ , 8

23 π⋅ , 8
24 π⋅ , 8

25 π⋅ , 8
26 π⋅

and 8
27 π⋅ . Now the rule for placing N measuring frequencies equally spaced in 

this interval is simple: 
 

)/2)(1(...,),/2(2),/2(1),/2(0 NNNNN ππππ − .

This leads to the factor Nk /2π in the exponent of e (where 10 −≤≤ Nk ). 
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2.2.2 FFT 
Since the DFT is only a mathematical concept for transforming the signal into 
the frequency domain, efficiency is not important. But in reality it would simply 
get too slow for great amounts of data. This is the reason why in practice only 
the Fast Fourier Transformation (FFT) is used for computing the DFT effi-
ciently. There exist a lot of algorithms for the FFT but the most common one is 
the Cooley-Tukey algorithm [COO65]. It is a divide and conquer algorithm that 
recursively breaks down a DFT of any composite size N = N1N2 into many 
smaller DFTs of sizes N1 and N2. This is repeated until the level where only one 
element is left. Since the calculation of the DFT for one element is trivial 

( 00 xX = ), the only task is to bring the result values into the right order. Hence 

the FFT manages to break down the complexity of the DFT from )( 2NO to 

)log( NNO .

2.2.3 Inverse DFT 
The inverse DFT [STE96] is defined as  
 

Nitk
N

k
kNt eXx /2

1

0

1 π∑
−

=
= 1,...,0 −= Nt .

This means that in contrast to the DFT the exponent of e is negated and the re-
sult of the sum is normalized by N

1 .

In mathematics the complex conjugate of a complex number z is defined by 

changing the sign of the imaginary part. It is commonly denoted by *z . The 

result of multiplying the inverse DFT by N and complex conjugating the input 

( kX ) and output values ( tx ) is 

 

Nitk
N

k
kt eXNx /2

1

0

** π−
−

=
∑= 1,...,0 −= Nt .

It can be seen that the right side of the equation is nothing else than the DFT of 
*
kX . Hence it can be said that when calculating the DFT of the complex conju-
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gates of kX the result are nearly the original signal values tx , that is to say 
*
tNx . Therefore it is very easy to calculate the inverse DFT: 

 
1) Take the complex conjugate of the signal. 
2) Calculate the DFT. 
3) Take the complex conjugate of the result and divide it by N .

2.3 Window Functions - The Hann Window 

Unfortunately it is impossible to use the FFT for transforming the signal into 
frequency space exactly at a certain location. The reason for this is that oscilla-
tions always occur over time. Therefore they cannot be observed by only ana-
lysing a certain position. So for frequency analysis always a period of time has 
to be used. Of course this period can be kept very small. It is defined by a so 
called window function. In digital signal processing, a window function is a 
function that is zero-valued outside of some chosen interval. The window size 
defines the length of this interval in samples.  
Many different window functions are used in digital audio processing. For in-
stance, a function that is constant inside the interval and zero elsewhere is 
called a rectangular window. When multiplying the audio signal by this win-
dow function, the product is also zero-valued outside the interval. Everything 
which is left is the “view” through the window.  
In order to smooth the borders of the window, a Hann window is used in my 
implementation. It is given by the following formula: 
 

))2cos(1()( 2
1

N
nnw π−= ,

where Nn ≤≤0 and the window size 1+= NL .

Figure 2-8 shows a Hann window. In Figure 2-9 the schematic “view” through a 
Hann window is shown. Only the red parts of the signal will be left after the 
multiplication. The grey parts will be zero afterwards. 
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[Source: http://en.wikipedia.org/wiki/Hann_window, 06 2006] 

Figure 2-8: Hann window. 

 

Figure 2-9: “View” through a Hann window. 

 
Figure 2-10 compares the application of a rectangular window function (top) 
and a Hann window in the time and frequency domain. The time domain is dis-
played on the left and the frequency domain on the right side. In the first case 
the frequency spectrum contains small aberrations which are caused by the sud-
den endings of the signal. A Hann window can smooth these endings and there-
fore the aberrations in the frequency domain are eliminated. 
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Source: http://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing/spectralwindowingpix/fftwindowingdemo.png, 07 2006 

Figure 2-10: Rectangular and Hann window functions applied on signal. 

2.4 Calculating the Frequency of a Note 

The frequency of a certain note can be calculated very easily because the dis-

tance between two notes is logarithmically distributed by the factor 12/2n .
Given the frequency of any note, the frequency of all other notes can be calcu-
lated by: 
 

givenNotetesearchedNoforn
givenNotetesearchedNoforn

notestartingfromawaynotesofnumbern
tingNoteFreqOfStarFreq n

<<
>>

⋅=

0
0

...
2 12/

Example 1: 
Given the frequency of A2 (=110 Hz), the frequency of E3 (which is 7 semitones 
above A2) should be calculated. 
 

HzFreq
n

FreqFreq

E

n
AE

81.1542110
7

2

12/7

12/

3

23

=⋅=
=

⋅=
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Example 2: 
Given the frequency of A2 (=110 Hz), the frequency of C2 (which is 9 semi-
tones below A2) should be calculated. 
 

HzFreq
n

FreqFreq

C

n
AC

41.6521102110
9

2

4/312/9

12/

2

22

=⋅=⋅=
−=

⋅=

−−

The techniques described here will be necessary for understanding the imple-
mentation details in the chapters 3 and 4 . 
 



3 The Process of 
Lyrics Alignment 

In chapter 1.3 was already mentioned how lyrics alignment will not work. Now 
some existing approaches for the automatic alignment of lyrics are presented. 

3.1 Approach 1: Chi Hang Wong et al. 

In [WON05] a first method for automatic lyrics alignment is described. It 
mainly uses the assumption that the recording engineer would make the vocal 
part of popular music in centre position of the stereo signal. This means that the 
vocals can be heard in equal loudness on both channels. In contrast to this most 
musical instruments are recorded in stereo. Therefore it is tried to separate the 
vocals from the instruments and enhance the signal containing the vocals. 
Figure 3-1 shows the block diagram of this approach. 

Figure 3-1: Block diagram of the approach presented in [WON05], p. 385. 



The Process of Lyrics Alignment  17

The approach consists of four main steps: 
 

1) The system tries to enhance the vocal signal. To achieve this, the two 

channels )(tsl and )(tsr of the stereo signal are described by 

 

)()()( tststs l
mcl +=

)()()( tststs r
mcr += ,

where )(tsc is the centre-padded signal which is the same in both the 

left and right channel. )(tsl
m and )(tsr

m are the non-centre-padded parts 

of the two channels. By subtraction of both channels, the reduced centre-

padded signal )(tsC is obtained.  

 

))(()()()()( tststststs r
m

l
mrlC

−+=−= .

With it, the centre-padded signal can be extracted by nonlinear spectral 
subtraction [VAS00]. This means that both the original signal (taken 

from the left channel) and )(tsC are first transformed into frequency 

space using the FFT. Then 2
)(ωCs is subtracted from the spectrum of the 

original signal. Finally the inverse FFT is applied in order to obtain the 

estimated centre-padded signal )(ˆ tsC .

However, )(ˆ tsC does not only contain vocals, but also includes some 

other instruments such as drums and bass guitar. It is assumed that these 
instruments are more or less stationary in parts where no vocals are pre-
sent. From these instrumental parts, an average spectrum is calculated. It 
is used for attenuating the instruments in the centre padded signal using 
the spectral subtraction again. In [WON05] the result is called the “vocal 
enhancement signal”. 

 
2) Now the onset detection is used to find the timings of each sung word in 

the vocal enhancement signal. In order to find onset timings, the signal 

is divided into small segments with the window size sw . For every seg-
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ment the energy is calculated. An onset is detected, if the energy differ-
ence between two consecutive time segments is above a threshold ε .

3) The feature extraction module extracts pitch and distance features. This 
paper concentrates on songs with Cantonese lyrics. Cantonese is a tonal 
language which means that every word in it corresponds to a certain 
pitch. So the composers of Cantonese songs cannot use arbitrary words 
in their lyrics. This means that they have to choose certain words for a 
certain pitch in the melody. Consequently the relative pitch feature 
(pitch difference between the current and the last word) of a Cantonese 
word is important for matching the textual lyrics to the right pitch of the 
melody. Therefore two pitch features are calculated – one for the lyrics 
and one for the signal.  
The distance features describe the distance between two words. They are 
again calculated separately for textual lyrics and for the audio signal. 

 
4) The features extracted in step 3) are used for Dynamic Time Warping 

(DTW) [JUA84]. DTW is a robust algorithm in Automatic Speech Rec-
ognition [RAB85], [MIL95] for matching two sequences with the best 
time alignment. It generates an error matrix, which is finally backtracked 
along the path with the minimum accumulated error to find the best 
alignment. 

 
This approach is not very promising because the experimental results show a 
very low aligning accuracy. Furthermore it is unusable for the purpose of this 
diploma thesis since the whole approach is based on the Cantonese language. 
As already mentioned above all Cantonese pop music composers must write the 
lyrics to match the melody tones of the song. And this fact is exploited in the 
approach for finding the right timing for the alignment. Consequently this 
method would not work for songs in other languages at all. 

3.2 Approach 2: Alex Loscos et al. 

Another approach for automatic lyrics alignment is presented in [LOS99]. The 
goal of this work is to solve the lyrics alignment problem in real time. This 
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could be very helpful, because the alignment could be done while the singer 
performs. Consequently for example different specific audio effects could be 
applied depending on which phoneme of the lyrics is currently being sung. 
The approach uses successful methods from Automatic Speech Recognition 
(ASR) for the alignment process. Mainly Hidden Markov Models (HMM) 
[HUA90] are applied for the alignment. But they were modified in order to 
make the models specific to the case of the singing voice. 
Before the actual alignment process can start, a phonetic transcription is made 
out of the lyrics text. After that a Finite State Network (FSN) is built from the 
phonetic information. This means that the states in this network represent the 
individual phonemes of the words in the lyrics. The transitions between them 
are supplied with a certain probability for reaching the next phoneme. Before 
reaching the next phoneme state, special states for non-linguistic units (silence 
and aspiration) are inserted. This is important because they may occur at any 
time since every singer places them at different positions. Furthermore different 
singers also pronounce the words differently. This has to be regarded when 
building up the FSN by adding parallel paths as shown in Figure 3-2. 
 

Source: [LOS99], p. N/A. 

Figure 3-2: Parallel paths in Finite State Networks (FSN). 

The probability for taking a certain path in the model is delivered by the Viterbi 
algorithm [RAB93]. This is the most common algorithm used in the text to 
speech alignment process. However, because in this case the delay should be as 
low as possible, the algorithm is adjusted in order to make it usable for real 
time decoding. Normally for determining the best path through the phoneme 
models, backtracking is performed at the end of every utterance. To find the 

silence aspi-
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best path in as small intervals as possible, the backtracking has to be executed 
for every frame.  
The advantage of this approach is that for every frame the system can decide 
the current singer position in the lyrics. But of course the performance vastly 
decreases. To overcome this problem Loscos et al. have extended their system 
with some heuristics and strategies. For example additionally the score is used 
to extract musical information. Hence the system “knows” that the phoneme 
corresponding to a note in the score is supposed to have certain duration. Fur-
thermore it is supposed that the user follows the tempo of the song, which is 
again extracted from the score. Therefore the output probabilities of the Viterbi 
algorithm are adapted according to the tempo of the song. 
Loscos et al. state that there is only a delay of 21 ms which has to be added to 
the hardware latency to get the delay of the whole system. This seems to be 
quite good, but this approach is also unusable for my purpose because this sys-
tem only works on pure vocals. So it would be hard to use for pop songs. How-
ever, in my opinion it could be an interesting approach to try it out on a “vocal 
enhancement signal” as described in [WON05]. Another reason why it cannot 
be used in my system is that it depends on the score. Of course it would gener-
ally help at the aligning process to use the score. But since it is not very com-
mon to additionally have the score for the songs the goal of my approach is to 
do the alignment without score. 
 
As I already pointed out in chapter 1.3 the approach used by Wang et al. sounds 
very promising for me. That is why my whole diploma thesis follows this con-
cept even though with some differences. Because of this in the chapters 3.3, 3.4 
and 3.5 an overview over the approach of Wang et al. and mine is given. The 
details of my implementation will be discussed later in chapter 4 . 

3.3 Approach 3: Wang et al. 

Wang et al. basically divide the problem into two major tasks. The first stage 
performs a high-level alignment of the song’s structural elements detected in 
the text and audio streams. It ensures that lyrics lines are only aligned within 
the section they belong to. After that the second round performs the low-level 
line alignment. This top-down approach reduces unnecessary errors because the 
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possible locations of single lyrics lines in the whole song are limited by their 
section. The whole architecture of LyricAlly is shown in Figure 3-3. 
 

Source: [WAN04], p. N/A. 

Figure 3-3: LyricAlly architecture. 

The main steps in the high-level alignment are: 
 

1) The Beat Detector detects the beat times in the audio signal. 
2) The Measure Detector extends the beat information by adding a rhyth-

mical structure. This means that now in addition to beat times also the 
start times of each bar is known. 

3) The Chorus Detector detects repeated sections in the song which corre-
spond to the refrain. 

4) From the textual lyrics the Section Processor extracts the lyrics for the 
individual sections. Then it detects repeated sections which contain the 
lyrics for the chorus. Finally it estimates the approximate duration of 
each section. 

 
In low-level alignment the main steps are: 
 

1) The Vocal Detector detects parts in the audio signal which contain vo-
cals. 

2) The Line Processor refines the duration estimation of the Section Proc-
essor on line level. After that, the estimated durations for each line are 
rounded off to a multiple of the bar length (which was previously de-
tected by the Measure Detector). 
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3) In the Alignment Module the information of all other modules is col-
lected in order to start the actual alignment. 

 
Recapitulating, the general strategy in this approach is very different to 
[WON05] and [LOS99]. The alignment process in these methods is directly 
based on phoneme and word level alignment. In contrast to this Wang et al. had 
the idea to minimize the probability for errors in low-level alignment by first 
exploiting the musical structure of a song in high-level alignment. With their 
approach they try to leave the naïve way of directly adapting speech recognition 
methods for the alignment process. 

3.3.1 Structural Element Level Alignment 
The five structural elements (here also called sections) are defined in [WAN04] 
as follows: 
 

1) Intro (I) is the opening section that leads into the song. It may contain si-
lence and mostly lacks a strong beat (arrhythmic). 

2) Verse (V) is a section that roughly corresponds with a poetic stanza and 
which is the preamble to a chorus section. 

3) Chorus (C) is a refrain (lines that are repeated in music) section. It often 
sharply contrasts the verse melodically, rhythmically and harmonically. 
Furthermore it also assumes a higher level of dynamics and activity, of-
ten with added instrumentation. 

4) Bridge (B) is a short section of music played between the parts of a 
song. It is a form of alternative verse which often modulates to a differ-
ent key or introduces a new chord progression. 

5) Outro (O) is a section which brings the music to a conclusion. Wang et 
al. assume that it is a section that follows the bridge until the end of the 
song. It is usually characterized by the chorus section repeating a few 
times and then fading out. 

