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Harmonic Analysis of Musical Audio using Deep
Neural Networks

Abstract

In this thesis, I consider the automatic extraction of harmonic information
from musical audio. Obtaining such information automatically is relevant not
only for theoretical analyses, but also for commercial applications such as music
tutoring programs or lead sheet generators. I focus on two aspects of harmony—
chords and the global key—and tackle the problem of extracting them using
deep neural networks.

My work on chord recognition constitutes the main part of this thesis. To
recognise chords in the audio, I first develop data-driven feature extraction meth-
ods (or, acoustic models) that outperform hand-engineered ones. I then focus
on modelling chord sequences, and show that doing so on a frame-by-frame
basis (as common in existing chord recognition systems) prevents learning mu-
sical relationships between chords—regardless of the complexity or power of a
sequence model. I also show that such models instead need to operate on higher-
level chord symbol sequences in order to be useful. I continue by systematically
exploring such chord sequence models based on recurrent neural networks and
show their superiority to finite-context models. Finally, I devise a probabilistic
model that integrates these chord sequence models with acoustic models using
various models of chord duration, and evaluate how the performance of each
model influences the final chord recognition results.

The second part of this thesis concerns key classification. Here, I develop a
convolutional neural network based on traditional key classification pipelines to
create a key classifier that performs better than existing, hand-designed methods.
I then evaluate how well the model generalises over datasets of different musical
genres (a problem existing systems have not solved), and propose adaptations in
training and network structure that enable learning a genre-agnostic model that
outperforms genre-specific models on many available datasets.
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Harmonische Analyse von Audioaufnahmen mit Hilfe
tiefer neuronaler Netze

Kurzfassung

Diese Arbeit befasst sich mit der automatischen Extraktion harmonischer
Information aus Audioaufnahmen von Musik. Automatische Methoden zur
Extraktion solcher Information sind nicht nur für die theoretische Musikanalyse
relevant. Auch kommerzielle Anwendungen wie Musiklernprogramme oder
Generatoren von Leadsheets sind ohne solcher Methoden nicht denkbar. In der
Arbeit werden zwei Aspekte von Harmonie betrachtet – Akkorde und globale
Tonart –, welche mit mit Hilfe tiefer neuronaler Netze extrahiert werden.

Akkorderkennung bildet den Hauptbestandteil dieser Dissertation. Um
Akkorde in Audioaufnahmen zu erkennen, werden zuerst datengetriebene
Merkmalsextraktoren (sogenannte akustische Modelle) entwickelt. Danach rückt
die Modellierung von Akkordsequenzen in den Fokus. Hierbei zeigt die Arbeit,
dass die Modellierung auf Basis von kurzen Zeitschritten in der Zeitdomäne
(wie in bestehenden Akkorderkennungssystemen üblich) das Erkennen von
musikalischen Zusammenhängen verhindert. Des Weiteren wird gezeigt, dass
solche Modelle direkt auf Akkordebene arbeiten müssen, um sinnvoll zu funk-
tionieren. In weiterer Folge werden Akkordsequenzmodelle, die auf rekurrenten
neuronalen Netzen basieren, systematisch evaluiert, und ihre Überlegenheit
gegenüber Modellen mit endlichem Kontext gezeigt. Abschließend präsentiert
die Arbeit ein probabilistisches Modell, welches die erwähnten Akkordsequenz-
modelle, mit Hilfe verschiedener Modelle der Akkorddauer, mit akustischen
Modellen verbindet. Hierbei wird insbesondere betrachtet, wie sich die Qualität
der einzelnen Modelle auf das Endergebnis auswirkt.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Klassifizierung der Ton-
art. Hierfür wird, basierend auf klassischen Methoden der Tonartklassifizierung,
ein faltendes neuronales Netz entwickelt, welches Tonarten besser klassifizie-
ren kann als bestehende Methoden. In weiterer Folge wird evaluiert, wie gut
dieses Modell auf andere Musikrichtungen generalisiert (ein Problem, an dem
bestehende Methoden scheitern), und Änderungen der Netzwerkstruktur und
der Lernprozedur präsentiert, die das Erlernen eines genre-unabhängigen Mo-
delles ermöglichen. Dieses Modell erreicht schließlich bessere Ergebnisse als auf
bestimmte Musikrichtungen spezialisierte Modelle.

vii



Contents

1 Introduction 1
1.1 Chord Recognition . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Key Classification . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Chord Recognition 7

2 Chord Recognition: An Overview 9
2.1 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 An Interpretable Harmonic Feature: The Deep Chroma Ex-
tractor 13
3.1 Chromagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 22

4 A Fully Convolutional Acoustic Model 27
4.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Chord Sequence Decoding . . . . . . . . . . . . . . . . . . . 31
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Acoustic Model Analysis . . . . . . . . . . . . . . . . . . . . 33
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 On the Futility of Frame-Level Language Modelling 37
5.1 Experiment 1: Chord Sequence Modelling . . . . . . . . . . . . 38
5.2 Experiment 2: Frame-Level Chord Recognition . . . . . . . . . 40
5.3 Experiment 3: Modelling Chord-level Label Sequences . . . . . 42
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



6 A Large-Scale Study of Chord-Level Language Models 45
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 𝑛-gram Language Models . . . . . . . . . . . . . . . . . . . . 48
6.4 Recurrent Neural Language Models . . . . . . . . . . . . . . . 48
6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 51
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Integrating Language Models with Acoustic Models 55
7.1 A Probabilistic Chord Recognition Model . . . . . . . . . . . 55
7.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Harmonic Language and Duration Modelling with Recur-
rent Neural Networks 67
8.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

II Key Classification 79

9 Key Classification: An Overview 81
9.1 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Musical Key Classification using a Convolutional Neural
Network 83
10.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 91

11 Genre-Agnostic Key Classification 93
11.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

12 Conclusion 105

Bibliography 109

ix



List of Figures

1.1 Overview of a chord recognition system . . . . . . . . . . . . . 3

3.1 Overview of the Deep Chroma extraction model . . . . . . . . 17
3.2 Validation results for various audio context sizes . . . . . . . . 19
3.3 Saliency map example . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Average saliency of A:min7 and F:min chords . . . . . . . . . . 22
3.5 Positive and negative saliencies averaged over frequency . . . . . 23
3.6 Average saliency over time . . . . . . . . . . . . . . . . . . . . 24
3.7 Chromagrams extracted from the song “Yesterday” by the Beatles 25

4.1 Correlation between weight vectors of chord classes . . . . . . . 34
4.2 Connection weights of selected feature maps to chord classes . . 35

5.1 Log-probabilities of chords of The Beatles’ “A Hard Day’s Night” 43

6.1 Average log-probability of all evaluated𝑁 -gram models. . . . . 49
6.2 A simple RNN-based language model . . . . . . . . . . . . . . 50
6.3 Results of the best model for each model class . . . . . . . . . . 52
6.4 Sequence results for each model class . . . . . . . . . . . . . . 53

7.1 Generative chord sequence model . . . . . . . . . . . . . . . . 56
7.2 Chord-time lattice . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Markov chain duration model . . . . . . . . . . . . . . . . . . 59
7.4 Histogram of chord durations . . . . . . . . . . . . . . . . . . 60
7.5 Exemplary Hierarchical HMM and its flattened version . . . . . 61
7.6 Effects of smoothing parameters on results . . . . . . . . . . . 64
7.7 Interaction of smoothing parameters with the language model . 66

8.1 RNN for next step prediction . . . . . . . . . . . . . . . . . . 68
8.2 Learned chord embedding . . . . . . . . . . . . . . . . . . . . 72
8.3 Probability of chord changes . . . . . . . . . . . . . . . . . . 74
8.4 Effect of language and duration models on the results . . . . . . 76

10.1 Neural Network for musical key classification . . . . . . . . . . 85

11.1 Average validation scores . . . . . . . . . . . . . . . . . . . . 98
11.2 Average test scores by dataset . . . . . . . . . . . . . . . . . . 100
11.3 Distribution of excerpt length depending on classification results 102

x



List of Tables

3.1 Cross-validation results of the compared methods . . . . . . . . 20

4.1 Proposed CNN architecture . . . . . . . . . . . . . . . . . . . 30
4.2 Weighted Chord Symbol Recall achieved by different algorithms 32

5.1 Average log-probabilities of chord changes . . . . . . . . . . . 40
5.2 Weighted Chord Symbol Recall for different temporal models . 41

6.1 Chord language model datasets . . . . . . . . . . . . . . . . . 46
6.2 RNN hyper-parameter space . . . . . . . . . . . . . . . . . . 51
6.3 Results on the validation and test sets . . . . . . . . . . . . . . 52

7.1 WCSR for the compound dataset . . . . . . . . . . . . . . . . 63

8.1 Language model results . . . . . . . . . . . . . . . . . . . . . 71
8.2 Duration model results . . . . . . . . . . . . . . . . . . . . . 73
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

10.1 Key classification results . . . . . . . . . . . . . . . . . . . . . 89

11.1 Neural network architectures . . . . . . . . . . . . . . . . . . 95
11.2 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . 101

xi





Quid ergo est bonum? Rerum scientia. Quid malum est? Rerum imperitia.
—Seneca





1
Introduction

This thesis is concerned with the automatic extraction of harmonic informa-
tion from musical audio signals. Harmonic information refers to symbols in
Western music theory that designate combinations of pitch intervals between
multiple notes. Here, I will distinguish two levels of abstraction: chords and key.
Chords are local harmonic descriptors, and can be understood as the interplay
of multiple note pitches. TheKey of a musical piece (or a segment thereof) is
a higher-level descriptor of its harmonic centre. It thus gives meaning to the
harmonic progression of chords in a piece.

Extracting harmonic information from musical audio is key to the compu-
tational understanding of music. It describes when tension is built, and when
it is released; it structures musical pieces into meaningful parts; it provides the
back-drop for the content that is ostensibly important to the listener, such as
melody and vocals. Thus, if we do not consider the harmonic content of a piece,
our (or, the computer’s) understanding of it is only superficial.

Computational harmonic analysis facilitates many practical applications. For
producers of electronic music, it can find musical samples that fit well harmon-
ically to their tracks. For musicians, it can suggest scales for improvising over a
given chord progression, it can help to automatically create lead sheets for songs
they want to play1, and it can assist students in mastering their instrument2. Fur-
thermore, it can serve as a building block in other tasks such as music similarity
estimation or cover song identification. While keeping the practical relevance
in mind, this thesis focuses on the technical task itself: building computational
models that extract harmonic information (chords and key) from audio signals of
music.

1https://chordify.net
2https://yousician.com
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I assume the reader to be familiar with the basics of audio signal processing
and machine learning, in particular artificial neural networks. Schlüter (2017)
gives a much better introduction to these topics than I could provide. I recom-
mend reading it, be it only as a refresher for someone who already knows the
fundamentals.

This thesis consists of two parts. The first part, which forms the main body
of the text, addresses the subject of Chord Recognition. The second part is
concerned withKey Classification. I will briefly introduce both in the following;
for a more thorough description, see Chapters 2 and 9.

1.1 Chord Recognition

The goal of chord recognition is to segment the audio and label these segments
with a chord symbol. This symbol should correspond to the harmonic interpreta-
tion of an expert listener. This short description bears the imprint of subjectivity:
harmonic interpretations often differ among musical experts (de Clercq and
Temperley, 2011; Humphrey and Bello, 2015), which complicates the building and
evaluation of chord recognition models. The reason for this is that only a subset
of all pitches that are perceived to sound simultaneously are deemed relevant
for the local harmony. Which subset this is, and which pitches are considered to
sound simultaneously, is subject to interpretation.

The task is often called Chord Estimation in the literature. However, I deem
the term Recognition to be a better fit: the target is categorical, uncertainty about
the prediction is usually ignored, and the process of transforming the input
into the target resembles pattern recognition systems in general, and speech
recognition in particular. Indeed, chord recognition systems more often than not
resemble adapted models from speech recognition. The main distinction is that
in chord recognition, start and end times of the labelled segments are vital, while
in speech recognition usually only the sequence of recognised words matters.

Chord recognition systems follow the scheme shown in Figure 1.1. They
feature an acoustic model that extracts features from a context of audio, and
often also predicts a chord label for the centre frame of this context. These
predictions are then processed by a temporal model, which incorporates more
temporal context and outputs homogeneous labelled chord segments. For
example, many chord recognition systems are based on chroma features modelled
by Gaussian mixtures as acoustic model, with a hidden Markov model as the
temporal model (Cho et al., 2010).

2



Figure 1.1: Overview of a chord recognition system. The acoustic model extracts features and
predicts chord labels for an audio context given by a sliding window. The temporal model casts
these predictions into chord segments, taking into account the temporal dimension.

1.2 Key Classification

The goal of key classification is to find the global key of a piece of musical audio.
Again, this global key should be an aggregated harmonic representation over the
whole piece, as interpreted by an expert listener. As in chord recognition, this is
a subjective undertaking; however, to my knowledge, there are no studies that
examine how this subjectivity affects computational key classification models.

In the literature, this task is commonly referred to asKey Estimation. How-
ever, considering the same arguments that favour the term Chord Recognition,
I deem Classification to more precisely describe the task: given a low-level input
representation, we assign a categorical label to the entirety of the input. This is,
per definitionem, a classification scenario.

In this work, I focus on finding the global key of a piece. This is adequate
for some musical styles (e.g. electronic dance music), while over-simplifying for
others (e.g. classical music, where key modulations are common). Although the
models I develop in this thesis can serve as a basis for systems that are able to
track key modulations, I will also show in Chapter 11 that doing so will reach a
glass ceiling, and argue that models considering local context will be necessary.

3



1.3 Contributions
This thesis improves the automatic extraction of harmonic information from
musical audio in multiple ways. In chord recognition, its main contribution is in
analysing the interplay between acoustic models (frame-wise feature extractors or
classifiers) and temporal models (sequence models that cast frame-wise predic-
tions into chord sequences). Its overall contributions to chord recognition can be
summarised as follows:

i) The thesis presents acoustic models based on deep neural networks that
compute interpretable features: Chapter 3 introduces a neural network
that extracts chroma features, and is better able to suppress harmonically
irrelevant spectral content than hand-crafted approaches; Chapter 4
presents a model for chord recognition that learns musically interpretable
mid-level features.

ii) It demonstrates why most temporal models used for chord recognition
are limited to simple smoothing of the predictions of the acoustic model,
regardless of their capacity. It shows that the conceptual mistake that leads
to this problem is that existing temporal models operate on the temporal
level of audio frames, and that in order to overcome this problem, we
need to learn harmonic language models on the level of chord symbols
(Chapter 5).

iii) The thesis systematically evaluates language models of harmony based on
recurrent neural networks, and shows that the power of such models lies
in the dynamic adaptation to the song currently processed, which simpler
finite-context models are unable to do (Chapter 6).

iv) It introduces a probabilistic model for chord recognition that combines
acoustic models with meaningful language models of harmony and
models of harmonic rhythm, and shows that considering both improves
results (Chapters 7 and 8).

