
Automatic Audio and Lyrics Alignment

DIPLOMARBEIT
zur Erlangung des akademischen Grades

Diplom-Ingenieur

in der Studienrichtung

INFORMATIK

Eingereicht von:
Andreas Kothmeier, 0155676

Angefertigt am:
Institut für Computational Perception

Betreuung:
Univ.-Prof. Dr. Gerhard Widmer

Linz, August 2006

Acknowledgements

I would like to thank the following people
1) Univ.-Prof. Dr. Gerhard Widmer* for his support and good sugges-

tions while writing this diploma thesis. *

2) Dipl. Inf. Tim Pohle* for his introduction into digital audio processing
and his support in the early implementation stage.

3) Dipl.-Ing. Peter Knees* for providing the topic of this diploma thesis
and his support.

4) Dipl.-Ing. Klaus Seyerlehner* for his advice on some books about digi-
tal audio processing.

5) Clemens Raab for his support at the implementation of the band pass
filter.

* Department of Computational Perception, Johannes Kepler University Linz

Abstract

English Version:
Nowadays computers start to replace the hi-fi system in living rooms all over
the world. This opens up more and more possibilities for the user to gain addi-
tional information for the song currently played. One kind of information is the
lyrics; that is what my diploma thesis deals with. The goal is to provide a pro-
gram that is able to automatically align the lyrics to the audio signal. This way
the annoying scrolling of the lyrics while listening to a song is not necessary
anymore.

Deutsche Version:
Heutzutage verdrängen Computer mehr und mehr die HiFi-Anlage im Wohn-
zimmer. Dadurch ergeben sich immer mehr neue Möglichkeiten für den Benut-
zer, zusätzliche Informationen zu dem gerade gespielten Lied zu erlangen. Eine
dieser Informationen ist der Liedtext, der das Hauptthema in meiner Diplomar-
beit darstellt. Der Text eines Songs soll dabei automatisch mit dem Audiosignal
synchronisiert werden. Das ermöglicht es dem Benutzer, den Text beim Anhö-
ren des Songs mitzulesen, ohne, dass dabei ein manuelles Scrollen notwendig
wäre.

Contents

1 INTRODUCTION ... 1

1.1 DEVELOPMENT OF INTELLIGENT MUSIC PROCESSING.. 1
1.2 MOTIVATION ... 2

1.2.1 Application Areas for Automatic Lyrics Alignment ... 2
1.2.2 Main Reason for Choosing this Topic .. 2

1.3 GOAL.. 3

2 BASIC KNOWLEDGE.. 6

2.1 DIGITAL REPRESENTATION OF AUDIO DATA .. 6
2.2 DFT, FFT & INVERSE DFT... 9

2.2.1 DFT ... 9
2.2.2 FFT.. 11
2.2.3 Inverse DFT ... 11

2.3 WINDOW FUNCTIONS - THE HANN WINDOW .. 12
2.4 CALCULATING THE FREQUENCY OF A NOTE ... 14

3 THE PROCESS OF LYRICS ALIGNMENT... 16

3.1 APPROACH 1: CHI HANG WONG ET AL. .. 16
3.2 APPROACH 2: ALEX LOSCOS ET AL. ... 18
3.3 APPROACH 3: WANG ET AL. .. 20

3.3.1 Structural Element Level Alignment ... 22
3.3.1.1 Beat Detector...23
3.3.1.2 Measure Detector...24
3.3.1.3 Chorus Detector...25
3.3.1.4 Section Processor...25

3.3.2 Line Level Alignment .. 26
3.3.2.1 Vocal Detector...26
3.3.2.2 Line Processor ...27

3.3.3 System Integration .. 28
3.3.3.1 Section Level Alignment ..28
3.3.3.2 Line Level Alignment ..30

3.3.4 Evaluation .. 30
3.4 OVERVIEW OF MY APPROACH ... 32
3.5 DIFFERENCES BETWEEN EXISTING APPROACHES AND MINE 35

3.5.1 Wang et al. vs. My Approach ... 36
3.5.2 Goto vs. My Approach... 37

4 IMPLEMENTATION.. 39

4.1 ADVANTAGES & DISADVANTAGES OF JAVA VS. MATLAB...................................... 39
4.2 IMPLEMENTATION DETAILS .. 39

4.2.1 Applying the FFT .. 41
4.2.2 Band Pass Filter ... 42
4.2.3 Similarity Comparison .. 45
4.2.4 Finding Line Segments .. 47

4.2.4.1 The Basic Concept of Finding Line Segments ..47
4.2.4.2 Differences to Goto’s Approach..49
4.2.4.3 Detecting Modulated Chorus Sections ...50
4.2.4.4 Line Segments vs. Tracks ...52

4.2.5 Merging Tracks... 53
4.2.5.1 Eliminate Redundant Line Segments ...53
4.2.5.2 Reconstruct Missing Line Segments ..57

4.2.6 Finding Chorus Track ... 61
4.2.6.1 Half-Length Sub-Segments...61
4.2.6.2 Calculating the Track Score..62

4.2.7 Aligning Lyrics ... 64
4.2.7.1 Preparations of the Lyrics...64
4.2.7.2 Audio and Lyrics Alignment...66

5 USER MANUAL ... 71

5.1 THE MAIN WINDOW... 71
5.1.1 Step1 – Selecting the source file .. 72
5.1.2 File Info ... 74
5.1.3 Step2 - Settings & feature extraction.. 75
5.1.4 Step3 – After feature extraction ... 76
5.1.5 Plotted Audio Signal ... 77
5.1.6 Listen ... 77
5.1.7 Line Segments Selection .. 78
5.1.8 The Log .. 78
5.1.9 Progress Bar .. 79

5.2 THE AUDIO & LYRICS ALIGNMENT WINDOW ... 79
5.2.1 The Tracks.. 80
5.2.2 The Cursor ... 81
5.2.3 Properties... 81
5.2.4 The Player .. 82
5.2.5 Algorithms.. 83
5.2.6 The Lyrics .. 84

6 EVALUATION.. 85

6.1 EXPERIMENT 1 - USING NORMAL MERGE MODE... 86
6.2 EXPERIMENT 2 - USING BEST MERGE MODE .. 88
6.3 EXPERIMENT 1 VS. EXPERIMENT 2... 90
6.4 QUALITATIVE EVALUATION .. 90

7 CONCLUSION.. 97

7.1 RESULTS ... 97
7.2 LIMITS OF MY IMPLEMENTATION ... 97
7.3 POSSIBLE IMPROVEMENTS .. 97

8 BIBLIOGRAPHY.. 99

List of Figures

Figure 1-1: Frequency spectrum of a drum. ... 4
Figure 2-1: Continuous analogue signal... 6
Figure 2-2: Sampling rate. .. 6
Figure 2-3: Reconstructed signal (red line). ... 7
Figure 2-4: Too low sampling rate. ... 7
Figure 2-5: One oscillation. .. 8
Figure 2-6: Bit rate. .. 8
Figure 2-7: Measuring frequencies shown at the unit circle.............................10
Figure 2-8: Hann window. ...13
Figure 2-9: “View” through a Hann window...13
Figure 2-10: Rectangular and Hann window functions applied on signal.14
Figure 3-1: Block diagram of the approach presented in [WON05], p. 385......16
Figure 3-2: Parallel paths in Finite State Networks (FSN)...............................19
Figure 3-3: LyricAlly architecture..21
Figure 3-4: Full hierarchical rhythm structure. ...23
Figure 3-5: Hierarchical rhythm structure block flow diagram.24
Figure 3-6: Chorus detector has to find the chorus sections (red).25
Figure 3-7: (a) Signal of a verse segment. (b) Manually annotated and (c)
automatically detected vocal segments. ..27
Figure 3-8: Estimated line duration (2.8 sec) will be rounded up to next bar end
(3.1 sec). ...27
Figure 3-9: Duration distributions of (a) non-vocal gaps, (b) different sections
of the popular songs with V1-C1-V2-C2-B-O structure. X-axis represents
duration in bars..28
Figure 3-10: Forward search in Gap1 to locate Verse1 start.29
Figure 3-11: Backward search to locate the ending of a verse.29
Figure 3-12: (a) Grouping, (b) partitioning and (c) forced alignment. White
rectangles represent vocal segments and black rectangles represent lyrics lines.
...30

Figure 3-13: The block flow diagram of my approach.....................................33

Figure 4-1: Chroma vectors contain the energy values corresponding to the
twelve pitch classes. ..40
Figure 4-2: Next step in the aligning process: FFT. ..40
Figure 4-3: Hann window is shifted by the window shift.41
Figure 4-4: Next step in the aligning process: Band Pass Filter.42
Figure 4-5: Left: Normal symmetric Hann window in log-scale. Right:
Corresponding result in linear-scale. ..43
Figure 4-6: Visualisation of the midpoint rule. ...43
Figure 4-7: Graphical view of the band pass filter matrix. Blue values are close
to zero; red values are close to one...44
Figure 4-8: Next step in the aligning process: Similarity Comparison.45
Figure 4-9: The SimilarityMatrix. ..46
Figure 4-10: Next step in the aligning process: Finding Line Segments...........47
Figure 4-11: Using RAll for finding lines with high possibility of containing line
segments. a) Shows the peak values of RAll above ThR (all other values are
displayed in blue colour). b) Every peak value in RAll corresponds to a line with
high possibility of containing line segments. ..47
Figure 4-12: The tolerance threshold Thtol within a line. Blue rectangles
represent values below and red ones values above Thtol. After the last red
rectangle either the end of the line would be reached or at least two blue
rectangles would follow. ..49
Figure 4-13: Line segments (green) placed on tracks.......................................52
Figure 4-14: Next step in the aligning process: Merging Tracks......................53
Figure 4-15: Tracks 8, 9, 11 and 12 can be merged to one track.54
Figure 4-16: The resulting track after merging. ..54
Figure 4-17: Tracks will not be merged because they belong to different
categories. ...56
Figure 4-18: Building the list eventSegs. Events are shown as small red points.
...58

Figure 4-19: The hypothetical line segment hypLS is created.58
Figure 4-20: Building the second list newEventSegs.59
Figure 4-21: Next step in the aligning process: Finding Chorus Track.............60
Figure 4-22: Finding half-length sub segments. ..61
Figure 4-23: Next step in the aligning process: Aligning Lyrics.64
Figure 4-24: Space is divided by two because of two consecutive lyrics sections
with the same number of lines..68

Figure 4-25: The aligned song..70
Figure 5-1: The Lyrics Aligner main window. ..71
Figure 5-2: Step1 – Selecting the source file. ...72
Figure 5-3: File Info. ...74
Figure 5-4: Step2 – Settings & feature extraction. ..75
Figure 5-5: Step3 – After feature extraction. ..76
Figure 5-6: Plotted audio signal. ..77
Figure 5-7: Listen panel. ..77
Figure 5-8: Line segments selection. ..78
Figure 5-9: The log. ...78
Figure 5-10: Progress bar. ..79
Figure 5-11: Audio & Lyrics Alignment Window. ..79
Figure 5-12: The tracks. ...80
Figure 5-13: The cursor. ..81
Figure 5-14: The properties..81
Figure 5-15: The player. ..82
Figure 5-16: Algorithms. ...83
Figure 5-17: The lyrics. ...84
Figure 6-1: Frequency of used merge modes...90
Figure 6-2: Wrong chorus track selected. ...91
Figure 6-3: Verse sections with same number of lines.92
Figure 6-4: Vast reduction of line segments. ...93
Figure 6-5: Chorus section ends too early...93
Figure 6-6: Gap between two consecutive chorus sections.94
Figure 6-7: Song starting with chorus section. ..95
Figure 6-8: Additional instrumental chorus section detected.96
Figure 6-9: Duration of chorus section is 51 seconds.96

List of Tables

Table 3-1: Section- and line-level alignment error over 20 songs. Errors (in
seconds) given as normal distributions: N(µ,σ2)..31
Table 3-2: Similarity matrix. ..34
Table 3-3: The line segments that would be merged..35
Table 4-1: LSMatrix...50
Table 4-2: Lyrics similarity matrix...65
Table 6-1: Result table of Experiment 1. ..87
Table 6-2: Result table of Experiment 2. ..89

"Music is everything one listens to with the intention of listening to music." –
(Luciano Berio, pioneer of electronic music)

1 Introduction

1.1 Development of Intelligent Music Processing

Nowadays the computer is more and more replacing the hi-fi systems. This is a
development which can mainly be observed in the last ten years only. During
the 1980s nobody even thought about storing music on a computer. One song
would have filled the whole hard drive of an average computer system. But in
the early 1980s the “Big Bang” of the digital audio revolution was reached with
the invention of the Audio CD. Until then audio data could only be stored in an
analogue way, which often suffered from quality loss after every play back (e.g.
music cassettes). However, audio files in CD quality were still too big to be
stored on hard disks. This changed immediately when the Fraunhofer Institute
released the first software MP3 encoder in 1994. Because then also the hard
disks reached an acceptable size for storing multi media data, many people
started to archive their music collection on their PC. Furthermore when Shawn
Fanning and Sean Parker released the first version of their peer-to-peer file
sharing tool “Napster” in 1999, people started to share their music collections
with the whole world [WIK06].
As a consequence music and computers were growing together very fast. This
also means that there emerged more and more new application areas for digital
music. We can now create our own compilations on recordable CDs, take our
music with us wherever we want by using small mp3 players and so on. The
computer is currently starting to replace the hi-fi system in our living rooms.
Therefore many new research areas like e.g. “Automated Playlist Generation”
arose in the last few years. One of these interesting research areas is the topic of
my diploma thesis: “Automatic Audio & Lyrics Alignment”.

Introduction 2

1.2 Motivation

1.2.1 Application Areas for Automatic Lyrics Alignment
Many people all over the world listen to music every day. But listening to music
and understanding the lyrics of the song are two different things. Because it is
sometimes very difficult to understand every word, people want to have the lyr-
ics of a song in a written form. However, often – especially for long lyrics – the
user has to scroll through them manually while a song is played. So it would be
more comfortable to only show the lyrics for the currently heard section instead
of permanently displaying them for the whole song.
This is one point leading to the topic of my diploma thesis – the automatic
alignment between audio and lyrics. But there are two other important reasons
for the need of an automatic way to align the lyrics to the audio data. The first –
and perhaps most commercial one – is the automatic creation of karaoke songs.
Manual annotation of the right lyrics timings is an exhausting work which
would become much easier. Especially for large song collections an automatic
approach would save much time.
Another interesting application where alignment of lyrics and audio data can be
useful is the possibility to search for or even jump to certain words in a song.
So if it is known e.g. that the song contains the word “dog” it would be very
hard to find it in the raw audio data. But if the lyrics are already aligned to it, it
is much easier to find the right location.

1.2.2 Main Reason for Choosing this Topic
Many online lyrics portals have emerged in the last years. However, there are
some problems when trying to find the lyrics for a certain song. The portals do
not contain lyrics for all songs and if lyrics for the same song are found on sev-
eral portals, they are mostly different. This can be caused by simple typos, dif-
ferent words, different annotation styles or even different versions of the same
song.
Peter Knees, Markus Schedl and Gerhard Widmer from the Department of
Computational Perception at the Johannes Kepler University Linz developed an
approach to automatically retrieve and extract lyrics of arbitrary songs from the
internet [KNE05]. In addition to this basic search feature their method also
compares all found lyrics and returns the most probable version of them. This

Introduction 3

makes a lot of sense since the lyrics often contain different spellings for the
same word. A good example of this is the slang term cause which is often writ-
ten as ‘cause, ‘coz, cuz, or even correctly as because. Another problem the sys-
tem has to face is that people who submit lyrics to the online portals often do
not understand the same words while listening to a song and writing down its
lyrics. This is a well-known issue and the lyrics pages have already reacted to it
by providing the possibility to rate the quality of lyrics or to allow the users to
submit corrections. Very common problems are different versions and transla-
tions of a song, because the artist and the title stay the same but the returned
lyrics will often differ significantly. A further barrier when comparing lyrics is
that they often contain annotations like for example information about the sec-
tion (e.g. [Chorus]) or the performing artist (e.g. [Snoop – singing]). To avoid
redundancies and unnecessary typing effort, lyrics mostly are not written com-
pletely. Instead of writing the full chorus out three times it is often written only
once. Later chorus sections are simply expressed by annotations like Chorus or
repeat chorus. The approach of Knees et al. respects all these issues in order to
extract the best possible lyrics. It then estimates the quality of the predicted text
so the user is able to decide if he will be satisfied with the results.
This existing system could perhaps be improved by a good alignment between
audio and lyrics. It could decide better if certain sections, lines or even words
make sense at the estimated position. This is the main reason why I chose this
topic for my diploma thesis.
There are enough useful application areas which can be improved by a good
alignment between audio data and lyrics. Therefore we will now take a closer
look what the actual goal of my work is.

1.3 Goal

Aligning lyrics to the audio signal is anything but a trivial task. Many people
cannot believe that it is hard to find out the lyrics the performer is singing. For
us it is no problem indeed to hear what a singer is singing, but for a computer it
is often nearly impossible to distinguish between human voice and other in-
struments. This becomes clear very fast when speech recognition software is
used in a normal office environment. The ringing phones and talking people can

Introduction 4

already be enough to make the software produce unsatisfying results. However,
in contrast to the singer’s voice in a tune these are almost perfect conditions.

Figure 1-1: Frequency spectrum of a drum.

The aligning system has to face many disturbing factors in a song. Accompany-
ing instruments confuse the speech recognition algorithms. Especially percus-
sion instruments such as drums occupy a broad range of frequencies (see Figure
1-1). Therefore they also overlay the frequencies of the human voice.
But even if an acapella version of a song were used it would be impossible to
extract the lyrics with a speech recognition algorithm. The reason for this is that
there are big differences between spoken and sung voice. When a closer look is
taken at sung voice the phonemes are either stretched or jolted in comparison to
normal speech [WAN04]. But because speech recognition software was opti-
mized for recognizing speech, it is clear that it will not work for sung voice.

Another naïve approach is to try it the other way round. This means to synthe-
size the speech from the lyrics and try to find similar patterns of the resulting
audio data in the original song’s audio data. Although the algorithms for syn-
thesizing human speech got really powerful in the last years [TTS06], this is
almost impossible.
There are several reasons why this approach does not work well. The main
problem again is that the synthesized voice is speech and therefore very hard to
match against the sung vocals in a song. Although there already exist algo-

Introduction 5

rithms that can synthesize sung vocals [YAM06] the results will not be of suffi-
cient quality to use it for the alignment. I already tried out the demo version of
this software.2 After that I came to the conclusion that it would be much more
effort to handle this synthesizer and rebuild the vocals of the whole song than to
align the lyrics manually. Furthermore the right timings for all the sung words
would have to be known in order to synthesize the vocals of the songs. This
leads to a vicious circle because to find the right timings is the goal of the
aligning method. Another reason why this approach does not work is that it is
very hard to find the right locations for the lyrics in the audio signal even if a
perfect acapella version would be used. However, the synthesized vocals will
never reach the quality of an acapella version.
Consequently a better solution is needed to solve the lyrics alignment exercise.
A very promising approach was done by Ye Wang et al. In their paper “Lyri-
cAlly: Automatic Synchronization of Acoustic Musical Signals and Textual
Lyrics” [WAN04] they present a method that divides the task into two subtasks.
First they try to figure out the structure of the song by finding sections like In-
tro, Verse, Chorus, Bridge and Outro. This leads to a rough alignment of the
lyrics and audio sections. After that they complete the alignment process with a
per line alignment. This means that in each section every single text line is also
aligned to the audio data. Since this would go beyond my time capacities, the
main goal of my diploma thesis is to achieve the rough section alignment. More
details about this approach are described in chapter 3 .