 
Wang et al. use the following heuristics which are based on an informal survey 
of popular songs: 
 

1) Instrumental music sections may or may not occur throughout the song. 
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2) Intro and bridge sections may or may not be present and may or may not 
contain sung vocals. 

3) Popular songs are strophic in form, with a usual arrangement of verse-
chorus-verse-chorus. Hence the verse and chorus are always present and 
contain sung vocals. 

 
It is also assumed that the songs have a certain structure of no sung intros, two 
verses, two choruses, bridge and outro. According to Wang et al. this is the 
most common structure in popular music. 

3.3.1.1 Beat Detector 

Source: [WAN04], p. N/A. 

Figure 3-4: Full hierarchical rhythm structure. 

The beat detector extracts rhythm information in real-world musical audio sig-
nals at the quarter-note levels. The most common meter for popular songs is 4/4 
which means that each measure consists of four beats. Wang et al. assume that 
the tempo of the input songs is constrained between 40 and 185 beats per min-
ute (BPM) and almost constant.   
For quarter note detection the audio signal is framed into beat-length segments. 
To achieve this, the onsets have to be detected first (see Figure 3-4b). Since 
additional onsets are often found between the actual beats, a method for elimi-
nating wrong onsets is used. It is based on the assumption that chord changes 
are more likely to occur on beat times than on other positions and that they are 
therefore quasi-stationary within the quarter note.  
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To make the beat detection easier and more accurate a system for determining 
the key of the song is employed. This is useful because the key defines the dia-
tonic scale that the song uses. In the first post-processing stage (called Chord 
Accuracy Enhancement in Figure 3-5) it is decided if a certain detected chord 
belongs to the key or not. Chords that do not belong to the detected key are ex-
pected to be a result of an error in chord detection. These chords are then elimi-
nated based on a music theoretical analysis of the chord patterns that can be 
present in the twelve major and twelve minor keys. 

Source: [WAN04] , p. N/A. 

Figure 3-5: Hierarchical rhythm structure block flow diagram. 

3.3.1.2 Measure Detector 

The measure detector’s aim is to locate the start of measures and therefore ex-
tract the hierarchical rhythm information of the song. It is the second post-
processing step called Rhythm Structure Determination (see Figure 3-5). In ad-
dition to the audio signal it also receives the beat positions found by the beat 
detector as input. Then it detects the starting positions of the measures by as-
suming that chord changes are more likely to occur at the beginning of a meas-
ure than at other positions of beat times. In view of the fact that a measure con-
sists of four quarter notes, the measure detector checks for patterns of four con-
secutive frames with the same chord to separate all possible measure bounda-
ries. After that the system collects all possible combinations of measures which 
are separated by four beats. Then it chooses the one which includes the highest 
number of measures and defines it as the pattern corresponding to the actual 
measure boundaries. Missing boundary positions are now interpolated across 
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the rest of the song to arrive at the full hierarchical rhythm structure (see Figure 
3-4). 

3.3.1.3 Chorus Detector 

The chorus detector locates the chorus sections in the audio file and estimates 
the start and end of each chorus. In [WAN04] its implementation is based on 
Goto’s method [GOT03]. Chorus sections (see Figure 3-6) are identified as the 
most repeated sections of similar melody and chords using chroma vectors. 
Since I also use the same approach in my implementation I will explain the de-
tails later in chapter 4 . 

Figure 3-6: Chorus detector has to find the chorus sections (red). 

Wang et al. managed to improve the original algorithm by using the rhythmic 
information gathered by the beat detector. They reduced its complexity by as-
suming that chords are stable within inter-beat intervals. Therefore instead of 
using one chroma vector for each 80ms frame they only need to extract one 
chroma vector from each beat. As a result to the pairwise comparison (see chap-
ter 4.2.3) of the vectors (which is an O(n2) operation) the improved algorithm 
only uses about 2% of the time and space required by the original one. 

3.3.1.4 Section Processor 

The section processor is the last part of the high level section alignment. Its 
input are the textual lyrics of a song. Assuming that the individual sections are 
delimited with blank lines the section processor tries to assign the right section 
type to the lyrics sections. Similar to the audio chorus detector the section proc-
essor detects the chorus sections by their high level of repetition. The model 
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used by Wang et al. accounts for phoneme-, word- and line-level repetition in 
equal proportions. This should make it insensitive to small errors or variations 
in the lyrics that may lead to problems for variations of the longest common 
subsequence (LCS) algorithm [LCS06]. For the chorus detection it is defined 
that chorus sections must be interleaved with one or two other (e.g. verse) in-
tervening sections and to be of approximately the same length in lines. 
Another task of the section processor is to calculate an approximate duration of 
each section. Therefore each word in the lyrics is decomposed into its pho-
nemes. Since phoneme durations in sung lyrics and speech differ, Wang et al. 
built up a singing phoneme duration database. These durations are learned from 
annotated sung training data. Finally in order to estimate the length of a section, 
the durations of all phonemes in this section are summed up. 

3.3.2 Line Level Alignment 

3.3.2.1 Vocal Detector 

A vocal detector is used for finding sections containing human voice in the au-
dio signal. For the implementation of the vocal detector Wang et al. use a Hid-
den Markov Model (HMM) [HUA90] classifier. To improve accuracy, an auto-
matic bootstrapping process which adapts the test song’s own models is em-
ployed. With it the fact is exploited that the characteristics of vocals show much 
more differences between different songs than within the same song. For exam-
ple the vocals in a song by Elton John would sound very different from the vo-
cals in a song by Madonna. But within the song the (intra-song) characteristics 
of the voice do not change when e.g. comparing the first chorus with the second 
one. 
For the vocal detection process Wang et al. assume that the spectral characteris-
tics of different segments (pure vocals, vocals with instruments and pure in-
struments) are different. Hence they extract feature parameters based on the 
distribution of energy in different frequency bands. Again a time resolution of 
one inter-beat interval is used for the vocal detector. Because the tempo and 
intensity of vocals are different for every section (intro, verse, chorus, bridge, 
outro), an intra-song variation is included into the model.  
The used training data for the HMMs is manually classified based on section 
type, tempo and intensity. Since for each class an own model is created, this 
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results in a total of 2 (vocal or non-vocal) x 5 (section types) x 2 (high or low 
tempo) x 2 (loud or soft intensity) = 40 distinct HMMs.  
Including all these improvements, a classification accuracy of about 84% is 
achieved. An example of the results of the vocal detector is shown in Figure 
3-7. 

Source: [WAN04] , p. N/A. 

Figure 3-7: (a) Signal of a verse segment. (b) Manually annotated and (c) automatically 
detected vocal segments. 

3.3.2.2 Line Processor 

The main purpose of the Line Processor is to refine the timing estimations for 
the textual lyrics provided by the Section Processor. This gets possible now 
because the Line Processor receives additional input from the beat detector. 
With that information and the assumption that each text line must start on the 
beginning of a bar, wrong duration estimates can be corrected. Consequently if 
the predicted duration for a line ends before a bar end, it is very likely that there 
is a gap in which the vocals rest. Therefore the estimated line duration will be 
rounded up to the next bar end (see Figure 3-8).  

Source: [WAN04] , p. N/A. 

Figure 3-8: Estimated line duration (2.8 sec) will be rounded up to next bar end (3.1 sec). 

Furthermore the majority number of bars per line is calculated for each song. 
All other lines are then forced to be either ½ or 2 times this value. 
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3.3.3 System Integration 
Since all needed components were already described, we can now explain how 
the whole system is assembled. The two alignment levels will get connected to 
the actual lyrics alignment tool. 

3.3.3.1 Section Level Alignment 

In the section level alignment detected chorus boundaries are used to determine 
the boundaries of the verses. Wang et al. observed that the detection of vocal 
segments is much easier than the detection of non-vocal ones. The reason for 
this is that both the audio and the text processing can help in the detection proc-
ess. 
For better estimation of the section starts a static gap model is used. It is based 
on manual annotation of 20 songs. The normalized histogram of all sections in 
the gap model is shown in Figure 3-9. It can be seen that the duration between 
verse and chorus (V1-C1 and V2-C2) is rather stable in comparison to the dura-
tion of the sections themselves. This gives the opportunity to determine verse 
starting points using a combination of gap modelling and positions of the cho-
rus or the song starting point. 
 

Source: [WAN04] , p. N/A. 

Figure 3-9: Duration distributions of (a) non-vocal gaps, (b) different sections of the 
popular songs with V1-C1-V2-C2-B-O structure. X-axis represents duration in bars. 

LyricAlly uses forward/backward search models, which utilize an anchor point 
to search for starting and ending points of other sections. For example the be-
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ginning of the song is used as an anchor to determine the start of Verse1. In 
Figure 3-9 it is shown that the intro section is zero to ten bars in length. Over 
these ten bars of music, the so called Vocal to Instrumental Duration Ratio 
(VIDR) is calculated. It denotes the ratio of vocal to instrument probability 
within each bar and is calculated by using the results of the vocal detector. In 
order to determine the beginning of a vocal segment, the global minimum 
within a window assigned by the gap model is selected (as shown in Figure 
3-10). 

Source: [WAN04] , p. N/A. 

Figure 3-10: Forward search in Gap1 to locate Verse1 start. 

This is because usually the beginning of a verse section is characterized by a 
strong rise of the VIDR. The reason is that in a song the vocals often start at the 
first verse section and at the beginning of a song the voice detector frequently 
erroneously detects vocal segments. So the global minimum seems to be a good 
point for the Verse1 to start at. 
In a similar manner the end of Verse1 is detected. The only differences are that 
now the starting point of Chorus1 is used as anchor and that a backward search 
model is applied to find the right end location (see Figure 3-11). 

Source: [WAN04] , p. N/A. 

Figure 3-11: Backward search to locate the ending of a verse. 3 

3 Error in [WAN04]: Here it should be Chorus1 instead of Chorus2.
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3.3.3.2 Line Level Alignment 

The line level alignment exploits the strengths of both the text processor and the 
vocal detector. On the one hand the text processor is quite accurate in duration 
estimation but incapable of providing offsets. This means that the duration of a 
line can be estimated easily by summing up the average phoneme times. But it 
is very hard to estimate the start time in the song for each text line. On the other 
hand the vocal detector is able to detect the presence of vocals but not associate 
it with the line structure in the song. Therefore the vocal detector can provide 
the right offsets for the start times of each text line. 
Since the segments detected by the vocal detector often do not match the lyrics 
lines provided by the text processor the main goal is to make them match by 
grouping or partitioning segments. Wang et al. use the number of text lines as 
the target number of segments to achieve. This results in three possible scenar-
ios (see Figure 3-12). The number of lyrics lines can either be smaller, equal to 
or greater than the number of vocal segments. If the number of lyrics lines is 
smaller or greater than the number of vocal segments, grouping or partitioning 
needs to be performed. After that a forced alignment is applied. This means that 
the vocal segments are matched with the right text line, while small time differ-
ences are eliminated. If the number of lyrics lines is already equal to the num-
ber of vocal segments, no grouping or partitioning is needed. Therefore in this 
case the forced alignment is executed immediately. 

Source: [WAN04] , p. N/A. 

Figure 3-12: (a) Grouping, (b) partitioning and (c) forced alignment. White rectangles 
represent vocal segments and black rectangles represent lyrics lines. 

3.3.4 Evaluation 
Wang et al. evaluated their approach in two ways. The first one is a holistic 
evaluation which uses a dataset of manually annotated songs. In order to give a 
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compact overview of the results, the average and standard deviation of starting 
point and duration error are shown in Table 3-1. 
 

Alignment Error Seconds Bars 
Starting Point N( 0.80, 9.00) N( 0.30, 1.44) Section Level

(n = 80) Duration N(-0.50, 10.2) N(-0.14, 1.44) 
Starting Point N( 0.58, 3.60) N( 0.22, 0.46) Line Level 

(n = 565) Duration N(-0.48, 0.54) N(-0.16, 0.06) 

Table 3-1: Section- and line-level alignment error over 20 songs. Errors (in seconds) given 
as normal distributions: N(µ,σ2). 

Seconds are not a good measure for the errors because a one-second error may 
be perceptually different in songs with different tempo. Therefore measuring 
the error in bars, as represented in the last column of the table, is more mean-
ingful. 
The results show that the calculation of the starting point error is much more 
difficult than the estimation of the duration of individual lyrics lines. This is 
because the starting point can only be gained from the audio data. In contrast to 
this, the duration is estimated by both the audio signal and the textual lyrics. 
The second way of evaluation used in this paper is the error analysis of individ-
ual modules. Since LyricAlly is only a prototype which integrates separate 
modules, an individual evaluation of each module can point out bottlenecks in 
performance and error-proneness. The evaluation results show that the system 
works best if all components perform well, but performance suffers a lot when 
certain components fail. If the beat detector fails, all other modules in the sys-
tem are affected because all estimates are rounded to the nearest bar. However, 
the error is of course limited to beat length which may be bearable for our pur-
pose. A much more negative effect is observed if the chorus detector fails. The 
reason for this is that the whole starting point anchors of the chorus sections get 
lost. Errors in the vocal detector affect both, the starting point and the duration 
of the sections. Finally since the text processor is only able to calculate dura-
tions, its failure leads to less accurate estimations of the duration of sung lyrics 
lines. 
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3.4 Overview of my Approach 

Since each of the mentioned black boxes shown in Figure 3-3 on its own is a 
research topic I had to concentrate on the most important ones. These are on the 
one hand the chorus detector for audio data and on the other hand the text proc-
essor for textual data. My approach only concentrates on section level align-
ment because line level alignment would take too much time and effort to im-
plement. The main reason why only section level alignment is used is that for 
line level alignment a singing phoneme duration database is needed. This data-
base is not freely available and therefore it would have had to be built on my 
own by annotating phoneme durations manually for a whole song collection. It 
is obvious that this would go beyond the time capacities for a diploma thesis. 
 
As I already mentioned above, Wang et al. assume that the songs have a certain 
structure of no sung intros, two verses, two choruses, bridge and outro. Al-
though they claim that this structure is the most common structure of popular 
songs it only applies to 40% of their observed songs. In my opinion this is a 
vast limitation which my implementation approach will try to eliminate. The 
main difference to Wang et al. is that instead of five possible sections I only use 
two for the section level alignment. Following Goto’s paper SmartMusicKI-
OSK: Music Listening Station with Chorus-Search Function [GOT03] I imple-
mented a chorus detector which detects the start and end points of the refrains 
in a song. In my approach these sections are called chorus sections. Everything 
else is called verse section. Of course this verse section may contain intro, 
verse, bridge and outro, but they are not distinguished. Consequently songs 
need not be limited to a certain structure and the system is more flexible. Even 
if a song started directly with a chorus section, this should be no problem for 
my approach (see chapter 6.4).  
 
To give a short overview of my implementation I will only explain the seven 
main steps for the alignment process here. They are shown in the block flow 
diagram in Figure 3-13. Implementation details are explained later in chapter 4 . 
At the beginning the user selects a certain song from his hard drive. Then the 
features extraction can be started. Feature extraction is the process of gaining 
useful data and information out of the audio signal. 
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Figure 3-13: The block flow diagram of my approach. 
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1) First, the audio signal is transformed into frequency space via a FFT. 
From the FFT so called result vectors are obtained. They contain the lin-
ear energy distribution of the whole observed frequency spectrum. 