In key classification, the main contribution of this thesis is a machine learning
model that overcomes the genre-specificity of existing approaches. In summary:

i) The thesis presents a machine-learning-based key classification system
which tries to mimic traditional approaches, but is end-to-end differen-
tiable, and thus can be trained purely from data (Chapter 10). This model
beats state-of-the-art methods, but shares their downside: its performance
degrades the more musical genres it is trained on.
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ii) The thesis then shows that using a more general classification model
based on modern neural network architectures, in conjunction with an
adapted learning scheme that increases data variability, results in a model
that does not suffer from this generalisation problem. Indeed, a single,
general model presented in Chapter 11 out-performs other methods that
are specialised to specific datasets.

1.4 Publications
The contributions outlined above stem from the following peer-reviewed
publications:

S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and G. Widmer. Madmom:
A new Python Audio and Music Signal Processing Library. In Proceedings
of the 24th ACM International Conference on Multimedia (ACMMM),
Amsterdam, Netherlands, Oct. 2016.

F. Korzeniowski and G. Widmer. Feature Learning for Chord Recognition:
The Deep Chroma Extractor. In Proceedings of the 17th International Society
for Music Information Retrieval Conference (ISMIR), New York, USA, Aug.
2016a.

F. Korzeniowski and G. Widmer. A Fully Convolutional Deep Auditory Model
for Musical Chord Recognition. In 2016 IEEE 26th International Workshop
on Machine Learning for Signal Processing (MLSP), Salerno, Italy, Sept.
2016b.

F. Korzeniowski and G. Widmer. End-to-End Musical Key Estimation Using
a Convolutional Neural Network. In 2017 25th European Signal Processing
Conference (EUSIPCO), Kos, Greece, Aug. 2017a.

F. Korzeniowski and G. Widmer. On the Futility of Learning Complex Frame-
Level Language Models for Chord Recognition. In Proceedings of the AES
International Conference on Semantic Audio, Erlangen, Germany, June 2017b.

F. Korzeniowski and G. Widmer. Automatic Chord Recognition with Higher-
Order Harmonic Language Modelling. In 2018 26th European Signal Process-
ing Conference (EUSIPCO), Rome, Italy, Sept. 2018a.

F. Korzeniowski and G. Widmer. Genre-Agnostic Key Classification With
Convolutional Neural Networks. In Proceedings of the 19th International
Society for Music Information Retrieval Conference (ISMIR), Paris, France,
Sept. 2018b.
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F. Korzeniowski and G. Widmer. Improved Chord Recognition by Combining
Duration and Harmonic Language Models. In Proceedings of the 19th Inter-
national Society for Music Information Retrieval Conference (ISMIR), Paris,
France, Sept. 2018c.

F. Korzeniowski, D. R. W. Sears, and G. Widmer. A Large-Scale Study of Lan-
guage Models for Chord Prediction. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, Apr.
2018.
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Chord Recognition
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2
Chord Recognition: An Overview

2.1 The State of the Art

Chord Recognition methods recognise and transcribe musical chords from audio
recordings, a labour-intensive task that requires extensive musical training if
done manually. Since its inception by Fujishima (1999), chord recognition meets
great interest (see McVicar et al. (2014) for a review), because harmonic content
is a highly descriptive feature of (Western) music that forms the basis of many
kinds of applications: theoretical, such as computational harmonic analysis of
music; practical, such as automatic lead-sheet creation for musicians1 or music
tutoring systems2; and finally, as basis for higher-level tasks such as cover song
identification or key classification.

What is a chord? A chord can be defined as multiple notes perceived simul-
taneously in harmony. This does not require the notes to be played simultane-
ously; a melody or a chord arpeggiation can imply the perception of a chord,
even if intertwined with out-of-chord notes. Through this perceptual process,
the identification of a chord is subject to interpretation and debate even among
trained experts. This inherent subjectivity is evidenced by diverse ground-truth
annotations for the same songs and discussions about proper evaluation met-
rics (de Clercq and Temperley, 2011; Humphrey and Bello, 2015).

For the sake of this thesis—which is in computer science, and not music
theory or philosophy—I will ignore the ramifications of this vague definition.
Instead, I will adopt a simplifying (but easier to formalise) stance: I assume
that the interplay between notes can be mapped to a single chord symbol, that

1https://chordify.net/
2https://yousician.com
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the correct chord symbol was identified by an expert, and that it is available as
ground truth. This makes the task one of segmentation and labelling, similar to
speech recognition. The key difference is that we are interested in both the labels
and the timestamps of the segments, whereas speech recognition only the label
sequence matters.

Computational systems that extract high-level information from signals
face two key problems: (i) how to extract meaningful information from noisy
sources, and (ii) how to process this information into sensible output. For chord
recognition, this translates to acoustic modelling—how to predict a chord label
for each position or frame in the audio—and temporal modelling—how to cast
this information into meaningful segments of chords.

Acoustic models extract frame-wise chord classifications, typically in the
form of a distribution over chord labels. In traditional chord recognition systems,
these models were hand-crafted and split into feature extraction and pattern
matching. Feature extraction transforms audio signals into representations that
emphasise harmonic content; usually, this is some form of pitch-class profiles,
e.g. Mauch and Dixon (2010b); Müller et al. (2009); Ueda et al. (2010). Pattern
matching assigns chord labels to such representations, but works on single frames
or local context only; here, template matching (Fujishima, 1999) and Gaussian
mixtures (Cho, 2014) are popular choices.

The line between feature extraction and pattern matching blurs with the
advent of end-to-end audio processing methods (specifically, deep neural net-
works). Some approaches use neural networks solely for feature extraction: linear
regression (Chen et al., 2012), feed-forward neural networks (Korzeniowski and
Widmer, 2016a) (Chapter 3) and convolutional neural networks (Humphrey
et al., 2012) learn to transform a general time-frequency representation into
a manually defined one that is useful for chord recognition, like chroma vec-
tors or a Tonnetz representation. However, neural networks can also learn to
extract discriminative, hierarchical features (Bengio et al., 2013) jointly with a
simple “pattern matcher” (logistic regression) in their final layer (Humphrey
and Bello, 2012; McFee and Bello, 2017), and Korzeniowski and Widmer (2016b)
(Chapter 4).

Temporal models process the predictions of an acoustic model and cast
them into chord segments. They provide coherence to the possibly volatile
predictions of the acoustic model. They also facilitate the introduction of
higher-level musical knowledge—we know from music theory that certain
chord progressions are more likely than others—to potentially improve the
obtained chord segmentation. A number of works (e.g. (Mauch and Dixon,
2010b; Ni et al., 2012a; Pauwels and Martens, 2014)) implemented hand-designed
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temporal models for chord recognition. These models are usually first-order
Dynamic Bayesian Networks that operate at the beat or time-frame level. They
are designed to incorporate musical knowledge, with parameters set by hand or
trained from data.

A different approach is to learn temporal models fully from data, without any
imposed structure. Here, natural choices include hidden Markov models (Cho
et al., 2010; Sheh and Ellis, 2003), conditional random fields (Burgoyne et al.,
2007; Korzeniowski and Widmer, 2016b) (see also Chapter 4), or recurrent
neural networks (Boulanger-Lewandowski et al., 2013; Sigtia et al., 2015), where
the vast majority of chord recognition systems relies on hidden Markov models.

Research has focused on improving frame-wise predictions of acoustic mod-
els (Humphrey et al., 2012; Korzeniowski and Widmer, 2016a; McFee and Bello,
2017; Ueda et al., 2010), while only few works have explored improvements in
temporal models (Boulanger-Lewandowski et al., 2013; Mauch and Dixon, 2010a;
Pauwels and Martens, 2014). This trend was reinforced through the insight
that the capabilities of existing temporal models are limited: as shown by Chen
et al. (2012) and Cho and Bello (2014), temporal models enforce continuity of
individual chords rather than provide information about chord transitions—i.e.,
they mainly model the chord’s duration. Chen et al. (2012) also observed that
in popular music “chord progressions are less predictable than it seems”, and
thus knowing chord history does not greatly narrow the possibilities for the next
chord.

2.2 Contributions

Steady advances notwithstanding, chord recognition results have seemed to
stagnate in recent years. The study in (Humphrey and Bello, 2015) offers possible
explanations, including invalid harmonic assumptions, limitations of evaluation
measures, conflicting problem definitions, and the subjectivity inherent to this
task. All of these criticisms are certainly valid. However, at present there is still a
large performance gap between human annotators (measured via inter-annotator
agreement) and automatic systems (Humphrey and Bello, 2015), although they
are subjected to the same constraints. I hope that the contributions that form
this thesis serve as stepping stones to overcome this apparent glass ceiling.

I invite you, the reader, to join me in exploring various aspects of chord recog-
nition. In the first chapters, we will consider acoustic modelling. In Chapter 3,
we will develop a strong and interpretable harmonic feature extractor based on
neural networks. The model will compute chroma vectors that contain only
harmonically relevant information, while suppressing spectral information that
is irrelevant to harmony. This improves upon hand-crafted chroma extraction
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methods that focus on specific nuisance factors, but cannot capture them all. In
Chapter 4, we will apply modern deep learning techniques to create an acoustic
model for chord recognition, and combine it with conditional random fields for
sequence decoding. We will then show that the automatically learned mid-level
features have a musical interpretation. This concludes my work on acoustic
models for chord recognition.

We will then focus on temporal models, and investigate their alleged inability
to model chord transitions. We will find an explanation in the temporal level
they have been applied on—audio frames, instead of chord sequences—, and
describe the experiments that lead to this explanation in Chapter 5. We will then
conduct a systematic study of harmonic language models based on recurrent
neural networks in Chapter 6, and demonstrate their superiority compared to
statistical finite-context models. We will also see that RNN-based harmonic
language models model chord sequences differently: they automatically adapt to
the processed pieces by remembering chord sub-sequences they have observed in
the past.

Finally, in Chapter 7, we will develop a probabilistic model that allows the
integration of meaningful harmonic language models with the frame-wise
predictions of acoustic models. This model binds together the two branches of
research we have followed in the preceding chapters (acoustic modelling and
harmonic language modelling) using a third component: chord duration models.
While we employ only simple language and duration models in the beginning,
in Chapter 8, we will replace them using recurrent neural networks, and analyse
their properties and effect on the final chord recognition results.
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3
An Interpretable Harmonic Feature:

The Deep Chroma Extractor

Let us first take a step towards better features for chord recognition by intro-
ducing a data-driven approach to extract chromagrams that specifically encode
content relevant to harmony. The method learns to discard irrelevant infor-
mation like percussive noise, overtones or timbral variations automatically
from data. It is thus able to compensate a broader range of interferences than
hand-crafted approaches.

This work has been previously released in Korzeniowski and Widmer (2016a).

3.1 Chromagrams
The most popular feature used for chord recognition is the Chromagram. A
chromagram comprises a time-series of chroma vectors, which represent har-
monic content at a specific time in the audio as u� ∈ �12. Each 𝑐u� stands for a
pitch class, and its value indicates the current salience of the corresponding pitch
class. Chroma vectors are computed by applying a filter bank to a time-frequency
representation of the audio. This representation results from either a short-time
Fourier transform (STFT) or a constant-q transform (CQT), the latter being
more popular due to a finer frequency resolution in the lower frequency area.

Chromagrams are concise descriptors of harmony because they encode tone
quality and neglect tone height. In theory, this limits their representational
power: without octave information, one cannot distinguish e.g. chords that
comprise the same pitch classes, but have a different bass note (like G vs. G/5,
or A:sus2 vs. E:sus4). In practice, we can show that given chromagrams derived
from ground truth annotations, using logistic regression we can recognise ≈ 97%
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of chords (reduced to major/minor) in the Beatles dataset. This result encourages
us to create chroma features that contain harmony information, but are robust
to spectral content that is harmonically irrelevant.

Chroma features are noisy in their basic formulation because they are affected
by various interferences: musical instruments produce overtones in addition to
the fundamental frequency; percussive instruments pollute the spectrogram with
broadband frequency activations (e.g. snare drums) and/or pitch-like sounds
(tom-toms, bass drums); different combinations of instruments (and different,
possibly genre-dependent mixing techniques) create different timbres and thus
increase variance (Cho and Bello, 2014; McVicar et al., 2014).

Researchers have developed and used an array of methods that mitigate
these problems and extract cleaner chromagrams: Harmonic-percussive source
separation can filter out broadband frequency responses of percussive instru-
ments (Ono et al., 2008; Ueda et al., 2010), various methods tackle interfer-
ences caused by overtones (Cho and Bello, 2014; Mauch and Dixon, 2010a),
while (Müller et al., 2009; Ueda et al., 2010) attempt to extract chromas robust
to timbre. See Cho and Bello (2014) for a recent overview and evaluation of
different methods for chroma extraction. Although these approaches improve
the quality of extracted chromas, it is very difficult to hand-craft methods for all
conceivable disturbances, even if we could name and quantify them.

The approaches mentioned above share a common limitation: they mostly
operate on single feature frames. Single frames are often not enough to decide
which frequencies salient in the spectrum are relevant to harmony and which
are noise. This is usually countered by contextual aggregation such as moving
mean/median filters or beat synchronisation, which are supposed to smooth out
noisy frames. Since they operate only after computing the chromas, they address
the symptoms (noisy frames) but do not tackle the cause (spectral content
irrelevant to harmony). Also, Cho and Bello (2014) found that they blur chord
boundaries and details in a signal and can impair results when combined with
more complex chord models and post-filtering methods.

It is close to impossible to find the rules or formulas that define harmonic
relevance of spectral content manually. We thus resort to the data-driven ap-
proach of deep learning. Deep learning was found to extract strong, hierarchical,
discriminative features (Bengio et al., 2013) in many domains. Deep learning
based systems established new state-of-the-art results in computer vision, speech
recognition, and MIR tasks such as beat detection (Böck et al., 2014), tempo
estimation (Böck et al., 2015) or structural segmentation (Ullrich et al., 2014).

We want to exploit the power of deep neural networks to compute harmon-
ically relevant chroma features. The proposed chroma extractor learns to filter
harmonically irrelevant spectral content from a context of audio frames. This way,
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we circumvent the necessity to temporally smooth the features by allowing the
chroma extractor to use context information directly. Our method computes
cleaner chromagrams while retaining their advantages of low dimensionality and
intuitive interpretation.