2 http://www.zero-g.co.uk/media/mp3/Vocaloid_Demo_Version.zip, 08 2006

2 Basic Knowledge

2.1 Digital Representation of Audio Data

Audio in nature is simply the oscillation of air reaching the human ear. The
variations of air pressure are analogue (see Figure 2-1).

Figure 2-1: Continuous analogue signal.

If this signal should be stored in a digital way an infinite memory would be
needed because of its analogue character. To avoid this, an abstraction layer has
to be inserted. It reduces memory usage and approximates the original signal as
well as possible. The first idea is to only save the amplitude value at certain
time positions. Instead of infinite data points now only a finite set of values has
to be stored. The frequency at which the sample values are fetched is also called
sampling rate [STE96] or sampling frequency [VAS00]. It is shown as green
vertical lines in Figure 2-2.

Figure 2-2: Sampling rate.

Time

Amplitude

Time

Amplitude

Basic Knowledge 7

Hence only 27 values have to be stored in this example to reconstruct an ap-
proximation of the original signal. The signal reconstructed by using the sample
points (represented by the red line in Figure 2-3) does not completely match the
original signal. But nevertheless it is a very good approximation. So the human
ear will not notice the difference for a sufficiently high sampling rate.

Figure 2-3: Reconstructed signal (red line).

However, the lower the used sampling rate the more the reconstructed signal
will differ from the original one. In Figure 2-4 a too low sampling rate is used.
It can be observed that the reconstructed signal is totally different from the
original one and that at the beginning even a whole valley is left out.

Figure 2-4: Too low sampling rate.

The reason for this behaviour is that the Nyquist sampling theorem [VAS00]
was violated. This theorem is one of the basics of Digital Signal Processing. It
says that the sampling rate has to be at least twice as high as the highest ob-
served frequency (=Nyquist Frequency) in the original signal. That is a quite
logical fact because one oscillation always contains a hill and a valley. As a
consequence at least two values (one positive and one negative) have to be
sampled for each oscillation in order to not lose the information about one hill
or valley (see Figure 2-5).

Time

Amplitude

Time

Amplitude

Basic Knowledge 8

Figure 2-5: One oscillation.

While now memory usage was reduced along the time axis, there are still infi-
nite possible values for the amplitude. Thus another abstraction has to be intro-
duced along the amplitude axis. This abstraction defines the accuracy of the
stored amplitude values at the sampled time and is called bit rate. It defines
how many positions the amplitude values may have. In Figure 2-6 some of the
sampled amplitude values do not fit on the horizontal lines. These values will
then get rounded off to the nearest integer which is also called quantising level
[STE96] (blue lines in Figure 2-6).

Figure 2-6: Bit rate.

Of course this costs some precision but for good bit rates there is no noticeable
quality loss. The lower the bit rate the lower the memory usage and the quality.

Time

Amplitude

Hill

Valley

Basic Knowledge 9

An example of a common sampling rate and bit rate configuration is CD quality
audio. It is defined by using a sampling rate of 44100 Hz (about twice the high-
est frequency the human ear is able to hear) and a bit rate of 16 bit. 16 bit
means that the amplitude value can have 216 = 65536 possible values, which is
enough for a crystal clear quality. But CD quality of course has the disadvan-
tage that it needs a lot of memory:

� 44100 values in one second with 16 bit (= 2 bytes):
44100 * 2 = 88200 bytes = 86.13 KB

� For stereo we have to use two channels:
86.13 * 2 = 172.26 KB/s

� This means for one minute of audio in CD quality:
172.26 * 60 = 10335.60 KB ≈ 10 MB

As a summary it can be said that digitally stored audio data is a long sequence
of amplitude values. So every channel is represented by a vector which can be
used later to extract certain features from the audio signal.

2.2 DFT, FFT & Inverse DFT

2.2.1 DFT
Digital audio is represented by a long numeric vector. However, the individual
values in this vector only represent the value of the amplitude at a certain time.
This information by itself is mostly useless for extracting helpful features from
the audio data. But much more important is to know of which frequencies the
signal consists. Therefore in digital signal processing the Discrete-Time Fourier
Transformation (DFT) [STE96] is used to transform the signal from the time
domain into the frequency domain. The DFT is given by the formula:

Nitk
N

t
tk exX /2

1

0

π−
−

=
∑= 1,...,0 −= Nk

In this definition of the DFT e is the base of the natural logarithm, t is the index
for the current value in the input vector x and i is the imaginary unit (i2 = -1).

Basic Knowledge 10

Here the finite sequence of N numbers (representing the signal) x0,…,xN-1 is
transformed into a sequence of N complex numbers X0,…,XN-1, representing the

frequency spectrum of the signal. The returned values kX correspond to the

energy measured at a certain frequency of the spectrum. The frequency spec-
trum of the DFT ranges from zero to the sampling rate. Therefore it is important
that the measuring frequencies for the returned values must all reside equally
spaced in this interval.

Figure 2-7: Measuring frequencies shown at the unit circle.

Figure 2-7 visualises the placement of the measuring frequencies (red points) at
the unit circle with 8=N . The frequencies from zero up to the sampling rate
are wrapped around the circle counter-clockwise, starting at the measuring point
labelled with “0”. Because in the unit circle the radius is 1, the circumference of
this circle is π2 . By splitting it into 8=N equal parts, the distance between

two parts is 8
2π . Hence in this example the energy values returned by the DFT

are measured at the frequencies 8
20 π⋅ , 8

21 π⋅ , 8
22 π⋅ , 8

23 π⋅ , 8
24 π⋅ , 8

25 π⋅ , 8
26 π⋅

and 8
27 π⋅ . Now the rule for placing N measuring frequencies equally spaced in

this interval is simple:

)/2)(1(...,),/2(2),/2(1),/2(0 NNNNN ππππ − .

This leads to the factor Nk /2π in the exponent of e (where 10 −≤≤ Nk).

Basic Knowledge 11

2.2.2 FFT
Since the DFT is only a mathematical concept for transforming the signal into
the frequency domain, efficiency is not important. But in reality it would simply
get too slow for great amounts of data. This is the reason why in practice only
the Fast Fourier Transformation (FFT) is used for computing the DFT effi-
ciently. There exist a lot of algorithms for the FFT but the most common one is
the Cooley-Tukey algorithm [COO65]. It is a divide and conquer algorithm that
recursively breaks down a DFT of any composite size N = N1N2 into many
smaller DFTs of sizes N1 and N2. This is repeated until the level where only one
element is left. Since the calculation of the DFT for one element is trivial

(00 xX =), the only task is to bring the result values into the right order. Hence

the FFT manages to break down the complexity of the DFT from)(2NO to

)log(NNO .

2.2.3 Inverse DFT
The inverse DFT [STE96] is defined as

Nitk
N

k
kNt eXx /2

1

0

1 π∑
−

=
= 1,...,0 −= Nt .

This means that in contrast to the DFT the exponent of e is negated and the re-
sult of the sum is normalized by N

1 .

In mathematics the complex conjugate of a complex number z is defined by

changing the sign of the imaginary part. It is commonly denoted by *z . The

result of multiplying the inverse DFT by N and complex conjugating the input

(kX) and output values (tx) is

Nitk
N

k
kt eXNx /2

1

0

** π−
−

=
∑= 1,...,0 −= Nt .

It can be seen that the right side of the equation is nothing else than the DFT of
*
kX . Hence it can be said that when calculating the DFT of the complex conju-

Basic Knowledge 12

gates of kX the result are nearly the original signal values tx , that is to say
*
tNx . Therefore it is very easy to calculate the inverse DFT:

1) Take the complex conjugate of the signal.
2) Calculate the DFT.
3) Take the complex conjugate of the result and divide it by N .

2.3 Window Functions - The Hann Window

Unfortunately it is impossible to use the FFT for transforming the signal into
frequency space exactly at a certain location. The reason for this is that oscilla-
tions always occur over time. Therefore they cannot be observed by only ana-
lysing a certain position. So for frequency analysis always a period of time has
to be used. Of course this period can be kept very small. It is defined by a so
called window function. In digital signal processing, a window function is a
function that is zero-valued outside of some chosen interval. The window size
defines the length of this interval in samples.
Many different window functions are used in digital audio processing. For in-
stance, a function that is constant inside the interval and zero elsewhere is
called a rectangular window. When multiplying the audio signal by this win-
dow function, the product is also zero-valued outside the interval. Everything
which is left is the “view” through the window.
In order to smooth the borders of the window, a Hann window is used in my
implementation. It is given by the following formula:

))2cos(1()(2
1

N
nnw π−= ,

where Nn ≤≤0 and the window size 1+= NL .

Figure 2-8 shows a Hann window. In Figure 2-9 the schematic “view” through a
Hann window is shown. Only the red parts of the signal will be left after the
multiplication. The grey parts will be zero afterwards.

Basic Knowledge 13

[Source: http://en.wikipedia.org/wiki/Hann_window, 06 2006]

Figure 2-8: Hann window.

Figure 2-9: “View” through a Hann window.

Figure 2-10 compares the application of a rectangular window function (top)
and a Hann window in the time and frequency domain. The time domain is dis-
played on the left and the frequency domain on the right side. In the first case
the frequency spectrum contains small aberrations which are caused by the sud-
den endings of the signal. A Hann window can smooth these endings and there-
fore the aberrations in the frequency domain are eliminated.

Basic Knowledge 14

Source: http://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing/spectralwindowingpix/fftwindowingdemo.png, 07 2006

Figure 2-10: Rectangular and Hann window functions applied on signal.

2.4 Calculating the Frequency of a Note

The frequency of a certain note can be calculated very easily because the dis-

tance between two notes is logarithmically distributed by the factor 12/2n .
Given the frequency of any note, the frequency of all other notes can be calcu-
lated by:

givenNotetesearchedNoforn
givenNotetesearchedNoforn

notestartingfromawaynotesofnumbern
tingNoteFreqOfStarFreq n

<<
>>

⋅=

0
0

...
2 12/

Example 1:
Given the frequency of A2 (=110 Hz), the frequency of E3 (which is 7 semitones
above A2) should be calculated.

HzFreq
n

FreqFreq

E

n
AE

81.1542110
7

2

12/7

12/

3

23

=⋅=
=

⋅=

Basic Knowledge 15

Example 2:
Given the frequency of A2 (=110 Hz), the frequency of C2 (which is 9 semi-
tones below A2) should be calculated.

HzFreq
n

FreqFreq

C

n
AC

41.6521102110
9

2

4/312/9

12/

2

22

=⋅=⋅=
−=

⋅=

−−

The techniques described here will be necessary for understanding the imple-
mentation details in the chapters 3 and 4 .

3 The Process of
Lyrics Alignment

In chapter 1.3 was already mentioned how lyrics alignment will not work. Now
some existing approaches for the automatic alignment of lyrics are presented.

3.1 Approach 1: Chi Hang Wong et al.

In [WON05] a first method for automatic lyrics alignment is described. It
mainly uses the assumption that the recording engineer would make the vocal
part of popular music in centre position of the stereo signal. This means that the
vocals can be heard in equal loudness on both channels. In contrast to this most
musical instruments are recorded in stereo. Therefore it is tried to separate the
vocals from the instruments and enhance the signal containing the vocals.
Figure 3-1 shows the block diagram of this approach.

Figure 3-1: Block diagram of the approach presented in [WON05], p. 385.

The Process of Lyrics Alignment 17

The approach consists of four main steps:

1) The system tries to enhance the vocal signal. To achieve this, the two

channels)(tsl and)(tsr of the stereo signal are described by

)()()(tststs l
mcl +=

)()()(tststs r
mcr += ,

where)(tsc is the centre-padded signal which is the same in both the

left and right channel.)(tsl
m and)(tsr

m are the non-centre-padded parts

of the two channels. By subtraction of both channels, the reduced centre-

padded signal)(tsC is obtained.

))(()()()()(tststststs r
m

l
mrlC

−+=−= .

With it, the centre-padded signal can be extracted by nonlinear spectral
subtraction [VAS00]. This means that both the original signal (taken

from the left channel) and)(tsC are first transformed into frequency

space using the FFT. Then 2
)(ωCs is subtracted from the spectrum of the

original signal. Finally the inverse FFT is applied in order to obtain the

estimated centre-padded signal)(ˆ tsC .

However,)(ˆ tsC does not only contain vocals, but also includes some

other instruments such as drums and bass guitar. It is assumed that these
instruments are more or less stationary in parts where no vocals are pre-
sent. From these instrumental parts, an average spectrum is calculated. It
is used for attenuating the instruments in the centre padded signal using
the spectral subtraction again. In [WON05] the result is called the “vocal
enhancement signal”.

2) Now the onset detection is used to find the timings of each sung word in

the vocal enhancement signal. In order to find onset timings, the signal

is divided into small segments with the window size sw . For every seg-

The Process of Lyrics Alignment 18

ment the energy is calculated. An onset is detected, if the energy differ-
ence between two consecutive time segments is above a threshold ε .

3) The feature extraction module extracts pitch and distance features. This
paper concentrates on songs with Cantonese lyrics. Cantonese is a tonal
language which means that every word in it corresponds to a certain
pitch. So the composers of Cantonese songs cannot use arbitrary words
in their lyrics. This means that they have to choose certain words for a
certain pitch in the melody. Consequently the relative pitch feature
(pitch difference between the current and the last word) of a Cantonese
word is important for matching the textual lyrics to the right pitch of the
melody. Therefore two pitch features are calculated – one for the lyrics
and one for the signal.
The distance features describe the distance between two words. They are
again calculated separately for textual lyrics and for the audio signal.

4) The features extracted in step 3) are used for Dynamic Time Warping

(DTW) [JUA84]. DTW is a robust algorithm in Automatic Speech Rec-
ognition [RAB85], [MIL95] for matching two sequences with the best
time alignment. It generates an error matrix, which is finally backtracked
along the path with the minimum accumulated error to find the best
alignment.

This approach is not very promising because the experimental results show a
very low aligning accuracy. Furthermore it is unusable for the purpose of this
diploma thesis since the whole approach is based on the Cantonese language.
As already mentioned above all Cantonese pop music composers must write the
lyrics to match the melody tones of the song. And this fact is exploited in the
approach for finding the right timing for the alignment. Consequently this
method would not work for songs in other languages at all.

3.2 Approach 2: Alex Loscos et al.

Another approach for automatic lyrics alignment is presented in [LOS99]. The
goal of this work is to solve the lyrics alignment problem in real time. This

The Process of Lyrics Alignment 19

could be very helpful, because the alignment could be done while the singer
performs. Consequently for example different specific audio effects could be
applied depending on which phoneme of the lyrics is currently being sung.
The approach uses successful methods from Automatic Speech Recognition
(ASR) for the alignment process. Mainly Hidden Markov Models (HMM)
[HUA90] are applied for the alignment. But they were modified in order to
make the models specific to the case of the singing voice.
Before the actual alignment process can start, a phonetic transcription is made
out of the lyrics text. After that a Finite State Network (FSN) is built from the
phonetic information. This means that the states in this network represent the
individual phonemes of the words in the lyrics. The transitions between them
are supplied with a certain probability for reaching the next phoneme. Before
reaching the next phoneme state, special states for non-linguistic units (silence
and aspiration) are inserted. This is important because they may occur at any
time since every singer places them at different positions. Furthermore different
singers also pronounce the words differently. This has to be regarded when
building up the FSN by adding parallel paths as shown in Figure 3-2.

Source: [LOS99], p. N/A.

Figure 3-2: Parallel paths in Finite State Networks (FSN).

The probability for taking a certain path in the model is delivered by the Viterbi
algorithm [RAB93]. This is the most common algorithm used in the text to
speech alignment process. However, because in this case the delay should be as
low as possible, the algorithm is adjusted in order to make it usable for real
time decoding. Normally for determining the best path through the phoneme
models, backtracking is performed at the end of every utterance. To find the

silence aspi-
ration

n

a

l

æ

æ

The Process of Lyrics Alignment 20

best path in as small intervals as possible, the backtracking has to be executed
for every frame.
The advantage of this approach is that for every frame the system can decide
the current singer position in the lyrics. But of course the performance vastly
decreases. To overcome this problem Loscos et al. have extended their system
with some heuristics and strategies. For example additionally the score is used
to extract musical information. Hence the system “knows” that the phoneme
corresponding to a note in the score is supposed to have certain duration. Fur-
thermore it is supposed that the user follows the tempo of the song, which is
again extracted from the score. Therefore the output probabilities of the Viterbi
algorithm are adapted according to the tempo of the song.
Loscos et al. state that there is only a delay of 21 ms which has to be added to
the hardware latency to get the delay of the whole system. This seems to be
quite good, but this approach is also unusable for my purpose because this sys-
tem only works on pure vocals. So it would be hard to use for pop songs. How-
ever, in my opinion it could be an interesting approach to try it out on a “vocal
enhancement signal” as described in [WON05]. Another reason why it cannot
be used in my system is that it depends on the score. Of course it would gener-
ally help at the aligning process to use the score. But since it is not very com-
mon to additionally have the score for the songs the goal of my approach is to
do the alignment without score.

As I already pointed out in chapter 1.3 the approach used by Wang et al. sounds
very promising for me. That is why my whole diploma thesis follows this con-
cept even though with some differences. Because of this in the chapters 3.3, 3.4
and 3.5 an overview over the approach of Wang et al. and mine is given. The
details of my implementation will be discussed later in chapter 4 .

3.3 Approach 3: Wang et al.

Wang et al. basically divide the problem into two major tasks. The first stage
performs a high-level alignment of the song’s structural elements detected in
the text and audio streams. It ensures that lyrics lines are only aligned within
the section they belong to. After that the second round performs the low-level
line alignment. This top-down approach reduces unnecessary errors because the

The Process of Lyrics Alignment 21

possible locations of single lyrics lines in the whole song are limited by their
section. The whole architecture of LyricAlly is shown in Figure 3-3.

Source: [WAN04], p. N/A.

Figure 3-3: LyricAlly architecture.

The main steps in the high-level alignment are:

1) The Beat Detector detects the beat times in the audio signal.
2) The Measure Detector extends the beat information by adding a rhyth-

mical structure. This means that now in addition to beat times also the
start times of each bar is known.