 
2) After that the result vectors are multiplied by a band pass filter matrix in 

order to set up so called chroma vectors. Chroma vectors contain energy 
values for each of the twelve pitch classes (see Figure 4-1). Hence these 
values represent the chroma of the notes and chords which are played or 
sung in the currently observed piece of audio. 

 
3) In the Similarity Comparison step the similarity between all the individ-

ual chroma vectors is calculated. With the resulting similarity values of 
this pair wise comparison, the SimilarityMatrix is built. For N chroma 

vectors it contains the similarity values jis , :

jiNjcvcvsims jiji <≤<≤= 0,0),(, .

Where ()sim calculates the similarity between two chroma vectors. The 

resulting similarity matrix is shown in Table 3-2 (Note: Figure 4-9 
shows the vertically flipped similarity matrix). 

 
0 s0,1 s0,2 s0,3 … s0,n
0 0 s1,2 s1,3 … s1,n
0 0 0 s2,3 … s2,n
… … … … … …
0 0 0 0 0 0

Table 3-2: Similarity matrix. 

4) If there are at least a certain number of consecutive similarity values 
above a certain threshold in a matrix row then a possible chorus section 
(a so called line segment) was found. These line segments are then used 
for further analysis.  

 
5) Observations show that there seems to be a tendency to redundancy in 

the found line segments. Therefore an algorithm was implemented which 
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merges such redundant line segments in a smart way. For example this 
means that the two line segments shown in Table 3-3 get merged to one 
single line segment.

ID Start time End time 
1
…
7

01:49.314 
…

01:49.394 

02:05.598 
…

02:05.678 

Table 3-3: The line segments that would be merged. 

This can be done because they have approximately the same starting 
points in the song and the same length. Consequently they represent the 
same repeated section in the song and one of them can be eliminated. 
Directly linked with the merging process is an algorithm for reconstruct-
ing missing line segments. This is useful because the chorus detector 
sometimes does not detect all line segments. In this case the missing line 
segments can often be reconstructed by analysing surrounding line seg-
ments. The reconstruction modes are not used by default. Therefore the 
user has to enable them before starting the merge process. 
 

6) All line segments only correspond to parts in the song which are possible 
chorus sections. Therefore the goal of this step is to find out which of 
these line segments actually correspond to the “real” chorus section. Be-
sides the similarity values of the line segments additional musical knowl-
edge about chorus sections in popular music is exploited to calculate a 
score. The higher the score the higher the probability for a line segment 
to correspond to the “real” chorus section in the song. 

 
7) The last step in the alignment process is the actual alignment of the lyr-

ics to the audio data.  

3.5 Differences between Existing Approaches and Mine 

Although my approach is mainly based on [WAN04] and [GOT03], there are 
some differences which are discussed in this chapter. 
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3.5.1 Wang et al. vs. My Approach 
The biggest difference to Wang’s approach is that my approach only concen-
trates on section level alignment. Therefore the alignment will never be as accu-
rate as in LyicAlly. However, it makes my implementation much easier because 
intro, verse, bridge and outro sections need not be distinguished. Furthermore 
no singing phoneme duration database is needed. Without this database line 
level alignment would be nearly impossible, since it would only allow very in-
accurate duration estimations for text lines [WAN04]. 
 
Another important difference is that in my approach neither a beat nor a vocal 
detector is used. Consequently the system cannot rely on a rhythmical structure 
and on vocal offsets for the alignment process.  But using a beat detector would 
not only lead to a more accurate alignment. It could also lead to a vast im-
provement of system performance. The reason for this is that the chords tend to 
be quasi-stationary during beat times. Therefore one chroma vector could be 
extracted for each beat instead of for every 80ms. Since the pairwise compari-
son (see chapter 4.2.3) of the chroma vectors is an O(n2) operation the algo-
rithm would only use about 2% of the time and space. 
 
For detecting the chorus sections in the lyrics, Wang et al. use a special model 
which works in a similar way as the audio chorus detector. It accounts for pho-
neme-, word- and line-level repetition in equal proportions. Therefore Wang et. 
al. claim that this model also overcomes variations in words and line ordering 
which could lead to problems for other algorithms like the Longest Commons 
Sequence (LCS) algorithm. Nevertheless the LCS algorithm is used in my ap-
proach which did not cause any problems during test stage. There is another 
small difference between the two approaches concerning the lyrics. In 
[WAN04] the section processor estimates the section length using the lyrics. Of 
course this cannot be done in my approach since the duration of phonemes is 
used for this calculation. 
 
Furthermore in the approach of Wang et al. it is defined that the chorus sections 
in the lyrics must be interleaved by one or two other sections (see chapter 
3.3.1.4). This means that a repeated chorus would not be accepted while this 
should be no problem for my aligning method. 
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3.5.2 Goto vs. My Approach 
The chorus detector in my approach was mainly implemented according to 
[GOT03]. Although Goto’s method already seems to work very well, I have 
developed some improvements. 
The first improvement is to introduce a threshold for ignoring outliers while the 
lines in the SimilarityMatrix are analysed for areas with high similarity (see 
chapter 4.2.4 and Figure 4-12). This makes the method more resistant against 
sporadic chroma vectors with lower similarity. As the evaluation results in 
chapter 6 show, found chorus sections tend to be too short. Hence it could per-
haps improve the alignment even more if the number of allowed outliers were 
increased. 
 
My approach eliminates redundant line segments by using the merge algorithm 
described in chapter 4.2.5. Goto’s method works a bit different by here. It col-
lects similar line segments into groups instead of eliminating them. In my opin-
ion there is no advantage for one of these two approaches. Nevertheless it is 
easier for the later alignment to only have a minimum number of line segments.
In [GOT03] a method for finding line segments which were missed by the cho-
rus detector is mentioned. But no further details about the used algorithm are 
described. Therefore I implemented a method to reconstruct missing line seg-
ments on my own (see chapter 4.2.5.2). 
 
The last difference to Goto’s approach is that I use my own band pass filter to 
build up the chroma vectors. Goto uses the following formulas for calculating 
the element )(tv which corresponds to a pitch class c.  

 

dftffBPFtv p

Oct

Octh
hcc

H

L

),()()( , ψ∑ ∫
=

∞

∞−

= ,

where )(, fBPF hc is the band pass filter that passes the signal at the frequency 

hcF , of pitch class c and octave position h .

)1(1001200, −+= chF hc .
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The band pass filter is then defined using a Hann window as follows: 
 

)cos1()( 200
))100((2

2
1

,
, −−−= hcFf

hc fBPF π .

As can be seen in the formulas, Goto recalculates the values of passing frequen-
cies each time the band pass filter is used. In my approach a band pass filter 
matrix is generated once before the actual filtering process (a simple matrix 
multiplication) is started. Therefore my application was optimized by creating 
this matrix only once at the first program start. Then it is saved to hard disk and 
can be loaded again for every feature extraction without having to recalculate it 
every time. 



4 Implementation 

4.1 Advantages & Disadvantages of Java vs. Matlab 

For me there were two possible programming languages for implementing the 
lyrics aligner – Java [JAV06] and Matlab [MAT06]. 
The main advantage of Java was that I already knew it and therefore could start 
without having to learn a new programming language. Another point is that 
Java is one of the standard programming languages today and moreover freely 
available. Furthermore due to the use of byte code, Java programs can be run on 
every processor for which a Java Virtual Machine (JVM) exists. The only prob-
lem with using Java for audio applications is that it does not provide imple-
mented algorithms for digital signal processing. Therefore the basic algorithms 
like FFT or multiplication of matrices have to be implemented before the actual 
implementation of the aligning algorithms can begin. 
On the other hand, Matlab already includes these basic algorithms since it is 
specialised on mathematical programming. So the main advantage of Matlab is 
that the step of implementing standard algorithms can be omitted. However, a 
vast limitation is that the Matlab program can only be run in a Matlab environ-
ment. Therefore for every computer on which the program should run, a Matlab 
license has to be purchased. 
Nevertheless the final decision was to use Matlab, because in this way it got 
possible to fully concentrate on the most important algorithms and not to rein-
vent the wheel. 

4.2 Implementation Details 

Most pop songs consist of a strophic form. This means that they usually contain 
an arrangement of alternating verse and chorus sections. Therefore from my 
point of view it is not necessary to distinguish between five kinds of different 
sections as done in [WAN04]. For me there exist only two different sections – 
chorus sections and verse sections (=all kinds of sections except chorus sec-
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tion). Since therefore in my implementation verse sections can contain intro, 
verse, bridge and outro, it is very difficult to define them. Chorus sections are 
much easier to find, because they are very similar to each other. So the most 
important task is to find the locations of the chorus sections. This is done by the 
chorus detector which was implemented based on the approach presented in 
[GOT03].  

Source: [GOT03], p. 35. 

Figure 4-1: Chroma vectors contain the energy values corresponding to the twelve pitch 
classes. 

In general the chorus detector tries to locate the chorus sections by using 
chroma vectors for detecting similar sections in the song. Chroma vectors are 
simple vectors with a length of twelve. Each entry in the vector represents the 
energy value for one of the twelve pitch classes which can be observed at a cer-
tain position of the song (see Figure 4-1). Consequently it is necessary to know 
which frequencies are involved in the signal. This is the first step of the align-
ing process (see Figure 4-2). 

Figure 4-2: Next step in the aligning process: FFT. 
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4.2.1 Applying the FFT 
After smoothing the signal at the current position using a Hann window of the 
length 4096 it is transformed into frequency space using the FFT. This results in 
a frequency vector of the length 4096. Since the second half of the vector is the 
complex conjugate of the first half, it can be ignored for further processing. The 
so gained FFT result vectors represent the energy distribution of a linear fre-
quency spectrum. This means that the first value in the vector corresponds to 
the energy measured at the lowest frequency. The lowest frequency can be cal-
culated by 
 

WindowSize
teSamplingRauencyLowestFreq = .

For instance a sampling rate of 16000 Hz and a window size of 4096 samples 
would result in: 

Hz44096
16000 ≈=uencyLowestFreq

All the other values in the vector are measured at a multiple of this lowest fre-
quency. In other words this means that the second value is measured at 

Hz842 =⋅ , the third value at Hz2143 =⋅ and so on. 

Figure 4-3: Hann window is shifted by the window shift. 
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To calculate the FFT for the whole audio file, the Hann window is shifted in 
steps of 1280 samples (=window shift). Hence the discrete time step in the cur-
rent implementation is 80 ms for a sampling rate of 16000 Hz. Consequently a 
FFT result vector is calculated every 80 ms (see Figure 4-3). 
The FFT result vectors get grouped together into the so called FFTmatrix.
Every column in the FFTmatrix contains the energy values for all frequencies in 
the spectrum. The next task is to isolate only the frequencies which correspond 
to musical notes. Therefore a band pass filter is needed. So the next step in the 
aligning process is to construct a suitable band pass filter (see Figure 4-4). 

Figure 4-4: Next step in the aligning process: Band Pass Filter. 

4.2.2 Band Pass Filter 
In my implementation the band pass filter is a matrix which contains values 
between 0.0 and 0.1 . By multiplying this matrix with the FFTmatrix the inten-
sities of the individual semitones are computed. The calculation of the semi-
tone’s centre frequencies is described in chapter 2.4. 
For extracting the semitones Hann windows around the centre frequencies en-
sure that only as little information as possible is lost. Therefore the Hann win-
dow for a certain note N has to meet the following three constraints: 
 

1) It has to start one semitone below N. 
2) The peak of the window has to be at the centre frequency of N. 
3) The window has to end one semitone above N. 

 
The distance ε between musical notes is distributed in a logarithmic way. But 
because the measuring frequencies in the FFT result vectors are equidistant in 
linear scale, the Hann window has to be converted to linear scale too (see 
Figure 4-5).  
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Figure 4-5: Left: Normal symmetric Hann window in log-scale. Right: Corresponding 
result in linear-scale. 

ε …is the distance between two semitones in logarithmical scale ( 12
2ln )

ω …is the centre frequency of the current semitone (e.g. 261.63 Hz for C4)

h …is the normalized Hann window function 1,)( 2
)cos(1 ≤= ⋅+ xxh xπ

i …is the intensity of the frequency f at the current position of the song 

w …is the weighting function resulting from the stretched window 
 
Since the intensity )( fi is only known at the linear distributed measuring fre-

quencies integrals of the form linA are easy to compute. Nevertheless the goal is 

to compute the value logA . So the weighting function has to be chosen as 

f

f

hfw 1)ln( )(),( ⋅= ε
ωω in order to fulfil logAAlin = .

For the actual computation of the integral linA only the intensities at the discrete 

measuring frequencies are available. Therefore the midpoint rule is used.  

Figure 4-6: Visualisation of the midpoint rule. 

δ …half the distance between two linear measuring frequencies 
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The area below the curve is split up into small segments. Each of them contains 
exactly one measuring frequency located in its centre. The width of the seg-
ments is δ2 (see Figure 4-6). Approximation of each segment’s area is done by 
multiplying the function value at the centre of the interval and the width of the 
segment. This leads to the following formula: 
 

),()(2log ωδ j
j

jlin fwfiAA ⋅⋅≈= ∑

However, the intensities )( jfi are not part of the band pass filter. Instead they 

come from the current FFT spectrum of the song. Luckily the formula can be 
represented as matrix-vector multiplication because the intensities are only oc-
curring linearly. Consequently entries of the band pass filter matrix remain to 
be computed as 
 

),(2, ωδω jj fwBPF ⋅= .

To improve the performance of building chroma vectors, the band pass filter is 
organized as follows: 
Every row in the matrix represents a pitch class (e.g. the first row represents the 
class “C”). In the current implementation the octaves three to eight are ana-
lysed. Since each row corresponds to the full linear frequency spectrum, this 
results in six Hann windows per row. Figure 4-7 shows a graphical view of the 
completed band pass filter matrix. 

Figure 4-7: Graphical view of the band pass filter matrix. Blue values are close to zero; 
red values are close to one. 
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The columns in the FFTmatrix (which contain the intensities )( jfi ) are multi-

plied by the twelve rows in the band pass filter matrix. So for each of the twelve 
rows one value for the chroma vector is calculated. In the end one chroma vec-
tor is built for each column in the FFTmatrix. As already mentioned before, a 
chroma vector represents the energy values of the twelve pitch classes. The next 
chapter will deal with the analysis of similarities between these chroma vectors 
(see Figure 4-8). 

Figure 4-8: Next step in the aligning process: Similarity Comparison. 

4.2.3 Similarity Comparison 
This chapter explains the implementation details for step 3) in chapter 3.4. The 
target is still to find the chorus sections in a song. They are characterized by 
their high degree of similarity. All the other sections do not have this big simi-
larity, because e.g. every verse section is different since the lyrics change. But 
chorus sections tend to have same instrumentation and same lyrics. In order to 
measure this degree of similarity a set of chroma vectors was built. Now all 
these vectors have to be compared with each other.  
For calculating the similarity between two chroma vectors )(tv� and )( ltv −

�

Goto uses the following similarity function: 
 

)12/(1),( )(max
)(

)(max
)(

ltv
ltv

tv
tv

cccc
ltr −

−−−=
��

.

Where l ( tl ≤≤0 ) is the lag between the two vectors. The denominator 12
is used for normalizing the similarity value. It represents the length of the di-
agonal line of the 12-dimensional hypercube with an edge length of 1. There-
fore ),( ltr satisfies 10 ≤≤ r .