3.2 Related Work

A number of works used neural networks in the context of chord recognition.
Humphrey and Bello (2012) applied Convolutional Neural Networks to clas-
sify major and minor chords end-to-end. Boulanger-Lewandowski et al. (2013)
and Sigtia et al. (2015) explored Recurrent Neural Networks as a post-filtering
method, where the former used a deep belief net, the latter a deep neural net-
work as underlying feature extractor. All these approaches train their models to
directly predict major and minor chords, and following (Bengio et al., 2013), the
hidden layers of these models learn a hierarchical, discriminative feature represen-
tation. However, since the models are trained to distinguish major/minor chords
only, they consider other chord types (such as seventh, augmented, or suspended)
mapped to major/minor as intra-class variation to be robust against, which will
be reflected by the extracted internal features. These features might thus not be
useful to recognise other chords.

We circumvent this by using chroma templates derived from chords as dis-
tributed (albeit incomplete) representation of chords. Instead of directly classify-
ing a chord label, the network is required to compute the chroma representation
of a chord given the corresponding spectrogram. We expect the network to
learn which salience in the spectrogram is responsible for a certain pitch class to
be harmonically important, and compute higher values for the corresponding
elements of the output chroma vector.

Approaches to directly learn a mapping from spectrogram to chroma include
those by İzmirli and Dannenberg (2010) and Chen et al. (2012). However, both
learn only a linear transformation of the time-frequency representation, which
limits the mapping’s expressivity. Additionally, both base their mapping on a
single frame, which comes with the disadvantages we outlined in the previous
section.

In an alternative approach, Humphrey et al. (2012) apply deep learning
methods to produce Tonnetz features from a spectrogram. Using other features
than the chromagram is a promising direction, and was also explored by Chen
et al. (2012) for bass notes. Most chord recognition systems however still use
chromas, and more research is necessary to explore to which degree and under
which circumstances Tonnetz features are favourable.
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3.3 Method

To construct a robust chroma feature extractor, we use a deep neural network
(DNN). DNNs consist of 𝐿 hidden layers ℎu� of𝑈u� computing units. These units
compute values based on the results of the previous layer, such that

ℎu�(u�) = 𝜎u� (u�u� ⋅ ℎu�−1(u�) + u�u�) , (3.1)

where u� is the input to the net,u�u� ∈ �u�u�×u�u�−1 and 𝑏u� ∈ �u�u� are the weights
and the bias of the 𝑙th layer respectively, and 𝜎u� is a (usually non-linear) activation
function applied point-wise.

We define two additional special layers: an input layer that is feeding values to
ℎ1 as ℎ0(u�) = u�, with𝑈0 being the input’s dimensionality; and an output layer
ℎu�+1 that takes the same form as shown in Eq. 3.1, but has a specific semantic
purpose: it represents the output of the network, and thus its dimensionality
𝑈u�+1 and activation function 𝜎u�+1 have to be set accordingly.1

The weights and biases constitute the model’s parameters. They are trained in
a supervised manner by gradient methods and error back-propagation in order
to minimise the loss of the network’s output. The loss function depends on the
domain, but is generally some measure of difference between the current output
and the desired output (e.g. mean squared error, categorical cross-entropy, etc.)

In the following, we describe how we compute the input to the DNN, the
concrete DNN architecture and how it was trained.

3.3.1 Input Processing
We compute the time-frequency representation of the signal based on the
magnitude of its STFT u�. The STFT gives significantly worse results than the
constant-q transform if used as basis for traditional chroma extractors, but
we found in preliminary experiments that our model is not sensitive to this
phenomenon. We use a frame size of 8 192 with a hop size of 4 410 at a sample
rate of 44 100Hz. Then, we apply a triangular filter bank u�△log to convert the
linear frequency scale of the magnitude spectrogram to a logarithmic one,
and apply an element-wise logarithmic compression. We call the result the
logarithmic quarter-tone spectrogram

u� = log (1 + u�△log ⋅ |u�|) . (3.2)

1For example, for a 3-class classification problem one would use 3 units in the output
layer and a softmax activation function such that the network’s output can be interpreted as
probability distribution of classes given the data.
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Figure 3.1: Model overview. At each time 15 consecutive frames of the input quarter-tone
spectrogram u�log are fed to a series of 3 dense layers of 512 rectifier units, and finally to a sigmoid
output layer of 12 units (one per pitch class), which represents the chroma vector for the centre
input frame.

The quarter-tone spectrogram contains only bins corresponding to frequen-
cies between 30Hz and 5 500Hz and has 24 bins per octave. This results in a
dimensionality of 178 bins. To be concise, we will refer tou� as “spectrogram” in
rest of this chapter.

Our model uses a context window around a target frame as input. Through
systematic experiments on the validation folds (see Sec.3.4.1) we found a context
window of ±0.70 s to work best. Since we operate at 10 fps, we feed our network
at each time 15 consecutive frames, which we will denote as super-frame u�u� , where
𝑡 is the index of the central frame.

3.3.2 Model
We define the model architecture and set the model’s hyper-parameters based on
validation performance in several preliminary experiments. Although a more
systematic approach might reveal better configurations, we found that results do
not vary by much once we reach a certain model complexity.

Our model is a deep neural network with 3 hidden layers of 512 rectifier
units (Glorot et al., 2011) each. Thus, 𝜎u�(u�) = max(0, u�) for 1 ≤ 𝑙 ≤ 𝐿. The
output layer, representing the chroma vector, consists of 12 units (one unit per
pitch class) with a sigmoid activation function 𝜎u�+1(u�) = 1/1+exp(−u�). The input
layer represents the input super-frame and thus has a dimensionality of 2 670.
Fig. 3.1 shows an overview of our model.

3.3.3 Training
To train the network, we propagate back through the network the gradient of
the lossℒ with respect to the network parameters. Our loss is the binary cross-
entropy between each pitch class in the predicted chroma vector û�u� = ℎu�+1(u�u�)
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and the target chroma vector u�u� , which is derived from the ground truth chord
label at time 𝑡. For a single data instance,

ℒ (û�u�, u�u�) =
1
12

12
∑
u�=1
−𝑦u�,u� log(�̂�u�,u�) − (1 − 𝑦u�,u�) log(1 − �̂�u�,u�). (3.3)

We learn the parameters with mini-batch training (batch size 512) using the
ADAM update rule (Kingma and Ba, 2015). We also tried simple stochastic gradi-
ent descent with Nesterov momentum and a number of manual learn rate sched-
ules, but could not achieve better results (to the contrary, using ADAM training
usually converged earlier). To prevent over-fitting, we apply dropout (Srivastava
et al., 2014) with probability 0.5 after each hidden layer and early stopping if
validation accuracy does not increase after 20 epochs.

3.4 Experiments
To evaluate the chroma features our method produces, we set up a simple chord
recognition task. We ignore any post-filtering methods and use a simple, linear
classifier (logistic regression) to match features to chords. This way we want to
isolate the effect of the feature on recognition accuracy. As it is common, we
restrict ourselves to distinct only major/minor chords, resulting in 24 chord
classes and a ‘no chord’ class.

Our compound evaluation dataset comprises the Beatles (Harte, 2010), Queen
and Zweieck (Mauch et al., 2009) datasets (which form the “Isophonics” dataset
used in the MIREX2 competition), the RWC pop dataset3 (Goto et al., 2002),
and the Robbie Williams dataset (Di Giorgi et al., 2013). The datasets total 383
songs or approx. 21 hours and 39 minutes of music.

We perform 8-fold cross validation with random splits. For the Beatles dataset,
we ensure that each fold has the same album distribution. For each test fold, we
use six of the remaining folds for training and one for validation.

As evaluation measure, we compute the Weighted Chord Symbol Recall
(WCSR), often called Weighted Average Overlap Ratio (WAOR), of major and
minor chords using the mir_eval library (Raffel et al., 2014).

3.4.1 Compared Features
We evaluate our extracted featuresu�u� against three baselines: a standard chroma-
gramu� computed from a constant-q transform, a chromagram with frequency

2http://www.music-ir.org/mirex
3Chord annotations available at https://github.com/tmc323/Chord-Annotations
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Figure 3.2: Validation WCSR for Major/minor chord recognition of different methods given
different audio context sizes. Whiskers represent 0.95 confidence intervals.

weighting and logarithmic compression of the underlying constant-q transform
u�u�log, and the quarter-tone spectrogramu�. The chromagrams are computed
using the librosa library. Their parametrisation follows closely the suggestions
in (Cho and Bello, 2014), whereu�u�log was found to be the best chroma feature for
chord recognition.

Each baseline can take advantage of context information. Instead of comput-
ing a running mean or median, we allow logistic regression to consider multiple
frames of each feature. This is a more general way to incorporate context, be-
cause running mean is a subset of the context aggregation functions possible in
our setup. Since training logistic regression is a convex problem, the result is at
least as good as if we used a running mean. Note that this applies only to the
baseline methods. For our DNN feature extractor, “context” means the amount
of context the DNN sees. Then, the logistic regression sees only one frame of the
feature the DNN computed.

We determined the optimal amount of context for each baseline experimen-
tally using the validation folds, as shown in Fig. 3.2. The best results achieved
were 79.0% with 1.5 s context foru�u�, 76.8 % with 1.1 s context foru�, 73.3 % with
3.1 s context foru�u�log, and 69.5 % with 2.7 s context foru�. We fix these context
lengths for testing.
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Btls Iso RWC RW Total

u� 71.0±0.1 69.5 ±0.1 67.4±0.2 71.1±0.1 69.2±0.1

u�u�log 76.0±0.1 74.2 ±0.1 70.3±0.3 74.4±0.2 73.0±0.1

u� 78.0±0.2 76.5 ±0.2 74.4±0.4 77.8±0.4 76.1±0.2

u�u� 80.2±0.1 79.3±0.1 77.3±0.1 80.1±0.1 78.8±0.1

Table 3.1: Cross-validated WCSR on the Maj/min task of compared methods on various datasets.
Best results are bold-faced (u� < 10−9). Small numbers indicate standard deviation over 10
experiments. “Btls” stands for the Beatles, “Iso” for Isophonics, and “RW” for the Robbie
Williams datasets. Note that the Isophonics dataset comprises the Beatles, Queen and Zweieck
datasets.

3.5 Results

Table 3.1 presents the results of our method compared to the baselines on sev-
eral datasets. The chroma featuresu� andu�u�log achieve results comparable to
those (Cho and Bello, 2014) reported on a slightly different compound dataset.
Our proposed feature extractoru�u� clearly performs best, with 𝑝 < 10−9 ac-
cording to a paired t-test. The results indicate that the chroma vectors extracted
by the proposed method are better suited for chord recognition than those
computed by the baselines.

To our surprise, the raw quarter-tone spectrogramu� performed better than
the chroma features. This indicates that computing chroma vectors in the tra-
ditional way mixes harmonically relevant features found in the time-frequency
representation with irrelevant ones, and the final classifier cannot disentangle
them. This raises the question of why chroma features are preferred to spectro-
grams in the first place. We speculate that the main reason is their much lower
dimensionality and thus ease of modelling (e.g. using Gaussian mixtures).

Artificial neural networks often give good results, but it is difficult to under-
stand what they learned, or on which basis they generate their output. In the
following, we will try to dissect the proposed model, understand its workings,
and see what it pays attention to. To this end, we compute saliency maps using
guided back-propagation (Springenberg et al., 2015), adapting code freely avail-
able4 for the Lasagne library (Dieleman et al., 2015). Leaving out the technical
details, a saliency map can be interpreted as an attention map of the same size
as the input. The higher the absolute saliency at a specific input dimension,
the stronger its influence on the output, where positive values indicate a direct
relationship, negative values an indirect one.

4https://github.com/Lasagne/Recipes/
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Figure 3.3: Input example (C major chord) with corresponding saliency map. The left image
shows the spectrogram frames fed into the network. The centre image shows the corresponding
saliency map, where red pixels represent positive, blue pixels negative values. The stronger the
saturation, the higher the absolute value. The right plot shows the saliency summed over the time
axis, and thus how each frequency bin influences the output. Note the strong positive influences
of frequency bins corresponding to c, e, and g notes that form a C major chord.

Fig. 3.3 shows a saliency map and its corresponding super-frame, representing
a C major chord. As expected, the saliency map shows that the most relevant
parts of the input are close to the target frame and in the mid frequencies. Here,
frequency bins corresponding to notes contained in a C major chord (c, e, and g)
showing positive saliency peeks, with the third, e, standing out as the strongest.
Conversely, its neighbouring semitone, f, exhibits strong negative saliency values.
Fig. 3.4 depicts average saliencies for two chords computed over the whole
Beatles corpus.

Fig. 3.5 shows the average saliency map over all super-frames of the Beatles
dataset summed over the frequency axis. It thus shows the magnitude with
which individual frames in the super-frame contribute to the output of the
neural network. We observe that most information is drawn from a ±0.30 s
window around the centre frame. This is in line with the results shown in
Fig. 3.2, where the proposed method already performed well with 0.70 s of audio
context.
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Figure 3.4: Average saliency map summed over the time axis for A:min7 and F:min chords
computed on the Beatles dataset. As expected, we observe mostly positive peaks for frequency
bins corresponding to notes present in the chords (a, c, e, g for A:min7; f, a, c for F:min).

Fig. 3.6 shows the average saliency map over all super-frames of the Beatles
dataset, and its sum over the time axis. We observe that frequency bins below
110Hz and above 3 136Hz (wide limits) are almost irrelevant, and that the net
focuses mostly on the frequency range between 196Hz and 1 319Hz (narrow
limits). In informal experiments, we could confirm that recognition accuracy
drops only marginally if we restrict the frequency range to the wide limits, but
significantly if we restrict it to the narrow limits. This means that the secondary
information captured by the additional frequency bins of the wide limits is also
crucial.

To allow for a visual comparison of the computed features, we depict different
chromagrams for the song “Yesterday” by the Beatles in Fig. 3.7. The images
show that the chroma vectors extracted by the proposed method are less noisy
and chord transitions are crisper compared to the baseline methods.

3.6 Conclusions and Future Work

In this chapter, we presented a data-driven approach to learning a neural-
network-based chroma extractor for chord recognition. The proposed extractor
computes cleaner chromagrams than state-of-the-art baseline methods, which we
showed quantitatively in a simple chord recognition experiment and examined
qualitatively by visually comparing extracted chromagrams.