3) The Chorus Detector detects repeated sections in the song which corre-
spond to the refrain.

4) From the textual lyrics the Section Processor extracts the lyrics for the
individual sections. Then it detects repeated sections which contain the
lyrics for the chorus. Finally it estimates the approximate duration of
each section.

In low-level alignment the main steps are:

1) The Vocal Detector detects parts in the audio signal which contain vo-
cals.

2) The Line Processor refines the duration estimation of the Section Proc-
essor on line level. After that, the estimated durations for each line are
rounded off to a multiple of the bar length (which was previously de-
tected by the Measure Detector).

The Process of Lyrics Alignment 22

3) In the Alignment Module the information of all other modules is col-
lected in order to start the actual alignment.

Recapitulating, the general strategy in this approach is very different to
[WON05] and [LOS99]. The alignment process in these methods is directly
based on phoneme and word level alignment. In contrast to this Wang et al. had
the idea to minimize the probability for errors in low-level alignment by first
exploiting the musical structure of a song in high-level alignment. With their
approach they try to leave the naïve way of directly adapting speech recognition
methods for the alignment process.

3.3.1 Structural Element Level Alignment
The five structural elements (here also called sections) are defined in [WAN04]
as follows:

1) Intro (I) is the opening section that leads into the song. It may contain si-
lence and mostly lacks a strong beat (arrhythmic).

2) Verse (V) is a section that roughly corresponds with a poetic stanza and
which is the preamble to a chorus section.

3) Chorus (C) is a refrain (lines that are repeated in music) section. It often
sharply contrasts the verse melodically, rhythmically and harmonically.
Furthermore it also assumes a higher level of dynamics and activity, of-
ten with added instrumentation.

4) Bridge (B) is a short section of music played between the parts of a
song. It is a form of alternative verse which often modulates to a differ-
ent key or introduces a new chord progression.

5) Outro (O) is a section which brings the music to a conclusion. Wang et
al. assume that it is a section that follows the bridge until the end of the
song. It is usually characterized by the chorus section repeating a few
times and then fading out.

Wang et al. use the following heuristics which are based on an informal survey
of popular songs:

1) Instrumental music sections may or may not occur throughout the song.

The Process of Lyrics Alignment 23

2) Intro and bridge sections may or may not be present and may or may not
contain sung vocals.

3) Popular songs are strophic in form, with a usual arrangement of verse-
chorus-verse-chorus. Hence the verse and chorus are always present and
contain sung vocals.

It is also assumed that the songs have a certain structure of no sung intros, two
verses, two choruses, bridge and outro. According to Wang et al. this is the
most common structure in popular music.

3.3.1.1 Beat Detector

Source: [WAN04], p. N/A.

Figure 3-4: Full hierarchical rhythm structure.

The beat detector extracts rhythm information in real-world musical audio sig-
nals at the quarter-note levels. The most common meter for popular songs is 4/4
which means that each measure consists of four beats. Wang et al. assume that
the tempo of the input songs is constrained between 40 and 185 beats per min-
ute (BPM) and almost constant.
For quarter note detection the audio signal is framed into beat-length segments.
To achieve this, the onsets have to be detected first (see Figure 3-4b). Since
additional onsets are often found between the actual beats, a method for elimi-
nating wrong onsets is used. It is based on the assumption that chord changes
are more likely to occur on beat times than on other positions and that they are
therefore quasi-stationary within the quarter note.

The Process of Lyrics Alignment 24

To make the beat detection easier and more accurate a system for determining
the key of the song is employed. This is useful because the key defines the dia-
tonic scale that the song uses. In the first post-processing stage (called Chord
Accuracy Enhancement in Figure 3-5) it is decided if a certain detected chord
belongs to the key or not. Chords that do not belong to the detected key are ex-
pected to be a result of an error in chord detection. These chords are then elimi-
nated based on a music theoretical analysis of the chord patterns that can be
present in the twelve major and twelve minor keys.

Source: [WAN04] , p. N/A.

Figure 3-5: Hierarchical rhythm structure block flow diagram.

3.3.1.2 Measure Detector

The measure detector’s aim is to locate the start of measures and therefore ex-
tract the hierarchical rhythm information of the song. It is the second post-
processing step called Rhythm Structure Determination (see Figure 3-5). In ad-
dition to the audio signal it also receives the beat positions found by the beat
detector as input. Then it detects the starting positions of the measures by as-
suming that chord changes are more likely to occur at the beginning of a meas-
ure than at other positions of beat times. In view of the fact that a measure con-
sists of four quarter notes, the measure detector checks for patterns of four con-
secutive frames with the same chord to separate all possible measure bounda-
ries. After that the system collects all possible combinations of measures which
are separated by four beats. Then it chooses the one which includes the highest
number of measures and defines it as the pattern corresponding to the actual
measure boundaries. Missing boundary positions are now interpolated across

The Process of Lyrics Alignment 25

the rest of the song to arrive at the full hierarchical rhythm structure (see Figure
3-4).

3.3.1.3 Chorus Detector

The chorus detector locates the chorus sections in the audio file and estimates
the start and end of each chorus. In [WAN04] its implementation is based on
Goto’s method [GOT03]. Chorus sections (see Figure 3-6) are identified as the
most repeated sections of similar melody and chords using chroma vectors.
Since I also use the same approach in my implementation I will explain the de-
tails later in chapter 4 .

Figure 3-6: Chorus detector has to find the chorus sections (red).

Wang et al. managed to improve the original algorithm by using the rhythmic
information gathered by the beat detector. They reduced its complexity by as-
suming that chords are stable within inter-beat intervals. Therefore instead of
using one chroma vector for each 80ms frame they only need to extract one
chroma vector from each beat. As a result to the pairwise comparison (see chap-
ter 4.2.3) of the vectors (which is an O(n2) operation) the improved algorithm
only uses about 2% of the time and space required by the original one.

3.3.1.4 Section Processor

The section processor is the last part of the high level section alignment. Its
input are the textual lyrics of a song. Assuming that the individual sections are
delimited with blank lines the section processor tries to assign the right section
type to the lyrics sections. Similar to the audio chorus detector the section proc-
essor detects the chorus sections by their high level of repetition. The model

The Process of Lyrics Alignment 26

used by Wang et al. accounts for phoneme-, word- and line-level repetition in
equal proportions. This should make it insensitive to small errors or variations
in the lyrics that may lead to problems for variations of the longest common
subsequence (LCS) algorithm [LCS06]. For the chorus detection it is defined
that chorus sections must be interleaved with one or two other (e.g. verse) in-
tervening sections and to be of approximately the same length in lines.
Another task of the section processor is to calculate an approximate duration of
each section. Therefore each word in the lyrics is decomposed into its pho-
nemes. Since phoneme durations in sung lyrics and speech differ, Wang et al.
built up a singing phoneme duration database. These durations are learned from
annotated sung training data. Finally in order to estimate the length of a section,
the durations of all phonemes in this section are summed up.

3.3.2 Line Level Alignment

3.3.2.1 Vocal Detector

A vocal detector is used for finding sections containing human voice in the au-
dio signal. For the implementation of the vocal detector Wang et al. use a Hid-
den Markov Model (HMM) [HUA90] classifier. To improve accuracy, an auto-
matic bootstrapping process which adapts the test song’s own models is em-
ployed. With it the fact is exploited that the characteristics of vocals show much
more differences between different songs than within the same song. For exam-
ple the vocals in a song by Elton John would sound very different from the vo-
cals in a song by Madonna. But within the song the (intra-song) characteristics
of the voice do not change when e.g. comparing the first chorus with the second
one.
For the vocal detection process Wang et al. assume that the spectral characteris-
tics of different segments (pure vocals, vocals with instruments and pure in-
struments) are different. Hence they extract feature parameters based on the
distribution of energy in different frequency bands. Again a time resolution of
one inter-beat interval is used for the vocal detector. Because the tempo and
intensity of vocals are different for every section (intro, verse, chorus, bridge,
outro), an intra-song variation is included into the model.
The used training data for the HMMs is manually classified based on section
type, tempo and intensity. Since for each class an own model is created, this

The Process of Lyrics Alignment 27

results in a total of 2 (vocal or non-vocal) x 5 (section types) x 2 (high or low
tempo) x 2 (loud or soft intensity) = 40 distinct HMMs.
Including all these improvements, a classification accuracy of about 84% is
achieved. An example of the results of the vocal detector is shown in Figure
3-7.

Source: [WAN04] , p. N/A.

Figure 3-7: (a) Signal of a verse segment. (b) Manually annotated and (c) automatically
detected vocal segments.

3.3.2.2 Line Processor

The main purpose of the Line Processor is to refine the timing estimations for
the textual lyrics provided by the Section Processor. This gets possible now
because the Line Processor receives additional input from the beat detector.
With that information and the assumption that each text line must start on the
beginning of a bar, wrong duration estimates can be corrected. Consequently if
the predicted duration for a line ends before a bar end, it is very likely that there
is a gap in which the vocals rest. Therefore the estimated line duration will be
rounded up to the next bar end (see Figure 3-8).

Source: [WAN04] , p. N/A.

Figure 3-8: Estimated line duration (2.8 sec) will be rounded up to next bar end (3.1 sec).

Furthermore the majority number of bars per line is calculated for each song.
All other lines are then forced to be either ½ or 2 times this value.

The Process of Lyrics Alignment 28

3.3.3 System Integration
Since all needed components were already described, we can now explain how
the whole system is assembled. The two alignment levels will get connected to
the actual lyrics alignment tool.

3.3.3.1 Section Level Alignment

In the section level alignment detected chorus boundaries are used to determine
the boundaries of the verses. Wang et al. observed that the detection of vocal
segments is much easier than the detection of non-vocal ones. The reason for
this is that both the audio and the text processing can help in the detection proc-
ess.
For better estimation of the section starts a static gap model is used. It is based
on manual annotation of 20 songs. The normalized histogram of all sections in
the gap model is shown in Figure 3-9. It can be seen that the duration between
verse and chorus (V1-C1 and V2-C2) is rather stable in comparison to the dura-
tion of the sections themselves. This gives the opportunity to determine verse
starting points using a combination of gap modelling and positions of the cho-
rus or the song starting point.

Source: [WAN04] , p. N/A.

Figure 3-9: Duration distributions of (a) non-vocal gaps, (b) different sections of the
popular songs with V1-C1-V2-C2-B-O structure. X-axis represents duration in bars.

LyricAlly uses forward/backward search models, which utilize an anchor point
to search for starting and ending points of other sections. For example the be-

The Process of Lyrics Alignment 29

ginning of the song is used as an anchor to determine the start of Verse1. In
Figure 3-9 it is shown that the intro section is zero to ten bars in length. Over
these ten bars of music, the so called Vocal to Instrumental Duration Ratio
(VIDR) is calculated. It denotes the ratio of vocal to instrument probability
within each bar and is calculated by using the results of the vocal detector. In
order to determine the beginning of a vocal segment, the global minimum
within a window assigned by the gap model is selected (as shown in Figure
3-10).

Source: [WAN04] , p. N/A.

Figure 3-10: Forward search in Gap1 to locate Verse1 start.

This is because usually the beginning of a verse section is characterized by a
strong rise of the VIDR. The reason is that in a song the vocals often start at the
first verse section and at the beginning of a song the voice detector frequently
erroneously detects vocal segments. So the global minimum seems to be a good
point for the Verse1 to start at.
In a similar manner the end of Verse1 is detected. The only differences are that
now the starting point of Chorus1 is used as anchor and that a backward search
model is applied to find the right end location (see Figure 3-11).

Source: [WAN04] , p. N/A.

Figure 3-11: Backward search to locate the ending of a verse. 3

3 Error in [WAN04]: Here it should be Chorus1 instead of Chorus2.

The Process of Lyrics Alignment 30

3.3.3.2 Line Level Alignment

The line level alignment exploits the strengths of both the text processor and the
vocal detector. On the one hand the text processor is quite accurate in duration
estimation but incapable of providing offsets. This means that the duration of a
line can be estimated easily by summing up the average phoneme times. But it
is very hard to estimate the start time in the song for each text line. On the other
hand the vocal detector is able to detect the presence of vocals but not associate
it with the line structure in the song. Therefore the vocal detector can provide
the right offsets for the start times of each text line.
Since the segments detected by the vocal detector often do not match the lyrics
lines provided by the text processor the main goal is to make them match by
grouping or partitioning segments. Wang et al. use the number of text lines as
the target number of segments to achieve. This results in three possible scenar-
ios (see Figure 3-12). The number of lyrics lines can either be smaller, equal to
or greater than the number of vocal segments. If the number of lyrics lines is
smaller or greater than the number of vocal segments, grouping or partitioning
needs to be performed. After that a forced alignment is applied. This means that
the vocal segments are matched with the right text line, while small time differ-
ences are eliminated. If the number of lyrics lines is already equal to the num-
ber of vocal segments, no grouping or partitioning is needed. Therefore in this
case the forced alignment is executed immediately.

Source: [WAN04] , p. N/A.

Figure 3-12: (a) Grouping, (b) partitioning and (c) forced alignment. White rectangles
represent vocal segments and black rectangles represent lyrics lines.

3.3.4 Evaluation
Wang et al. evaluated their approach in two ways. The first one is a holistic
evaluation which uses a dataset of manually annotated songs. In order to give a

The Process of Lyrics Alignment 31

compact overview of the results, the average and standard deviation of starting
point and duration error are shown in Table 3-1.

Alignment Error Seconds Bars
Starting Point N(0.80, 9.00) N(0.30, 1.44) Section Level

(n = 80) Duration N(-0.50, 10.2) N(-0.14, 1.44)
Starting Point N(0.58, 3.60) N(0.22, 0.46) Line Level

(n = 565) Duration N(-0.48, 0.54) N(-0.16, 0.06)

Table 3-1: Section- and line-level alignment error over 20 songs. Errors (in seconds) given
as normal distributions: N(µ,σ2).

Seconds are not a good measure for the errors because a one-second error may
be perceptually different in songs with different tempo. Therefore measuring
the error in bars, as represented in the last column of the table, is more mean-
ingful.
The results show that the calculation of the starting point error is much more
difficult than the estimation of the duration of individual lyrics lines. This is
because the starting point can only be gained from the audio data. In contrast to
this, the duration is estimated by both the audio signal and the textual lyrics.
The second way of evaluation used in this paper is the error analysis of individ-
ual modules. Since LyricAlly is only a prototype which integrates separate
modules, an individual evaluation of each module can point out bottlenecks in
performance and error-proneness. The evaluation results show that the system
works best if all components perform well, but performance suffers a lot when
certain components fail. If the beat detector fails, all other modules in the sys-
tem are affected because all estimates are rounded to the nearest bar. However,
the error is of course limited to beat length which may be bearable for our pur-
pose. A much more negative effect is observed if the chorus detector fails. The
reason for this is that the whole starting point anchors of the chorus sections get
lost. Errors in the vocal detector affect both, the starting point and the duration
of the sections. Finally since the text processor is only able to calculate dura-
tions, its failure leads to less accurate estimations of the duration of sung lyrics
lines.

The Process of Lyrics Alignment 32

3.4 Overview of my Approach

Since each of the mentioned black boxes shown in Figure 3-3 on its own is a
research topic I had to concentrate on the most important ones. These are on the
one hand the chorus detector for audio data and on the other hand the text proc-
essor for textual data. My approach only concentrates on section level align-
ment because line level alignment would take too much time and effort to im-
plement. The main reason why only section level alignment is used is that for
line level alignment a singing phoneme duration database is needed. This data-
base is not freely available and therefore it would have had to be built on my
own by annotating phoneme durations manually for a whole song collection. It
is obvious that this would go beyond the time capacities for a diploma thesis.

As I already mentioned above, Wang et al. assume that the songs have a certain
structure of no sung intros, two verses, two choruses, bridge and outro. Al-
though they claim that this structure is the most common structure of popular
songs it only applies to 40% of their observed songs. In my opinion this is a
vast limitation which my implementation approach will try to eliminate. The
main difference to Wang et al. is that instead of five possible sections I only use
two for the section level alignment. Following Goto’s paper SmartMusicKI-
OSK: Music Listening Station with Chorus-Search Function [GOT03] I imple-
mented a chorus detector which detects the start and end points of the refrains
in a song. In my approach these sections are called chorus sections. Everything
else is called verse section. Of course this verse section may contain intro,
verse, bridge and outro, but they are not distinguished. Consequently songs
need not be limited to a certain structure and the system is more flexible. Even
if a song started directly with a chorus section, this should be no problem for
my approach (see chapter 6.4).

To give a short overview of my implementation I will only explain the seven
main steps for the alignment process here. They are shown in the block flow
diagram in Figure 3-13. Implementation details are explained later in chapter 4 .
At the beginning the user selects a certain song from his hard drive. Then the
features extraction can be started. Feature extraction is the process of gaining
useful data and information out of the audio signal.

The Process of Lyrics Alignment 33

Figure 3-13: The block flow diagram of my approach.

The Process of Lyrics Alignment 34

1) First, the audio signal is transformed into frequency space via a FFT.
From the FFT so called result vectors are obtained. They contain the lin-
ear energy distribution of the whole observed frequency spectrum.

2) After that the result vectors are multiplied by a band pass filter matrix in

order to set up so called chroma vectors. Chroma vectors contain energy
values for each of the twelve pitch classes (see Figure 4-1). Hence these
values represent the chroma of the notes and chords which are played or
sung in the currently observed piece of audio.

3) In the Similarity Comparison step the similarity between all the individ-

ual chroma vectors is calculated. With the resulting similarity values of
this pair wise comparison, the SimilarityMatrix is built. For N chroma

vectors it contains the similarity values jis , :

jiNjcvcvsims jiji <≤<≤= 0,0),(, .

Where ()sim calculates the similarity between two chroma vectors. The

resulting similarity matrix is shown in Table 3-2 (Note: Figure 4-9
shows the vertically flipped similarity matrix).

0 s0,1 s0,2 s0,3 … s0,n
0 0 s1,2 s1,3 … s1,n
0 0 0 s2,3 … s2,n
… … … … … …
0 0 0 0 0 0

Table 3-2: Similarity matrix.

4) If there are at least a certain number of consecutive similarity values
above a certain threshold in a matrix row then a possible chorus section
(a so called line segment) was found. These line segments are then used
for further analysis.

5) Observations show that there seems to be a tendency to redundancy in

the found line segments. Therefore an algorithm was implemented which

The Process of Lyrics Alignment 35

merges such redundant line segments in a smart way. For example this
means that the two line segments shown in Table 3-3 get merged to one
single line segment.

ID Start time End time
1
…
7

01:49.314
…

01:49.394

02:05.598
…

02:05.678

Table 3-3: The line segments that would be merged.

This can be done because they have approximately the same starting
points in the song and the same length. Consequently they represent the
same repeated section in the song and one of them can be eliminated.
Directly linked with the merging process is an algorithm for reconstruct-
ing missing line segments. This is useful because the chorus detector
sometimes does not detect all line segments. In this case the missing line
segments can often be reconstructed by analysing surrounding line seg-
ments. The reconstruction modes are not used by default. Therefore the
user has to enable them before starting the merge process.