Implementation  46

Since ),( ltr represents the degree of similarity between two vectors, it only 

corresponds to 80 ms of the song. Hence the next step is to organize the gained 
similarity data in order to find longer sections with high similarity. This is done 
by drawing ),( ltr within the right-angled isosceles triangle in the two-

dimensional time-lag space as shown in Figure 4-9. In other words it is a simi-
larity matrix, which shows the similarity between two arbitrary chroma vectors. 
That is why it will be called SimilarityMatrix in the future. 

Figure 4-9: The SimilarityMatrix.

In the next step of the aligning process (see Figure 4-10) the goal is to find 
longer segments with high similarity in the horizontal lines of the similarity 
matrix. These segments are called line segments.
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Figure 4-10: Next step in the aligning process: Finding Line Segments. 

4.2.4 Finding Line Segments 

4.2.4.1 The Basic Concept of Finding Line Segments 

The human eye is already able to notice horizontal lines with high similarity in 
the similarity matrix of Figure 4-9. For most songs they are not so clearly visi-
ble. But this example shows that the algorithm has to search for those horizontal 
line segments. However, most rows of the SimilarityMatrix do not even contain 
line segments with high similarity. In order to speed up the searching algorithm, 
Goto first calculates the possibility of containing line segments at the lag l for 
every line.  

Figure 4-11: Using RAll for finding lines with high possibility of containing line segments.
a) Shows the peak values of RAll above ThR (all other values are displayed in blue colour). 
b) Every peak value in RAll corresponds to a line with high possibility of containing line 

segments. 
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This possibility is called ),( ltRall  and is defined as follows: 

 

.),( ),( ττ dltR
t

l lt
lr

all ∫ −=

It is evaluated at the time t which is the end of the song in the current imple-

mentation. Then a threshold RTh  is used in order to divide the values of allR
into two classes. The first class contains all values below RTh  and the second 

one all values above this threshold. 

Now the values in the second class are selected from allR (see Figure 4-11a). 

They indicate that the corresponding horizontal lines in the SimilarityMatrix are 
very likely to contain line segments (see Figure 4-11b). 
Because the relation between the values in the SimilarityMatrix is different for 

every song, RTh  should be adjusted from case to case. Therefore an automatic 

threshold selection method is used. It is based on a discriminant criterion. The 
optimal threshold for dichotomizing the peak heights into two classes is ob-
tained by maximizing the discriminant criterion measure, which is defined by 
the following between-class variance: 
 

2
2121

2 )( µµωωσ −=B

1ω and 2ω are the probabilities of class occurrence ( peaksofnumbertotal
classeachinpeaksofnumber ). 1µ

and 2µ are the mean of peak heights in each class. 

 

With this method, a threshold for allR is obtained. All corresponding lines for 

which allR is above this threshold are used for further processing. Before con-

tinuing, the lines get smoothed in order to remove noise. Therefore for every 

value iv in the line, a smoothed value is is calculated the following way: 

 

3
11 +− ++= iii vvv

is
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If the index 1−i reaches the left edge of the line, instead of 1−iv the value of 

1+iv is taken. The same is done if the right edge of the line is reached. 

After this smoothing process a threshold lineTh  is calculated. This threshold is 

again adjusted by using the automatic threshold selection method. Now the line 

is searched for values above lineTh  from left to right. If such a value was found, 

the variable segStart is set to the current index i . Then the search process is 

continued until the value at the current index is below lineTh . Since according to 

[GOT03] a potential chorus section must be at least 7.7 seconds long ( 97≈
chroma vectors), the found segment is ignored if it is shorter. Otherwise a re-
gion of high similarity was found. Such a region needs not necessarily be one of 
the “real” chorus sections in the song but it is represents a potential chorus sec-
tion. 

4.2.4.2 Differences to Goto’s Approach 

In my implementation another threshold tolTh  was added. It defines how many 

values above lineTh  must follow a single value below lineTh  in order to ignore 

this single outlier. The current value of tolTh  is 10, which means that at least 10 

values above lineTh  must follow a value below lineTh  (see Figure 4-12). 

Figure 4-12: The tolerance threshold Thtol within a line. Blue rectangles represent values 
below and red ones values above Thtol. After the last red rectangle either the end of the 

line would be reached or at least two blue rectangles would follow. 

In my opinion this threshold is very helpful because it is much better to find one 
long region instead of two shorter ones which are only separated by a single 
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chroma vector. It could even improve the chorus detection quality if instead of 

only one value below lineTh  two or three of them would be tolerated. 

Finally if a region with high similarity was found (respecting tolTh ), it is added 

to the line segments matrix (LSMatrix). Each of these regions in reality repre-
sents two repeated segments in the song which are called line segments in 
[GOT03]. So for every found region two line segments are added to the LSMa-
trix. Furthermore each pair of line segments gets a unique ID – the so called 
TrackID (see chapter 5.2 for more information). Table 4-1 shows an example of 
what a typical LSMatrix looks like. 
 

LS start [sec] LS end [sec] Avg. Similarity (λ) TrackID 
15.374
83.201
29.394

167.498
61.284

143.349
…

24.988
92.815
47.730

185.834
89.332

171.397
…

0.840
0.840
0.753
0.753
0.968
0.968

…

1
1
2
2
3
3
…

Table 4-1: LSMatrix. 

The first two columns contain the starting and ending time of the line segment 
in seconds. The value λ in the third column is calculated by averaging out all 
similarity values within the found region in the SimilarityMatrix. The last col-
umn holds the TrackID.

4.2.4.3 Detecting Modulated Chorus Sections 

With the presented approach the chorus sections of most songs can be detected. 
But there may be some problems with a very special class of songs. In some 
pop songs one of the refrains (mostly the last one) is modulated. This means 
that the key of the chorus changes for example by a minor second in contrast to 
the other chorus sections in the song. Such a modulation can be represented by 
the pitch difference )11,,1,0( …tr of its key change. So tr denotes the num-

ber of semitones a chorus section was transposed. For example, 5=tr means a 
modulation of five semitones upwards or the modulation of seven semitones 
downwards. 
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Consequently the chorus detector has to be adjusted in order to also enable the 
detection of modulated chorus sections. This can easily be done by making 
small changes to the existing chroma vector based approach. In a chroma vector 

)(tv the modulation tr corresponds to the amount by which its twelve elements 

are shifted. Therefore Goto uses a shift matrix for the cyclic shifting of the ele-
ments in a chroma vector by tr semitones. The resulting chroma vector is 

called )'(tv . Hence it can be said that )(tv and )'(tv satisfy 

 

)'.()( tvStv tr=

Where S is a shift matrix defined by 
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In order to allow the detection of modulated chorus sections, the similarity 

function ),( ltr has to be changed slightly. The new ),( ltrtr  is defined by 

 

)12/(1),( )(max
)(

)(max
)(

ltv
ltv

tv
tvS

tr cccc

trltr −
−−−=

��
.

This results in twelve different sets of chroma vectors which are all compared 
to the chroma vectors for 0=tr (the original chroma vectors before modula-
tion). Of course this will take twelve times the processing time and also twelve 
times the memory of the original ),( ltr . Furthermore it will lead to twelve 

SimilarityMatrices.
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4.2.4.4 Line Segments vs. Tracks 

In the previous chapters a method for extracting regions with high similarity 
from a song was presented.  These regions which are called line segments are 
collected into the LSMatrix. For the algorithms of the further aligning process it 
is no problem to handle this matrix. However, it must be visualized somehow 
for the user of the lyrics alignment program. Therefore Goto uses so called 
tracks for viewing the line segments in an intuitive environment.  

Figure 4-13: Line segments (green) placed on tracks. 

These tracks are very similar to the tracks used in most studio software. Figure 
4-13 shows an example of how tracks look like. In my implementation they are 
grey horizontal panels which are numbered on the left hand side. While the left 
end of the tracks represents the beginning of the song, the right end corresponds 
to the ending.  
Each track contains the line segments (green panels in Figure 4-13) with a cer-
tain TrackID. Since every region of high similarity in the SimilarityMatrix cor-
responds to two line segments, there exist always two line segments with the 
same TrackID. Therefore in this moment each track contains two line segments. 
The main advantage of the tracks is that they are able to visualize several parts 
of the song concurrently. For example in Figure 4-13 it is easy to understand 
the connection between the small green line segment on track 3 and the longer 
one on track 4. The region in the song which corresponds to the small line seg-
ment is part of the region corresponding to the long one. This is because they 
occur concurrently on the two tracks and the small line segment starts after and 
ends before the long one. 
One problem is that there often exist redundant tracks. An example of this can 
also be seen in Figure 4-13. The tracks 4 and 5 contain nearly the same line seg-
ments. To eliminate such redundancies is the main goal of the next step in the 
aligning process (see Figure 4-14). 
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Figure 4-14: Next step in the aligning process: Merging Tracks. 

4.2.5 Merging Tracks 
When searching for the line segments (see chapter 4.2.4) there is a tendency for 
finding redundant repeated segments. The goal of the first part of this chapter is 
to provide a method for eliminating this redundancy (see chapter 4.2.5.1). This 
is done by merging two or more tracks to one single track while redundant line 
segments are deleted from the LSMatrix. So after applying the merging algo-
rithm a track may contain more than two line segments.
Another problem is that sometimes line segments are missing. An example of 
this is shown in Figure 4-13. The line segment c occurs at the end of b. How-
ever, at the end of a no such line segment in track 6 exists. Since a and b repre-
sent similar parts in the song it can be assumed that there should also exist a 
line segment similar to c at the end of a. Therefore the second part of the Merg-
ing Tracks algorithm tries to reconstruct such missing line segments by analys-
ing the surrounding line segments on other tracks (see chapter 4.2.5.2). 

4.2.5.1 Eliminate Redundant Line Segments 

An obvious reason for redundant line segments is that the compared chroma 
vectors represent a very short period of time. Therefore it often happens that 
after finding a line segment in one line of the SimilarityMatrix, the next line 
contains the same line segment again. This results in duplicate tracks, which 
contain the same information. They should be eliminated by the merging algo-
rithm. 
A second kind of redundancy is caused by the fact that until now every track 
may only contain two line segments. Consequently when there are for example 
three chorus sections in a song, at least two tracks would be needed for repre-
senting them. Then for example in one track the similarities between the first 



Implementation  54

and last chorus section are expressed while the other track represents the simi-
larity between the second and last chorus section. Therefore the last chorus sec-
tion is represented by two line segments which is unnecessary.  
 

yx ≈ means that the line segments x and y correspond to approximately the 

same region in the song. In other words this means that x and y have ap-

proximately (below a certain threshold) the same starting and ending time. 
sT( x , y ) means that x and y are on the same track. Then the following rela-

tion between the line segments x , y , 1z and 2z can be used for merging the 

tracks (see Figure 4-15 and Figure 4-16)4:

2112 ),(),(),( zzyxsTzysTzxsT ≈⇔⇒∧

Figure 4-15: Tracks 8, 9, 11 and 12 can be merged to one track. 

In Figure 4-15 the line segment 1z and 2z are redundant. The line segments y
and 1z on track 8 correspond to regions in the song with high similarity. The 

same is true for x and 2z on track 11. Because 21 zz ≈ one of these two line 

segments can be eliminated. So for example if 2z is eliminated, x is moved to 

track 8 and track 11 is deleted. 

Figure 4-16: The resulting track after merging. 
 
4 See chapters 4.2.4.4 and 5.2.1 for more details about tracks. 
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Therefore x , y , 1z , 2z and all their duplicates (grey in Figure 4-15) can be 

combined to one single track. 
 
The Algorithm (Simplified Pseudo Code): 

//DEFINITIONS: 
//---------------------------------------------------------------- 
//Variable names are always printed using italic font style. 
//Keywords start with a capital letter and are printed in blue. 
//Comments start with “//”, end at the end of the line and are 
//  printed in green. 
//MyList.LEN refers to a list’s length (number of elements in it) 
//---------------------------------------------------------------- 
//These definitions apply for all pseudo code examples! 
//---------------------------------------------------------------- 

Function MergeTracks(LSMatrix) Returns LSMatrix 
Foreach TrackID tID In LSMatrix Do 

Store all line segments with tID In firstList 
Foreach line segment ls1 In firstList Do 

If LSMatrix contains a line segment ls2 which corresponds to 
approximately the same part of the song* Then 

Store line segments with same TrackID as ls2 In secondList 
//calculate score by algorithm described in chapter 4.2.6.2 
Set score1 To CalculateTrackScore(firstList)
Set score2 To CalculateTrackScore(secondList)
Remove all line segments in the list with the lower score 

from the LSMatrix (redundant line segments) 
Move remaining line segments from track with lower score to 

track with higher score  
End 

End 
End 
* Defined by a threshold. 

 

The merging algorithm builds up a firstList for every TrackID in the LSMatrix.
Then for every line segment in this firstList another one which corresponds to 
approximately the same section in the song is searched. If such a line segment 
was found, all line segments belonging to the track of the found one are added 
to the secondList. The decision whether two line segments occur at the same 
time is defined by a threshold for the difference of start and end times.  
In order to find out which one of both tracks (firstList or secondList) is more 
likely to be the chorus track, the algorithm CalculateTrackScore() described in 
chapter 4.2.6.2 is used. After that the reached score for firstList and secondList 
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are compared. Consequently the non-redundant line segments on the track with 
the lower score are added to the one with the higher score. This is done by sim-
ply changing the TrackID in the LSMatrix. Finally all line segments remaining 
on the track with the lower score are deleted from the LSMatrix.

An important observation was made when testing the algorithm. For some songs 
a part which does not correspond to a real chorus section is recognized to be 
similar to a real one. This happens for example if the song starts with a section 
that (in instrumentation, played chords etc.) sounds very similar to the real cho-
rus section but does not contain any vocals. It also has the same length as the 
real chorus section. As a result this line segment would wrongly get merged 
with the chorus track. But this would lead to difficulties later at the alignment 
process because in the audio signal one additional chorus section would be 
found. Since this “wrong” chorus section does not contain vocals, the similarity 
is usually significantly lower than between real chorus sections. Therefore an-
other threshold categoryTh was introduced. All tracks containing at least one 
line segment with a similarity greater than categoryTh belong to the firstCate-
gory. All other tracks belong to the secondCategory. Now the algorithm en-
forces that only tracks in the same category can be merged in order to avoid 
merging real chorus sections with other line segments. In the current implemen-
tation categoryTh is set to 0.8 (=80% of similarity). 

Figure 4-17: Tracks will not be merged because they belong to different categories. 

Blue > 80% � Category1 
Pink < 80% � Category2 
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4.2.5.2 Reconstruct Missing Line Segments 

Another useful algorithm which raises the probability for a good alignment is 
directly linked with the merging algorithm. Because the chorus detector is not 
totally reliable, sometimes important line segments are missing. Therefore this 
algorithm tries to reconstruct missing line segments by analysing surrounding 
line segments on other tracks. However, it is disabled by default because it 
sometimes may cause additional wrong line segments too. So the user has to 
enable it before starting the merging algorithm (see chapter 5.2.5). 
 