We inspected the learned model using saliency maps and found that a fre-
quency range of 110Hz to 3 136Hz seems to suffice as input to chord recognition
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Figure 3.5: Average positive and negative saliencies of all input frames of the Beatles dataset,
summed over the frequency axis. Most of the important information is within ±0.30 s around
the centre frame, and past data seems to be more important than future data. Around the centre
frame, the network pays relatively more attention to what should bemissing than present in a
given chroma vector, and vice versa in areas further away from the centre. The differences are
statistically significant due to the large number of samples.

methods. Using saliency maps and preliminary experiments on validation folds
we also found that a context of 1.50 s is adequate for local harmony estimation.

There are plenty possibilities for future work to extend and/or improve our
method. To achieve better results, we could use DNN ensembles instead of a sin-
gle DNN. We could ensure that the network sees data for which its predictions
are wrong more often during training, or similarly, we could simulate a more
balanced dataset by showing the net super-frames of rare chords more often. To
further assess how useful the extracted features are for chord recognition, we
shall investigate how well they interact with post-filtering methods; since the
feature extractor is trained discriminatively, Conditional Random Fields (Lafferty
et al., 2001) would be a natural choice.

Finally, we believe that the proposed method extracts features that are useful
in any other MIR applications that use chroma features (e.g. structural segmenta-
tion, key estimation, cover song detection). To facilitate respective experiments,
we provide source code for our method as part of themadmom audio processing
framework (Böck et al., 2016). Information and source code to reproduce our
experiments can be found at https://fdlm.github.io/post/deepchroma/.
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Figure 3.6: Average saliency of all input frames of the Beatles dataset (bottom image), summed
over the time axis (top plot). We see that most relevant information can be collected in barely
3 octaves between G3 at 196Hz and E6 at 1 319Hz. Hardly any harmonic information resides
below 110Hz and above 3 136Hz. The plot is spiky at frequency bins that correspond to clean
semitones because most of the songs in the dataset seem to be tuned to a reference frequency of
440Hz. The network thus usually pays little attention to the frequency bins between semitones.
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Figure 3.7: Excerpts of chromagrams extracted from the song “Yesterday” by the Beatles. The
lower image shows chroma computed by theu�u�

log without smoothing. We see a good temporal
resolution, but also noise. The centre image shows the same chromas after a moving average
filter of 1.50 s. The filter reduced noise considerably, at the cost blurring chord transitions. The
upper plot shows the chromagram extracted by our proposed method. It displays precise pitch
activations and low noise, while keeping chord boundaries crisp. Pixel values are scaled such that
for each image, the lowest value in the respective chromagram is mapped to white, the highest to
black.
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4
A Fully Convolutional Acoustic

Model

In this chapter, we present an end-to-end chord recognition system that com-
bines a fully convolutional neural network (CNN) for feature extraction with
a conditional random field (CRF) for chord sequence decoding. Fully convo-
lutional neural networks replace the stack of dense layers traditionally used in
CNNs for classification with global average pooling (GAP) (Lin et al., 2014),
which reduces the number of trainable parameters and improves generalisation.
Similarly to (Humphrey and Bello, 2012), we train the CNN to directly predict
chord labels for each audio frame, but instead of using these predictions directly,
we use the hidden representation computed by the CNN as features for the
subsequent pattern matching and chord sequence decoding stage. We call the
feature-extracting part of the CNN acoustic model.

For pattern matching and chord sequence decoding, we connect a CRF
to the acoustic model. Combining neural networks with CRFs gives a fully
differentiable model that can be learned jointly, as shown in (Do and Arti, 2010;
Peng et al., 2009). For the task at hand, however, we found it advantageous to
train both parts separately, both in terms of convergence time and performance.

This work has been previously released in Korzeniowski and Widmer (2016b).

4.1 Feature Extraction

Feature extraction is a two-phase process. First, we convert the signal into a
time-frequency representation in the pre-processing stage. Then, we feed this
representation to a CNN and train it to classify chords. We take the activations
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of a hidden layer in the network as high-level feature representation, which we
then use to decode the final chord sequence.

4.1.1 Pre-processing
The first stage of our feature extraction pipeline transforms the input audio into
a time-frequency representation suitable as input to a CNN. We use the same
processing steps as in Chapter 3. CNNs consist of fixed-size filters that capture
local structure, which requires the spatial relations to be similarly distributed in
each area of the input. To achieve this, we compute the magnitude spectrogram
of the audio and apply a filter bank with logarithmically spaced triangular filters.
This gives us a time-frequency representation in which distances between notes
(and their harmonics) are equal in all areas of the input. Finally, we logarith-
mise the filtered magnitudes to compress the value range. Mathematically, the
resulting time-frequency representation of an audio recording is defined as

u� = log (1 + u�△log |u�|) ,

where u� is the short-time Fourier transform (STFT) of the audio, and u�△log is the
logarithmically spaced triangular filter bank. To be concise, we will refer tou� as
spectrogram in the remainder of this chapter.

We feed the network spectrogram frames with context, i.e. the input to the
network is not a single column u�u� ofu�, but a matrix

u�u� = [u�u�−u�, … , u�u�, … , u�u�+u�] ,

where 𝑖 is the index of the target frame, and 𝐶 is the context size.
We chose the parameter values based on our previous study on data-driven

feature extraction for chord recognition (see Chapter 3) and a number of prelimi-
nary experiments. We use a frame size of 8 192 with a hop size of 4 410 at a sample
rate of 44 100Hz for the STFT. The filter bank comprises 24 filters per octave
between 65Hz and 2 100Hz. The context size 𝐶 = 7, thus eachu�u� represents
1.50 s of audio. Our choice of parameters results in an input dimensionality of
u�u� ∈ �105×15.

4.1.2 Acoustic Model
To extract discriminative features from the input, in Chapter 3, we used a simple
deep neural network (DNN) to compute chromagrams, concise descriptors
of harmonic content. From these chromagrams, we used a simple classifier
to predict chords in a frame-wise manner. Despite the network being simple
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conceptually, due to the dense connections between layers, the model had 1.9
million parameters.

Here, we use a CNN for feature extraction. CNNs differ from traditional
deep neural networks by including two additional types of computational layers:
convolutional layers compute a 2-dimensional convolution of their input with a
set of fixed-sized, trainable kernels per feature map, followed by a (usually non-
linear) activation function; pooling layers sub-sample the input by aggregating
over a local neighbourhood (e.g. the maximum of a 2 × 2 patch). The former
can be re-formulated as a dense layer using a sparse weight matrix with tied
weights. This interpretation indicates the advantages of convolutional layers:
fewer parameters and better generalisation.

CNNs typically consist of convolutional lower layers that act as feature
extractors, followed by fully connected layers for classification. Such layers are
prone to over-fitting and come with a large number of parameters. We thus
follow (Lin et al., 2014) and use global average pooling (GAP) to replace them. To
further prevent over-fitting, we apply dropout (Srivastava et al., 2014), and use
batch normalisation (Ioffe and Szegedy, 2015) to speed up training convergence.

Table 4.1 details our model architecture, which consists of 900k parameters,
roughly 50% of the original DNN. Inspired by the architecture presented
in (Simonyan and Zisserman, 2014), we opted for multiple lower convolutional
layers with small 3 × 3 kernels, followed by a layer computing 128 feature maps
using 12 × 9 kernels. The intuition is that these bigger kernels can aggregate
harmonic information for the classification part of the network. We will denote
the output of this layer as u�u�, the features extracted from inputu�u�.

We target a reduced chord alphabet in this work (major and minor chords for
12 semitones) resulting in 24 classes plus a “no chord” class. This is a common
restriction used in the literature on chord recognition (McVicar et al., 2014). The
GAP construct thus learns a weighted average of the 128 feature maps for each of
the 25 classes using the 1×1 convolution and average pooling layer. Applying the
softmax function then ensures that the output sums to 1 and can be interpreted
as a probability distribution of class labels given the input.

Following Bengio et al. (2013), the activations of the network’s hidden layers
can be interpreted as hierarchical feature representations of the input data. We
will thus use u�u� as a feature representation for the subsequent parts of our chord
recognition pipeline.

4.1.3 Training and Data Augmentation
We train the acoustic model in a supervised manner using the Adam optimi-
sation method (Kingma and Ba, 2015) with standard parameters, minimising
the categorical cross-entropy between true targets u� and network output û�.
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Layer Type Parameters Padding Output Size

Input 105 × 15
Conv-Rectify 32 × 3 × 3 yes 32 × 105 × 15
Conv-Rectify 32 × 3 × 3 yes 32 × 105 × 15
Conv-Rectify 32 × 3 × 3 yes 32 × 105 × 15
Conv-Rectify 32 × 3 × 3 yes 32 × 105 × 15
Pool-Max 2 × 1 32 × 52 × 15

Conv-Rectify 64 × 3 × 3 no 64 × 50 × 13
Conv-Rectify 64 × 3 × 3 no 64 × 48 × 11
Pool-Max 2 × 1 64 × 24 × 11

Conv-Rectify 128 × 12 × 9 no 128 × 13 × 3

Conv-Linear 25 × 1 × 1 no 25 × 13 × 3
Pool-Avg 13 × 3 25 × 1 × 1
Softmax 25

Table 4.1: Proposed CNN architecture. Batch normalisation is performed after each convolution
layer. Dropout with probability 0.5 is applied at horizontal rules in the table. All convolution
layers use rectifier units (Glorot et al., 2011), except the last, which is linear. The bottom three
layers represent the GAP, replacing fully connected layers for classification.

Including a regularisation term, the loss is defined as

ℒ = − 1𝐷

u�
∑
u�=1
u�u� log(û�u�) + 𝜆 |u�|2 ,

where𝐷 is the number of frames in the training data, 𝜆 = 10−7 the 𝑙2 regu-
larisation factor, and u� the network parameters. We process the training set in
mini-batches of size 512, and stop training if the validation accuracy does not
improve for 5 epochs.

We apply two types of data manipulations to increase the variety of training
data and prevent model over-fitting. Both exploit the fact that the frequency axis
of our input representation is linear in pitch, and thus facilitates the emulation
of pitch-shifting operations. The first operation, as explored by Humphrey and
Bello (2012), shifts the spectrogram up or down in discrete semitone steps by a
maximum of 4 semitones. This manipulation does not preserve the label, which
we thus adjust accordingly. The second operation emulates a slight detuning by
shifting the spectrogram by fractions of up to 0.4 of a semitone. Here, the label
remains unchanged. We process each data point in a mini-batch with randomly
selected shift distances. The network thus almost never sees exactly the same
input during training, which significantly reduces over-fitting.
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4.2 Chord Sequence Decoding
Using the predictions of the pattern matching stage directly (in our case, the
predictions of the CNN) often gives good results in terms of frame-wise accuracy.
However, chord sequences obtained this way are often fragmented. The main
purpose of chord sequence decoding is thus to smooth the reported sequence.
Here, we use a linear-chain CRF (Lafferty et al., 2001) to introduce inter-frame
dependencies and find the optimal state sequence using Viterbi decoding.

4.2.1 Conditional Random Fields
Conditional random fields are probabilistic energy-based models for structured
classification. They model the conditional probability distribution

𝑃 (u�1∶u� ∣ u�1∶u�) =
exp [𝐸 (u�1∶u� , u�1∶u�)]

∑u�′1∶u�
exp [𝐸 (u�′1∶u� , u�1∶u�)]

(4.1)

where u�1∶u� is the label vector sequence, and u�1∶u� the feature vector sequence of
same length. We assume each u�u� to be the target label in one-hot encoding. The
energy function is defined as

𝐸 (u�1∶u� , u�1∶u�) =
u�
∑
u�=1
[u�⊤u�−1u�u�u� + u�⊤u� u� + u�⊤u�u�u�u�] + u�⊤0u� + u�⊤u�u� (4.2)

whereu�models the inter-frame potentials,u� the frame-input potentials, u� the
label bias, u� the potential of the first label, and u� the potential of the last label.
This form of energy function defines a linear-chain CRF.

From Eq. 4.1 and 4.2 follows that a CRF can be seen as generalised logistic
regression. They become equivalent if we setu�, u� and u� to 0. Further, logis-
tic regression is equivalent to a softmax output layer of a neural network. We
thus argue that a CRF whose input is computed by a neural network can be
interpreted as a generalised softmax output layer that allows for dependencies
between individual predictions. This makes CRFs a natural choice for incorpo-
rating dependencies between predictions of neural networks.

4.2.2 Model Definition and Training
Our model has 25 states (12 semitones × {major,minor} and a “no-chord” class).
These states are connected to observed features through the weight matrixu�,
which computes a weighted sum of the features for each class. This corresponds
to what the global-average-pooling part of the CNN does. We will thus use the
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Isophonics Robbie Williams RWC

CB3 82.2 - -
KO1 82.7 - -

NMSD2 82.0 - -

Proposed 82.9 82.8 82.5

Table 4.2: Weighted Chord Symbol Recall of major and minor chords achieved by different
algorithms. The results of NMSD2 are statistically significantly worse than others, according to
a Wilcoxon signed-rank test. Note that train and test data overlaps for CB3, KO1 and NMSD2,
while the results of our method are determined by 8-fold cross-validation.

input to the GAP-part, u�u�, averaged for each of the 128 feature maps, as input to
the CRF. We can pull the averaging operation from the last layer to right after the
feature-extraction layer, because the operations in between (linear convolution,
batch normalisation) are linear and no dropout is performed at test-time.

Formally, we will denote the input sequence as u� ∈ �128×u� , where each
column u� u� is the averaged feature output of the CNN for a given inputu�u�. Our
CRF thus models 𝑝 (u�1∶u� ∣ u�).

As with the CNN, we train the CRF using Adam, but set a higher learning
rate of 0.01. The mini-batches consist of 32 sequences with a length of 1024
frames (102.3 sec) each. As optimisation criterion, we use the 𝑙1-regularised
negative log-likelihood of all sequences in the data set:

ℒ = −1𝑆

u�
∑
u�=1
log 𝑝 (u�(u�)1∶u� ∣ u�

(u�)) + 𝜆 |u�|1 ,

where 𝑆 is the number of sequences in the data set, 𝜆 = 10−4 is the 𝑙1 regulari-
sation factor, and u� are the CRF parameters. We stop training when validation
accuracy does not increase for 5 epochs.

4.3 Experiments
We evaluate the proposed system using 8-fold cross-validation on a compound
dataset that comprises the following subsets: Isophonics1: 180 songs by The
Beatles, 19 songs by Queen, and 18 songs by Zweieck, totalling 10:21 hours of
audio. RWC Popular (Goto et al., 2002): 100 songs in the style of American and
Japanese pop music originally recorded for this data set, totalling 6:46 hours of

1http://isophonics.net/datasets
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audio. Robbie Williams (Di Giorgi et al., 2013): 65 songs by Robbie Williams,
totalling 4:30 hours of audio.