6) All line segments only correspond to parts in the song which are possible
chorus sections. Therefore the goal of this step is to find out which of
these line segments actually correspond to the “real” chorus section. Be-
sides the similarity values of the line segments additional musical knowl-
edge about chorus sections in popular music is exploited to calculate a
score. The higher the score the higher the probability for a line segment
to correspond to the “real” chorus section in the song.

7) The last step in the alignment process is the actual alignment of the lyr-

ics to the audio data.

3.5 Differences between Existing Approaches and Mine

Although my approach is mainly based on [WAN04] and [GOT03], there are
some differences which are discussed in this chapter.

The Process of Lyrics Alignment 36

3.5.1 Wang et al. vs. My Approach
The biggest difference to Wang’s approach is that my approach only concen-
trates on section level alignment. Therefore the alignment will never be as accu-
rate as in LyicAlly. However, it makes my implementation much easier because
intro, verse, bridge and outro sections need not be distinguished. Furthermore
no singing phoneme duration database is needed. Without this database line
level alignment would be nearly impossible, since it would only allow very in-
accurate duration estimations for text lines [WAN04].

Another important difference is that in my approach neither a beat nor a vocal
detector is used. Consequently the system cannot rely on a rhythmical structure
and on vocal offsets for the alignment process. But using a beat detector would
not only lead to a more accurate alignment. It could also lead to a vast im-
provement of system performance. The reason for this is that the chords tend to
be quasi-stationary during beat times. Therefore one chroma vector could be
extracted for each beat instead of for every 80ms. Since the pairwise compari-
son (see chapter 4.2.3) of the chroma vectors is an O(n2) operation the algo-
rithm would only use about 2% of the time and space.

For detecting the chorus sections in the lyrics, Wang et al. use a special model
which works in a similar way as the audio chorus detector. It accounts for pho-
neme-, word- and line-level repetition in equal proportions. Therefore Wang et.
al. claim that this model also overcomes variations in words and line ordering
which could lead to problems for other algorithms like the Longest Commons
Sequence (LCS) algorithm. Nevertheless the LCS algorithm is used in my ap-
proach which did not cause any problems during test stage. There is another
small difference between the two approaches concerning the lyrics. In
[WAN04] the section processor estimates the section length using the lyrics. Of
course this cannot be done in my approach since the duration of phonemes is
used for this calculation.

Furthermore in the approach of Wang et al. it is defined that the chorus sections
in the lyrics must be interleaved by one or two other sections (see chapter
3.3.1.4). This means that a repeated chorus would not be accepted while this
should be no problem for my aligning method.

The Process of Lyrics Alignment 37

3.5.2 Goto vs. My Approach
The chorus detector in my approach was mainly implemented according to
[GOT03]. Although Goto’s method already seems to work very well, I have
developed some improvements.
The first improvement is to introduce a threshold for ignoring outliers while the
lines in the SimilarityMatrix are analysed for areas with high similarity (see
chapter 4.2.4 and Figure 4-12). This makes the method more resistant against
sporadic chroma vectors with lower similarity. As the evaluation results in
chapter 6 show, found chorus sections tend to be too short. Hence it could per-
haps improve the alignment even more if the number of allowed outliers were
increased.

My approach eliminates redundant line segments by using the merge algorithm
described in chapter 4.2.5. Goto’s method works a bit different by here. It col-
lects similar line segments into groups instead of eliminating them. In my opin-
ion there is no advantage for one of these two approaches. Nevertheless it is
easier for the later alignment to only have a minimum number of line segments.
In [GOT03] a method for finding line segments which were missed by the cho-
rus detector is mentioned. But no further details about the used algorithm are
described. Therefore I implemented a method to reconstruct missing line seg-
ments on my own (see chapter 4.2.5.2).

The last difference to Goto’s approach is that I use my own band pass filter to
build up the chroma vectors. Goto uses the following formulas for calculating
the element)(tv which corresponds to a pitch class c.

dftffBPFtv p

Oct

Octh
hcc

H

L

),()()(, ψ∑ ∫
=

∞

∞−

= ,

where)(, fBPF hc is the band pass filter that passes the signal at the frequency

hcF , of pitch class c and octave position h .

)1(1001200, −+= chF hc .

The Process of Lyrics Alignment 38

The band pass filter is then defined using a Hann window as follows:

)cos1()(200
))100((2

2
1

,
, −−−= hcFf

hc fBPF π .

As can be seen in the formulas, Goto recalculates the values of passing frequen-
cies each time the band pass filter is used. In my approach a band pass filter
matrix is generated once before the actual filtering process (a simple matrix
multiplication) is started. Therefore my application was optimized by creating
this matrix only once at the first program start. Then it is saved to hard disk and
can be loaded again for every feature extraction without having to recalculate it
every time.

4 Implementation

4.1 Advantages & Disadvantages of Java vs. Matlab

For me there were two possible programming languages for implementing the
lyrics aligner – Java [JAV06] and Matlab [MAT06].
The main advantage of Java was that I already knew it and therefore could start
without having to learn a new programming language. Another point is that
Java is one of the standard programming languages today and moreover freely
available. Furthermore due to the use of byte code, Java programs can be run on
every processor for which a Java Virtual Machine (JVM) exists. The only prob-
lem with using Java for audio applications is that it does not provide imple-
mented algorithms for digital signal processing. Therefore the basic algorithms
like FFT or multiplication of matrices have to be implemented before the actual
implementation of the aligning algorithms can begin.
On the other hand, Matlab already includes these basic algorithms since it is
specialised on mathematical programming. So the main advantage of Matlab is
that the step of implementing standard algorithms can be omitted. However, a
vast limitation is that the Matlab program can only be run in a Matlab environ-
ment. Therefore for every computer on which the program should run, a Matlab
license has to be purchased.
Nevertheless the final decision was to use Matlab, because in this way it got
possible to fully concentrate on the most important algorithms and not to rein-
vent the wheel.

4.2 Implementation Details

Most pop songs consist of a strophic form. This means that they usually contain
an arrangement of alternating verse and chorus sections. Therefore from my
point of view it is not necessary to distinguish between five kinds of different
sections as done in [WAN04]. For me there exist only two different sections –
chorus sections and verse sections (=all kinds of sections except chorus sec-

Implementation 40

tion). Since therefore in my implementation verse sections can contain intro,
verse, bridge and outro, it is very difficult to define them. Chorus sections are
much easier to find, because they are very similar to each other. So the most
important task is to find the locations of the chorus sections. This is done by the
chorus detector which was implemented based on the approach presented in
[GOT03].

Source: [GOT03], p. 35.

Figure 4-1: Chroma vectors contain the energy values corresponding to the twelve pitch
classes.

In general the chorus detector tries to locate the chorus sections by using
chroma vectors for detecting similar sections in the song. Chroma vectors are
simple vectors with a length of twelve. Each entry in the vector represents the
energy value for one of the twelve pitch classes which can be observed at a cer-
tain position of the song (see Figure 4-1). Consequently it is necessary to know
which frequencies are involved in the signal. This is the first step of the align-
ing process (see Figure 4-2).

Figure 4-2: Next step in the aligning process: FFT.

Implementation 41

4.2.1 Applying the FFT
After smoothing the signal at the current position using a Hann window of the
length 4096 it is transformed into frequency space using the FFT. This results in
a frequency vector of the length 4096. Since the second half of the vector is the
complex conjugate of the first half, it can be ignored for further processing. The
so gained FFT result vectors represent the energy distribution of a linear fre-
quency spectrum. This means that the first value in the vector corresponds to
the energy measured at the lowest frequency. The lowest frequency can be cal-
culated by

WindowSize
teSamplingRauencyLowestFreq = .

For instance a sampling rate of 16000 Hz and a window size of 4096 samples
would result in:

Hz44096
16000 ≈=uencyLowestFreq

All the other values in the vector are measured at a multiple of this lowest fre-
quency. In other words this means that the second value is measured at

Hz842 =⋅ , the third value at Hz2143 =⋅ and so on.

Figure 4-3: Hann window is shifted by the window shift.

Implementation 42

To calculate the FFT for the whole audio file, the Hann window is shifted in
steps of 1280 samples (=window shift). Hence the discrete time step in the cur-
rent implementation is 80 ms for a sampling rate of 16000 Hz. Consequently a
FFT result vector is calculated every 80 ms (see Figure 4-3).
The FFT result vectors get grouped together into the so called FFTmatrix.
Every column in the FFTmatrix contains the energy values for all frequencies in
the spectrum. The next task is to isolate only the frequencies which correspond
to musical notes. Therefore a band pass filter is needed. So the next step in the
aligning process is to construct a suitable band pass filter (see Figure 4-4).

Figure 4-4: Next step in the aligning process: Band Pass Filter.

4.2.2 Band Pass Filter
In my implementation the band pass filter is a matrix which contains values
between 0.0 and 0.1 . By multiplying this matrix with the FFTmatrix the inten-
sities of the individual semitones are computed. The calculation of the semi-
tone’s centre frequencies is described in chapter 2.4.
For extracting the semitones Hann windows around the centre frequencies en-
sure that only as little information as possible is lost. Therefore the Hann win-
dow for a certain note N has to meet the following three constraints:

1) It has to start one semitone below N.
2) The peak of the window has to be at the centre frequency of N.
3) The window has to end one semitone above N.

The distance ε between musical notes is distributed in a logarithmic way. But
because the measuring frequencies in the FFT result vectors are equidistant in
linear scale, the Hann window has to be converted to linear scale too (see
Figure 4-5).

Implementation 43

dffwfiAdtheiA
e

e
lin

tt ∫∫
⋅

⋅− −

⋅=⋅⋅=
ε

ε

ω

ω
ε

ε

ε

ωω),()()()(log

Figure 4-5: Left: Normal symmetric Hann window in log-scale. Right: Corresponding
result in linear-scale.

ε …is the distance between two semitones in logarithmical scale (12
2ln)

ω …is the centre frequency of the current semitone (e.g. 261.63 Hz for C4)

h …is the normalized Hann window function 1,)(2
)cos(1 ≤= ⋅+ xxh xπ

i …is the intensity of the frequency f at the current position of the song

w …is the weighting function resulting from the stretched window

Since the intensity)(fi is only known at the linear distributed measuring fre-

quencies integrals of the form linA are easy to compute. Nevertheless the goal is

to compute the value logA . So the weighting function has to be chosen as

f

f

hfw 1)ln()(),(⋅= ε
ωω in order to fulfil logAAlin = .

For the actual computation of the integral linA only the intensities at the discrete

measuring frequencies are available. Therefore the midpoint rule is used.

Figure 4-6: Visualisation of the midpoint rule.

δ …half the distance between two linear measuring frequencies

Implementation 44

The area below the curve is split up into small segments. Each of them contains
exactly one measuring frequency located in its centre. The width of the seg-
ments is δ2 (see Figure 4-6). Approximation of each segment’s area is done by
multiplying the function value at the centre of the interval and the width of the
segment. This leads to the following formula:

),()(2log ωδ j
j

jlin fwfiAA ⋅⋅≈= ∑

However, the intensities)(jfi are not part of the band pass filter. Instead they

come from the current FFT spectrum of the song. Luckily the formula can be
represented as matrix-vector multiplication because the intensities are only oc-
curring linearly. Consequently entries of the band pass filter matrix remain to
be computed as

),(2, ωδω jj fwBPF ⋅= .

To improve the performance of building chroma vectors, the band pass filter is
organized as follows:
Every row in the matrix represents a pitch class (e.g. the first row represents the
class “C”). In the current implementation the octaves three to eight are ana-
lysed. Since each row corresponds to the full linear frequency spectrum, this
results in six Hann windows per row. Figure 4-7 shows a graphical view of the
completed band pass filter matrix.

Figure 4-7: Graphical view of the band pass filter matrix. Blue values are close to zero;
red values are close to one.

Implementation 45

The columns in the FFTmatrix (which contain the intensities)(jfi) are multi-

plied by the twelve rows in the band pass filter matrix. So for each of the twelve
rows one value for the chroma vector is calculated. In the end one chroma vec-
tor is built for each column in the FFTmatrix. As already mentioned before, a
chroma vector represents the energy values of the twelve pitch classes. The next
chapter will deal with the analysis of similarities between these chroma vectors
(see Figure 4-8).

Figure 4-8: Next step in the aligning process: Similarity Comparison.

4.2.3 Similarity Comparison
This chapter explains the implementation details for step 3) in chapter 3.4. The
target is still to find the chorus sections in a song. They are characterized by
their high degree of similarity. All the other sections do not have this big simi-
larity, because e.g. every verse section is different since the lyrics change. But
chorus sections tend to have same instrumentation and same lyrics. In order to
measure this degree of similarity a set of chroma vectors was built. Now all
these vectors have to be compared with each other.
For calculating the similarity between two chroma vectors)(tv� and)(ltv −

�

Goto uses the following similarity function:

)12/(1),()(max
)(

)(max
)(

ltv
ltv

tv
tv

cccc
ltr −

−−−=
��

.

Where l (tl ≤≤0) is the lag between the two vectors. The denominator 12
is used for normalizing the similarity value. It represents the length of the di-
agonal line of the 12-dimensional hypercube with an edge length of 1. There-
fore),(ltr satisfies 10 ≤≤ r .

Implementation 46

Since),(ltr represents the degree of similarity between two vectors, it only

corresponds to 80 ms of the song. Hence the next step is to organize the gained
similarity data in order to find longer sections with high similarity. This is done
by drawing),(ltr within the right-angled isosceles triangle in the two-

dimensional time-lag space as shown in Figure 4-9. In other words it is a simi-
larity matrix, which shows the similarity between two arbitrary chroma vectors.
That is why it will be called SimilarityMatrix in the future.

Figure 4-9: The SimilarityMatrix.

In the next step of the aligning process (see Figure 4-10) the goal is to find
longer segments with high similarity in the horizontal lines of the similarity
matrix. These segments are called line segments.

Implementation 47

Figure 4-10: Next step in the aligning process: Finding Line Segments.

4.2.4 Finding Line Segments

4.2.4.1 The Basic Concept of Finding Line Segments

The human eye is already able to notice horizontal lines with high similarity in
the similarity matrix of Figure 4-9. For most songs they are not so clearly visi-
ble. But this example shows that the algorithm has to search for those horizontal
line segments. However, most rows of the SimilarityMatrix do not even contain
line segments with high similarity. In order to speed up the searching algorithm,
Goto first calculates the possibility of containing line segments at the lag l for
every line.

Figure 4-11: Using RAll for finding lines with high possibility of containing line segments.
a) Shows the peak values of RAll above ThR (all other values are displayed in blue colour).
b) Every peak value in RAll corresponds to a line with high possibility of containing line

segments.

Implementation 48

This possibility is called),(ltRall and is defined as follows:

.),(),(ττ dltR
t

l lt
lr

all ∫ −=

It is evaluated at the time t which is the end of the song in the current imple-

mentation. Then a threshold RTh is used in order to divide the values of allR
into two classes. The first class contains all values below RTh and the second

one all values above this threshold.

Now the values in the second class are selected from allR (see Figure 4-11a).

They indicate that the corresponding horizontal lines in the SimilarityMatrix are
very likely to contain line segments (see Figure 4-11b).
Because the relation between the values in the SimilarityMatrix is different for

every song, RTh should be adjusted from case to case. Therefore an automatic

threshold selection method is used. It is based on a discriminant criterion. The
optimal threshold for dichotomizing the peak heights into two classes is ob-
tained by maximizing the discriminant criterion measure, which is defined by
the following between-class variance:

2
2121

2)(µµωωσ −=B

1ω and 2ω are the probabilities of class occurrence (peaksofnumbertotal
classeachinpeaksofnumber). 1µ

and 2µ are the mean of peak heights in each class.

With this method, a threshold for allR is obtained. All corresponding lines for

which allR is above this threshold are used for further processing. Before con-

tinuing, the lines get smoothed in order to remove noise. Therefore for every

value iv in the line, a smoothed value is is calculated the following way:

3
11 +− ++= iii vvv

is

Implementation 49

If the index 1−i reaches the left edge of the line, instead of 1−iv the value of

1+iv is taken. The same is done if the right edge of the line is reached.

After this smoothing process a threshold lineTh is calculated. This threshold is

again adjusted by using the automatic threshold selection method. Now the line

is searched for values above lineTh from left to right. If such a value was found,

the variable segStart is set to the current index i . Then the search process is

continued until the value at the current index is below lineTh . Since according to

[GOT03] a potential chorus section must be at least 7.7 seconds long (97≈
chroma vectors), the found segment is ignored if it is shorter. Otherwise a re-
gion of high similarity was found. Such a region needs not necessarily be one of
the “real” chorus sections in the song but it is represents a potential chorus sec-
tion.

4.2.4.2 Differences to Goto’s Approach

In my implementation another threshold tolTh was added. It defines how many

values above lineTh must follow a single value below lineTh in order to ignore

this single outlier. The current value of tolTh is 10, which means that at least 10

values above lineTh must follow a value below lineTh (see Figure 4-12).

Figure 4-12: The tolerance threshold Thtol within a line. Blue rectangles represent values
below and red ones values above Thtol. After the last red rectangle either the end of the

line would be reached or at least two blue rectangles would follow.

In my opinion this threshold is very helpful because it is much better to find one
long region instead of two shorter ones which are only separated by a single

Implementation 50

chroma vector. It could even improve the chorus detection quality if instead of

only one value below lineTh two or three of them would be tolerated.

Finally if a region with high similarity was found (respecting tolTh), it is added

to the line segments matrix (LSMatrix). Each of these regions in reality repre-
sents two repeated segments in the song which are called line segments in
[GOT03]. So for every found region two line segments are added to the LSMa-
trix. Furthermore each pair of line segments gets a unique ID – the so called
TrackID (see chapter 5.2 for more information). Table 4-1 shows an example of
what a typical LSMatrix looks like.

LS start [sec] LS end [sec] Avg. Similarity (λ) TrackID
15.374
83.201
29.394

167.498
61.284

143.349
…

24.988
92.815
47.730

185.834
89.332

171.397
…

0.840
0.840
0.753
0.753
0.968
0.968

…

1
1
2
2
3
3
…

Table 4-1: LSMatrix.

The first two columns contain the starting and ending time of the line segment
in seconds. The value λ in the third column is calculated by averaging out all
similarity values within the found region in the SimilarityMatrix. The last col-
umn holds the TrackID.

4.2.4.3 Detecting Modulated Chorus Sections

With the presented approach the chorus sections of most songs can be detected.
But there may be some problems with a very special class of songs. In some
pop songs one of the refrains (mostly the last one) is modulated. This means
that the key of the chorus changes for example by a minor second in contrast to
the other chorus sections in the song. Such a modulation can be represented by
the pitch difference)11,,1,0(…tr of its key change. So tr denotes the num-

ber of semitones a chorus section was transposed. For example, 5=tr means a
modulation of five semitones upwards or the modulation of seven semitones
downwards.