The Algorithm (Simplified Pseudo Code): 

//NOTE: 
//---------------------------------------------------------------- 
//Some details were omitted for better understanding! However, 
//they are described later in the text. 
//---------------------------------------------------------------- 

Function ReconstructMissingLS(LSMatrix, trackID) Returns LSMatrix 
Store all line segments with TrackID equal to trackID In trSegList 
Foreach line segment trSeg In trSegList Do 

Store all line segments in the LSMatrix which start or end du- 
ring trSeg In eventSegs 

Foreach line segment E In eventSegs Do 
Set timeDiff To trSeg.StartTime – E.StartTime 
Set LS To line segment in LSMatrix with same TrackID as E
Create new line segment hypLS 
Set hypLS.StartTime To LS.StartTime + timeDiff 
Set hypLS.EndTime To hypLS.StartTime + Length(trSeg)
Store all line segments in the LSMatrix which start or end du- 

ring hypLS In newEventSegs 
Set counter To 0 
Foreach line segment b In newEventSegs 

If eventSegs contains a line segment corresponding to b Then 
Set counter To counter + 1 

End 
End 
If counter is above a certain threshold Then 

Store hypLS In newLineSegments 
End 

End 
If newLineSegments is not empty Then 

Choose the most frequent line segments in newLineSegments and  
add it to the LSMatrix 

End 
End 



Implementation  58

As inputs the algorithm receives the whole LSMatrix and the TrackID of the 
track for which the missing line segments should be reconstructed. 

Figure 4-18: Building the list eventSegs. Events are shown as small red points. 

Figure 4-19: The hypothetical line segment hypLS is created. 

At the beginning a list of line segments is built up. It contains all line segments 
that have an “event” during the time when a line segment trSeg exists on the 
“CurrentTrack”. Therefore this list is called eventSegs. An event is simply ei-
ther the start or the end of a line segment on another track than the “Current-
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Track”. In Figure 4-18 the events are shown as small red points in the high-
lighted area. This area indicates the time in the song corresponding to trSeg. For 
easier handling the start and end times of the segments in the list are converted 
into relative times. This means that in eventSegs the start and end times of all 
line segments are stored as the time difference to the start time of trSeg.
Now the algorithm searches for every element E in eventSegs a line segment LS 
with the same TrackID in the LSMatrix. After finding one, a hypothetical line 
segment hypLS is created (see Figure 4-19). Its start and end times are calcu-
lated as follows: 
 

ELShypLS merelStartTistartTimestartTime −=

)(trSeglengthstartTimeendTime hypLShypLS +=

Of course it can happen that there is not enough space for hypLS on the current 
track. Then the algorithm searches other fitting line segments for the current 
element E and all other line segments in the list eventSegs.

Figure 4-20: Building the second list newEventSegs.

Otherwise if there was enough space for inserting hypLS, a second event list 
called newEventSegs is built up. This list contains all line segments which have 
an event during hypLS. Then for every element in newEventSegs (b1-b6 in 
Figure 4-20) a corresponding one in eventSegs (a1-a8 in Figure 4-20) is 
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searched. Depending on a threshold confirmHypLsThresh a certain number of 
corresponding line segments have to be found in order to confirm the hypotheti-
cal line segment. For deciding if a corresponding line segment was found, the 
differences between the start and end times are calculated. If both are below the 
so called diffThresh, the counter corrLSfound is increased. Is corrLSfound 
greater or equal confirmHypLsThresh then hypLS is added to a list called 
newLineSegments.
Since there are often lots of possibilities for positioning the reconstructed line 
segments, the list newLineSegments can quickly get large. In order to decide, 
which position should be taken, the line segments are separated into classes. For 
the classification the start time of the line segments is taken as the deciding 
value. If there does not already exist a class for this value, a new one is created. 
To check if a line segment belongs into a certain class, its start time is com-
pared to the one of the first element in this class. If the difference of the start 
times is below the threshold classThresh, the line segment is added to this class. 
In the current implementation classThresh is set to one second. The class con-
taining the most line segments is used for inserting the real reconstructed line 
segment into the LSMatrix. For the start and end time an average value is calcu-
lated from all the segments in the class. The similarity value and the TrackID 
are inherited from the segment trSeg.
There are several possibilities of how this algorithm is used. Mainly there are 
two classes. One only uses this algorithm on the track which is supposed to be 
the chorus track. The other one applies it to all tracks. See chapter 5.2.5 for 
more details. 

Figure 4-21: Next step in the aligning process: Finding Chorus Track. 

In the next step of the aligning process the main goal is to select one single 
track called the chorus track out of all available tracks. The chorus track is the 
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track with the highest probability of containing line segments that correspond to 
the “real” chorus section in the song (see Figure 4-21). 

4.2.6 Finding Chorus Track 
To pick the correct chorus track out of all available tracks a score is calculated 
for every track. Only the track with the highest score is finally used by the 
aligning algorithm. The calculation method of the score exploits some special 
features of chorus sections in popular music. A very important one is based on 
so called “half-length sub-segments” described in chapter 4.2.6.1. 

4.2.6.1 Half-Length Sub-Segments 

The Algorithm (Simplified Pseudo Code): 
Function HalfLengthSubSegments(lineSeg, LSMatrix) Returns F
F: vector with a length of 2, initialised with [0 0] 
Foreach line segment LS In LSMatrix Do 

If length of LS is approximately half the length of lineSeg Then 
If LS starts approximately at the same time as lineSeg Then 

Set F(1) To F(1) + 1 
End 
If LS ends approximately at the same time as lineSeg Then 

Set F(2) To F(2) + 1 
End 

End 
End 

In popular music chorus sections tend to consist of two half-length repeated 
sub-sections. Consequently a section having such sub-sections is likely to be the 
chorus section.  The target of this algorithm is to find line segments in the other 
tracks which occupy the first or second half of a given line segment. It counts 
the number of sub-segments found for the first and second half (allowed time 
differences are defined by a threshold). Finally a vector F containing these two 
values is returned. 

Figure 4-22: Finding half-length sub segments. 
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Figure 4-22 shows two line segments called a and b. For a two half-length sub-
segments are found on the track above a. One occupies the first and one the 
second half of a. However, only one sub-segment corresponding to the first half 

is found for b. Therefore the algorithm returns the vector [ ]11=aF for a and 

[ ]01=bF for b.

4.2.6.2 Calculating the Track Score 

This algorithm is used by both the merge algorithm and the lyrics alignment 
algorithm. It calculates a score for a certain track. As its input it takes an arbi-
trary list of line segments (such as e.g. the whole LSMatrix) and the TrackID of 
the track for which the score should be calculated. By using the score of every 
single track in the LSMatrix it can be decided which track has the highest prob-
ability for containing the “real” chorus sections. 
 
The Algorithm (Simplified Pseudo Code): 

Function CalculateTrackScore(curTrack, LSMatrix) Returns score 
Dlen: constant value (=1.4) used for weighting the score 

Set score To 0 
For all line segments ls on curTrack Do 

Set len To the duration of ls 
Set lamda To the similarity value of ls 
If len less than 7.7 Or len greater than 40 Then 

Set lamda To 0 
End 
Set F To HalfLengthSubSegments(ls,LSMatrix)//see chapter 4.2.6.1 
Set factor To 1.0 
If F(1) greater than 0 And F(2) greater than 0 Then 

Set factor To 2.0 
Set factor To factor + (F(1)-1 + F(2)-1)/8 

End 
Set score To score + lambda*factor*log(len/Dlen)

End 
Set score To score/number of line segments on current track 

The starting point for calculating the score is the similarity value λ of each line 
segment LS in the current track. This similarity value was already calculated by 
the algorithm for Finding Line Segments (presented in chapter 4.2.4) and was 
stored in the LSMatrix.
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In [GOT03] the following duration constraint for a chorus section CS is de-
fined: 
 

40)(7.7 << CSlength

Hence in my implementation λ is simply set to zero if this constraint is not 
met.  
Another important characteristic of chorus sections is the tendency to consist of 
two sub-sections with approximately half the chorus length. The algorithm de-
scribed in chapter 4.2.6.1 searches for line segments that are half the length of a 
given one and have approximately the same starting or ending time. It returns a 
vector F containing two integer numbers. These numbers correspond to the 
number of found sub-segments on other tracks corresponding to the first and 
second half of the given line segment.
Now a new variable called factor is introduced. It is used later to weight λ by a 
certain factor depending on how many half-length sub-segments are found for 
the current line segment. At the beginning factor is initialized by 0.1 . In order 
to boost the score for line segments with at least one sub-segment in each half 
factor is set to 0.2 if 0)1( >F and 0)2( >F . After that factor is increased by 

8/)2)2()1(( −+ FF . The denominator of 8 was gained through experiments. 

Calculation of the score for a whole track is now very similar to the one pre-
sented in [GOT03] except that the individual line segments get weighted by 
factorj:

len

j
i

D
L

M

j
jj factorscore log

1
⋅⋅=∑

=
λ ,

where i represents the TrackID of the current track. This track contains a num-

ber of iM line segments j . For each of them a jfactor  is calculated as ex-

plained above. Finally the resulting score for each line segment is weighted by 

len

j
D
Llog , where jL is the length of the line segment in seconds and the constant 

lenD is sec4.1 . This ensures that longer line segments reach a higher score than 

short ones. The idea behind this is that tracks with longer line segments are 
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more likely to be the chorus track than e.g. a track that contains small line seg-
ments with half the length of the chorus section. 
After finishing the calculation of the score for the current track, the score value 
is divided by the number of line segments in the track. This is not done in 
[GOT03] but in my opinion it prevents tracks with lots of line segments in it to 
get a higher score more easily. For example the tracks that only contain half-
length sub segments would also result in high scores because there are ap-
proximately twice as many segments than on the real chorus track. In the end 
the algorithm returns the score value for the current track. 
 
After calculating the score for every track in the LSMatrix the track with the 
highest score is selected as the chorus track. Now the actual aligning process 
can start (see Figure 4-23). 

Figure 4-23: Next step in the aligning process: Aligning Lyrics. 

4.2.7 Aligning Lyrics 
The goal of this algorithm is to align the individual lyrics sections to the right 
audio sections. Before this can be done, the merging algorithm must be exe-
cuted (see chapter 4.2.5). 

4.2.7.1 Preparations of the Lyrics 

At the beginning the lyrics are split up in several sections. It is assumed that 
sections are delimited by one or more blank lines and that the lyrics accurately 
reflect the words sung in the song. Hence no further pre-processing of the text 
is necessary. These assumptions were made because there already exist ap-
proaches which are able to optimise the textual lyrics (e.g. [KNE05], see chap-
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ter 1.2.2). The optimisation of lyrics would go beyond the scope of this diploma 
thesis since it concentrates on the aligning process of audio and lyrics. 
Now all extracted sections are compared with each other by using the Longest 
Common Substring (LCS) algorithm. A java implementation of this algorithm 
can be found in [LCS06]. By using the length len of the longest common sub-
string, a score is calculated for every pair of lyrics sections str1 and str2:

))2(),1(max(/ strlengthstrlengthlenscore =

From this a similarity matrix called lcsResultMatrix is built. For every pair of 
sections for which the score was greater than 8.0 the corresponding place in 
the matrix is set to 1. A typical lcsResultMatrix is shown in Table 4-2. 
 

Section 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 1 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 1 0 1 0 1 0
7 0 0 0 0 0 0 1

Sum 1 3 1 2 1 1 1

Table 4-2: Lyrics similarity matrix. 

To decide which sections are the most similar ones, the values in the columns 
are summed up. The column which reaches the maximum sum (red in Table 
4-2) contains the value 1 for every row which represents a chorus section 
(green). In this example the sections 2, 4 and 6 are chorus sections and 1, 3, 5 
and 7 are assumed to be verse sections. 
 
Now that every preparation step is completed, all necessary information for 
starting the actual alignment of audio and lyrics was gained. This is the goal of 
the very last chapter dealing with the implementation details. 
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4.2.7.2 Audio and Lyrics Alignment 

The Algorithm (Simplified Pseudo Code): 
//DEFINITIONS: 
//---------------------------------------------------------------- 
//It is already known which of the lyrics and audio sections are  
//chorus sections or verse sections. However, here only a minimum  
//of variables and lists are used to make the background of the  
//algorithm clearer. 
//---------------------------------------------------------------- 
//Since the whole aligning process is running from right (song 
//end) to left (song begin) the word “next” in variable names  
//always refers to the previous chorus section in time. 
//---------------------------------------------------------------- 
Function AlignLyrics() 
aChrSec: list containing the line segments of the audio chorus  

track 
nextaChrSec: index variable pointing to the next audio chorus in 

aChrSec 
nextEndPos: stores the end time of the next audio chorus section 
allowVerses: if 1 then a verse section may be inserted  
allowChorus: if 1 then a chorus section may be inserted 
verseSec: list used for temporarily storing lyrics of verse  

sections 
label: the graphical control on which the lyrics are displayed 

(red colour for verse sections and green for chorus sections) 

If song ends with a verse section Then 
Set nextEndPos To end time of last audio chorus section 

Else 
Set nextEndPos To end time of the last but one chorus section 

End 

Set nextaChrSec To aChrSec.LEN 
Set allowVerses To 1 
Set allowChorus To 1 

For i Is number of lyrics sections To 1 Do 
If the current lyrics section is a verse section 
And allowVerses is equal to 1 Then 

CODE_FOR_THE_VERSE_SECTION (see page 67) 
End //verse section 

If the current lyrics section is a chorus section 
And allowChorus is equal to 1 Then 

CODE_FOR_THE_CHORUS_SECTION (see page 68) 
End //chorus section 

End 
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The whole aligning process is running from the end of the song to the begin-
ning. The reason for this is that I noticed that chorus sections are more likely to 
occur at the end of a song than at the beginning. This helps if for example one 
more chorus section was detected in the audio data than in the lyrics. In this 
case the first audio chorus section would be ignored instead of the last one. Be-
cause the aligning process is running from the end to the beginning of the song 
the meaning of some words in this chapter is special: 
 

• “next” always means the previous section in the time of the song 
• “previous” always means the next section in the time of the song 
• “last” means actually the last section at the end of the song 
 

The variable nextEndPos indicates the end time of the next chorus section in 
order to know where the next verse section should start. Normally it is set to the 
end time of the last chorus section. But if the song ends with a chorus section, 
nextEndPos is initialized with the end time of the previous chorus in time. 
Another variable called nextaChrSec is used for saving the index of the next 
audio chorus section in the chorus track. For forcing alternating chorus and 
verse sections, two flags allowVerses and allowChorus are used. They are both 
set to 1 at the beginning because songs may end with either a chorus or a verse 
section. Now the algorithm steps through the lyrics sections from the end to the 
beginning. 
 