As evaluation measure, we compute the Weighted Chord Symbol Recall
(WCSR), often called Weighted Average Overlap Ratio (WAOR), of major and
minor chords as implemented in the “mir_eval” library (Raffel et al., 2014):
ℛ = u�u�/u�u�, where 𝑡u� is the total time where the prediction corresponds to the
annotation, and 𝑡u� is the total duration of annotations of the respective chord
classes (major and minor chords, in our case).

We compare our results to the three best-performing algorithms in the
MIREX competition in 20132: CB3 (Cho, 2014);KO1 (Khadkevich and Omol-
ogo, 2011); andNMSD2 (Ni et al., 2012b).

4.3.1 Results
The results presented for the reference algorithms differ from those found on
the MIREX website. This is because of minor differences in the implementation
of the evaluation libraries. To ensure a fairer comparison, we obtained the
predictions of the compared algorithms and ran the same evaluation code for
all approaches. Note that for the reference algorithms there is a known overlap
between train and test set, and their obtained results might be optimistic.

Table 4.2 shows the results of our method compared to three state-of-the-art
algorithms. We can see that the proposed method performs slightly better (but
not statistically significant), although the train set of the reference methods
overlaps with the test set.

4.4 Acoustic Model Analysis
Following Lin et al. (2014), the final feature maps of a GAP network can be
interpreted as “category confidence maps”. Such confidence maps will have a
high average value if the network is confident that the input is of the respective
category. In our architecture, the average activation of a confidence map can be
expressed as a weighted average over the (batch-normalised) feature maps of the
preceding layer. We thus have 128 weights for each of the 25 categories (chord
classes).

We wanted to see whether the penultimate feature maps u�u� can be interpreted
in a musically meaningful way. To this end, we first analysed the similarity of
the weight vectors for each chord class by computing their correlation. The
result is shown in Fig. 4.1. We see a systematic correlation between weight vectors
of chords that share notes or are close to each other in the circle of fifths. The

2http://www.music-ir.org/mirex/wiki/2013:MIREX2013_Results
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Figure 4.1: Correlation between weight vectors of chord classes. Rows and columns represent
chords. Major chords are represented by upper-case letters, minor chords by lower-case letters.
The order of chords within a chord quality is determined by the circle of fifths. We observe that
weight vectors of chords close in the circle of fifths (such as ‘C’, ‘F’, and ‘G’) correlate positively.
Same applies to chords that share notes (such as ‘C’ and ‘a’, or ‘C’ and ‘c’).

patterns within minor chords are less clear. This might be because minor chords
are under-represented in the data, and the network could not learn systematic
patterns from this limited amount.

Furthermore, we wanted to see if the network learned to distinguish major
and minor modes independently of the root note. To this end, we selected the
four feature maps with the highest connection weights to major and minor
chords respectively and plotted their contribution to each chord class in Fig. 4.2.
Here, an interesting pattern emerges: feature maps with high average weights to
minor chords have negative connections to all major chords. High activations
in these feature maps thus make all major chords less likely. However, they tend
to be specific on which minor chords they favour. We observe a zig-zag pattern
that discriminates between chords that are next to each other in the circle of
fifths. This means that although the weight vectors of harmonically close chords
correlate, the network learned features to discriminate them.
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Figure 4.2: Connection weights of selected feature maps to chord classes. Chord classes are
ordered according to the circle of fifths, such that harmonically close chords are close to each
other. In the upper plot, we selected feature maps that have a high average contribution tominor
chords. In the lower plot, those with high contribution tomajor chords. Feature maps with
high average weights to minor chords show negative connections to all major chords. Within
minor chords, we observe that two of them (10 and 101) discriminate between chords that are
harmonically close (zig-zag pattern). We observe a similar pattern in the right plot.

4.5 Conclusion
We presented a novel method for chord recognition based on a fully convolu-
tional neural network in combination with a CRF. The method automatically
learns musically interpretable features from the spectrogram, and performs at
least as good as state-of-the-art systems.
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5
On the Futility of Frame-Level

Language Modelling

Let us now focus on the second part of chord recognition systems: temporal
models. As mentioned in Chapter 2, for this purpose, it is common to use Hid-
den Markov Models (Cho et al., 2010; Sheh and Ellis, 2003) or Conditional
Random Fields (Burgoyne et al., 2007; Korzeniowski and Widmer, 2016b) with
states corresponding to chord labels. However, recent research showed that such
first-order models have limited capacity to to encode musical knowledge, and
only ensure stability between consecutive predictions (i.e. they only smooth
the output sequence). In Cho and Bello (2014), self-transitions dominate other
transitions by several orders of magnitude, and chord recognition results im-
prove if self-transitions are amplified manually. In Chen et al. (2012), employing
a first-order chord transition model hardly improves recognition accuracy, given
a duration model is applied.

This result bears little surprise: firstly, many common chord patterns in
pop, jazz, or classical music span more than two chords, and thus cannot be
adequately modelled by first-order models; secondly, models that operate at
the frame level by definition only predict the chord symbol of the next frame
(typically ≈10ms away), which most of the time will be the same as the current
chord symbol.

To overcome this, a number of recent papers suggested to use Recurrent
Neural Networks (RNNs) as temporal models for a number of music-related
tasks, such as chord recognition (Boulanger-Lewandowski et al., 2013; Sigtia et al.,
2015) or multi-f0 tracking (Sigtia et al., 2016). RNNs are capable of modelling
relations in temporal sequences that go beyond simple first-order connections.
Their great modelling capacity is, however, limited by the difficulty to optimise
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their parameters: exploding gradients make training unstable, while vanishing
gradients hinder learning long-term dependencies from data.

In this chapter, we argue that (neglecting the aforementioned problems)
adopting and training complex temporal models on a time-frame basis is futile
on principle. We support this claim by experimentally showing that they do not
outperform first-order models (for which we know they are unable to capture
musical knowledge) as part of a complete chord recognition system, and perform
only negligibly better at modelling chord label sequences. We thus conclude
that, despite their greater modelling capacity, the input representation (musical
symbols on a time-frame basis) prohibits learning and applying knowledge
about musical structure—the language models hence resort to what their simpler
first-order siblings are also capable of: smoothing the predictions.

In the following, we describe three experiments: in the first, we judge two
temporal models directly by their capacity to model frame-level chord sequences;
in the second, we deploy the temporal models within a fully-fledged chord
recognition pipeline; finally, in the third, we learn a language model at chord
level to show that RNNs are able to learn musical structure if used at a higher
hierarchical level. Based on the results, we then draw conclusions for future
research on temporal and language modelling in the context of music processing.

This content of this chapter has been published previously in Korzeniowski
and Widmer (2017b).

5.1 Experiment 1: Chord Sequence Modelling
In this experiment, we want to quantify the modelling power of temporal
models directly. A temporal model predicts the next chord symbol in a sequence
given the ones already observed. Since we are dealing with frame-level data and
adopt a frame rate of 10 fps, a chord sequence consists of 10 chord symbols per
second. More formally, given a chord sequence u� = 𝑦1∶u� , a model𝑀 outputs a
probability distribution 𝑃u�(𝑦u� ∣ 𝑦1∶u�−1) for each 𝑦u� . From this, we can compute
the probability of the chord sequence

𝑃u� (u�) = 𝑃u�(𝑦1) ⋅ Πu�
u�=2𝑃u� (𝑦u� ∣ 𝑦1, … , 𝑦u�−1) . (5.1)

To measure how well a model𝑀 predicts the chord sequences in a dataset𝒴 , we
compute the average log-probability that it assigns to the sequences u� ∈ 𝒴 :

ℒ(𝑀,𝒴) = 1
𝑁𝒴

∑
u�∈𝒴

log (𝑃u� (u�)) , (5.2)

where𝑁𝒴 is the total number of chords symbols in the dataset.
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5.1.1 Temporal Models
We compare two temporal models in this experiment: a first-order Markov
Chain and a RNN with Long-Short Term Memory (LSTM) units.

For theMarkov Chain, 𝑃u�(𝑦u� ∣ 𝑦1∶u�−1) in Eq. 5.1 is simplified to 𝑃u�(𝑦u� ∣
𝑦u�−1) = 𝐴u�u�,u�u�−1 due to the Markov property, and 𝑃u�(𝑦1) = 𝜋u�1. Both u� andu�
can be estimated by counting the corresponding occurrences in the training set.

For the LSTM-RNN, we follow closely the design, parametrisation and
training procedure proposed by Sigtia et al. (2015), and we refer the reader to
their paper for details. The input to the network at time step 𝑘 is the chord
symbol 𝑦u�−1 in one-hot encoding, the output is the probability distribution
𝑃u�(𝑦u� ∣ 𝑦1∶u�−1) used in Eq. 5.1. (For 𝑡 = 1, we input a “no-chord” symbol
and the network computes 𝑃(𝑦1).) As loss we use the categorical cross-entropy
between the output and the one-hot encoding of the target chord symbol.

We use 2 layers of 100 LSTM units each, and add skip-connections such that
the input is connected to both hidden layers and to the output. We train the
network using stochastic gradient descent with momentum for a maximum
of 200 epochs (the network usually converges earlier) with the learning rate
decreasing linearly from 0.001 to 0. As Sigtia et al. (2015), we show the network
sequences of 100 symbols (corresponding to 10 seconds) during training. We
experimented with longer sequences (up to 50 seconds), but results did not
improve (i.e. the network did not profit from longer contexts). Finally, to
improve generalisation, we augment the training data by randomly shifting the
key of the sequences each time they are shown during training.

5.1.2 Data
We evaluate the models on the McGill Billboard dataset (Burgoyne et al., 2011).
We use songs with ids smaller than 1000 for training, and the remaining for
testing, which corresponds to the test protocol suggested by the website accom-
panying the dataset. To prevent train/test overlap, we filter out duplicate songs.
This reduces the number of pieces from 890 to 742, of which 571 are used for
training and validation (59155 unique chord annotations), and 171 for testing
(16809 annotations).

The dataset contains 69 different chord types. These chord types are, to no
surprise, distributed unevenly: the four most common types (major, minor,
dominant 7, and minor 7) already comprise 85% of all annotations. Follow-
ing Cho and Bello (2014), we simplify this vocabulary to major/minor chords
only, where we map chords that have a minor 3rd as their first interval to mi-
nor, and all other chords to major. After mapping, we have 24 chord symbols
(12 root notes × {major,minor}) and a “no-chord” symbol, thus 25 classes.
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Markov Chain Recurrent NN

ℒ(𝑀,𝒴) -0.273 -0.266
ℒu�(𝑀,𝒴) -5.420 -5.219
ℒu�(𝑀,𝒴) -0.044 -0.046

Table 5.1: Average log-probabilities of chords changes in the test set for the two temporal models.
ℒ(u�,𝒴) is the number for all chord symbols,ℒu�(u�,𝒴) for positions in the sequence where
the chord symbol changes, andℒu�(u�,𝒴)where it stays the same

5.1.3 Results
Table 5.1 shows the resulting avg. log-probabilities of the models on the test set.
Additionally toℒ(𝑀,𝒴), we reportℒu�(𝑀,𝒴) andℒu�(𝑀,𝒴). These num-
bers represent the average log-probability the model assigns to chord symbols in
the dataset when the current symbol is the same as the previous one and, when
it changed, respectively. They are computed similarly toℒ(𝑀,𝒴), but the
product in Eq. 5.1 only captures 𝑡 where 𝑦u� = 𝑦u�−1 or 𝑦u� ≠ 𝑦u�−1, respectively.

They permit us to reason about how well a model will smooth the predictions
when the chord is stable, and how well it can predict chords when they change
(this is where “musical knowledge” could come into play).

We can see that the RNN performs only slightly better than the Markov
Chain (MC), despite its higher modelling capacity. This improvement is rooted
in better predictions when the chord changes (-5.22 for the RNN vs. -5.42 for
the MC). This might indicate that the RNN is able to model musical knowledge
better than the MC after all. However, this advantage is minuscule and comes
seldom into play: the correct chord has an avg. probability of 0.0054 with the
RNN vs. 0.0044 with the MC1, and the number of positions at which the chord
symbol changes, compared to where it stays the same, is low.

In the next experiment, we evaluate if the marginal improvement provided by
the RNN translates into better chord recognition accuracy when deployed in a
fully-fledged system.

5.2 Experiment 2: Frame-Level Chord Recogni-
tion

In this experiment, we want to evaluate the temporal models in the context of
a complete chord recognition framework. The task is to predict for each audio

1Both are worse than the random chance of 1/25 = 0.04, because both would still favour self-
transitions
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None MV HMM RNN

LogReg 72.3 72.8 73.4 73.1
DNN 74.2 75.3 76.0 75.7

ConvNet 77.6 78.1 78.9 78.7

Table 5.2: Weighted Chord Symbol Recall of the 24 major and minor chords and the “no-chord”
class for the tested temporal models (columns) on different acoustic models (rows).

frame the correct chord symbol. We use the same data, the same train/test split,
and the same chord vocabulary (major/minor and “no chord”) as in the first
experiment.

Our chord-recognition pipeline comprises spectrogram computation, an
automatically learned feature extractor and chord predictor, and finally the
temporal model. The first two stages are based on our previous work described
in chapters 3 and 4. We extract a log-filtered and log-scaled spectrogram between
65Hz and 2 100Hz at 10 frames per second, and feed spectral patches of 1.50 s
into one of three acoustic models: a logistic regression classifier (LogReg), a deep
neural network (DNN) with 3 fully connected hidden layers of 256 rectifier units,
and a convolutional neural network (ConvNet) with the exact architecture we
presented in Chapter 4.

Each acoustic model yields frame-level chord predictions, which are then
processed by one of three different temporal models.

5.2.1 Temporal Models

We test three temporal models of increasing complexity. The simplest one is
Majority Voting (MV) within a context of 1.30 s, The others are the very same we
used in the previous experiment.

Connecting the Markov Chain temporal model to the predictions of the
acoustic model results in aHidden Markov Model (HMM). The output chord
sequence is decoded using the Viterbi algorithm.

To connect the RNN temporal model to the predictions of the acoustic
model, we apply the hashed beam search algorithm, as introduced by Sigtia et al.
(2015), with a beam width of 25, hash length of 3 symbols and a maximum of 4
solutions per hash bin. The algorithm only approximately decodes the chord
sequence (no efficient and exact algorithms exist, because the output of the
network depends on all previous inputs).
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5.2.2 Results

Table 5.2 shows the Weighted Chord Symbol Recall (WCSR) of major and minor
chords for all combinations of acoustic and temporal models. The WCSR is
defined asℛ = u�u�/u�u�, where 𝑡u� is the total time where the prediction corresponds
to the annotation, and 𝑡u� is the total duration of annotations of the respective
chord classes (major and minor chords and the “no-chord” class, in our case). We
used the implementation provided in the “mir_eval” library (Raffel et al., 2014).