Implementation 51

Consequently the chorus detector has to be adjusted in order to also enable the
detection of modulated chorus sections. This can easily be done by making
small changes to the existing chroma vector based approach. In a chroma vector

)(tv the modulation tr corresponds to the amount by which its twelve elements

are shifted. Therefore Goto uses a shift matrix for the cyclic shifting of the ele-
ments in a chroma vector by tr semitones. The resulting chroma vector is

called)'(tv . Hence it can be said that)(tv and)'(tv satisfy

)'.()(tvStv tr=

Where S is a shift matrix defined by

=

001
100
0100

00100
0010

���
���

��
�����

�
��

S .

In order to allow the detection of modulated chorus sections, the similarity

function),(ltr has to be changed slightly. The new),(ltrtr is defined by

)12/(1),()(max
)(

)(max
)(

ltv
ltv

tv
tvS

tr cccc

trltr −
−−−=

��
.

This results in twelve different sets of chroma vectors which are all compared
to the chroma vectors for 0=tr (the original chroma vectors before modula-
tion). Of course this will take twelve times the processing time and also twelve
times the memory of the original),(ltr . Furthermore it will lead to twelve

SimilarityMatrices.

Implementation 52

4.2.4.4 Line Segments vs. Tracks

In the previous chapters a method for extracting regions with high similarity
from a song was presented. These regions which are called line segments are
collected into the LSMatrix. For the algorithms of the further aligning process it
is no problem to handle this matrix. However, it must be visualized somehow
for the user of the lyrics alignment program. Therefore Goto uses so called
tracks for viewing the line segments in an intuitive environment.

Figure 4-13: Line segments (green) placed on tracks.

These tracks are very similar to the tracks used in most studio software. Figure
4-13 shows an example of how tracks look like. In my implementation they are
grey horizontal panels which are numbered on the left hand side. While the left
end of the tracks represents the beginning of the song, the right end corresponds
to the ending.
Each track contains the line segments (green panels in Figure 4-13) with a cer-
tain TrackID. Since every region of high similarity in the SimilarityMatrix cor-
responds to two line segments, there exist always two line segments with the
same TrackID. Therefore in this moment each track contains two line segments.
The main advantage of the tracks is that they are able to visualize several parts
of the song concurrently. For example in Figure 4-13 it is easy to understand
the connection between the small green line segment on track 3 and the longer
one on track 4. The region in the song which corresponds to the small line seg-
ment is part of the region corresponding to the long one. This is because they
occur concurrently on the two tracks and the small line segment starts after and
ends before the long one.
One problem is that there often exist redundant tracks. An example of this can
also be seen in Figure 4-13. The tracks 4 and 5 contain nearly the same line seg-
ments. To eliminate such redundancies is the main goal of the next step in the
aligning process (see Figure 4-14).

Implementation 53

Figure 4-14: Next step in the aligning process: Merging Tracks.

4.2.5 Merging Tracks
When searching for the line segments (see chapter 4.2.4) there is a tendency for
finding redundant repeated segments. The goal of the first part of this chapter is
to provide a method for eliminating this redundancy (see chapter 4.2.5.1). This
is done by merging two or more tracks to one single track while redundant line
segments are deleted from the LSMatrix. So after applying the merging algo-
rithm a track may contain more than two line segments.
Another problem is that sometimes line segments are missing. An example of
this is shown in Figure 4-13. The line segment c occurs at the end of b. How-
ever, at the end of a no such line segment in track 6 exists. Since a and b repre-
sent similar parts in the song it can be assumed that there should also exist a
line segment similar to c at the end of a. Therefore the second part of the Merg-
ing Tracks algorithm tries to reconstruct such missing line segments by analys-
ing the surrounding line segments on other tracks (see chapter 4.2.5.2).

4.2.5.1 Eliminate Redundant Line Segments

An obvious reason for redundant line segments is that the compared chroma
vectors represent a very short period of time. Therefore it often happens that
after finding a line segment in one line of the SimilarityMatrix, the next line
contains the same line segment again. This results in duplicate tracks, which
contain the same information. They should be eliminated by the merging algo-
rithm.
A second kind of redundancy is caused by the fact that until now every track
may only contain two line segments. Consequently when there are for example
three chorus sections in a song, at least two tracks would be needed for repre-
senting them. Then for example in one track the similarities between the first

Implementation 54

and last chorus section are expressed while the other track represents the simi-
larity between the second and last chorus section. Therefore the last chorus sec-
tion is represented by two line segments which is unnecessary.

yx ≈ means that the line segments x and y correspond to approximately the

same region in the song. In other words this means that x and y have ap-

proximately (below a certain threshold) the same starting and ending time.
sT(x , y) means that x and y are on the same track. Then the following rela-

tion between the line segments x , y , 1z and 2z can be used for merging the

tracks (see Figure 4-15 and Figure 4-16)4:

2112),(),(),(zzyxsTzysTzxsT ≈⇔⇒∧

Figure 4-15: Tracks 8, 9, 11 and 12 can be merged to one track.

In Figure 4-15 the line segment 1z and 2z are redundant. The line segments y
and 1z on track 8 correspond to regions in the song with high similarity. The

same is true for x and 2z on track 11. Because 21 zz ≈ one of these two line

segments can be eliminated. So for example if 2z is eliminated, x is moved to

track 8 and track 11 is deleted.

Figure 4-16: The resulting track after merging.

4 See chapters 4.2.4.4 and 5.2.1 for more details about tracks.

Implementation 55

Therefore x , y , 1z , 2z and all their duplicates (grey in Figure 4-15) can be

combined to one single track.

The Algorithm (Simplified Pseudo Code):

//DEFINITIONS:
//--
//Variable names are always printed using italic font style.
//Keywords start with a capital letter and are printed in blue.
//Comments start with “//”, end at the end of the line and are
// printed in green.
//MyList.LEN refers to a list’s length (number of elements in it)
//--
//These definitions apply for all pseudo code examples!
//--

Function MergeTracks(LSMatrix) Returns LSMatrix
Foreach TrackID tID In LSMatrix Do

Store all line segments with tID In firstList
Foreach line segment ls1 In firstList Do

If LSMatrix contains a line segment ls2 which corresponds to
approximately the same part of the song* Then

Store line segments with same TrackID as ls2 In secondList
//calculate score by algorithm described in chapter 4.2.6.2
Set score1 To CalculateTrackScore(firstList)
Set score2 To CalculateTrackScore(secondList)
Remove all line segments in the list with the lower score

from the LSMatrix (redundant line segments)
Move remaining line segments from track with lower score to

track with higher score
End

End
End
* Defined by a threshold.

The merging algorithm builds up a firstList for every TrackID in the LSMatrix.
Then for every line segment in this firstList another one which corresponds to
approximately the same section in the song is searched. If such a line segment
was found, all line segments belonging to the track of the found one are added
to the secondList. The decision whether two line segments occur at the same
time is defined by a threshold for the difference of start and end times.
In order to find out which one of both tracks (firstList or secondList) is more
likely to be the chorus track, the algorithm CalculateTrackScore() described in
chapter 4.2.6.2 is used. After that the reached score for firstList and secondList

Implementation 56

are compared. Consequently the non-redundant line segments on the track with
the lower score are added to the one with the higher score. This is done by sim-
ply changing the TrackID in the LSMatrix. Finally all line segments remaining
on the track with the lower score are deleted from the LSMatrix.

An important observation was made when testing the algorithm. For some songs
a part which does not correspond to a real chorus section is recognized to be
similar to a real one. This happens for example if the song starts with a section
that (in instrumentation, played chords etc.) sounds very similar to the real cho-
rus section but does not contain any vocals. It also has the same length as the
real chorus section. As a result this line segment would wrongly get merged
with the chorus track. But this would lead to difficulties later at the alignment
process because in the audio signal one additional chorus section would be
found. Since this “wrong” chorus section does not contain vocals, the similarity
is usually significantly lower than between real chorus sections. Therefore an-
other threshold categoryTh was introduced. All tracks containing at least one
line segment with a similarity greater than categoryTh belong to the firstCate-
gory. All other tracks belong to the secondCategory. Now the algorithm en-
forces that only tracks in the same category can be merged in order to avoid
merging real chorus sections with other line segments. In the current implemen-
tation categoryTh is set to 0.8 (=80% of similarity).

Figure 4-17: Tracks will not be merged because they belong to different categories.

Blue > 80% � Category1
Pink < 80% � Category2

Implementation 57

4.2.5.2 Reconstruct Missing Line Segments

Another useful algorithm which raises the probability for a good alignment is
directly linked with the merging algorithm. Because the chorus detector is not
totally reliable, sometimes important line segments are missing. Therefore this
algorithm tries to reconstruct missing line segments by analysing surrounding
line segments on other tracks. However, it is disabled by default because it
sometimes may cause additional wrong line segments too. So the user has to
enable it before starting the merging algorithm (see chapter 5.2.5).

The Algorithm (Simplified Pseudo Code):

//NOTE:
//--
//Some details were omitted for better understanding! However,
//they are described later in the text.
//--

Function ReconstructMissingLS(LSMatrix, trackID) Returns LSMatrix
Store all line segments with TrackID equal to trackID In trSegList
Foreach line segment trSeg In trSegList Do

Store all line segments in the LSMatrix which start or end du-
ring trSeg In eventSegs

Foreach line segment E In eventSegs Do
Set timeDiff To trSeg.StartTime – E.StartTime
Set LS To line segment in LSMatrix with same TrackID as E
Create new line segment hypLS
Set hypLS.StartTime To LS.StartTime + timeDiff
Set hypLS.EndTime To hypLS.StartTime + Length(trSeg)
Store all line segments in the LSMatrix which start or end du-

ring hypLS In newEventSegs
Set counter To 0
Foreach line segment b In newEventSegs

If eventSegs contains a line segment corresponding to b Then
Set counter To counter + 1

End
End
If counter is above a certain threshold Then

Store hypLS In newLineSegments
End

End
If newLineSegments is not empty Then

Choose the most frequent line segments in newLineSegments and
add it to the LSMatrix

End
End

Implementation 58

As inputs the algorithm receives the whole LSMatrix and the TrackID of the
track for which the missing line segments should be reconstructed.

Figure 4-18: Building the list eventSegs. Events are shown as small red points.

Figure 4-19: The hypothetical line segment hypLS is created.

At the beginning a list of line segments is built up. It contains all line segments
that have an “event” during the time when a line segment trSeg exists on the
“CurrentTrack”. Therefore this list is called eventSegs. An event is simply ei-
ther the start or the end of a line segment on another track than the “Current-

Implementation 59

Track”. In Figure 4-18 the events are shown as small red points in the high-
lighted area. This area indicates the time in the song corresponding to trSeg. For
easier handling the start and end times of the segments in the list are converted
into relative times. This means that in eventSegs the start and end times of all
line segments are stored as the time difference to the start time of trSeg.
Now the algorithm searches for every element E in eventSegs a line segment LS
with the same TrackID in the LSMatrix. After finding one, a hypothetical line
segment hypLS is created (see Figure 4-19). Its start and end times are calcu-
lated as follows:

ELShypLS merelStartTistartTimestartTime −=

)(trSeglengthstartTimeendTime hypLShypLS +=

Of course it can happen that there is not enough space for hypLS on the current
track. Then the algorithm searches other fitting line segments for the current
element E and all other line segments in the list eventSegs.

Figure 4-20: Building the second list newEventSegs.

Otherwise if there was enough space for inserting hypLS, a second event list
called newEventSegs is built up. This list contains all line segments which have
an event during hypLS. Then for every element in newEventSegs (b1-b6 in
Figure 4-20) a corresponding one in eventSegs (a1-a8 in Figure 4-20) is

Implementation 60

searched. Depending on a threshold confirmHypLsThresh a certain number of
corresponding line segments have to be found in order to confirm the hypotheti-
cal line segment. For deciding if a corresponding line segment was found, the
differences between the start and end times are calculated. If both are below the
so called diffThresh, the counter corrLSfound is increased. Is corrLSfound
greater or equal confirmHypLsThresh then hypLS is added to a list called
newLineSegments.
Since there are often lots of possibilities for positioning the reconstructed line
segments, the list newLineSegments can quickly get large. In order to decide,
which position should be taken, the line segments are separated into classes. For
the classification the start time of the line segments is taken as the deciding
value. If there does not already exist a class for this value, a new one is created.
To check if a line segment belongs into a certain class, its start time is com-
pared to the one of the first element in this class. If the difference of the start
times is below the threshold classThresh, the line segment is added to this class.
In the current implementation classThresh is set to one second. The class con-
taining the most line segments is used for inserting the real reconstructed line
segment into the LSMatrix. For the start and end time an average value is calcu-
lated from all the segments in the class. The similarity value and the TrackID
are inherited from the segment trSeg.
There are several possibilities of how this algorithm is used. Mainly there are
two classes. One only uses this algorithm on the track which is supposed to be
the chorus track. The other one applies it to all tracks. See chapter 5.2.5 for
more details.

Figure 4-21: Next step in the aligning process: Finding Chorus Track.

In the next step of the aligning process the main goal is to select one single
track called the chorus track out of all available tracks. The chorus track is the

Implementation 61

track with the highest probability of containing line segments that correspond to
the “real” chorus section in the song (see Figure 4-21).

4.2.6 Finding Chorus Track
To pick the correct chorus track out of all available tracks a score is calculated
for every track. Only the track with the highest score is finally used by the
aligning algorithm. The calculation method of the score exploits some special
features of chorus sections in popular music. A very important one is based on
so called “half-length sub-segments” described in chapter 4.2.6.1.

4.2.6.1 Half-Length Sub-Segments

The Algorithm (Simplified Pseudo Code):
Function HalfLengthSubSegments(lineSeg, LSMatrix) Returns F
F: vector with a length of 2, initialised with [0 0]
Foreach line segment LS In LSMatrix Do

If length of LS is approximately half the length of lineSeg Then
If LS starts approximately at the same time as lineSeg Then

Set F(1) To F(1) + 1
End
If LS ends approximately at the same time as lineSeg Then

Set F(2) To F(2) + 1
End

End
End

In popular music chorus sections tend to consist of two half-length repeated
sub-sections. Consequently a section having such sub-sections is likely to be the
chorus section. The target of this algorithm is to find line segments in the other
tracks which occupy the first or second half of a given line segment. It counts
the number of sub-segments found for the first and second half (allowed time
differences are defined by a threshold). Finally a vector F containing these two
values is returned.

Figure 4-22: Finding half-length sub segments.

Implementation 62

Figure 4-22 shows two line segments called a and b. For a two half-length sub-
segments are found on the track above a. One occupies the first and one the
second half of a. However, only one sub-segment corresponding to the first half

is found for b. Therefore the algorithm returns the vector []11=aF for a and

[]01=bF for b.

4.2.6.2 Calculating the Track Score

This algorithm is used by both the merge algorithm and the lyrics alignment
algorithm. It calculates a score for a certain track. As its input it takes an arbi-
trary list of line segments (such as e.g. the whole LSMatrix) and the TrackID of
the track for which the score should be calculated. By using the score of every
single track in the LSMatrix it can be decided which track has the highest prob-
ability for containing the “real” chorus sections.

The Algorithm (Simplified Pseudo Code):

Function CalculateTrackScore(curTrack, LSMatrix) Returns score
Dlen: constant value (=1.4) used for weighting the score

Set score To 0
For all line segments ls on curTrack Do

Set len To the duration of ls
Set lamda To the similarity value of ls
If len less than 7.7 Or len greater than 40 Then

Set lamda To 0
End
Set F To HalfLengthSubSegments(ls,LSMatrix)//see chapter 4.2.6.1
Set factor To 1.0
If F(1) greater than 0 And F(2) greater than 0 Then

Set factor To 2.0
Set factor To factor + (F(1)-1 + F(2)-1)/8

End
Set score To score + lambda*factor*log(len/Dlen)

End
Set score To score/number of line segments on current track

The starting point for calculating the score is the similarity value λ of each line
segment LS in the current track. This similarity value was already calculated by
the algorithm for Finding Line Segments (presented in chapter 4.2.4) and was
stored in the LSMatrix.

Implementation 63

In [GOT03] the following duration constraint for a chorus section CS is de-
fined:

40)(7.7 << CSlength

Hence in my implementation λ is simply set to zero if this constraint is not
met.
Another important characteristic of chorus sections is the tendency to consist of
two sub-sections with approximately half the chorus length. The algorithm de-
scribed in chapter 4.2.6.1 searches for line segments that are half the length of a
given one and have approximately the same starting or ending time. It returns a
vector F containing two integer numbers. These numbers correspond to the
number of found sub-segments on other tracks corresponding to the first and
second half of the given line segment.
Now a new variable called factor is introduced. It is used later to weight λ by a
certain factor depending on how many half-length sub-segments are found for
the current line segment. At the beginning factor is initialized by 0.1 . In order
to boost the score for line segments with at least one sub-segment in each half
factor is set to 0.2 if 0)1(>F and 0)2(>F . After that factor is increased by

8/)2)2()1((−+ FF . The denominator of 8 was gained through experiments.

Calculation of the score for a whole track is now very similar to the one pre-
sented in [GOT03] except that the individual line segments get weighted by
factorj:

len

j
i

D
L

M

j
jj factorscore log

1
⋅⋅=∑

=
λ ,

where i represents the TrackID of the current track. This track contains a num-

ber of iM line segments j . For each of them a jfactor is calculated as ex-

plained above. Finally the resulting score for each line segment is weighted by

len

j
D
Llog , where jL is the length of the line segment in seconds and the constant

lenD is sec4.1 . This ensures that longer line segments reach a higher score than

short ones. The idea behind this is that tracks with longer line segments are

Implementation 64

more likely to be the chorus track than e.g. a track that contains small line seg-
ments with half the length of the chorus section.
After finishing the calculation of the score for the current track, the score value
is divided by the number of line segments in the track. This is not done in
[GOT03] but in my opinion it prevents tracks with lots of line segments in it to
get a higher score more easily. For example the tracks that only contain half-
length sub segments would also result in high scores because there are ap-
proximately twice as many segments than on the real chorus track. In the end
the algorithm returns the score value for the current track.

After calculating the score for every track in the LSMatrix the track with the
highest score is selected as the chorus track. Now the actual aligning process
can start (see Figure 4-23).

Figure 4-23: Next step in the aligning process: Aligning Lyrics.

4.2.7 Aligning Lyrics
The goal of this algorithm is to align the individual lyrics sections to the right
audio sections. Before this can be done, the merging algorithm must be exe-
cuted (see chapter 4.2.5).