I. Verse Section 

Set allowVerses To 0 //after the verse(s) a chorus must follow 
Set allowChorus To 1 //now a chorus is allowed again 
Store next lyrics sections into verseSec until next chorus  

section is reached 
If sections in verseSec do not have the same number of lines  
Or no more chorus section is left before this verse Then 
concatenate all sections in verseSec to 1 big verse section 

Store this verse section again in verseSec 
End 
Set verseSpace To time difference between beginning of pre-  

vious chorus and nextEndPos 
For j Is 1 To verseSec.LEN Do //now display the lyrics 

Set width of label To verseSpace/versSec.LEN 
Set x position of label To nextEndPos + (j-1) * label.WIDTH 
Set text of label To verseSec(j) 

End 
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If the current lyrics section is a verse section and allowVerses is 1 the aligning 
of the verse section can start. The flag allowVerses is set to 0 and allowChorus 
is set to 1. Then the lyrics of all possibly existing verse sections until reaching 
the next chorus are added to the list verseSec. If the verse sections in verseSec 
do not have the same number of lines, all verse sections in this list are concate-
nated to one big verse section. If the number of lines in the individual verse 
sections is the same, it can be assumed that the sections are equally distributed 
over time. So in this case the available space between the two chorus sections 
(previous and next one) is divided by the number of verse sections in verseSec 
(see Figure 4-24).  

Figure 4-24: Space is divided by two because of two consecutive lyrics sections with the 
same number of lines. 

Consequently there are now several verse sections to be placed in the gap. 
However, this is not done if the very first lyrics section is involved. The reason 
for this is that many songs start with an instrumental intro part and the vocals 
tend to start later. If for example the song in Figure 4-24 directly started with 
the lyrics “Why do you want…” it would be possible that in the first half of the 
verse gap (red area) no sung vocals occur. So in this case it is better to concate-
nate the verse sections to a big one again. This procedure may not apply for all 
songs, but it worked quite well with most of the songs in the test set. 
 
II. Chorus Section 

Set allowVerses To 1 
Set x position of label To the beginning of current audio  

chorus section 
Set width of label To length of current audio chorus section 
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If there are more chorus sections in lyrics than in audio  
And the next lyrics section is also a chorus Then 

concatenate the current and next chorus sections in the lyrics 
Set text of label To these concatenated lyrics 
If a third chorus section follows in the lyrics Then 

Set allowChorus To 1 
Else 

Set allowChorus To 0 
End 

Else 
Set text of label To the current lyrics section 

End 

If there is at least one more chorus left in the lyrics Then 
Set nextEndPos To ending time of next chorus section 

Else 
Set nextEndPos To 0 

End 

If nextaChrSec greater than 0 Then 
Set nextaChrSec To nextaChrSec – 1 

End 

If the current lyrics section is a chorus section and allowChorus is 1 the align-
ing of the chorus section can begin. The flag allowChorus is set to 0 and al-
lowVerses is set to 1, because the next section should be a verse again. 
The label on which the lyrics will be displayed is moved so that it starts at the 
position where the audio chorus section starts. Its width is set to the length of 
the audio chorus section. 
A special case occurs if not all audio chorus sections were detected. This means 
that there were more chorus sections found in the lyrics than in the audio data. 
As a consequence the algorithm tries to concatenate two consecutive chorus 
sections found in the lyrics. This is done because it is common that audio cho-
rus sections sometimes contain variations (for example at the end of the song) 
and therefore will not be detected well by the chorus detector.  
At the end of the chorus alignment nextEndPos is set to the end time of the next 
chorus section if there is one left (nextaChrSec 1> ). Otherwise it is set to 0 .
Finally nextaChrSec is decreased by one and the algorithm steps along to the 
next lyrics section.  
If the first lyrics section is reached the aligning process terminates. Figure 4-25 
shows an example of an aligned song. 
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Figure 4-25: The aligned song. 
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5 User Manual 

As it is very uncomfortable to work via the Matlab Command Window, a
graphical user interface (GUI) was created. So the user e.g. does not always 
have to enter the whole path for the audio file to be loaded. It can simply be 
chosen by a common file selection dialog. This chapter explains the graphical 
user interface of my application, which is called Lyrics Aligner 1.0.
Mainly the GUI is divided into two parts. The feature extraction for finding the 
line segments is done in the main window. It is the most time consuming task 
and uses most of the algorithms introduced in the previous chapters. After fin-
ishing this process, the user can click the “Align Audio & Lyrics” button to 
open the Audio & Lyrics Alignment Window. Here the text processing, merging 
and aligning algorithms are used for aligning the lyrics to the audio signal. 

5.1 The Main Window 

Figure 5-1: The Lyrics Aligner main window. 
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In Figure 5-1 an overview of the main window is shown. It is divided into three 
parts which represent different importance levels for the user. The most impor-
tant items are placed in the upper part. In principle the user even does not need 
the other two thirds for the whole feature extraction process. Nevertheless they 
are sometimes very helpful because they provide further information about the 
audio data and the current process. 
In the middle part the audio signal is shown graphically. While the x-axis repre-
sents the time in seconds, the y-axis shows the amplitude at a certain time. This 
way the user is able to get an idea of what the song “looks” like. For calm bal-
lades the amplitude will not be as high as for loud techno tracks with strong 
beats. Furthermore often e.g. loud chorus sections and more silent areas such as 
breaks can be distinguished. 
The last third contains a player with which the user can listen to the current 
song. During the feature extraction the user is able to watch the progress by 
observing the “Log” and the “Progress” bar. After finishing the feature extrac-
tion he may directly jump to the positions of the found line segments by using 
the “Line Segments Selection”. 
This was only a brief overview of the main window. In the following chapters 
all parts of the window and the used algorithms behind them will be explained 
in detail.  

5.1.1 Step1 – Selecting the source file 

Figure 5-2: Step1 – Selecting the source file. 

As Figure 5-2 shows, there are two available buttons in this part of the window. 
The button “Load Audio File…” opens a file selection dialog. Here the user can 
choose an audio file from his hard disk. In the current version of Lyrics Aligner 
the file format is limited to WAVE files with a sampling rate of 16000 Hz and 
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bit rate of 16 bit. This can be changed easily later, so the user will also be able 
to load other file formats including mp3 files in the future. 
Alternatively the button “Reload last saved similarity matrix” can be used. 
However, at least one feature extraction must have been completed before this 
button can be pressed. Furthermore the check box “Save similarity matrix” must 
have been checked before the feature extraction was started. This causes the 
program to store the SimilarityMatrix on the hard disk. When the user presses 
the button “Reload last saved similarity matrix”, the saved SimilarityMatrix is 
loaded into the memory. Then the feature extraction can be continued just at the 
step after which the similarity matrix has been build. As a consequence the time 
consuming process of comparing all chroma vectors can be omitted. Of course 
this speeds up the feature extraction enormously. This feature was mainly built 
in for testing purpose. It sped up the testing of the algorithms for finding the 
line segments in the SimilarityMatrix. For the user it will not be a very useful 
feature because it only loads the SimilarityMatrix of the last processed song. 
Much more useful is that the Lyrics Aligner automatically stores the LSMatrix 
for the current song after the feature extraction. In order to find this file again 
when the audio file is loaded the next time, the following simple file name pat-
tern is used: 
 

Audio file: <path>\<filename>.wav 
LSMatrix file: <path>\<filename>.chr 

This means that after the feature extraction (when all line segments were found) 
a .chr file is generated for the current audio file. The file contains all necessary 
information for the lyrics alignment process. So the next time the user loads the 
audio file, the alignment process can be started directly without any feature ex-
traction. 
 
If the user selects the check box “Display Sections here if .chr file found”, the 
starting points of the line segments are shown as vertical red lines in the plot 
below. Since Matlab always redraws the whole plot after inserting a line, this 
vastly slows down the loading process. One reason for selecting this check box 
is that the user is able to easily recognise interesting parts of the song (accumu-
lation of red lines in the plot). Another advantage is that it enables the possibil-
ity to jump between the line segment starts using the “Line Segments Selection” 
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(see chapter 5.1.7). This approach of displaying the starting points of line seg-
ments by red lines was only used before the implementation of the Audio & Lyr-
ics Alignment Window. It is recommended to use this window instead of the red 
lines because it is much faster, more intuitive and also offers much more fea-
tures. 

5.1.2 File Info 

Figure 5-3: File Info. 

After loading an audio file, its properties are summarized in the “File Info” sec-
tion (see Figure 5-3). Above the horizontal line the user can see which file is 
currently loaded. Furthermore path, size, sampling rate, bit rate and playing 
length of the file are shown. But the most interesting information for the user is 
displayed below the horizontal separation line. Here can be checked whether a 
lyrics file for the current song was found. Lyrics Aligner searches for the lyrics 
corresponding to the current loaded song using the following file naming pat-
tern: 
 

Audio file: <path>\<filename>.wav 
Lyrics file: <path>\<filename>.txt 

The .txt file is a simple text file containing the lyrics for a certain song (also see 
chapter 4.2.7). If such a lyrics file was found, a green “Yes” is displayed next to 
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“Lyrics file found?”. Otherwise the green “Yes” is replaced by a red “NO (Lyr-
ics file must be called ‘<filename>.txt’)”. In this case the user is able to start 
the feature extraction and to open the Audio & Lyrics Alignment Window. But 
of course no lyrics are shown and no alignment can be done. 
 
The information next to “Chorus file found?” refers to the .chr file. It contains 
the LSMatrix for the current song if the feature extraction for it has already 
been finished at least once. If such a .chr file was found, a green “Yes (No fea-
ture extraction needed!)” is shown. Then the user is able to open the Audio & 
Lyrics Alignment Window immediately and start with the lyrics alignment. Oth-
erwise if no .chr file was found for the current song, a red “NO (Feature extrac-
tion needed!)” is shown. Then the button “Align Audio & Lyrics” is disabled. 
So the user is forced to click the button “Find Line Segments” in order to start 
the feature extraction first. 

5.1.3 Step2 - Settings & feature extraction 

Figure 5-4: Step2 – Settings & feature extraction. 

In this part of the main window three settings can be adjusted before starting 
the actual feature extraction process (see Figure 5-4). With the slider a value 
TR can be adjusted. TR defines how many semitones a transposed chorus may 
be away from the normal key of the chorus sections in the song. This means the 
following for the value tr of chapter 4.2.4: 
 

TRtr ≤≤0
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Therefore TR is a measure for detection quality and time complexity at the 
same time. A high TR value means that the feature extraction gets significantly 
slower because instead of one, now 1+TR similarity matrices have to be cal-
culated. Hence it is only recommended to use a 0>TR for songs where not all 

chorus sections are detected with 0=TR or the user is able to hear a modulated 

chorus. 
If the check box “Save similarity matrix” is selected, the similarity matrix is 
saved to the hard disk after finishing the feature extraction. This enables the 
user to later reload the similarity matrix by using the button “Reload last saved 
similarity matrix” instead of “Load Audio File…” (see chapter 5.1.1). 
The check box “Eliminate Collisions” was only used for testing purposes and 
therefore it normally should not be used. If it is selected then no new line seg-
ment, whose starting point is less than 7.7 seconds away from an already de-
tected line segment, is added to the LSMatrix.

5.1.4 Step3 – After feature extraction 

Figure 5-5: Step3 – After feature extraction. 

When the feature extraction is finished, the user may want to take a look at the 
SimilarityMatrix. This can be done by clicking the “View Similarity Matrix” 
button. A window containing a graphical representation of the SimilarityMatrix 
(similar to Figure 4-9) is opened. 
However, the more interesting button in the “Step3” panel is the button “Align 
Audio & Lyrics” (see Figure 5-5). After pressing it, the Audio & Lyrics Align-
ment Window is opened where the actual lyrics alignment process takes place 
(see chapter 5.2). 



User Manual  77

5.1.5 Plotted Audio Signal 

Figure 5-6: Plotted audio signal. 

In the middle of the main window the audio signal of the loaded song is plotted 
(see Figure 5-6). The x-axis represents the time in seconds while the y-axis cor-
responds to the amplitude. With the help of this plot, the user can easily gain an 
overview of the loaded song. By clicking the time axis the current playing posi-
tion can be set. This is used by the small player in the “Listen” panel (see the 
following chapter). 

5.1.6 Listen 

Figure 5-7: Listen panel. 

The panel shown in Figure 5-7 mainly acts as a small player for previewing the 
loaded song. By clicking the “Play” button the play back will be started at the 
green vertical line in the plotted audio signal. The position of this line can be 
set by clicking on the time axis in the plot (see chapter 5.1.5). While playing the 
audio file, the current position is shown in the label below the “Stop” and 
“Play” buttons. By default the time is shown in the format <min:sec.ms>.
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But by selecting the check box “sec” it can be changed to <sec.ms>. The 
“Stop” button is pressed in order to stop the running play back. 

5.1.7 Line Segments Selection 

Figure 5-8: Line segments selection. 

Here the green cursor (which indicates the position where the player starts the 
playback) can be directly set to the starting position of the found line segments.
Using the “Back” and “Next” buttons the user can step through all found line 
segments (see Figure 5-8). Between these two buttons the number of the current 
selected line segment is shown. Below the buttons some important information 
(start time, length and similarity) about the currently selected line segment is 
displayed. As this panel was mainly used during the implementation when the 
Audio & Lyrics Alignment Window had not existed, it is not recommended to be 
used by the user. This is because the Audio & Lyrics Alignment Window is 
much easier to understand and additionally offers more features and possibili-
ties.  

5.1.8 The Log 

Figure 5-9: The log. 
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The log is used for displaying important status information during the feature 
extraction process (see Figure 5-9). Here the user is able to see some of the out-
put which is normally only shown in the MATLAB Command Window. It was 
mainly intended for debugging purposes. 

5.1.9 Progress Bar 

Figure 5-10: Progress bar. 

The progress bar shown in Figure 5-10 indicates the progress of the time con-
suming feature extraction. This way the user can estimate the approximate time 
it will take to finish. 

5.2 The Audio & Lyrics Alignment Window 

Figure 5-11: Audio & Lyrics Alignment Window. 

In this window the actual aligning process is done. Furthermore, here the user 
can read along the current lyrics while listening to the aligned song (see Figure 
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5-11). It opens up when the user clicks onto the “Align Audio & Lyrics” button 
in the main window. 

5.2.1 The Tracks 

Figure 5-12: The tracks. 

The tracks (horizontal grey panels) shown in Figure 5-12 are a graphical repre-
sentation of the LSMatrix. Every TrackID in the LSMatrix corresponds to ex-
actly one track. The left and right ends of a track represent begin and end of the 
current song. Each track contains the two line segments which were found by 
analysing the SimilarityMatrix as described in chapter 4.2.4. So the two line 
segments where TrackID=1 are placed in the first track, those with TrackID=2 
in the second one, and so on. Line segments are displayed as green rectangles. 
The start and end of these rectangles correspond to the start and end of the line 
segment it represents. Hence the width of the rectangle is indicating the length 
of the line segment in relation to the length of the whole song. This enables the 
user to see where repeated sections are located in the song. 
After applying the merge algorithm (see chapter 4.2.5) one track can also con-
tain more than only two line segments. This happens because this algorithm 
combines line segments of several tracks to one single track. 
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5.2.2 The Cursor 

Figure 5-13: The cursor. 

The cursor shows the current position within the song (see Figure 5-13). During 
play back it updates its position automatically to always represent the current 
position. The user can set its position manually by clicking into the empty space 
of a track. If the song is currently played back, the player will jump to the new 
position immediately and continue play back from there. Otherwise only the 
current position in the song is updated and the user must click the “Play” button 
to start play back at this position. In both cases the player updates the displayed 
time in order to show the current position to the user (see chapter 5.2.4). 