The results show that the complex RNN temporal model does not outper-
form the simpler first-order HMM. They improve compared to not using a
temporal model at all, and to a simple majority vote.

The results suggest that the RNN temporal model does not display its
(marginal) advantage in chord sequence modelling when deployed within
the complete chord recognition system. We assume the reasons to be (i) that
the improvement was small in the first place, and (ii) that exact inference is not
computationally feasible for this model, and we have to resort to approximate
decoding using beam search.

5.3 Experiment 3: Modelling Chord-level Label
Sequences

In the final experiment, we want to support our argument that the RNN does
not learn musical structure because of the hierarchical level (time frames) it is
applied on. To this end, we conduct an experiment similar to the first one: an
RNN is trained to predict the next chord symbol in the sequence. However,
this time the sequence is not sampled at frame level, but at chord level (i.e. no
matter how long a certain chord is played, it is reduced to a single instance in the
sequence). Otherwise, the data, train/test split, and chord vocabulary are the
same as in Experiment 1.

The results confirm that in such a scenario, the RNN clearly outperforms
the Markov Chain (Avg. Log-P. of -1.62 vs. -2.28). Additionally, we observe
that the RNN does not only learn static dependencies between consecutive
chords; it is also able to adapt to a song and recognise chord progressions seen
previously in this song without any on-line training. This resembles the way
humans would expect the chord progressions not to change much during a part
(e.g. the chorus) of a song, and come back later when a part is repeated. Figure 5.1
shows exemplary results from the test data.
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Figure 5.1: Log-probabilities of chords at the beginning of The Beatles’ “A Hard Day’s Night”,
as computed by a RNN language model at the chord level. Bar colours indicate the chord class.
We observe that the two repeated chord sequences (“G-C-G-F” and “G-C-D-G-C”, marked
with yellow and light blue on the top) achieve higher probabilities as they are repeated, with
the exception of one repetition of the first sequence at the beginning of Verse 2 (in this case, the
network did not expect to see the “F” after several repetitions of a G-C transition). This indicates
that the network was able to remember to some degree the chord progressions seen earlier in the
song.

5.4 Conclusion
We argued that learning complex temporal models for chord recognition2

on a time-frame basis is futile. The experiments we carried out support our
argument. The first experiment focused on how well a complex temporal model
can learn to predict chord sequences compared to a simple first-order one. We
saw that the complex model, despite its substantially greater modelling capacity,
performed only marginally better. The second experiment showed that, when
deployed within a chord recognition system, the RNN temporal model did not
outperform the first-order HMM. Its slightly better capability to model frame-
level chord sequences was probably counteracted by the approximate nature of
the inference algorithm. Finally, in the third experiment, we showed preliminary
results that when deployed at a higher hierarchical level than time frames, RNNs
are indeed capable of learning musical structure beyond first-order transitions.

Why are complex temporal models like RNNs unable to model frame-level
chord sequences? We believe the following two circumstances to be the causes:
(i) transitions are dominated by self-transitions, i.e. models need to predict self-
transitions as well as possible to achieve good predictive results on the data, and

2We expect similar results for other music-related tasks.
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(ii) predicting chord changes “blindly” (i.e. without knowledge when the change
might occur) competes with (i) via the normalisation constraint of probability
distributions.

Inferring when a chord changes proves difficult if the model can only consider
the frame-level chord sequence. There are simply too many uncertainties (e.g.
the tempo and harmonic rhythm of a song, timing deviations, etc.) that are hard
to estimate. However, the models also do not have access to features computed
from the input signal, which might help in judging whether a chord change
is imminent or not. Thus, the models are blind to the time of a chord change,
which makes them focus on predicting self-transitions, as we outlined in the
previous paragraph.

We know from other domains such as natural language modelling that RNNs
are capable of learning state-of-the-art language models (Mikolov et al., 2010).
We thus argue that the reason they underperform in our setting is the frame-wise
nature of the input data. For future research, we propose to focus on language
models instead of frame-level temporal models for chord recognition. By “lan-
guage model” we mean a model at a higher hierarchical level than the temporal
models explored in this chapter (hence the distinction in name)—like the model
used in the final experiment in Sec. 5.3. Such language models can then be used in
sequence classification framework such as sequence transduction (Graves, 2012)
or segmental recurrent neural networks (Lu et al., 2016).

Our results indicate the necessity of hierarchical models, as postulated by
Widmer (2016): powerful feature extractors may operate at the frame-level,
but more abstract concepts have to be estimated at higher temporal (and, con-
ceptual) levels. Similar results have been found for other music-related tasks:
e.g., Srinivasamurthy et al. (2016), divided longer metrical cycles into their sub-
components to improve beat tracking results; in the field of musical structure
analysis (an obviously hierarchical concept), McFee and Ellis (2014) extracted rep-
resentations on different levels of granularity (although their system scored lower
in traditional evaluation measures for segmentation, it facilitates a hierarchical
breakdown of a piece).

Music theory teaches that cadences play an important role in the harmonic
structure of music, but many current state-of-the-art chord recognition systems
(including our own) ignore this. Learning powerful language models at sensible
hierarchical levels bears the potential to further improve the accuracy of chord
recognition systems, which has remained stagnant in recent years.
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6
A Large-Scale Study of Chord-Level

Language Models

As we saw in the previous chapter, temporal models that are learned from frame-
level data cannot improve chord recognition results. However, humans seem
to be able to predict the next chord in a song, given an appropriate past context.
We might thus suggest another explanation for the performance gap between
human chord annotators and computational systems: current state-of-the-art
chord recognition systems lack a meaningful understanding of harmony and its
development in music. Although we have seen work on optimising low-level
and/or Markovian temporal models by e.g. Cho and Bello (2014), and work on
low-level non-Markovian models by e.g. Boulanger-Lewandowski et al. (2013),
Chapter 5 showed that such an understanding can only derive from sequential
models that operate on higher temporal levels than those based on audio frames.
On the level of audio frames, there is little to improve upon the current state-of-
the-art.

In this chapter, we address this issue by exploring the capabilities of automati-
cally learned chord language models to predict chord sequences. We will compare
recurrent neural networks (RNNs) with higher-order𝑁 -gram models, and eval-
uate these models solely based on how well they predict chord sequences. The
question on how to integrate them into a complete chord recognition system is
treated in chapters 7 and 8.

The study in this chapter has been previously published in Korzeniowski et al.
(2018).
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Name Reference Pieces Chords

Beatles (Harte, 2010) 180 12 646
Jay Chou (Deng and Kwok, 2016) 29 3 356
McGill Billboard (Burgoyne et al., 2011) 742 70 197
Queen (Mauch et al., 2009) 20 2 265
Robbie Williams (Di Giorgi et al., 2013) 65 6 513
Rock (de Clercq and Temperley, 2011) 201 18 343
RWC (Goto et al., 2002) 100 12 726
US Pop 2002 (Ellis et al., 2003) 195 23 309
Weimar Jazz (Pfleiderer et al., 2017) 291 18 179
Zweieck (Mauch et al., 2009) 18 1 822

Total 1 841 169 356
Unique 1 766 161 796

Table 6.1: Individual datasets used to create the compound dataset in this study. For the Rock
corpus, we used the annotations by Temperley rather than those by De Clerq.

6.1 Data
We compiled a comprehensive set of chord annotations to perform a large-scale
evaluation of different language models for chord prediction. To our knowledge,
our compound dataset consists of all time-aligned chord annotations that are
publicly available. Table 6.1 provides detailed information about the data. In
total, we have 1 841 songs from a variety of genres and decades, with a focus on
pop/rock between 1950 and 2000. After we remove duplicate songs and merge
consecutive identical annotations, the dataset consists of 1 766 songs containing
161 796 unique chord annotations.
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The dataset is minuscule compared to those available for natural language
processing: e.g., the NYT section of the English Gigaword dataset (of which
only a subset of 6.4 million words is used by Mikolov et al. (2010) for training
language models) consists of 37 million words. Therefore, we leverage domain
knowledge to generate additional, semi-artificial chord sequences. Assuming
that chord progressions are independent of musical key (as in Roman numeral
analysis), and that musical keys are uniformly distributed (a simplifying assump-
tion), we transpose each chord sequence to all possible keys during training. This
step increases the amount of training sequences by a factor of 12; however, the
artificially created data are highly correlated with the existing data, and thus are
not equivalent to truly having 12 times as much data available. We will refer to
this process as data augmentation in the remainder of this chapter.

We focus on the major/minor chord vocabulary, and follow the standard
mapping as described by Cho and Bello (2014): chords with a minor 3rd in the
first interval are considered minor, the rest major. This mapping results in a
vocabulary of size 25 (12 root notes ×{maj,min} and the “no-chord” class).
Bearing in mind the reduced vocabulary and the more repetitive nature of chord
progressions compared to spoken language, we feel that the size of this dataset
after data augmentation is appropriate for training and evaluating models for
chord prediction.

6.2 Experimental Setup
Our experiments evaluate how well various models predict chords. This amounts
to measuring the average probability the model assigns to the (correct) upcoming
chord symbol, given the ones it has already observed in a sequence. More for-
mally, given a sequence of chords u� = 𝑦1∶u� , the model𝑀 yields 𝑃u�(𝑦u� ∣ 𝑦1∶u�−1)
for each 𝑘. The probability of the complete chord sequence can then be com-
puted as

𝑃u� (u�) = 𝑃u�(𝑦1) ⋅ Πu�
u�=2𝑃u� (𝑦u� ∣ 𝑦1∶u�−1) . (6.1)

The higher 𝑃u�(u�), the better𝑀 models u�. To measure how well𝑀 models
all chord sequences in a dataset𝒴 , we next compute the average log-probability
assigned to its sequences:

ℒ(𝑀,𝒴) = 1
𝑁𝒴

∑
u�∈𝒴

log (𝑃u� (u�)) , (6.2)

where𝑁𝒴 is the total number of chord symbols in the dataset. This equation
corresponds to the negative cross-entropy between the model’s distribution and
the data distribution.
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All models are trained and tested on the compound dataset. We use 20% of
the data for testing, and 80% for training. 15% of the training data is held out for
validation. All splits are stratified by dataset.

6.3 𝑛-gram Language Models

𝑛-gram language models are Markovian probabilistic models that assume a fixed-
length history (of length 𝑛 − 1) in order to predict the next symbol. Hence, they
assume 𝑃u� (𝑦u� ∣ 𝑦1∶u�−1) = 𝑃u� (𝑦u� ∣ 𝑦(u�−u�+1)∶(u�−1)). This fixed-length history
allows the probabilities to be stored in a table, with its entries computed using
maximum-likelihood estimation (i.e., by counting occurrences in the training
set).

With larger 𝑛, the sparsity of the probability table increases exponentially due
to the finite number of 𝑛-grams in the training set. We solve this problem using
Lidstone smoothing, which adds a pseudo-count 𝛼 to each possible 𝑛-gram. We
determine the value of 𝛼 for each model using the validation set.

6.3.1 Model Selection

We find the best 𝑛-gram model by selecting the one with best results on the
validation set. To this end, we evaluate models with 𝑛 ∈ {1, 2, 3, 4, 5, 6}, with
and without data augmentation. 𝑛 = 1 corresponds to a model that predicts
chords just by their frequency in the training data, 𝑛 = 2 to a model that could
be deployed in a simple first-order Hidden Markov Model.

Figure 6.1 presents the results of the models on the training and validation sets.
As expected, data augmentation reduces over-fitting, and enables the models to
achieve better results. To our surprise, validation results increased up to𝑁 = 5
(𝛼 = 0.3)—we expected the sparsity problem to earlier prevent this model class
from improving with increasing𝑁 (sparsity is 98.3% for the best model). We will
thus compare the 5-gram model trained with data augmentation to the models
based on recurrent neural networks.

6.4 Recurrent Neural Language Models

Recurrent Neural Networks (RNNs, see Pascanu et al. (2014) for an overview)
are powerful models designed for sequential modelling tasks. In their sim-
plest form, RNNs transform input sequences u�1∶u� to an output sequence u�1∶u�
through a non-linear projection into a hidden layer u�1∶u� , parametrised by weight
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Figure 6.1: Average log-probability of all evaluatedu� -gram models.

matricesu�ℎu�,u�ℎℎ andu�u�ℎ:

u�u� = 𝜎ℎ (u�ℎu�u�u� +u�ℎℎu�u�−1) (6.3)
u�u� = 𝜎u� (u�u�ℎu�u�) , (6.4)

where 𝜎ℎ and 𝜎u� are the activation functions for the hidden layer (e.g. the sigmoid
function), and the output layer (e.g. the softmax), respectively. We left out bias
terms for simplicity.

Their use as language models was proposed by Mikolov et al. (2010). For this
purpose, the input at each time step 𝑘 is a vector representation of the preced-
ing symbol 𝑦u�−1. We call this the chord embedding, and denote it 𝑣(𝑦u�−1). In
the simplest case, this is a one-hot vector. The network’s output u�u� is then inter-
preted as the conditional probability over the next chord symbol 𝑃u� (𝑌u� ∣ 𝑦1∶u�−1).
During training, the categorical cross-entropy between u�u� and the true chord
symbol is minimised by adapting the weight matrices in Eq. 6.3 and 6.4 using
stochastic gradient descent and back-propagation through time. Figure 6.2
provides an overview of the model structure.

Each output u�u� depends on all previous inputs 𝑦1∶u�−1 through the recurrent
connection in the hidden layer. This allows the network to consider all previous
chords when computing 𝑃u�(𝑦u� ∣ 𝑦1∶u�−1). In practice, this capacity is limited
because of the fixed size of the hidden layer, and the fragile learning procedure
of back-propagation through time, which faces the well-known problems of
exploding and vanishing gradients.

49



u�0 u�1 u�2 ⋯ u�u�

u�(u�0) u�(u�1) u�(u�u�−1)

u�u�(u�1 ∣ u�1) u�u�(u�2 ∣ u�2) u�u�(u�u� ∣ u�u�)

u�1 u�2 u�u�

Figure 6.2: A simple RNN-based language model. We can easily stack more recurrent hidden
layers or add skip-connections between the input and each hidden layer or the output.

6.4.1 Chord Embeddings
As mentioned earlier, we need to represent chord classes as vectors to use them
in the RNN language model framework. In this work, we explore three possibil-
ities: (i) using the one-hot encoding of the class, (ii) using a fixed-length vector
that is learned jointly with the language model, and (iii) learning an embed-
ding using the word2vec skip-gram model (Mikolov et al., 2013) before training
the language model itself. In this case, the chord embeddings are optimised to
predict the neighbouring chords.