4.2.7.1 Preparations of the Lyrics

At the beginning the lyrics are split up in several sections. It is assumed that
sections are delimited by one or more blank lines and that the lyrics accurately
reflect the words sung in the song. Hence no further pre-processing of the text
is necessary. These assumptions were made because there already exist ap-
proaches which are able to optimise the textual lyrics (e.g. [KNE05], see chap-

Implementation 65

ter 1.2.2). The optimisation of lyrics would go beyond the scope of this diploma
thesis since it concentrates on the aligning process of audio and lyrics.
Now all extracted sections are compared with each other by using the Longest
Common Substring (LCS) algorithm. A java implementation of this algorithm
can be found in [LCS06]. By using the length len of the longest common sub-
string, a score is calculated for every pair of lyrics sections str1 and str2:

))2(),1(max(/ strlengthstrlengthlenscore =

From this a similarity matrix called lcsResultMatrix is built. For every pair of
sections for which the score was greater than 8.0 the corresponding place in
the matrix is set to 1. A typical lcsResultMatrix is shown in Table 4-2.

Section 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 1 0 1 0 0 0
5 0 0 0 0 1 0 0
6 0 1 0 1 0 1 0
7 0 0 0 0 0 0 1

Sum 1 3 1 2 1 1 1

Table 4-2: Lyrics similarity matrix.

To decide which sections are the most similar ones, the values in the columns
are summed up. The column which reaches the maximum sum (red in Table
4-2) contains the value 1 for every row which represents a chorus section
(green). In this example the sections 2, 4 and 6 are chorus sections and 1, 3, 5
and 7 are assumed to be verse sections.

Now that every preparation step is completed, all necessary information for
starting the actual alignment of audio and lyrics was gained. This is the goal of
the very last chapter dealing with the implementation details.

Implementation 66

4.2.7.2 Audio and Lyrics Alignment

The Algorithm (Simplified Pseudo Code):
//DEFINITIONS:
//--
//It is already known which of the lyrics and audio sections are
//chorus sections or verse sections. However, here only a minimum
//of variables and lists are used to make the background of the
//algorithm clearer.
//--
//Since the whole aligning process is running from right (song
//end) to left (song begin) the word “next” in variable names
//always refers to the previous chorus section in time.
//--
Function AlignLyrics()
aChrSec: list containing the line segments of the audio chorus

track
nextaChrSec: index variable pointing to the next audio chorus in

aChrSec
nextEndPos: stores the end time of the next audio chorus section
allowVerses: if 1 then a verse section may be inserted
allowChorus: if 1 then a chorus section may be inserted
verseSec: list used for temporarily storing lyrics of verse

sections
label: the graphical control on which the lyrics are displayed

(red colour for verse sections and green for chorus sections)

If song ends with a verse section Then
Set nextEndPos To end time of last audio chorus section

Else
Set nextEndPos To end time of the last but one chorus section

End

Set nextaChrSec To aChrSec.LEN
Set allowVerses To 1
Set allowChorus To 1

For i Is number of lyrics sections To 1 Do
If the current lyrics section is a verse section
And allowVerses is equal to 1 Then

CODE_FOR_THE_VERSE_SECTION (see page 67)
End //verse section

If the current lyrics section is a chorus section
And allowChorus is equal to 1 Then

CODE_FOR_THE_CHORUS_SECTION (see page 68)
End //chorus section

End

Implementation 67

The whole aligning process is running from the end of the song to the begin-
ning. The reason for this is that I noticed that chorus sections are more likely to
occur at the end of a song than at the beginning. This helps if for example one
more chorus section was detected in the audio data than in the lyrics. In this
case the first audio chorus section would be ignored instead of the last one. Be-
cause the aligning process is running from the end to the beginning of the song
the meaning of some words in this chapter is special:

• “next” always means the previous section in the time of the song
• “previous” always means the next section in the time of the song
• “last” means actually the last section at the end of the song

The variable nextEndPos indicates the end time of the next chorus section in
order to know where the next verse section should start. Normally it is set to the
end time of the last chorus section. But if the song ends with a chorus section,
nextEndPos is initialized with the end time of the previous chorus in time.
Another variable called nextaChrSec is used for saving the index of the next
audio chorus section in the chorus track. For forcing alternating chorus and
verse sections, two flags allowVerses and allowChorus are used. They are both
set to 1 at the beginning because songs may end with either a chorus or a verse
section. Now the algorithm steps through the lyrics sections from the end to the
beginning.

I. Verse Section

Set allowVerses To 0 //after the verse(s) a chorus must follow
Set allowChorus To 1 //now a chorus is allowed again
Store next lyrics sections into verseSec until next chorus

section is reached
If sections in verseSec do not have the same number of lines
Or no more chorus section is left before this verse Then
concatenate all sections in verseSec to 1 big verse section

Store this verse section again in verseSec
End
Set verseSpace To time difference between beginning of pre-

vious chorus and nextEndPos
For j Is 1 To verseSec.LEN Do //now display the lyrics

Set width of label To verseSpace/versSec.LEN
Set x position of label To nextEndPos + (j-1) * label.WIDTH
Set text of label To verseSec(j)

End

Implementation 68

If the current lyrics section is a verse section and allowVerses is 1 the aligning
of the verse section can start. The flag allowVerses is set to 0 and allowChorus
is set to 1. Then the lyrics of all possibly existing verse sections until reaching
the next chorus are added to the list verseSec. If the verse sections in verseSec
do not have the same number of lines, all verse sections in this list are concate-
nated to one big verse section. If the number of lines in the individual verse
sections is the same, it can be assumed that the sections are equally distributed
over time. So in this case the available space between the two chorus sections
(previous and next one) is divided by the number of verse sections in verseSec
(see Figure 4-24).

Figure 4-24: Space is divided by two because of two consecutive lyrics sections with the
same number of lines.

Consequently there are now several verse sections to be placed in the gap.
However, this is not done if the very first lyrics section is involved. The reason
for this is that many songs start with an instrumental intro part and the vocals
tend to start later. If for example the song in Figure 4-24 directly started with
the lyrics “Why do you want…” it would be possible that in the first half of the
verse gap (red area) no sung vocals occur. So in this case it is better to concate-
nate the verse sections to a big one again. This procedure may not apply for all
songs, but it worked quite well with most of the songs in the test set.

II. Chorus Section

Set allowVerses To 1
Set x position of label To the beginning of current audio

chorus section
Set width of label To length of current audio chorus section

Implementation 69

If there are more chorus sections in lyrics than in audio
And the next lyrics section is also a chorus Then

concatenate the current and next chorus sections in the lyrics
Set text of label To these concatenated lyrics
If a third chorus section follows in the lyrics Then

Set allowChorus To 1
Else

Set allowChorus To 0
End

Else
Set text of label To the current lyrics section

End

If there is at least one more chorus left in the lyrics Then
Set nextEndPos To ending time of next chorus section

Else
Set nextEndPos To 0

End

If nextaChrSec greater than 0 Then
Set nextaChrSec To nextaChrSec – 1

End

If the current lyrics section is a chorus section and allowChorus is 1 the align-
ing of the chorus section can begin. The flag allowChorus is set to 0 and al-
lowVerses is set to 1, because the next section should be a verse again.
The label on which the lyrics will be displayed is moved so that it starts at the
position where the audio chorus section starts. Its width is set to the length of
the audio chorus section.
A special case occurs if not all audio chorus sections were detected. This means
that there were more chorus sections found in the lyrics than in the audio data.
As a consequence the algorithm tries to concatenate two consecutive chorus
sections found in the lyrics. This is done because it is common that audio cho-
rus sections sometimes contain variations (for example at the end of the song)
and therefore will not be detected well by the chorus detector.
At the end of the chorus alignment nextEndPos is set to the end time of the next
chorus section if there is one left (nextaChrSec 1>). Otherwise it is set to 0 .
Finally nextaChrSec is decreased by one and the algorithm steps along to the
next lyrics section.
If the first lyrics section is reached the aligning process terminates. Figure 4-25
shows an example of an aligned song.

Implementation 70

Figure 4-25: The aligned song.

User Manual 71

5 User Manual

As it is very uncomfortable to work via the Matlab Command Window, a
graphical user interface (GUI) was created. So the user e.g. does not always
have to enter the whole path for the audio file to be loaded. It can simply be
chosen by a common file selection dialog. This chapter explains the graphical
user interface of my application, which is called Lyrics Aligner 1.0.
Mainly the GUI is divided into two parts. The feature extraction for finding the
line segments is done in the main window. It is the most time consuming task
and uses most of the algorithms introduced in the previous chapters. After fin-
ishing this process, the user can click the “Align Audio & Lyrics” button to
open the Audio & Lyrics Alignment Window. Here the text processing, merging
and aligning algorithms are used for aligning the lyrics to the audio signal.

5.1 The Main Window

Figure 5-1: The Lyrics Aligner main window.

User Manual 72

In Figure 5-1 an overview of the main window is shown. It is divided into three
parts which represent different importance levels for the user. The most impor-
tant items are placed in the upper part. In principle the user even does not need
the other two thirds for the whole feature extraction process. Nevertheless they
are sometimes very helpful because they provide further information about the
audio data and the current process.
In the middle part the audio signal is shown graphically. While the x-axis repre-
sents the time in seconds, the y-axis shows the amplitude at a certain time. This
way the user is able to get an idea of what the song “looks” like. For calm bal-
lades the amplitude will not be as high as for loud techno tracks with strong
beats. Furthermore often e.g. loud chorus sections and more silent areas such as
breaks can be distinguished.
The last third contains a player with which the user can listen to the current
song. During the feature extraction the user is able to watch the progress by
observing the “Log” and the “Progress” bar. After finishing the feature extrac-
tion he may directly jump to the positions of the found line segments by using
the “Line Segments Selection”.
This was only a brief overview of the main window. In the following chapters
all parts of the window and the used algorithms behind them will be explained
in detail.

5.1.1 Step1 – Selecting the source file

Figure 5-2: Step1 – Selecting the source file.

As Figure 5-2 shows, there are two available buttons in this part of the window.
The button “Load Audio File…” opens a file selection dialog. Here the user can
choose an audio file from his hard disk. In the current version of Lyrics Aligner
the file format is limited to WAVE files with a sampling rate of 16000 Hz and

User Manual 73

bit rate of 16 bit. This can be changed easily later, so the user will also be able
to load other file formats including mp3 files in the future.
Alternatively the button “Reload last saved similarity matrix” can be used.
However, at least one feature extraction must have been completed before this
button can be pressed. Furthermore the check box “Save similarity matrix” must
have been checked before the feature extraction was started. This causes the
program to store the SimilarityMatrix on the hard disk. When the user presses
the button “Reload last saved similarity matrix”, the saved SimilarityMatrix is
loaded into the memory. Then the feature extraction can be continued just at the
step after which the similarity matrix has been build. As a consequence the time
consuming process of comparing all chroma vectors can be omitted. Of course
this speeds up the feature extraction enormously. This feature was mainly built
in for testing purpose. It sped up the testing of the algorithms for finding the
line segments in the SimilarityMatrix. For the user it will not be a very useful
feature because it only loads the SimilarityMatrix of the last processed song.
Much more useful is that the Lyrics Aligner automatically stores the LSMatrix
for the current song after the feature extraction. In order to find this file again
when the audio file is loaded the next time, the following simple file name pat-
tern is used:

Audio file: <path>\<filename>.wav
LSMatrix file: <path>\<filename>.chr

This means that after the feature extraction (when all line segments were found)
a .chr file is generated for the current audio file. The file contains all necessary
information for the lyrics alignment process. So the next time the user loads the
audio file, the alignment process can be started directly without any feature ex-
traction.

If the user selects the check box “Display Sections here if .chr file found”, the
starting points of the line segments are shown as vertical red lines in the plot
below. Since Matlab always redraws the whole plot after inserting a line, this
vastly slows down the loading process. One reason for selecting this check box
is that the user is able to easily recognise interesting parts of the song (accumu-
lation of red lines in the plot). Another advantage is that it enables the possibil-
ity to jump between the line segment starts using the “Line Segments Selection”

User Manual 74

(see chapter 5.1.7). This approach of displaying the starting points of line seg-
ments by red lines was only used before the implementation of the Audio & Lyr-
ics Alignment Window. It is recommended to use this window instead of the red
lines because it is much faster, more intuitive and also offers much more fea-
tures.

5.1.2 File Info

Figure 5-3: File Info.

After loading an audio file, its properties are summarized in the “File Info” sec-
tion (see Figure 5-3). Above the horizontal line the user can see which file is
currently loaded. Furthermore path, size, sampling rate, bit rate and playing
length of the file are shown. But the most interesting information for the user is
displayed below the horizontal separation line. Here can be checked whether a
lyrics file for the current song was found. Lyrics Aligner searches for the lyrics
corresponding to the current loaded song using the following file naming pat-
tern:

Audio file: <path>\<filename>.wav
Lyrics file: <path>\<filename>.txt

The .txt file is a simple text file containing the lyrics for a certain song (also see
chapter 4.2.7). If such a lyrics file was found, a green “Yes” is displayed next to

User Manual 75

“Lyrics file found?”. Otherwise the green “Yes” is replaced by a red “NO (Lyr-
ics file must be called ‘<filename>.txt’)”. In this case the user is able to start
the feature extraction and to open the Audio & Lyrics Alignment Window. But
of course no lyrics are shown and no alignment can be done.

The information next to “Chorus file found?” refers to the .chr file. It contains
the LSMatrix for the current song if the feature extraction for it has already
been finished at least once. If such a .chr file was found, a green “Yes (No fea-
ture extraction needed!)” is shown. Then the user is able to open the Audio &
Lyrics Alignment Window immediately and start with the lyrics alignment. Oth-
erwise if no .chr file was found for the current song, a red “NO (Feature extrac-
tion needed!)” is shown. Then the button “Align Audio & Lyrics” is disabled.
So the user is forced to click the button “Find Line Segments” in order to start
the feature extraction first.

5.1.3 Step2 - Settings & feature extraction

Figure 5-4: Step2 – Settings & feature extraction.

In this part of the main window three settings can be adjusted before starting
the actual feature extraction process (see Figure 5-4). With the slider a value
TR can be adjusted. TR defines how many semitones a transposed chorus may
be away from the normal key of the chorus sections in the song. This means the
following for the value tr of chapter 4.2.4:

TRtr ≤≤0

User Manual 76

Therefore TR is a measure for detection quality and time complexity at the
same time. A high TR value means that the feature extraction gets significantly
slower because instead of one, now 1+TR similarity matrices have to be cal-
culated. Hence it is only recommended to use a 0>TR for songs where not all

chorus sections are detected with 0=TR or the user is able to hear a modulated

chorus.
If the check box “Save similarity matrix” is selected, the similarity matrix is
saved to the hard disk after finishing the feature extraction. This enables the
user to later reload the similarity matrix by using the button “Reload last saved
similarity matrix” instead of “Load Audio File…” (see chapter 5.1.1).
The check box “Eliminate Collisions” was only used for testing purposes and
therefore it normally should not be used. If it is selected then no new line seg-
ment, whose starting point is less than 7.7 seconds away from an already de-
tected line segment, is added to the LSMatrix.

5.1.4 Step3 – After feature extraction

Figure 5-5: Step3 – After feature extraction.

When the feature extraction is finished, the user may want to take a look at the
SimilarityMatrix. This can be done by clicking the “View Similarity Matrix”
button. A window containing a graphical representation of the SimilarityMatrix
(similar to Figure 4-9) is opened.
However, the more interesting button in the “Step3” panel is the button “Align
Audio & Lyrics” (see Figure 5-5). After pressing it, the Audio & Lyrics Align-
ment Window is opened where the actual lyrics alignment process takes place
(see chapter 5.2).

User Manual 77

5.1.5 Plotted Audio Signal

Figure 5-6: Plotted audio signal.

In the middle of the main window the audio signal of the loaded song is plotted
(see Figure 5-6). The x-axis represents the time in seconds while the y-axis cor-
responds to the amplitude. With the help of this plot, the user can easily gain an
overview of the loaded song. By clicking the time axis the current playing posi-
tion can be set. This is used by the small player in the “Listen” panel (see the
following chapter).

5.1.6 Listen

Figure 5-7: Listen panel.

The panel shown in Figure 5-7 mainly acts as a small player for previewing the
loaded song. By clicking the “Play” button the play back will be started at the
green vertical line in the plotted audio signal. The position of this line can be
set by clicking on the time axis in the plot (see chapter 5.1.5). While playing the
audio file, the current position is shown in the label below the “Stop” and
“Play” buttons. By default the time is shown in the format <min:sec.ms>.

User Manual 78

But by selecting the check box “sec” it can be changed to <sec.ms>. The
“Stop” button is pressed in order to stop the running play back.

5.1.7 Line Segments Selection

Figure 5-8: Line segments selection.

Here the green cursor (which indicates the position where the player starts the
playback) can be directly set to the starting position of the found line segments.
Using the “Back” and “Next” buttons the user can step through all found line
segments (see Figure 5-8). Between these two buttons the number of the current
selected line segment is shown. Below the buttons some important information
(start time, length and similarity) about the currently selected line segment is
displayed. As this panel was mainly used during the implementation when the
Audio & Lyrics Alignment Window had not existed, it is not recommended to be
used by the user. This is because the Audio & Lyrics Alignment Window is
much easier to understand and additionally offers more features and possibili-
ties.

5.1.8 The Log

Figure 5-9: The log.

User Manual 79

The log is used for displaying important status information during the feature
extraction process (see Figure 5-9). Here the user is able to see some of the out-
put which is normally only shown in the MATLAB Command Window. It was
mainly intended for debugging purposes.

5.1.9 Progress Bar

Figure 5-10: Progress bar.

The progress bar shown in Figure 5-10 indicates the progress of the time con-
suming feature extraction. This way the user can estimate the approximate time
it will take to finish.

5.2 The Audio & Lyrics Alignment Window

Figure 5-11: Audio & Lyrics Alignment Window.

In this window the actual aligning process is done. Furthermore, here the user
can read along the current lyrics while listening to the aligned song (see Figure

User Manual 80

5-11). It opens up when the user clicks onto the “Align Audio & Lyrics” button
in the main window.

5.2.1 The Tracks

Figure 5-12: The tracks.

The tracks (horizontal grey panels) shown in Figure 5-12 are a graphical repre-
sentation of the LSMatrix. Every TrackID in the LSMatrix corresponds to ex-
actly one track. The left and right ends of a track represent begin and end of the
current song. Each track contains the two line segments which were found by
analysing the SimilarityMatrix as described in chapter 4.2.4. So the two line
segments where TrackID=1 are placed in the first track, those with TrackID=2
in the second one, and so on. Line segments are displayed as green rectangles.
The start and end of these rectangles correspond to the start and end of the line
segment it represents. Hence the width of the rectangle is indicating the length
of the line segment in relation to the length of the whole song. This enables the
user to see where repeated sections are located in the song.
After applying the merge algorithm (see chapter 4.2.5) one track can also con-
tain more than only two line segments. This happens because this algorithm
combines line segments of several tracks to one single track.

User Manual 81

5.2.2 The Cursor

Figure 5-13: The cursor.