5.2.3 Properties 

Figure 5-14: The properties. 
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When a line segment is clicked, it gets selected by changing the rectangle’s col-
our from green to blue. At the same time important information (such as 
TrackID, start and end time etc.) for this line segment is shown in the “Proper-
ties” panel (see Figure 5-14). In order to allow the user to compare two line 
segments, two columns are available in this panel. The blue column shows the 
information for the currently selected line segment, while the pink one shows it 
for the last selected one. Therefore also the blue colour of the selected rectangle 
changes to pink if another rectangle is selected. This way it is easy to compare 
two tracks i.e. for their similarity. 

5.2.4 The Player 

Figure 5-15: The player. 

The player shown in Figure 5-15 works very similarly to the one in the main 
window although it offers some advanced features. The time shown in the left 
half of the black panel indicates the current time in the song. It can be changed 
by placing the cursor on a certain position in the song (see chapter 5.2.2). Dur-
ing play back it is automatically updated in order to always display the time of 
the current position in the song. 
The check boxes in the right half of the black panel are used to change the be-
haviour of the player. If the “Click&Play” check box is selected then every time 
the user clicks onto a line segment, the player starts playing at the start of this 
line segment. This is very useful for listening to certain line segments fast and 
easily. It therefore replaces the feature “Line Segments Selection” of the main 
window (see chapter 5.1.7). The check box “Sync Lyrics” is only enabled after 
finishing the alignment process. If it is selected, the lyrics are automatically 
updated during playback or if the cursor position is changed manually. By se-
lecting the last check box “sec” the user can decide if the time should be dis-
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played in the format <sec.ms> instead of the default format 
<min:sec.ms>.
By clicking onto the “Play” button the song is played back starting at the cur-
rent cursor position. It can be stopped again by pressing the “Stop” button. With 
<< and >> the user is able to jump five seconds back or forwards. The |<< and 
>>| buttons enable the user to jump to the last or next section (verse, chorus) 
start. Of course this only makes sense after the full alignment process was fin-
ished. 

5.2.5 Algorithms 

Figure 5-16: Algorithms. 

Basically these algorithms are used for the final lyrics aligning process. The 
buttons on this panel are arranged in two rows (see Figure 5-16). These two 
rows correspond to the two main steps in the aligning process. In the first step 
(“Merge Tracks”-button) redundant line segments are removed and missing line 
segments are reconstructed. After that the lyrics can be aligned by using the 
button “Align Lyrics”. The “R”-Button can be used in order to reset all changes. 
The target of the merging algorithm is to eliminate unnecessary line segments.
It depends on the song how many line segments can be eliminated. For some 
songs hundreds or even thousands of line segments are found. Hence they often 
include a high ratio of redundancy which can often be diminished vastly. An-
other reason why the merging of tracks is absolutely necessary before the align-
ing process can start is that after the detection only two line segments can be 
placed on each track (see chapter 4.2.4). Therefore before merging two tracks 
are needed for a song with three refrains in order to represent the three chorus 
sections (see chapter 4.2.5 for more details about the merging algorithm). 
Until now only the algorithms behind the merge button were discussed. The 
options to the right of this buttons can be used to activate the reconstruction of 
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missing line segments. This is useful because sometimes not all line segments 
are detected by the chorus detector. By selecting “Chorus Reconstruction 
Mode” (CRM), the algorithm described in chapter 4.2.5.2 is executed only for 
the track which is supposed to be the chorus track. If “Full Reconstruction 
Mode” is selected, this algorithm is applied to all tracks. Furthermore the user 
can define the number of iterations by using the slider below. Such an iteration 
always consists of first merging the tracks and then applying the “Reconstruct 
Missing Line Segments” algorithm. The maximum number of iterations is six. 
However, normally three or four iterations should be enough since the algo-
rithm may take a long time if many line segments were found for the current 
song. Another disadvantage of too many iterations is that the probability for the 
occurrence of wrong line segments rises (see chapter 4.2.5.2). 

5.2.6 The Lyrics 

Figure 5-17: The lyrics. 

In this text field the lyrics for the current song are displayed (see Figure 5-17). 
If they have not been aligned yet, the lyrics for the whole song are displayed at 
once. After aligning the lyrics to the audio signal only the lyrics section for the 
current part of the song is displayed. The current part is indicated by the cursor 
(see chapter 5.2.2). So wherever the cursor is moved the lyrics get updated 
automatically (either while the song is played back or when the user changes 
the cursor position manually). To use this feature the check box “Sync Lyrics” 
in the player must be selected (see chapter 5.2.4). Otherwise the lyrics for the 
whole song are displayed all the time. 
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6 Evaluation 

For evaluating the Lyrics Aligner 1.0 a test set of 50 pop songs is used. They 
were selected carefully to cover different music styles like Rock, Dance, Bal-
lads and Hip Hop. In order to make the evaluation faster and more uniform the 
feature for searching modulated chorus sections was turned off for all songs 
(see chapter 5.1.3). After the alignment process the results were analysed by the 
following criteria: 
 

1) Was the right chorus track selected? 
 Yes or no. 
2) How many percent of the chorus sections were detected correctly? 
 Percentage of the correctly detected chorus sections.5

3) What was the average error at the start times of the chorus sections? 
 Average error in seconds. 
4) What was the average error at the end times of the chorus sections? 
 Average error in seconds. 
5) Was a repeated chorus section detected correctly? 
 Yes or no (only if the song contains a repeated chorus). 
6) Which merge mode was used? 
 Normal, CRM, FRM (<number of iterations>). 
 

Since the merge mode often plays a decisive role for the quality of the align-
ment, the evaluation is basically split up into two experiments. In the first one 
only the mode Normal is allowed. This means that no missing line segments are 
reconstructed. The tracks are only merged in order to eliminate redundant line 
segments.
In the second experiment the “Normal” merge mode was also used wherever 
possible. However, if the alignment was not good enough6, first Chorus Recon-
struction Mode (CRM) and then Full Reconstruction Mode (FRM) was tried to 
 
5 It is possible that additional wrong chorus sections are detected. Then only chorus sections 

located at the correct position are used for the calculation. 
6 For example if missing chorus sections or large timing errors occur. 
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get better results. In CRM mode missing line segments are reconstructed only 
once and exclusively for the track with the highest probability to be the chorus 
track. In FRM mode the reconstruction process is executed for all tracks. There 
exist six versions of the FRM mode. The only difference between these six 
FRM modes is the number of iterations. See chapters 4.2.5 and 5.2.5 for more 
details. 
 
Of course the first experiment will lead to worse results than the second one. 
But it simulates the conditions for real automatic alignment, where the user 
does not need to interact with the program and its settings (e.g. when using the 
algorithms for batch processing a whole song collection). The second experi-
ment shows the achievable results with fine tuning done by the user. 

6.1 Experiment 1 - Using Normal Merge Mode 

In this first experiment (see Table 6-1), the correct chorus track was selected in 
36 songs. It can be seen that in these cases, at least half of the chorus sections 
were detected. Furthermore the correct chorus track was selected for 21 of 25 
songs in which 100% of the chorus sections were detected correctly. This shows 
the importance of finding the right chorus track. In spite of this it is also possi-
ble that 100% of the chorus sections are detected although the chorus track was 
not selected correctly. The reason for this is that there sometimes exist two pos-
sible chorus tracks which cover all “real” chorus sections in a song. Neverthe-
less the length of the line segments on them is not the same. Consequently the 
timing errors could be minimized by selecting the other possible chorus track. 
That is why in some cases the table contains a “No” for “Right Chorus Track 
Selected” although 100% of the chorus sections were detected (also see chapter 
6.4 example song 1). 
 
Serious problems emerged in those 10 cases in which the wrong chorus track 
was selected. In three of them not even one of the chorus sections was covered 
by the chorus detector. Although in the remaining seven cases often 66% or 
even 100% were reached, the average timing errors are mostly very high (as 
already mentioned above). 
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Song
Used 
Merge 
Mode

Correct 
Chorus 
Track 

Selected

#Chorus #Chorus 
detected

Chorus 
sect. match 

(%)

Ø Error 
start 

(sec)*

Ø Error end 
(sec)*

Repeated 
Chorus 

Detected

1 A-ha - Take on Me Normal Yes 3 2 66,67% +0.1 -3.5 -
2 Akon - Lonely Normal Yes 4 2 50,00% +0.3 -2.2 -
3 Atomic Kitten - Whole Again Normal Yes 4 2 50,00% +2.4 +1.0 -
4 Backstreet Boys - Everybody Normal Yes 4 4 100,00% +1.25 -1.5 Yes
5 Bell Book & Candle - Rescue Me Normal No 3 3 100,00% 0.0 -6.5 -
6 Black - Wonderful Life Normal Yes/No? 3 3 100,00% +3.9 -18.8 -
7 Bloodhound Gang - The Ballad Of Chasey Lane Normal Yes 3 3 100,00% -5.0 0.0 -
8 Bon Jovi - Always Normal No 3 0 0,00% - - -
9 Bon Jovi - It's My Life Normal Yes/No? 4 3 75,00% +6.6 0.0 No

10 Brian Adams - Summer of '69 Normal Yes 2 2 100,00% +3.0 0.0 -
11 Britney Spears - Baby One More Time Normal Yes 3 3 100,00% +0.1 -1.33 -
12 Britney Spears - Everytime Normal Yes 3 2 66,67% +0.1 0.0 -
13 Captain Jack - Soldier, Soldier Normal Yes/No? 4 4 100,00% +2.7 -2.2 Yes
14 Carl douglas - Kung Fu Fighting Normal Yes 4 2 50,00% +0.1 -2.7 -
15 Christina Aquilera - Genie In The Bottle Normal Yes 4 3 75,00% 0.0 -10.9 -
16 Coolio - Gangster's Paradise Normal Yes 3 3 100,00% 0.0 +0.66 -
17 Die Firma - Die Eine 2005 Normal Yes 3 3 100,00% 0.0 0.0 -
18 Eminem - Lose Yourself Normal No 3 3 100,00% -1.0 -5.3 -
19 Eminem - Without Me Normal Yes 3 3 100,00% 0.0 +0.2 -
20 Haiducii - Dragostea din tei Normal Yes 3 3 100,00% 0.0 -2.0 -
21 IN-MOOD feat. Juliette - The Last Unicorn Normal Yes 4 4 100,00% -1.5 0.0 Yes
22 Jennifer Lopez - Let's Get Loud Normal Yes 4 3 75,00% +0.1 -1.65 -
23 Jennifer Lopez - Waiting For Tonight Normal No 3 1 33,33% +0.2 0.0 -
24 Juli - Perfekte Welle Normal Yes 3 2 66,67% +2.0 +0.25 -
25 Kate Ryan - Desenchantee Normal No 3 2 66,67% +6.6 -5.5 No
26 Kelly Clarkson - Behind These Hazel Eyes Normal Yes 4 4 100,00% 0.0 -0.5 Yes
27 Madonna - Sorry Normal Yes 3 3 100,00% -1.2 0.0 -
28 Masterboy - Mister Feeling Normal No 3 2 66,67% +2.0 -8.5 -
29 Melanie C - First day of my life Normal Yes 3 3 100,00% -0.3 -6.5 -
30 Mike Oldfield - Moonlight Shadow Normal Yes 2 2 100,00% 0.0 +0.75 -
31 Morrissey - You Have Killed Me Normal Yes 3 3 100,00% 0.0 +0.05 -
32 Mr. President - Coco Jambo Normal Yes 4 3 75,00% +0.2 -0.5 -
33 Nena - Irgendwie, Irgendwo, Irgendwann Normal Yes 3 4** 100,00% 0.0 -2.0 -
34 Nickelback - This Is How You Remind Me Normal Yes/No? 3 2 66,67% +23.9 -4.0 -
35 Pet Shop Boys - It's a sin Normal No 3 2 66,67% -16.4 +1.74 -
36 Pet Shop Boys - Se a vida e Normal Yes 3 2 66,67% -2.79 +0.1 -
37 Petula Clark - Downtown Normal No 3 0 0,00% - - -
38 Pink - Family Portrait Normal Yes 3 2 66,67% +0.4 -1.4 Lyrics merged
39 Pink - Get The Party Started Normal Yes 5 5 100,00% -1.6 -0.3 Yes
40 Queen - Radio Ga Ga Normal Yes 3 3 100,00% 0.0 +0.46 -
41 Robbie Williams - Angels Normal Yes 3 3 100,00% +0.5 -17.0 -
42 Roxette - Sleeping In My Car Normal No 4 0 0,00% - - -
43 Sarah Connor - From Zero To Hero Normal Yes 3 2 66,67% +7.2 +0.9 -
44 Scorpions - Wind Of Change Normal Yes 3 3 100,00% 0.0 0.0 Yes
45 Sean Paul - Get Busy Normal Yes 5 4 80,00% +0.1 -1.8 Yes
46 Soft Cell - Tainted Love Normal Yes 2 2 100,00% +6.0 -4.9 -
47 T.a.t.u - All the Things She Said Normal Yes 4 3 75,00% +0.1 +4.5 -
48 Tina Turner - Simply The Best Normal No 2 1 50,00% +1.16 -7.64 No
49 Wes - Alane Normal Yes 4 3 75,00% 0.0 +5.8 -
50 Will Smith - Miami Normal Yes 4 4 100,00% +0.3 -0.4 -

* In the columns “Error begin” and “Error end” the + and – signs in front of the values indicate the most common shift direction of the chorus 
start and end. If there is for example a + sign in front of the value this means that the detected chorus sections in the song start too late. How-
ever, the average value is calculated without taking care on the direction! 

** In this song one additional chorus section was detected. Since the value in the column “#Chorus detected” only indicates how many percent of 
the chorus sections in the song were found, “100%” is shown because all chorus sections were found. This column can also for example show 
0% although some chorus sections were found if the found chorus sections do not match the “real” ones. 

Table 6-1: Result table of Experiment 1. 

Special cases are the four “Yes/No” entries. They correspond to songs for 
which it would lead to advantages and disadvantages at the same time, if an-
other track would have been selected to be the chorus track. For example it 
could happen that by selecting another track, one more chorus section would be 
detected. But at the same time the average timing errors of all chorus sections 
would increase. The reason for this is that the line segments on this new chorus 
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track are often shorter than on the other one. Consequently it is not clear which 
case would be better. Since in these cases it is already hard to decide for a hu-
man, in my opinion the algorithm for detecting the right chorus track did not 
fail. Therefore I would count these cases rather to “Yes” than to “No”. 
 
There are nine tracks in which all chorus sections were detected and the average 
errors for start and end times are below one second. This means that 18% of all 
songs were aligned perfectly. The average start time error over all songs is 2.02 
seconds while the average end time error is 2.72 seconds. Generally the chorus 
sections tend to start too late and end too early. The main reason for this is that 
there often occur variations at the start and end of chorus sections which are 
caused by the different verse sections between them. So for example the vocals 
(and especially their echo) at the end of a verse section may linger into the be-
ginning of the chorus. Also the transition from a chorus to a verse is often very 
fluent and therefore may vary from one chorus section to another. This leads to 
problems at finding the line segments in the SimilarityMatrix because the start 

and end parts of such a chorus section are below the threshold lineTh  (see chap-

ter 4.2.4). 