6.4.2 Model Selection
RNNs have more hyper-parameters compared to 𝑛-gram models: we can set
the number of hidden layers, the size of each hidden layer, the type and dimen-
sionality of the input chord embedding, the activation function for each hidden
layer, whether to use skip-connections, and finally, we can decide to use simple
RNNs or more advanced hidden layer structures such as Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated Recurrent
Units (GRU) (Cho et al., 2014). Additionally, the training procedure has its own
hyper-parameters, such as learning rate or mini-batch size. Table 6.2 presents the
hyper-parameter space we sampled from.

We fix the following hyper-parameters for all training runs: we apply data
augmentation, employ stochastic gradient descent with a batch size of 4 and the
ADAM update rule (Kingma and Ba, 2015), set all hidden layers to the same (but
variable) size, and stop training if the validation loss does not improve within 15
epochs.

The large number of hyper-parameters prevents us from conducting an

50



Hyper Parameter Sample Space

Embedding Size {4, 8, 16, 24}
Embedding Type {one-hot,word2vec, learned}
No. Hidden Layers u�ℎ ∈ {1, 2, 3, 4, 5}
Hidden Layer Size u�ℎ ∈ {128, 256, 512, 1024}
Skip Connections {yes, no}

Learning Rate u�u� = {
{0.001, 0.0005} u�ℎ ≤ 3
{0.0005, 0.00025} else

Learning Rate (GRU) u�u� = {
{0.005, 0.001} u�ℎ ≤ 3
{0.001, 0.0005} else

Table 6.2: Hyper-parameter space we sampled from to find good model configurations for each
of the RNN types (simple, LSTM, GRU). Possible learning rate values were determined on a
limited number of preliminary experiments.

exhaustive search for the optimal architecture. Instead, we use Hyperband (Li
et al., 2018), a bandit-based black-box hyper-parameter optimisation scheme, to
find good configurations for each considered RNN type.

In total, we considered 128 configuration for each RNN type (384 different
models). The best RNN setup used one-hot input encoding, skip connections,
and𝑁ℎ = 5,𝐷ℎ = 256, 𝑙𝑟 = 2.5𝑒−4. The best GRU also used one-hot input
encoding, but no skip connections, and𝑁ℎ = 3,𝐷ℎ = 512, 𝑙𝑟 = 1𝑒−3. The best
LSTM used a word2vec input encoding with 16 dimensions, skip connections,
and𝑁ℎ = 3,𝐷ℎ = 512, 𝑙𝑟 = 1𝑒−3.

In a final step, we further improve the learned models by a fine-tuning stage.
Here, we take the best models found for each RNN type, and re-start training
from the epoch that gave the best results on the validation set, but use 1/10 of
the original learning rate. As shown in Table 6.3, this step slightly improves the
models.

6.5 Results and Discussion

We compare the best model of each RNN type with the 5-gram baseline. To this
end, we computeℒ(𝑀,𝒴) according to Eq. 6.2 on the test set, and present the
results in Tab. 6.3 and Fig. 6.3. We see the RNN-based models easily outperform
the 5-gram model, with the LSTM and GRU models performing best. Statistical
significance was determined by a paired t-test with Bonferroni correction.

Recurrent neural networks have the capability to remember information over
time. We thus call them dynamic models, compared to the static characteristic of
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Figure 6.3: −ℒ(u�,𝒴) (lower is better) of the best model for each model class on the com-
pound test set, and split up into the individual datasets. The numbers in parentheses show the
number of chord predictions in each set. Whiskers are 95% confidence intervals computed using
bootstrapping. We observe a similar pattern for each set, with the LSTM and GRU performing
equally on most of the datasets. We also see that chords are easier to predict in some datasets (e.g.
“Rock”), while more difficult in others, (e.g. “RWC”).

5-gram RNN GRU LSTM

Val. 1.830 1.465 1.328 1.302
Val. (fine-tuned) — 1.417 1.290 1.272

Test 1.874 1.387 1.244 1.249

Table 6.3: −ℒ(u�,𝒴) (lower is better) on the validation and test sets for the best model of each
model class. All RNN-based models outperform the 5-gram model, with the GRU yielding the
highest avg. log-probability. Statistically equivalent results are marked in bold.

standard models based on 𝑛-grams. To investigate if the RNN-based language
models can leverage this capability, we examine the development of their predic-
tion quality—the log-probability of the correct chord—over the progression of
songs.

This is a function of both model capacity and song complexity: given a
static model, and repetitive songs that do not change much over time, the log-
probabilities assigned to the chords should remain approximately constant;
however, if e.g. chords in interludes tend to deviate more from standard chord
progressions, static models would yield lower log-probabilities in these cases. On
the other hand, if a dynamic model could remember chord progressions from the
past, the predictions would improve over time for very repetitive songs.
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Figure 6.4: Avg. cumulative log-probability per chord stepℒ≤(u�;u�,𝒴). The predictions of
the static 5-gram model worsen over time, which indicates that chord progressions later in the
songs deviate more from general patterns than in the beginning. The LSTM and GRU models
do not suffer from this problem, however, and predictions even improve after chord 40. We
conjecture that these models better remember previously seen chords and patterns, which enables
them to automatically adapt as a song progresses.

To evaluate this quantitatively, we first selected from the test set songs that
contained at least 100 chords, which left us with 136 pieces. We then computed
the average cumulative log-probability of chords up to a position in a song as

ℒ≤(𝑘;𝑀,𝒴) = 1
𝑘|𝒴| ∑u�∈𝒴

u�
∑
ū�=1

log 𝑃u� (𝑦ū� ∣ 𝑦1∶ū�−1) . (6.5)

Eq. 6.5 converges to the objective in Eq. 6.2 with increasing 𝑘.
Figure 6.4 presents the results for each model. To our surprise, the perfor-

mance of the static 5-gram model drops significantly during the first 20 chords
and continues to fall until around chord 60, after which it stagnates. This in-
dicates that the chord progressions in the beginning of the songs are easier
to predict by a static model—i.e., more closely follow the general chord pro-
gressions the model learned, while those later in the songs deviate more from
common patterns.

In comparison, the RNN-based models do not suffer during the first 20
chords. Although they show similar behaviour during the first 20 chords, the
LSTM and GRU models also behave differently later in the songs: both the
GRU and the LSTM improve from around chord 40, whereas the performance
of the simple RNN continues to drop until around chord 60 (similarly to the
5-gram model, but on a higher level).
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Since predicting chords later in the songs is more difficult than at the begin-
ning, but the LSTM and the GRU are only negligibly affected by this (they
almost recover to their performance at the beginning), we argue that both the
GRU and the LSTM models are better capable of adapting to the current song.
One explanation for this might be that these models privilege intra-song statistics
during prediction. Thus, rather than learning a global, generic model trained on
the statistics of an entire corpus, we conjecture that these models also acquire and
apply knowledge about the immediate past.

6.6 Conclusion
We presented a comprehensive evaluation of chord language models, with a
focus on RNN-based architectures. We discovered the best performing hyper-
parameters, and trained and evaluated the models on a large compound dataset
consisting of various genres. Our results show that (i) all RNN-based models
outperform 𝑛-gram models, (ii) gated RNN cells such as the LSTM cell or the
GRU outperform simple RNNs, and (iii) that both LSTM and GRU networks
seem to adapt their predictions to what they observed in the past.

We conjecture that to improve the recently stagnant chord recognition results,
we need models with a better understanding of music than has been demon-
strated in previous state-of-the-art systems. This work is a first step towards this
goal.
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7
Integrating Language Models with

Acoustic Models

We know the importance of language models in domains such as speech recog-
nition, where hierarchical grammar, pronunciation and context models reduce
word error rates by a large margin. However, the degree to which higher-order
language models improve chord recognition results yet remains unexplored.
To shed light on this topic, we will introduce a probabilistic model combines
the frame-wise predictions of an acoustic model with chord-level harmonic
language models. We will then apply 𝑛-gram chord language models on top of
an neural network based acoustic model. We will also evaluate to which degree
this combination suffers from acoustic model over-confidence, a typical problem
with neural acoustic models (Chorowski and Jaitly, 2016).

The content of this chapter is mainly based on Korzeniowski and Widmer
(2018a), with the description of the probabilistic model taken from Korzeniowski
and Widmer (2018c).

7.1 A Probabilistic Chord Recognition Model

Until now, we have discussed acoustic models and language models separately.
We will now connect these two themes into an integrated chord recognition
system. In the following, we will develop a probabilistic model that allows for
combining an acoustic model with explicit modelling of chord transitions and
chord durations. This allows us to deploy language models on the chord level,
not the frame level.
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Figure 7.1: Generative chord sequence model. Each chord label u�u� depends on all previous labels
u�1∶u�−1.

Chord recognition is a sequence labelling task, i.e. we need to assign a categori-
cal label 𝑦u� ∈ 𝒴 (a chord from a chord alphabet) to each member of the observed
sequence u�u� (an audio frame), such that 𝑦u� is the harmonic interpretation of the
music represented by u�u� . Formally,

�̂�1∶u� = argmax
u�1∶u�

𝑃 (u�1∶u� ∣ u�1∶u�) . (7.1)

Assuming a generative structure as shown in Fig. 7.1, the probability distribu-
tion factorises as

𝑃(u�1∶u� ∣ u�1∶u�) ∝ ∏
u�

1
𝑃(𝑦u�)

𝑃u� (𝑦u� ∣ u�u�) 𝑃u� (𝑦u� ∣ 𝑦1∶u�−1) , (7.2)

where 𝑃u� is the acoustic model, 𝑃u� the temporal model, and 𝑃(𝑦u�) the label
prior which we assume to be uniform, following Renals et al. (1994).

The temporal model 𝑃u� predicts the chord symbol of each audio frame. As
discussed in Chapter 5, this prevents both finite-context models (such as HMMs
or CRFs) and unrestricted models (such as RNNs) to learn the underlying
musical language of harmony, modelling the symbolic chord sequence on a
frame-wise basis is dominated by self-transitions. To enable this, we disentangle
𝑃u� into a harmonic language model 𝑃u� and a chord duration model 𝑃u�, where
the former models the harmonic progression of a piece, and the latter models the
duration of chords.

The language model 𝑃u� is defined as 𝑃u� (�̄�u� ∣ �̄�1∶u�−1), where �̄�1∶u� = 𝐶 (𝑦1∶u�),
and 𝐶 (⋅) is a sequence compression mapping that removes all consecutive
duplicates of a chord (e.g. 𝐶 ((𝐶, 𝐶, 𝐹, 𝐹, 𝐺)) = (𝐶, 𝐹, 𝐺)). The frame-wise
labels 𝑦1∶u� are thus reduced to chord changes, and 𝑃u� can focus on modelling
these.

The duration model 𝑃u� is defined as 𝑃u� (𝑠u� ∣ 𝑦1∶u�−1), where 𝑠u� ∈ {c, s}
indicates whether the chord changes (c) or stays the same (s) at time 𝑡. 𝑃u� thus
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Figure 7.2: Chord-time lattice representing the temporal model u�u� , split into a language model
u�u� and duration model u�u�. Here, ū�1∶u� represents a concrete chord sequence. For each audio
frame, we move along the time-axis to the right. If the chord changes, we move diagonally to the
upper right. This corresponds to the first case in Eq. 7.3. If the chord stays the same, we move
only to the right. This corresponds to the second case of the equation.

only predicts whether the chord will change or not, but not which chord will
follow—this is left to the language model 𝑃u�. This definition allows 𝑃u� to
consider the preceding chord labels 𝑦1∶u�−1; in practice, we restrict the model to
only depend on the preceding chord changes, i.e. 𝑃u� (𝑠u� ∣ 𝑠1∶u�−1). Exploring more
complex models of harmonic rhythm is left for future work.

Using these definitions, the temporal model 𝑃u� factorises as

𝑃u� (𝑦u� ∣ 𝑦1∶u�−1) = {
𝑃u� (�̄�u� ∣ �̄�1∶u�−1) 𝑃u� (c ∣ 𝑦1∶u�−1) if 𝑦u� ≠ 𝑦u�−1
𝑃u� (s ∣ 𝑦1∶u�−1) else

. (7.3)

The chord progression can then be interpreted as a path through a chord-time
lattice as shown in Fig. 7.2.

This model cannot be decoded efficiently at test-time because each 𝑦u� depends
on all predecessors. We will thus use either models that restrict these connec-
tions to a finite past (such as higher-order Markov models in this chapter) or
use approximate inference methods for other models (such as RNNs, used in
Chapter 8).

The proposed probabilistic structure opens various possibilities for further
work: we could explore better language models (e.g. by using more sophisticated
smoothing techniques, or RNN-based models), or develop more intelligent dura-
tion models (e.g. taking into account the tempo and the harmonic rhythm of a
song). While we focus on simple duration models and finite-context language
models in this chapter, we will explore more complex models in Chapter 8.

57



7.2 Models

7.2.1 Acoustic Model
The acoustic model used in this chapter is a minor variation of the one intro-
duced in Chapter 4. It is a VGG-style (Simonyan and Zisserman, 2014) fully
convolutional neural network with 3 convolutional blocks: the first consists of 4
layers of 32 3×3 filters, followed by 2 × 1max-pooling in frequency; the second
comprises 2 layers of 64 such filters followed by the same pooling scheme; the
third is a single layer of 128 12×9 filters. Each of the blocks is followed by feature-
map-wise dropout with probability 0.2, and each layer is followed by batch
normalisation (Ioffe and Szegedy, 2015) and an ELU activation function (Clevert
et al., 2016). Finally, a linear convolution with 25 1×1 filters followed by global
average pooling and a softmax produces the chord class probabilities 𝑃u�(𝑦u� ∣ u�u�).
The main differences to the model in Chapter 4 are thus the use of ELU activa-
tion functions and that dropout is performed per feature map (selected feature
maps are deactivated completely).

The input to the network is a 1.5 s patch of a quarter-tone spectrogram com-
puted using a logarithmically spaced triangular filter bank. Concretely, we
process the audio at a sample rate of 44 100Hz using the STFT with a frame size
of 8192 and a hop size of 4410. Then, we apply to the magnitude of the STFT
a triangular filter bank with 24 filters per octave between 65Hz and 2 100Hz.
Finally, we take the logarithm of the resulting magnitudes to compress the in-
put range. See Chapter 4 for a detailed description of the input processing and
training schemes.

Neural networks tend to produce overconfident predictions, which leads to
probability distributions with high peaks. This causes a weaker training signal
because the loss function saturates, and makes the acoustic model dominate the
language model at test time (Chorowski and Jaitly, 2016). Here, we investigate
two approaches to mitigate these effects: using a temperature softmax in the
classification layer of the network, and training using smoothed labels.