The cursor shows the current position within the song (see Figure 5-13). During
play back it updates its position automatically to always represent the current
position. The user can set its position manually by clicking into the empty space
of a track. If the song is currently played back, the player will jump to the new
position immediately and continue play back from there. Otherwise only the
current position in the song is updated and the user must click the “Play” button
to start play back at this position. In both cases the player updates the displayed
time in order to show the current position to the user (see chapter 5.2.4).

5.2.3 Properties

Figure 5-14: The properties.

User Manual 82

When a line segment is clicked, it gets selected by changing the rectangle’s col-
our from green to blue. At the same time important information (such as
TrackID, start and end time etc.) for this line segment is shown in the “Proper-
ties” panel (see Figure 5-14). In order to allow the user to compare two line
segments, two columns are available in this panel. The blue column shows the
information for the currently selected line segment, while the pink one shows it
for the last selected one. Therefore also the blue colour of the selected rectangle
changes to pink if another rectangle is selected. This way it is easy to compare
two tracks i.e. for their similarity.

5.2.4 The Player

Figure 5-15: The player.

The player shown in Figure 5-15 works very similarly to the one in the main
window although it offers some advanced features. The time shown in the left
half of the black panel indicates the current time in the song. It can be changed
by placing the cursor on a certain position in the song (see chapter 5.2.2). Dur-
ing play back it is automatically updated in order to always display the time of
the current position in the song.
The check boxes in the right half of the black panel are used to change the be-
haviour of the player. If the “Click&Play” check box is selected then every time
the user clicks onto a line segment, the player starts playing at the start of this
line segment. This is very useful for listening to certain line segments fast and
easily. It therefore replaces the feature “Line Segments Selection” of the main
window (see chapter 5.1.7). The check box “Sync Lyrics” is only enabled after
finishing the alignment process. If it is selected, the lyrics are automatically
updated during playback or if the cursor position is changed manually. By se-
lecting the last check box “sec” the user can decide if the time should be dis-

User Manual 83

played in the format <sec.ms> instead of the default format
<min:sec.ms>.
By clicking onto the “Play” button the song is played back starting at the cur-
rent cursor position. It can be stopped again by pressing the “Stop” button. With
<< and >> the user is able to jump five seconds back or forwards. The |<< and
>>| buttons enable the user to jump to the last or next section (verse, chorus)
start. Of course this only makes sense after the full alignment process was fin-
ished.

5.2.5 Algorithms

Figure 5-16: Algorithms.

Basically these algorithms are used for the final lyrics aligning process. The
buttons on this panel are arranged in two rows (see Figure 5-16). These two
rows correspond to the two main steps in the aligning process. In the first step
(“Merge Tracks”-button) redundant line segments are removed and missing line
segments are reconstructed. After that the lyrics can be aligned by using the
button “Align Lyrics”. The “R”-Button can be used in order to reset all changes.
The target of the merging algorithm is to eliminate unnecessary line segments.
It depends on the song how many line segments can be eliminated. For some
songs hundreds or even thousands of line segments are found. Hence they often
include a high ratio of redundancy which can often be diminished vastly. An-
other reason why the merging of tracks is absolutely necessary before the align-
ing process can start is that after the detection only two line segments can be
placed on each track (see chapter 4.2.4). Therefore before merging two tracks
are needed for a song with three refrains in order to represent the three chorus
sections (see chapter 4.2.5 for more details about the merging algorithm).
Until now only the algorithms behind the merge button were discussed. The
options to the right of this buttons can be used to activate the reconstruction of

User Manual 84

missing line segments. This is useful because sometimes not all line segments
are detected by the chorus detector. By selecting “Chorus Reconstruction
Mode” (CRM), the algorithm described in chapter 4.2.5.2 is executed only for
the track which is supposed to be the chorus track. If “Full Reconstruction
Mode” is selected, this algorithm is applied to all tracks. Furthermore the user
can define the number of iterations by using the slider below. Such an iteration
always consists of first merging the tracks and then applying the “Reconstruct
Missing Line Segments” algorithm. The maximum number of iterations is six.
However, normally three or four iterations should be enough since the algo-
rithm may take a long time if many line segments were found for the current
song. Another disadvantage of too many iterations is that the probability for the
occurrence of wrong line segments rises (see chapter 4.2.5.2).

5.2.6 The Lyrics

Figure 5-17: The lyrics.

In this text field the lyrics for the current song are displayed (see Figure 5-17).
If they have not been aligned yet, the lyrics for the whole song are displayed at
once. After aligning the lyrics to the audio signal only the lyrics section for the
current part of the song is displayed. The current part is indicated by the cursor
(see chapter 5.2.2). So wherever the cursor is moved the lyrics get updated
automatically (either while the song is played back or when the user changes
the cursor position manually). To use this feature the check box “Sync Lyrics”
in the player must be selected (see chapter 5.2.4). Otherwise the lyrics for the
whole song are displayed all the time.

Evaluation 85

6 Evaluation

For evaluating the Lyrics Aligner 1.0 a test set of 50 pop songs is used. They
were selected carefully to cover different music styles like Rock, Dance, Bal-
lads and Hip Hop. In order to make the evaluation faster and more uniform the
feature for searching modulated chorus sections was turned off for all songs
(see chapter 5.1.3). After the alignment process the results were analysed by the
following criteria:

1) Was the right chorus track selected?
 Yes or no.
2) How many percent of the chorus sections were detected correctly?
 Percentage of the correctly detected chorus sections.5

3) What was the average error at the start times of the chorus sections?
 Average error in seconds.
4) What was the average error at the end times of the chorus sections?
 Average error in seconds.
5) Was a repeated chorus section detected correctly?
 Yes or no (only if the song contains a repeated chorus).
6) Which merge mode was used?
 Normal, CRM, FRM (<number of iterations>).

Since the merge mode often plays a decisive role for the quality of the align-
ment, the evaluation is basically split up into two experiments. In the first one
only the mode Normal is allowed. This means that no missing line segments are
reconstructed. The tracks are only merged in order to eliminate redundant line
segments.
In the second experiment the “Normal” merge mode was also used wherever
possible. However, if the alignment was not good enough6, first Chorus Recon-
struction Mode (CRM) and then Full Reconstruction Mode (FRM) was tried to

5 It is possible that additional wrong chorus sections are detected. Then only chorus sections

located at the correct position are used for the calculation.
6 For example if missing chorus sections or large timing errors occur.

Evaluation 86

get better results. In CRM mode missing line segments are reconstructed only
once and exclusively for the track with the highest probability to be the chorus
track. In FRM mode the reconstruction process is executed for all tracks. There
exist six versions of the FRM mode. The only difference between these six
FRM modes is the number of iterations. See chapters 4.2.5 and 5.2.5 for more
details.

Of course the first experiment will lead to worse results than the second one.
But it simulates the conditions for real automatic alignment, where the user
does not need to interact with the program and its settings (e.g. when using the
algorithms for batch processing a whole song collection). The second experi-
ment shows the achievable results with fine tuning done by the user.

6.1 Experiment 1 - Using Normal Merge Mode

In this first experiment (see Table 6-1), the correct chorus track was selected in
36 songs. It can be seen that in these cases, at least half of the chorus sections
were detected. Furthermore the correct chorus track was selected for 21 of 25
songs in which 100% of the chorus sections were detected correctly. This shows
the importance of finding the right chorus track. In spite of this it is also possi-
ble that 100% of the chorus sections are detected although the chorus track was
not selected correctly. The reason for this is that there sometimes exist two pos-
sible chorus tracks which cover all “real” chorus sections in a song. Neverthe-
less the length of the line segments on them is not the same. Consequently the
timing errors could be minimized by selecting the other possible chorus track.
That is why in some cases the table contains a “No” for “Right Chorus Track
Selected” although 100% of the chorus sections were detected (also see chapter
6.4 example song 1).

Serious problems emerged in those 10 cases in which the wrong chorus track
was selected. In three of them not even one of the chorus sections was covered
by the chorus detector. Although in the remaining seven cases often 66% or
even 100% were reached, the average timing errors are mostly very high (as
already mentioned above).

Evaluation 87

Song
Used
Merge
Mode

Correct
Chorus
Track

Selected

#Chorus #Chorus
detected

Chorus
sect. match

(%)

Ø Error
start

(sec)*

Ø Error end
(sec)*

Repeated
Chorus

Detected

1 A-ha - Take on Me Normal Yes 3 2 66,67% +0.1 -3.5 -
2 Akon - Lonely Normal Yes 4 2 50,00% +0.3 -2.2 -
3 Atomic Kitten - Whole Again Normal Yes 4 2 50,00% +2.4 +1.0 -
4 Backstreet Boys - Everybody Normal Yes 4 4 100,00% +1.25 -1.5 Yes
5 Bell Book & Candle - Rescue Me Normal No 3 3 100,00% 0.0 -6.5 -
6 Black - Wonderful Life Normal Yes/No? 3 3 100,00% +3.9 -18.8 -
7 Bloodhound Gang - The Ballad Of Chasey Lane Normal Yes 3 3 100,00% -5.0 0.0 -
8 Bon Jovi - Always Normal No 3 0 0,00% - - -
9 Bon Jovi - It's My Life Normal Yes/No? 4 3 75,00% +6.6 0.0 No

10 Brian Adams - Summer of '69 Normal Yes 2 2 100,00% +3.0 0.0 -
11 Britney Spears - Baby One More Time Normal Yes 3 3 100,00% +0.1 -1.33 -
12 Britney Spears - Everytime Normal Yes 3 2 66,67% +0.1 0.0 -
13 Captain Jack - Soldier, Soldier Normal Yes/No? 4 4 100,00% +2.7 -2.2 Yes
14 Carl douglas - Kung Fu Fighting Normal Yes 4 2 50,00% +0.1 -2.7 -
15 Christina Aquilera - Genie In The Bottle Normal Yes 4 3 75,00% 0.0 -10.9 -
16 Coolio - Gangster's Paradise Normal Yes 3 3 100,00% 0.0 +0.66 -
17 Die Firma - Die Eine 2005 Normal Yes 3 3 100,00% 0.0 0.0 -
18 Eminem - Lose Yourself Normal No 3 3 100,00% -1.0 -5.3 -
19 Eminem - Without Me Normal Yes 3 3 100,00% 0.0 +0.2 -
20 Haiducii - Dragostea din tei Normal Yes 3 3 100,00% 0.0 -2.0 -
21 IN-MOOD feat. Juliette - The Last Unicorn Normal Yes 4 4 100,00% -1.5 0.0 Yes
22 Jennifer Lopez - Let's Get Loud Normal Yes 4 3 75,00% +0.1 -1.65 -
23 Jennifer Lopez - Waiting For Tonight Normal No 3 1 33,33% +0.2 0.0 -
24 Juli - Perfekte Welle Normal Yes 3 2 66,67% +2.0 +0.25 -
25 Kate Ryan - Desenchantee Normal No 3 2 66,67% +6.6 -5.5 No
26 Kelly Clarkson - Behind These Hazel Eyes Normal Yes 4 4 100,00% 0.0 -0.5 Yes
27 Madonna - Sorry Normal Yes 3 3 100,00% -1.2 0.0 -
28 Masterboy - Mister Feeling Normal No 3 2 66,67% +2.0 -8.5 -
29 Melanie C - First day of my life Normal Yes 3 3 100,00% -0.3 -6.5 -
30 Mike Oldfield - Moonlight Shadow Normal Yes 2 2 100,00% 0.0 +0.75 -
31 Morrissey - You Have Killed Me Normal Yes 3 3 100,00% 0.0 +0.05 -
32 Mr. President - Coco Jambo Normal Yes 4 3 75,00% +0.2 -0.5 -
33 Nena - Irgendwie, Irgendwo, Irgendwann Normal Yes 3 4** 100,00% 0.0 -2.0 -
34 Nickelback - This Is How You Remind Me Normal Yes/No? 3 2 66,67% +23.9 -4.0 -
35 Pet Shop Boys - It's a sin Normal No 3 2 66,67% -16.4 +1.74 -
36 Pet Shop Boys - Se a vida e Normal Yes 3 2 66,67% -2.79 +0.1 -
37 Petula Clark - Downtown Normal No 3 0 0,00% - - -
38 Pink - Family Portrait Normal Yes 3 2 66,67% +0.4 -1.4 Lyrics merged
39 Pink - Get The Party Started Normal Yes 5 5 100,00% -1.6 -0.3 Yes
40 Queen - Radio Ga Ga Normal Yes 3 3 100,00% 0.0 +0.46 -
41 Robbie Williams - Angels Normal Yes 3 3 100,00% +0.5 -17.0 -
42 Roxette - Sleeping In My Car Normal No 4 0 0,00% - - -
43 Sarah Connor - From Zero To Hero Normal Yes 3 2 66,67% +7.2 +0.9 -
44 Scorpions - Wind Of Change Normal Yes 3 3 100,00% 0.0 0.0 Yes
45 Sean Paul - Get Busy Normal Yes 5 4 80,00% +0.1 -1.8 Yes
46 Soft Cell - Tainted Love Normal Yes 2 2 100,00% +6.0 -4.9 -
47 T.a.t.u - All the Things She Said Normal Yes 4 3 75,00% +0.1 +4.5 -
48 Tina Turner - Simply The Best Normal No 2 1 50,00% +1.16 -7.64 No
49 Wes - Alane Normal Yes 4 3 75,00% 0.0 +5.8 -
50 Will Smith - Miami Normal Yes 4 4 100,00% +0.3 -0.4 -

* In the columns “Error begin” and “Error end” the + and – signs in front of the values indicate the most common shift direction of the chorus
start and end. If there is for example a + sign in front of the value this means that the detected chorus sections in the song start too late. How-
ever, the average value is calculated without taking care on the direction!

** In this song one additional chorus section was detected. Since the value in the column “#Chorus detected” only indicates how many percent of
the chorus sections in the song were found, “100%” is shown because all chorus sections were found. This column can also for example show
0% although some chorus sections were found if the found chorus sections do not match the “real” ones.

Table 6-1: Result table of Experiment 1.

Special cases are the four “Yes/No” entries. They correspond to songs for
which it would lead to advantages and disadvantages at the same time, if an-
other track would have been selected to be the chorus track. For example it
could happen that by selecting another track, one more chorus section would be
detected. But at the same time the average timing errors of all chorus sections
would increase. The reason for this is that the line segments on this new chorus

Evaluation 88

track are often shorter than on the other one. Consequently it is not clear which
case would be better. Since in these cases it is already hard to decide for a hu-
man, in my opinion the algorithm for detecting the right chorus track did not
fail. Therefore I would count these cases rather to “Yes” than to “No”.

There are nine tracks in which all chorus sections were detected and the average
errors for start and end times are below one second. This means that 18% of all
songs were aligned perfectly. The average start time error over all songs is 2.02
seconds while the average end time error is 2.72 seconds. Generally the chorus
sections tend to start too late and end too early. The main reason for this is that
there often occur variations at the start and end of chorus sections which are
caused by the different verse sections between them. So for example the vocals
(and especially their echo) at the end of a verse section may linger into the be-
ginning of the chorus. Also the transition from a chorus to a verse is often very
fluent and therefore may vary from one chorus section to another. This leads to
problems at finding the line segments in the SimilarityMatrix because the start

and end parts of such a chorus section are below the threshold lineTh (see chap-

ter 4.2.4).

6.2 Experiment 2 - Using Best Merge Mode

Here in 47 songs the right chorus track was chosen. In 43 of the test songs all
chorus sections were found and in the remaining seven songs only one chorus
section was missed.
An interesting point is that although in three cases the wrong chorus track was
selected, in all of them 100% of the chorus sections were found. Nevertheless in
these three songs the timing errors are above-average. The reason for this be-
haviour was already explained in chapter 6.1.

There are thirteen tracks in which all chorus sections were detected and the av-
erage errors for start and end times are below one second. In other words this
means that 26% of all songs were aligned perfectly. The average start time error
over all songs is 1.6 seconds while the average end time error is 2.32 seconds.
As in Experiment 1 the chorus sections tend to start too late and end too early
(see Table 6-2 for detailed results).

Evaluation 89

Song
Used
Merge
Mode

Correct
Chorus
Track

Selected

#Chorus #Chorus
detected

Chorus
sect.

match (%)

Ø Error
start
(sec)*

Ø Error end
(sec)*

Repeated
Chorus

Detected

1 A-ha - Take on Me CRM Yes 3 3 100,00% +0.1 -3.5 -
2 Akon - Lonely CRM Yes 4 3 75,00% +0.3 -1.7 -
3 Atomic Kitten - Whole Again FRM (2) Yes 4 4 100,00% +2.3 +1.0 -
4 Backstreet Boys - Everybody Normal Yes 4 4 100,00% +1.25 -1.5 Yes
5 Bell Book & Candle - Rescue Me Normal No 3 3 100,00% 0.0 -6.5 -
6 Black - Wonderful Life FRM (2) Yes 3 3 100,00% +3.5 -3.4 -
7 Bloodhound Gang - The Ballad Of Chasey Lane Normal Yes 3 3 100,00% -5.0 0.0 -
8 Bon Jovi - Always FRM (2) Yes 3 3 100,00% +8.3 0.0 -
9 Bon Jovi - It's My Life FRM (2) Yes 4 4 100,00% -0.95 0.0 Yes