6.2 Experiment 2 - Using Best Merge Mode 

Here in 47 songs the right chorus track was chosen. In 43 of the test songs all 
chorus sections were found and in the remaining seven songs only one chorus 
section was missed.  
An interesting point is that although in three cases the wrong chorus track was 
selected, in all of them 100% of the chorus sections were found. Nevertheless in 
these three songs the timing errors are above-average. The reason for this be-
haviour was already explained in chapter 6.1. 
 
There are thirteen tracks in which all chorus sections were detected and the av-
erage errors for start and end times are below one second. In other words this 
means that 26% of all songs were aligned perfectly. The average start time error 
over all songs is 1.6 seconds while the average end time error is 2.32 seconds. 
As in Experiment 1 the chorus sections tend to start too late and end too early 
(see Table 6-2 for detailed results). 
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Song
Used 
Merge 
Mode

Correct 
Chorus 
Track 

Selected

#Chorus #Chorus 
detected

Chorus 
sect. 

match (%)

Ø Error 
start 
(sec)*

Ø Error end 
(sec)*

Repeated 
Chorus 

Detected 

1 A-ha - Take on Me CRM Yes 3 3 100,00% +0.1 -3.5 -
2 Akon - Lonely CRM Yes 4 3 75,00% +0.3 -1.7 -
3 Atomic Kitten - Whole Again FRM (2) Yes 4 4 100,00% +2.3 +1.0 -
4 Backstreet Boys - Everybody Normal Yes 4 4 100,00% +1.25 -1.5 Yes
5 Bell Book & Candle - Rescue Me Normal No 3 3 100,00% 0.0 -6.5 -
6 Black - Wonderful Life FRM (2) Yes 3 3 100,00% +3.5 -3.4 -
7 Bloodhound Gang - The Ballad Of Chasey Lane Normal Yes 3 3 100,00% -5.0 0.0 -
8 Bon Jovi - Always FRM (2) Yes 3 3 100,00% +8.3 0.0 -
9 Bon Jovi - It's My Life FRM (2) Yes 4 4 100,00% -0.95 0.0 Yes

10 Brian Adams - Summer of '69 Normal Yes 2 2 100,00% +3.0 0.0 -
11 Britney Spears - Baby One More Time Normal Yes 3 3 100,00% +0.1 -1.33 -
12 Britney Spears - Everytime CRM Yes 3 3 100,00% +0.1 0.0 -
13 Captain Jack - Soldier, Soldier CRM Yes 4 3 75,00% 0.0 0.0 No
14 Carl douglas - Kung Fu Fighting FRM (2) Yes 4 4 100,00% +2.1 -3.5 -
15 Christina Aquilera - Genie In The Bottle FRM (2) Yes 4 4 100,00% 0.0 -6.0 -
16 Coolio - Gangster's Paradise Normal Yes 3 3 100,00% 0.0 +0.66 -
17 Die Firma - Die Eine 2005 Normal Yes 3 3 100,00% 0.0 0.0 -
18 Eminem - Lose Yourself Normal No 3 3 100,00% -1.0 -5.3 -
19 Eminem - Without Me Normal Yes 3 3 100,00% 0.0 +0.2 -
20 Haiducii - Dragostea din tei Normal Yes 3 3 100,00% 0.0 -2.0 -
21 IN-MOOD feat. Juliette - The Last Unicorn FRM (2) Yes 4 4 100,00% +1.25 +0.75 Yes
22 Jennifer Lopez - Let's Get Loud FRM (2) Yes 4 3 75,00% 0.0 -2.0 -
23 Jennifer Lopez - Waiting For Tonight FRM (1) Yes 3 3 100,00% +0.7 +4.38 -
24 Juli - Perfekte Welle Normal Yes 3 2 66,67% +2.0 +0.25 -
25 Kate Ryan - Desenchantee FRM (1) Yes 3 3 100,00% +1.0 -3.6 Yes
26 Kelly Clarkson - Behind These Hazel Eyes Normal Yes 4 4 100,00% 0.0 -0.5 Yes
27 Madonna - Sorry Normal Yes 3 3 100,00% -1.2 0.0 -
28 Masterboy - Mister Feeling CRM Yes 3 3 100,00% 0.0 0.0 -
29 Melanie C - First day of my life Normal Yes 3 3 100,00% -0.3 -6.5 -
30 Mike Oldfield - Moonlight Shadow Normal Yes 2 2 100,00% 0.0 +0.75 -
31 Morrissey - You Have Killed Me Normal Yes 3 3 100,00% 0.0 +0.05 -
32 Mr. President - Coco Jambo CRM Yes 4 4 100,00% +0.3 0.0 -
33 Nena - Irgendwie, Irgendwo, Irgendwann Normal Yes 3 4** 100,00% 0.0 -2.0 -
34 Nickelback - This Is How You Remind Me FRM (1) Yes 3 3 100,00% +3.4 -13.6 -
35 Pet Shop Boys - It's a sin CRM No 3 3 100,00% -16.5 +0.3 -
36 Pet Shop Boys - Se a vida e CRM Yes 3 3 100,00% -2.8 0.0 -
37 Petula Clark - Downtown FRM (5) Yes 3 2 66,67% +3.0 +3.0 -
38 Pink - Family Portrait Normal Yes 3 2 66,67% +0.4 -1.4 Lyrics merged
39 Pink - Get The Party Started Normal Yes 5 5 100,00% -1.6 -0.3 Yes
40 Queen - Radio Ga Ga Normal Yes 3 3 100,00% 0.0 +0.46 -
41 Robbie Williams - Angels Normal Yes 3 3 100,00% +0.5 -17 -
42 Roxette - Sleeping In My Car FRM (1) Yes 4 3 75,00% +0.2 0.0 -
43 Sarah Connor - From Zero To Hero FRM (5) Yes 3 3 100,00% +5.0 +4.0 -
44 Scorpions - Wind Of Change Normal Yes 3 3 100,00% 0.0 0.0 Yes
45 Sean Paul - Get Busy FRM (3) Yes 5 5 100,00% 0.0 +1.5 No,but 1 long
46 Soft Cell - Tainted Love Normal Yes 2 2 100,00% +6.0 -4.9 -
47 T.a.t.u - All the Things She Said FRM (1) Yes 4 4 100,00% +1.25 -4.05 -
48 Tina Turner - Simply The Best FRM (4) Yes 2 1,5 75,00% -2.1 +3.5 Yes (1 of 2)
49 Wes - Alane CRM Yes 4 4 100,00% -2.0 +4.1 -
50 Will Smith - Miami Normal Yes 4 4 100,00% +0.3 -0.4 -

* In the columns “Error begin” and “Error end” the + and – signs in front of the values indicate the most common shift direction of the chorus 
start and end. If there is for example a + sign in front of the value this means that the detected chorus sections in the song start too late. How-
ever, the average value is calculated without taking care on the direction! 

** In this song one additional chorus section was detected. Since the value in the column “#Chorus detected” only indicates how many percent of 
the chorus sections in the song were found, “100%” is shown because all chorus sections were found. This column can also for example show 
0% although some chorus sections were found if the found chorus sections do not match the “real” ones. 

Table 6-2: Result table of Experiment 2. 

Figure 6-1 shows how often the different merge modes were used for the test 
set. Merge modes with no or only few iterations (“Normal”, “CRM” and “FRM 
(1,2)”) are mostly used (92%). 
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Figure 6-1: Frequency of used merge modes. 

6.3 Experiment 1 vs. Experiment 2 

Even when counting the four “Yes/No” cases to “Yes” in Experiment 1, the se-
lection of the right chorus track could be raised by 14.9% in Experiment 2. The 
average number of chorus sections for the songs in the test set is 3.3. In Ex-
periment 1 an average number of 2.58 chorus sections per song (which are 
78.18%) were detected. In Experiment 2 this value could be raised to 3.15, 
which means that 95.45% of all chorus sections were detected. 
The average timing error of the chorus section starts could be reduced from 
2.02 to 1.60 seconds. This is an improvement of 20.8%. Also the average timing 
error of the chorus section endings could be reduced from 2.72 to 2.32 seconds 
which is an improvement of 14.7%. 
Both experiments show that detected chorus sections tend to start too late and 
end too early. This means that the line segments found by the chorus detector 
seem to be too short. 

6.4 Qualitative Evaluation 

In order to illustrate the strengths and flaccidities of my approach this chapter 
describes some interesting cases which were picked out of the test set. 
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1) Song:  Bell Book & Candle - Rescue Me 
Merge Mode: Normal 
Description: Wrong chorus track selected. 

Figure 6-2: Wrong chorus track selected. 

 In this song the average start error of the chorus sections is 0.0, while the 
end error is 6.5 seconds. In Figure 6-2 these 6.5 seconds correspond to 
the small length difference between the line segments on the first and 
second highlighted track. If track b) were selected as the chorus track, 
this would lead to a more accurate alignment. However, there are more 
small segments in the part of the song where a line segment exists on 
track a). Therefore the probability to reach a higher score because of 
half-length sub-segments is greater for this track (see chapter 4.2.6.1). 

 
2) Song:  Bryan Adams - Summer of 69 

Merge Mode: Normal 
Description: Verse sections with same number of lines. 
 
This song is a good example in which the lyrics of two consecutive verse 
sections are not simply merged for displaying them at the same time. 
Here both sections have the same number of lines. Therefore the space 
between the two chorus sections is split up into two equally long sec-
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tions. In Figure 6-3 the parts where the lyrics of the two sections are per-
formed is marked by a small red waveform. Since both of them are com-
pletely placed within their section, it can be seen that this is a good ap-
proach to reach a finer alignment.  

Figure 6-3: Verse sections with same number of lines. 

 
3) Song:  Die Firma - Die Eine 2005 

Merge Mode: Normal 
Description: Vast reduction of line segments.

For this song, the chorus detecting algorithm finds 1758 line segments 
(see Figure 6-4). After merging there are only 220 line segments left 
which is a reduction of about 87.5%. This helps the aligning algorithm a 
lot since many redundant line segments are eliminated. Therefore the de-
cision for finding the chorus track is much easier. However, the most in-
teresting fact about the alignment in this song is that although only the 
“Normal” merge mode is used, a perfect alignment can be achieved. This 
means that 100% of the chorus sections were detected and 0.0 seconds 
average start and end error was measured during evaluation. 
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Figure 6-4: Vast reduction of line segments.

4) Song:  Haiducii - Dragostea din tei 
Merge Mode: Normal 
Description: Chorus section ends too early. 

Figure 6-5: Chorus section ends too early. 

In this song the line segments on the chorus track end too early while on 
other tracks many line segments end a bit later (see Figure 6-5). The line 
segment above the chorus track for example ends exactly at the end of 
the chorus. In future versions the existence of several line segments that 
are a bit longer than the one on the chorus track could perhaps be ex-
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ploited for improvements. As it was already noticed in the evaluation 
chapter, the chorus sections tend to be too short. Therefore it could per-
haps improve the aligning accuracy if such line segments that are shorter 
than the majority in this region would get extended. 
 

5) Song:  Kelly Clarkson - Behind These Hazel Eyes 
Merge Mode: Normal 
Description: Gap between two consecutive chorus sections. 

Figure 6-6: Gap between two consecutive chorus sections. 

If a song contains two consecutive chorus sections, there often appears a 
small gap between the two line segments on the chorus track (see Figure 
6-6). Observations show that this gap mostly corresponds to exactly the 
time which is missing at the end of all chorus sections in this song. As 
already mentioned, chorus sections are likely to be too short. Therefore 
this fact could be exploited in order to enhance the accuracy of the dura-
tion for all sections in the song. 
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6) Song:  Masterboy - Mister Feeling 
Merge Mode: CRM 
Description: Song starts with a chorus section. 

Figure 6-7: Song starting with chorus section. 

This example shows that my approach also works even if the song di-
rectly starts with a chorus section. So this is one of the advantages of 
only distinguishing two kinds of sections. With the approach presented 
by [WAN04] this would not be possible because here the song has to 
start with an intro followed by a verse section.  
 

7) Song:  Nena - Irgendwie, Irgendwo, Irgendwann 
Merge Mode: Normal 
Description: Additional instrumental chorus section detected. 
 
In this song an additional chorus section was found. The reason for this 
is that at the end the chorus is repeated once again but without vocals. 
However, since the accompanying instruments are the same, the algo-
rithm detects it as an additional chorus section. Therefore of course all 
sections before this additional chorus section get assigned wrong lyrics. 
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Figure 6-8: Additional instrumental chorus section detected. 

8) Song:  Nickelback - This is how you remind me 
Merge Mode: FRM (1) 
Description: Duration of chorus section is 51 seconds. 
 
The duration of this song’s chorus sections is 51 seconds. In the algo-
rithm for finding the chorus track a line segment which has a length 
greater than 40 seconds automatically gets zero points (see chapter 
4.2.6.2). Therefore in this case the right chorus track is not selected. 

Figure 6-9: Duration of chorus section is 51 seconds. 



7 Conclusion 

7.1 Results 

An approach for aligning audio and lyrics on section level was presented. As 
experiments show (see chapter 6 ) the automatic alignment by only choosing the 
“Normal” merge mode is quite good. However, improvements could be made by 
automatic choice of the right merge mode. The performance of the feature ex-
traction process could also get better by adding a beat detector to the system. 

7.2 Limits of my Implementation 

Since no beat and vocal detector as well as a singing phoneme duration data-
base could be used, my approach is limited to section level alignment. One 
problem is also that the system can only rely on the chorus detector for placing 
the sections. A second module providing alignment information like for exam-
ple a beat detector could improve the quality of the alignment algorithm. 
Furthermore in the current implementation there is no automatic selection 
method for the best merge mode. However, as the evaluation results (see chap-
ter 6 ) show, the quality of the alignment can be improved a lot by using the 
right merge mode. 
Another limitation of my approach is that the sung vocals or their phonemes are 
not used for better alignment. By including for example Hidden Markov Models 
(HMM) [HUA90] the alignment could perhaps be verified by detecting certain 
words in a section. 

7.3 Possible Improvements 

In the current implementation the feature extraction for a song takes a long 
time. Of course this process could be optimised. For example as described in 
[WAN04] a vast improvement could be reached by using a beat detector. Since 
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then for every beat only one chroma vector needs to be extracted, an average 
speed-up of 98% could be reached. 
As Experiment 2 shows, an automatic detection of the most suitable merge 
mode could improve the aligning quality enormously. This could be done by 
comparing the number of found chorus sections in lyrics and audio. If there are 
more chorus sections in the lyrics, another merge mode could be tried to get 
better results. Because observations show (see Figure 6-1) that merge modes 
with no or few iterations are most frequent, the system should start with “Nor-
mal” mode and then go upwards to “CRM”, “FRM (1)” and “FRM (2)”. The 
first mode for which the number of chorus sections matches the amount of 
found refrains in the lyrics should finally be chosen for the alignment. 
Adding a vocal detector to the system could also improve the alignment process 
because then instrumental sections could be detected. So for example the lyrics 
for the first verse section would be placed after the instrumental intro. Further-
more the current approach is sometimes fragile for songs with an instrumental 
part between two chorus sections. This problem could also be solved by using a 
vocal detector. 
In the current approach the lyrics have to accurately reflect the words sung in 
the song. For example often a chorus is repeated several times in the end of a 
song. Then the corresponding lyrics also have to occur several times in the lyr-
ics file. This could be improved in future versions of the software by simply 
copying the lyrics of the chorus section several times. 
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