10 Brian Adams - Summer of '69 Normal Yes 2 2 100,00% +3.0 0.0 -
11 Britney Spears - Baby One More Time Normal Yes 3 3 100,00% +0.1 -1.33 -
12 Britney Spears - Everytime CRM Yes 3 3 100,00% +0.1 0.0 -
13 Captain Jack - Soldier, Soldier CRM Yes 4 3 75,00% 0.0 0.0 No
14 Carl douglas - Kung Fu Fighting FRM (2) Yes 4 4 100,00% +2.1 -3.5 -
15 Christina Aquilera - Genie In The Bottle FRM (2) Yes 4 4 100,00% 0.0 -6.0 -
16 Coolio - Gangster's Paradise Normal Yes 3 3 100,00% 0.0 +0.66 -
17 Die Firma - Die Eine 2005 Normal Yes 3 3 100,00% 0.0 0.0 -
18 Eminem - Lose Yourself Normal No 3 3 100,00% -1.0 -5.3 -
19 Eminem - Without Me Normal Yes 3 3 100,00% 0.0 +0.2 -
20 Haiducii - Dragostea din tei Normal Yes 3 3 100,00% 0.0 -2.0 -
21 IN-MOOD feat. Juliette - The Last Unicorn FRM (2) Yes 4 4 100,00% +1.25 +0.75 Yes
22 Jennifer Lopez - Let's Get Loud FRM (2) Yes 4 3 75,00% 0.0 -2.0 -
23 Jennifer Lopez - Waiting For Tonight FRM (1) Yes 3 3 100,00% +0.7 +4.38 -
24 Juli - Perfekte Welle Normal Yes 3 2 66,67% +2.0 +0.25 -
25 Kate Ryan - Desenchantee FRM (1) Yes 3 3 100,00% +1.0 -3.6 Yes
26 Kelly Clarkson - Behind These Hazel Eyes Normal Yes 4 4 100,00% 0.0 -0.5 Yes
27 Madonna - Sorry Normal Yes 3 3 100,00% -1.2 0.0 -
28 Masterboy - Mister Feeling CRM Yes 3 3 100,00% 0.0 0.0 -
29 Melanie C - First day of my life Normal Yes 3 3 100,00% -0.3 -6.5 -
30 Mike Oldfield - Moonlight Shadow Normal Yes 2 2 100,00% 0.0 +0.75 -
31 Morrissey - You Have Killed Me Normal Yes 3 3 100,00% 0.0 +0.05 -
32 Mr. President - Coco Jambo CRM Yes 4 4 100,00% +0.3 0.0 -
33 Nena - Irgendwie, Irgendwo, Irgendwann Normal Yes 3 4** 100,00% 0.0 -2.0 -
34 Nickelback - This Is How You Remind Me FRM (1) Yes 3 3 100,00% +3.4 -13.6 -
35 Pet Shop Boys - It's a sin CRM No 3 3 100,00% -16.5 +0.3 -
36 Pet Shop Boys - Se a vida e CRM Yes 3 3 100,00% -2.8 0.0 -
37 Petula Clark - Downtown FRM (5) Yes 3 2 66,67% +3.0 +3.0 -
38 Pink - Family Portrait Normal Yes 3 2 66,67% +0.4 -1.4 Lyrics merged
39 Pink - Get The Party Started Normal Yes 5 5 100,00% -1.6 -0.3 Yes
40 Queen - Radio Ga Ga Normal Yes 3 3 100,00% 0.0 +0.46 -
41 Robbie Williams - Angels Normal Yes 3 3 100,00% +0.5 -17 -
42 Roxette - Sleeping In My Car FRM (1) Yes 4 3 75,00% +0.2 0.0 -
43 Sarah Connor - From Zero To Hero FRM (5) Yes 3 3 100,00% +5.0 +4.0 -
44 Scorpions - Wind Of Change Normal Yes 3 3 100,00% 0.0 0.0 Yes
45 Sean Paul - Get Busy FRM (3) Yes 5 5 100,00% 0.0 +1.5 No,but 1 long
46 Soft Cell - Tainted Love Normal Yes 2 2 100,00% +6.0 -4.9 -
47 T.a.t.u - All the Things She Said FRM (1) Yes 4 4 100,00% +1.25 -4.05 -
48 Tina Turner - Simply The Best FRM (4) Yes 2 1,5 75,00% -2.1 +3.5 Yes (1 of 2)
49 Wes - Alane CRM Yes 4 4 100,00% -2.0 +4.1 -
50 Will Smith - Miami Normal Yes 4 4 100,00% +0.3 -0.4 -

* In the columns “Error begin” and “Error end” the + and – signs in front of the values indicate the most common shift direction of the chorus
start and end. If there is for example a + sign in front of the value this means that the detected chorus sections in the song start too late. How-
ever, the average value is calculated without taking care on the direction!

** In this song one additional chorus section was detected. Since the value in the column “#Chorus detected” only indicates how many percent of
the chorus sections in the song were found, “100%” is shown because all chorus sections were found. This column can also for example show
0% although some chorus sections were found if the found chorus sections do not match the “real” ones.

Table 6-2: Result table of Experiment 2.

Figure 6-1 shows how often the different merge modes were used for the test
set. Merge modes with no or only few iterations (“Normal”, “CRM” and “FRM
(1,2)”) are mostly used (92%).

Evaluation 90

Figure 6-1: Frequency of used merge modes.

6.3 Experiment 1 vs. Experiment 2

Even when counting the four “Yes/No” cases to “Yes” in Experiment 1, the se-
lection of the right chorus track could be raised by 14.9% in Experiment 2. The
average number of chorus sections for the songs in the test set is 3.3. In Ex-
periment 1 an average number of 2.58 chorus sections per song (which are
78.18%) were detected. In Experiment 2 this value could be raised to 3.15,
which means that 95.45% of all chorus sections were detected.
The average timing error of the chorus section starts could be reduced from
2.02 to 1.60 seconds. This is an improvement of 20.8%. Also the average timing
error of the chorus section endings could be reduced from 2.72 to 2.32 seconds
which is an improvement of 14.7%.
Both experiments show that detected chorus sections tend to start too late and
end too early. This means that the line segments found by the chorus detector
seem to be too short.

6.4 Qualitative Evaluation

In order to illustrate the strengths and flaccidities of my approach this chapter
describes some interesting cases which were picked out of the test set.

Evaluation 91

1) Song: Bell Book & Candle - Rescue Me
Merge Mode: Normal
Description: Wrong chorus track selected.

Figure 6-2: Wrong chorus track selected.

 In this song the average start error of the chorus sections is 0.0, while the
end error is 6.5 seconds. In Figure 6-2 these 6.5 seconds correspond to
the small length difference between the line segments on the first and
second highlighted track. If track b) were selected as the chorus track,
this would lead to a more accurate alignment. However, there are more
small segments in the part of the song where a line segment exists on
track a). Therefore the probability to reach a higher score because of
half-length sub-segments is greater for this track (see chapter 4.2.6.1).

2) Song: Bryan Adams - Summer of 69

Merge Mode: Normal
Description: Verse sections with same number of lines.

This song is a good example in which the lyrics of two consecutive verse
sections are not simply merged for displaying them at the same time.
Here both sections have the same number of lines. Therefore the space
between the two chorus sections is split up into two equally long sec-

Evaluation 92

tions. In Figure 6-3 the parts where the lyrics of the two sections are per-
formed is marked by a small red waveform. Since both of them are com-
pletely placed within their section, it can be seen that this is a good ap-
proach to reach a finer alignment.

Figure 6-3: Verse sections with same number of lines.

3) Song: Die Firma - Die Eine 2005

Merge Mode: Normal
Description: Vast reduction of line segments.

For this song, the chorus detecting algorithm finds 1758 line segments
(see Figure 6-4). After merging there are only 220 line segments left
which is a reduction of about 87.5%. This helps the aligning algorithm a
lot since many redundant line segments are eliminated. Therefore the de-
cision for finding the chorus track is much easier. However, the most in-
teresting fact about the alignment in this song is that although only the
“Normal” merge mode is used, a perfect alignment can be achieved. This
means that 100% of the chorus sections were detected and 0.0 seconds
average start and end error was measured during evaluation.

Evaluation 93

Figure 6-4: Vast reduction of line segments.

4) Song: Haiducii - Dragostea din tei
Merge Mode: Normal
Description: Chorus section ends too early.

Figure 6-5: Chorus section ends too early.

In this song the line segments on the chorus track end too early while on
other tracks many line segments end a bit later (see Figure 6-5). The line
segment above the chorus track for example ends exactly at the end of
the chorus. In future versions the existence of several line segments that
are a bit longer than the one on the chorus track could perhaps be ex-

Evaluation 94

ploited for improvements. As it was already noticed in the evaluation
chapter, the chorus sections tend to be too short. Therefore it could per-
haps improve the aligning accuracy if such line segments that are shorter
than the majority in this region would get extended.

5) Song: Kelly Clarkson - Behind These Hazel Eyes
Merge Mode: Normal
Description: Gap between two consecutive chorus sections.

Figure 6-6: Gap between two consecutive chorus sections.

If a song contains two consecutive chorus sections, there often appears a
small gap between the two line segments on the chorus track (see Figure
6-6). Observations show that this gap mostly corresponds to exactly the
time which is missing at the end of all chorus sections in this song. As
already mentioned, chorus sections are likely to be too short. Therefore
this fact could be exploited in order to enhance the accuracy of the dura-
tion for all sections in the song.

Evaluation 95

6) Song: Masterboy - Mister Feeling
Merge Mode: CRM
Description: Song starts with a chorus section.

Figure 6-7: Song starting with chorus section.

This example shows that my approach also works even if the song di-
rectly starts with a chorus section. So this is one of the advantages of
only distinguishing two kinds of sections. With the approach presented
by [WAN04] this would not be possible because here the song has to
start with an intro followed by a verse section.

7) Song: Nena - Irgendwie, Irgendwo, Irgendwann
Merge Mode: Normal
Description: Additional instrumental chorus section detected.

In this song an additional chorus section was found. The reason for this
is that at the end the chorus is repeated once again but without vocals.
However, since the accompanying instruments are the same, the algo-
rithm detects it as an additional chorus section. Therefore of course all
sections before this additional chorus section get assigned wrong lyrics.

Evaluation 96

Figure 6-8: Additional instrumental chorus section detected.

8) Song: Nickelback - This is how you remind me
Merge Mode: FRM (1)
Description: Duration of chorus section is 51 seconds.

The duration of this song’s chorus sections is 51 seconds. In the algo-
rithm for finding the chorus track a line segment which has a length
greater than 40 seconds automatically gets zero points (see chapter
4.2.6.2). Therefore in this case the right chorus track is not selected.

Figure 6-9: Duration of chorus section is 51 seconds.

7 Conclusion

7.1 Results

An approach for aligning audio and lyrics on section level was presented. As
experiments show (see chapter 6) the automatic alignment by only choosing the
“Normal” merge mode is quite good. However, improvements could be made by
automatic choice of the right merge mode. The performance of the feature ex-
traction process could also get better by adding a beat detector to the system.

7.2 Limits of my Implementation

Since no beat and vocal detector as well as a singing phoneme duration data-
base could be used, my approach is limited to section level alignment. One
problem is also that the system can only rely on the chorus detector for placing
the sections. A second module providing alignment information like for exam-
ple a beat detector could improve the quality of the alignment algorithm.
Furthermore in the current implementation there is no automatic selection
method for the best merge mode. However, as the evaluation results (see chap-
ter 6) show, the quality of the alignment can be improved a lot by using the
right merge mode.
Another limitation of my approach is that the sung vocals or their phonemes are
not used for better alignment. By including for example Hidden Markov Models
(HMM) [HUA90] the alignment could perhaps be verified by detecting certain
words in a section.

7.3 Possible Improvements

In the current implementation the feature extraction for a song takes a long
time. Of course this process could be optimised. For example as described in
[WAN04] a vast improvement could be reached by using a beat detector. Since

Conclusion 98

then for every beat only one chroma vector needs to be extracted, an average
speed-up of 98% could be reached.
As Experiment 2 shows, an automatic detection of the most suitable merge
mode could improve the aligning quality enormously. This could be done by
comparing the number of found chorus sections in lyrics and audio. If there are
more chorus sections in the lyrics, another merge mode could be tried to get
better results. Because observations show (see Figure 6-1) that merge modes
with no or few iterations are most frequent, the system should start with “Nor-
mal” mode and then go upwards to “CRM”, “FRM (1)” and “FRM (2)”. The
first mode for which the number of chorus sections matches the amount of
found refrains in the lyrics should finally be chosen for the alignment.
Adding a vocal detector to the system could also improve the alignment process
because then instrumental sections could be detected. So for example the lyrics
for the first verse section would be placed after the instrumental intro. Further-
more the current approach is sometimes fragile for songs with an instrumental
part between two chorus sections. This problem could also be solved by using a
vocal detector.
In the current approach the lyrics have to accurately reflect the words sung in
the song. For example often a chorus is repeated several times in the end of a
song. Then the corresponding lyrics also have to occur several times in the lyr-
ics file. This could be improved in future versions of the software by simply
copying the lyrics of the chorus section several times.

8 Bibliography

[COO65] James W. Cooley and John W. Tukey. An algorithm for the ma-
chine calculation of complex Fourier series. Math. Comput. 19,
297–301, 1965.

[GOT03] Masataka Goto. SmartMusicKIOSK: Music Listening Station with

Chorus-Search Function. In Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology (UIST
2003), pp. 31-40, November 6-7, 2003, Vancouver, British Co-
lumbia, Canada.

[HUA90] X. D. Huang, Y. Ariki and M. A. Jack. Hidden Markov Models

for Speech Recognition. Edinburgh University Press, Edinburgh,
1990.

[JAV06] Java, Sun Microsystems. http://java.sun.com, 07 2006.

[JUA84] B. H. Juang. On the Hidden Markov Model and Dynamic Time

Warping for Speech Recognition - A unified Overview. AT&T
Technical J., 63, pp. 1213–1243, 1984.

[KNE05] Peter Knees, Markus Schedl, Gerhard Widmer. Multiple Lyrics
Alignment: Automatic Retrieval of Song Lyrics. In Proceedings
of the 6th International Conference on Music Information Re-
trieval (ISMIR'05), pp. 564-569, September 11-15, 2005, London,
UK.

[LCS06] Java implementation of the Longest Common Subsequence/Sub-

string algorithm (LCS). http://www.bioalgorithms.info/downloads
/code/LCS.java, 05 2006.

Bibliography 100

[LOS99] Alex Loscos, Pedro Cano, Jordi Bonada. Low-Delay Singing
Voice Alignment to Text. In Proceedings of the International
Computer Music Conference 1999 (ICMC99), Beijing, China,
1999.

[MAT06] Matlab, MathWorks. http://www.mathworks.com, 07 2006.

[MIL95] B. P. Milner. Speech Recognition in Adverse Environments (PhD.

Thesis). University of East Anglia, England, 1995.

[RAB85] L. R. Rabiner, B. H. Juang, S. E. Levinsong and M. M. Sondhi.

Recognition of Isolated Digits using Hidden Markov Models with
Continuous Mixture Densities. AT&T Technical Journal, 64, pp.
1211-1235, 1985.

[RAB93] L. R. Rabiner and B. H. Juang. Fundamentals of Speech Recogni-

tion. Prentice Hall, 1993.

[STE96] Ken Steiglitz. Digital Signal Processing Primer - With Applica-

tions to Digital Audio and Computer Music. Addison Wesley,
1996.

[TTS06] Online Text-to-Speech. AT&T Labs – Research. http://public.

research.att.com/~ttsweb/tts/demo.php, 05 2006.

[VAS00] Saeed V. Vaseghi. Advanced Digital Signal Processing and Noise

Reduction, Second Edition. John Wiley & Sons, 2000.

[WAN04] Ye Wang, Min-Yen Kan, Tin Lay New, Arun Shenoy and JunYin.

LyricAlly: Automatic Synchronization of Acoustic Musical Sig-
nals and Textual Lyrics. In Proceedings of ACM Multimedia’04,
October 10-15, 2004, New York, NY, USA.

[WIK06] Wikipedia, the free encyclopedia. http://en.wikipedia.org, 06 2006

Bibliography 101

[WON05] Chi Hang Wong, Kin Hong Wong and Wai Man Szeto. Automatic
Lyrics Alignment on Popular Music. In Proceedings of the ISCA
(The International Society for Computers and Their Applications)
20th International Conference, pp. 385-390, March 16-18, 2005,
New Orleans, Louisiana, USA.

[YAM06] Yamaha Vocaloid – New Singing Synthesis Technology.

http://www.vocaloid.com, 05 2006.

Curriculum Vitae
Andreas Kothmeier

Personal

Date of Birth
Place of Birth

Home Address
Parents

Nationality

December 9th, 1982
Linz, Austria
Seeweg 3/12, 4040 Linz
Robert Kothmeier and Brigitte Kothmeier
Austrian

Education

1989-1993
1993-2001
June 2001

Autumn 2001

Volksschule Steyregg
Europagymnasium BRG Auhof
Matura passed with distinction
Enrolment at the Johannes Kepler University Linz,
Subject Informatik (Computer Sciences)

Languages

English
Spanish

Fluent in spoken and written
Fluent in spoken and written

Employment History

Summer 2004
Since October 2004

Employment during holidays at KEBA AG
“Freier Mitarbeiter” at KEBA AG

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.

Plesching, August 2006

	1 Introduction
	1.1 Development of Intelligent Music Processing
	1.2 Motivation
	1.2.1 Application Areas for Automatic Lyrics Alignment
	1.2.2 Main Reason for Choosing this Topic

	1.3 Goal

	2 Basic Knowledge
	2.1 Digital Representation of Audio Data
	2.2 DFT, FFT & Inverse DFT
	2.2.1 DFT
	2.2.2 FFT
	2.2.3 Inverse DFT

	2.3 Window Functions - The Hann Window
	2.4 Calculating the Frequency of a Note

	3 The Process of Lyrics Alignment
	3.1 Approach 1: Chi Hang Wong et al.
	3.2 Approach 2: Alex Loscos et al.
	3.3 Approach 3: Wang et al.
	3.3.1 Structural Element Level Alignment
	3.3.1.1 Beat Detector
	3.3.1.2 Measure Detector
	3.3.1.3 Chorus Detector
	3.3.1.4 Section Processor

	3.3.2 Line Level Alignment
	3.3.2.1 Vocal Detector
	3.3.2.2 Line Processor

	3.3.3 System Integration
	3.3.3.1 Section Level Alignment
	3.3.3.2 Line Level Alignment

	3.3.4 Evaluation

	3.4 Overview of my Approach
	3.5 Differences between Existing Approaches and Mine
	3.5.1 Wang et al. vs. My Approach
	3.5.2 Goto vs. My Approach

	4 Implementation
	4.1 Advantages & Disadvantages of Java vs. Matlab
	4.2 Implementation Details
	4.2.1 Applying the FFT
	4.2.2 Band Pass Filter
	4.2.3 Similarity Comparison
	4.2.4 Finding Line Segments
	4.2.4.1 The Basic Concept of Finding Line Segments
	4.2.4.2 Differences to Goto’s Approach
	4.2.4.3 Detecting Modulated Chorus Sections
	4.2.4.4 Line Segments vs. Tracks

	4.2.5 Merging Tracks
	4.2.5.1 Eliminate Redundant Line Segments
	4.2.5.2 Reconstruct Missing Line Segments

	4.2.6 Finding Chorus Track
	4.2.6.1 Half-Length Sub-Segments
	4.2.6.2 Calculating the Track Score

	4.2.7 Aligning Lyrics
	4.2.7.1 Preparations of the Lyrics
	4.2.7.2 Audio and Lyrics Alignment

	5 User Manual
	5.1 The Main Window
	5.1.1 Step1 – Selecting the source file
	5.1.2 File Info
	5.1.3 Step2 - Settings & feature extraction
	5.1.4 Step3 – After feature extraction
	5.1.5 Plotted Audio Signal
	5.1.6 Listen
	5.1.7 Line Segments Selection
	5.1.8 The Log
	5.1.9 Progress Bar

	5.2 The Audio & Lyrics Alignment Window
	5.2.1 The Tracks
	5.2.2 The Cursor
	5.2.3 Properties
	5.2.4 The Player
	5.2.5 Algorithms
	5.2.6 The Lyrics

	6 Evaluation
	6.1 Experiment 1 - Using Normal Merge Mode
	6.2 Experiment 2 - Using Best Merge Mode
	6.3 Experiment 1 vs. Experiment 2
	6.4 Qualitative Evaluation

	7 Conclusion
	7.1 Results
	7.2 Limits of my Implementation
	7.3 Possible Improvements

	8 Bibliography