The temperature softmax replaces the regular softmax activation function at
test time with

𝜎 (u�)u� =
𝑒u�u�/u�

∑u�
u�=1 𝑒

u�u�/u�
, (7.4)

where u� is a real vector. High values for 𝜏make the resulting distribution
smoother. With 𝜏 = 1, the function corresponds to the standard softmax.
The advantage of this method is that the network does not need to be retrained.

Target smoothing, on the other hand, trains the network with with a smoothed
version of the target labels. Here, we explore three ways of smoothing: uniform
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Figure 7.3: Markov chain modelling the duration of a chord segment. The probability of staying
in one of the depicted states follows the negative binomial distribution.

smoothing, where a proportion of 1 − 𝛽 of the correct probability is assigned uni-
formly to the other classes; unigram smoothing, where the smoothed probability
is assigned according to the class distribution in the training set (Szegedy et al.,
2015); and target smearing, where the target is smeared in time using a running
mean filter. The latter is inspired by a similar approach by Ullrich et al. (2014) to
counteract inaccurate segment boundary annotations.

7.2.2 Language Model
We designed the temporal model in Eq. 7.3 in a way that enables chord changes
to be modelled explicitly via 𝑃u�(�̄�u� ∣ �̄�1∶u�−1) (recall that �̄�1∶u� is the compressed
chord sequence, i.e. without repeated symbols). This formulation allows to use
all past chords to predict the next. While this is a powerful and general notion,
it prohibits efficient exact decoding of the sequence. We would have to rely on
approximate methods to find �̂�1∶u� . However, we can restrict the number of past
chords the language model can consider, and use higher-order Markov models
for exact decoding. To achieve that, we use 𝑛-grams for language modelling in
this chapter.
𝑛-gram language models are Markovian probabilistic models that assume only

a fixed-length history (of length 𝑛 − 1) to be relevant for predicting the next
symbol. This fixed-length history allows the probabilities to be stored in a table,
with its entries computed using maximum-likelihood estimation (MLE)—i.e., by
counting occurrences in the training set.

With larger 𝑛, the sparsity of the probability table increases exponentially,
because we only have a finite number of 𝑛-grams in our training set. We tackle
this problem using Lidstone smoothing, and add a pseudo-count 𝛼 to each
possible 𝑛-gram. We determine the best value for 𝛼 for each model using the
validation set.

7.2.3 Duration Model
The focus of this chapter is on how to meaningfully incorporate chord language
models beyond simple first-order transitions. We thus use only a simple duration

59



0 10 20 30 40 50 60
Chord duration (audio frames)

0.00

0.02

0.04

0.06

Pr
ob

ab
ili

ty

K = 4, p = 0.242, Log-P = -4.22
K = 2, p = 0.098, Log-P = -3.83

Figure 7.4: Histogram of chord durations with two configurations of the negative binomial
distribution. The log-probability is computed on a validation fold.

model based on the negative binomial distribution, with the probability mass
function

𝑃(𝑘) = (𝑘 + 𝐾 − 1
𝐾 − 1 )𝑝u�(1 − 𝑝)u�,

where𝐾 is the number of failures, 𝑝 the failure probability, and 𝑘 the number
of successes given𝐾 failures. For our purposes, 𝑘 + 𝐾 is the length of a chord in
audio frames.

The main advantage of this choice is that a negative binomial distribution
is easily represented using only few states in a HMM (see Fig. 7.3), while still
reasonably modelling the length of chord segments (see Fig. 7.4). For simplicity,
we use the same duration model for all chords. The parameters (𝐾 , the number
of states used for modelling the duration, and 𝑝, the probability of moving to the
next state) are estimated using MLE.

7.2.4 Model Integration
If we combine an 𝑛-gram language model with a negative binomial duration
model using Eq. 7.3, the temporal model 𝑃u� becomes a Hierarchical Hidden
Markov Model (Fine et al., 1998) with a higher-order Markov model on the
top level (the language model) and a first-order HMM at the second level (see
Fig. 7.5a). We can translate the hierarchical HMM into a first-order HMM; this
will allow us to use many existing and optimised HMM implementations.

To this end, we first transform the higher-order HMM on the top level
into a first-order one as shown e.g. by Hadar and Messer (2009): we factor
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(b) Flattened version of the First-Order Hierarchical HMM.

Figure 7.5: Exemplary Hierarchical HMM and its flattened version. We left out incoming and
outgoing transitions of the chord states for clarity (except C → A and the ones indicated in
grey). The model uses 2 states for duration modelling, with “e” referring to the final state on the
duration level (see Fine et al. (1998) for details). Although we depict a first-order language model
here, the same transformation works for higher-order models.

the dependencies beyond first-order into the HMM state, considering that
self-transitions are impossible as

𝒴u� = {(𝑦1, … , 𝑦u�) ∶ 𝑦u� ∈ 𝒴, 𝑦u� ≠ 𝑦u�+1} ,

where 𝑛 is the order of the 𝑛-gram model. Semantically, (𝑦1, … , 𝑦u�) represents
chord 𝑦1, having seen 𝑦2, … , 𝑦u� in the immediate past. This increases the number
of states from |𝒴| to |𝒴| ⋅ (|𝒴| − 1)u�−1.

We then flatten out the hierarchical HMM by combining the state spaces of
both levels as𝒴u� × [1..𝐾], and connecting all incoming transitions of a chord
state to the corresponding first duration state, and all outgoing transitions from
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the last duration state (where the outgoing probabilities are multiplied by 𝑝).
Formally,

𝒴 (u�)
u� = {(u�, 𝑘) ∶ u� ∈ 𝒴u�, 𝑘 ∈ [1..𝐾]} ,

with the transition probabilities defined as

𝑃((u�, 𝑘) ∣ (u�, 𝑘)) = 1 − 𝑝,
𝑃((u�, 𝑘 + 1) ∣ (u�, 𝑘)) = 𝑝,
𝑃((u�, 1) ∣ (u�′, 𝐾)) = 𝑃u�(𝑦1 ∣ 𝑦2∶u�) ⋅ 𝑝,

where 𝑦2∶u� = 𝑦′1∶u�−1. All other transitions have zero probability. Fig. 7.5b shows
the HMM from Fig. 7.5a after the transformation.

The resulting model is similar to a higher-order duration-explicit HMM
(DHMM). The main difference is that we use a compact duration model that
can assign duration probabilities using few states, while standard DHMMs
do not scale well if longer durations need to be modelled (their computation
increases by a factor of u�2/2, where𝐷 is the longest duration to be modelled (Ra-
biner, 1989)). For example, Chen et al. (2012) uses first-order DHMMs to decode
beat-synchronised chord sequences, with𝐷 = 20. In our case, we would need
a much higher𝐷, since our model operates on the frame level, which would
result in a prohibitively large state space. In comparison, our duration models
use𝐾 = 2, which significantly reduces the computational burden.

7.3 Experiments
Our experiments aim at uncovering (i) if acoustic model overconfidence is a
problem in this scenario, (ii) whether smoothing techniques can mitigate it, and
(iii) whether and to which degree chord language modelling improves chord
recognition results. To this end, we investigated the effect of various parameters:
softmax temperature 𝜏 ∈ {0.5, 1.0, 1.3, 2.0}, smoothing type (uniform,
unigram, and smear), smoothing intensity 𝛽 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}
and smearing width 𝑤 ∈ {3, 5, 10, 15}, and the language model order𝑁 ∈
{2, 3, 4}.

The experiments were carried out using 4-fold cross-validation on a com-
pound dataset consisting of the following sub-sets: Isophonics1: 180 songs by the
Beatles, 19 songs by Queen, and 18 songs by Zweieck, 10:21 hours of audio; RWC
Popular (Goto et al., 2002): 100 songs in the style of American and Japanese pop
music, 6:46 hours of audio; Robbie Williams (Di Giorgi et al., 2013): 65 songs by

1http://isophonics.net/datasets
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Robbie Williams, 4:30 of audio; andMcGill Billboard (Burgoyne et al., 2011):
742 songs sampled from the American billboard charts between 1958 and 1991,
44:42 hours of audio. The compound dataset thus comprises 1125 unique songs,
and a total of 66:21 hours of audio.

We focus on the major/minor chord vocabulary (i.e. major and minor chords
for each of the 12 semitones, plus a “no-chord” class, totalling 25 classes). The
evaluation measure we are interested in is thus the weighted chord symbol recall
of major and minor chords, WCSR = u�u�/u�u�, where 𝑡u� is the total time the our
system recognises the correct chord, and 𝑡u� is the total duration of annotations of
the chord types of interest.

7.3.1 Results and Discussion
We analyse the interactions between temperature, smoothing, and language
modelling in Fig. 7.6 and Fig. 7.7. Uniform smoothing seems to perform best,
while increasing the temperature in the softmax is unnecessary if smoothing is
used. On the other hand, target smearing performs poorly; it is thus not a proper
way to cope with uncertainty in the annotated chord boundaries.

The results indicate that in our scenario, acoustic model overconfidence is not
a major issue. The reason might be that the temporal model we use in this work
allows for exact decoding. If we were forced to perform approximate inference
(e.g. by using a RNN-based language model), this overconfidence could cut off
promising paths early. Target smoothing still exhibits a positive effect during the
training of the acoustic model, and can be used to fine-balance the interaction
between acoustic and temporal models.

Further, we see consistent improvement the stronger the language model is
(i.e., the higher 𝑛 is). Although we were not able to evaluate models beyond
𝑛 = 4 for all configurations, we ran a 5-gram model on the best configuration for
𝑛 = 4. The results are shown in Table 7.1.

None Dur. 2-gram 3-gram 4-gram 5-gram

78.51 79.33 79.59 79.69 79.81 79.88

Table 7.1: WCSR for the compound dataset. For these results, we use a softmax temperature of
u� = 1.0 and uniform smoothing with u� = 0.9.

Although consistent, the improvement is marginal compared to the effect
language models show in other domains such as speech recognition. There are
two possible interpretations of this result: (i) even if modelled explicitly, chord
language models contribute little to the final results, and the most important part
is indeed modelling the chord duration; and (ii) the language models we used
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Figure 7.6: The effect of temperature u�, smoothing type, and smoothing intensity on the WCSR.
The x-axis shows the smoothing intensity: for uniform and unigram smoothing, u� indicates
how much probability mass was kept at the true label during training; for target smearing, u�
is the width of the running mean filter used for smearing the targets in time. For these results,
a 2-gram language model was used, but the outcomes are similar for other language models.
The key observations are the following: (i) target smearing is always detrimental; (ii) uniform
smoothing works slightly better than unigram smoothing (in other domains, authors report
the contrary (Chorowski and Jaitly, 2016)); and (iii) smoothing improves the results, however,
excessive smoothing is harmful in combination with higher softmax temperatures (a relation we
explore in greater detail in Fig. 7.7).

are simply not good enough to make a major difference. While the true reason
yet remains unclear, the structure of the temporal model we propose enables the
investigation of both possibilities, because it makes their contributions explicit.

Finally, our results confirm the importance of duration modelling as indicated
by Chen et al. (2012). Although the duration model we use here is simplistic, it
improves results considerably. However, in further informal experiments, we
found that it underestimates the probability of long chord segments, which
impairs results. This indicates that there is still potential for improvement in this
part of our model.
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7.4 Conclusion
In this chapter, we proposed a probabilistic structure for the temporal model of
chord recognition systems. This structure disentangles a chord language model
from a chord duration model. We then applied 𝑛-gram chord language models
within this structure and evaluated various properties of the system. The key
outcomes are that (i) acoustic model overconfidence plays only a minor role
(but target smoothing still improves the acoustic model), (ii) chord duration
modelling improves results considerably, which confirms prior studies (Chen
et al., 2012; Cho and Bello, 2014), and (iii) while employing 𝑛-gram models also
improves the results, their effect is marginal compared to other domains such as
speech recognition.

Why is this the case? Static 𝑛-gram models might only capture global statistics
of chord progressions, and these could be too general to guide and correct
predictions of the acoustic model. More powerful models may be required. As
shown in Chapter 6, RNN-based chord language models are able to adapt to the
currently processed song, and thus might be more suited for the task at hand.

The proposed probabilistic structure thus opens various possibilities for
future work. We could explore better language models, e.g. by using more
sophisticated smoothing techniques, RNN-based models (see Chapter 8), or
probabilistic models that take into account the key of a song (the probability
of chord transitions varies depending on the key). More intelligent duration
models could take into account the tempo and harmonic rhythm of a song (the
rhythm in which chords change, see also Chapter 8). Using the model presented
in this chapter, we could then link the improvements of each individual model to
improvements in the final chord recognition score.
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Figure 7.7: Interaction of temperature u�, smoothing intensity u� and language model with respect
to the WCSR. We show four language model configurations: none means using the predictions of
the acoustic model directly; dur means using the chord duration model, but no chord language
model; and u�-grammeans using the duration model with the respective language model. Here,
we only show results using uniform smoothing, which turned out to be the best smoothing
technique we examined in this chapter (see Fig. 7.6). We observe the following: (i) Even simple
duration modelling accounts for the majority of the improvement (in accordance with (Chen
et al., 2012)). (ii) Chord language models further improve the results—the stronger the language
model, the bigger the improvement. (iii) Temperature and smoothing interact: at u� = 1, the
amount of smoothing plays only a minor role; if we lower u� (and thus make the predictions more
confident), we need stronger smoothing to compensate for that; if we increase both u� and the
smoothing intensity, the predictions of the acoustic model are over-ruled by the language model,
which shows to be detrimental. (iv) Smoothing has an additional effect during the training of
the acoustic model that cannot be achieved using post-hoc changes in softmax temperature.
Unsmoothed models never achieve the best result, regardless of u�.
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8
Harmonic Language and Duration
Modelling with Recurrent Neural

Networks

In the previous chapter, we devised a probabilistic chord recognition framework
that allows for integrating harmonic language models with acoustic models. We
then evaluated finite-context language models with a simple, static duration
model within this framework. Let us now go a step further, and develop more
realistic chord language models and chord duration models based on RNNs. We
will explore how these models affect chord recognition results, and show that the
proposed integrated model out-performs existing temporal models.

This work has been previously published in Korzeniowski and Widmer
(2018c).

8.1 Models
The chord recognition model represented by Equations 7.2 and 7.3 requires
three sub-models: an acoustic model 𝑃u� that predicts a chord distribution from
each audio frame, a duration model 𝑃u� that predicts when chords change, and a
language model 𝑃u� that predicts the progression of chords in the piece.

8.1.1 Acoustic Model
The acoustic model 𝑃u� is the same convolutional neural network as in Chap-
ter 7. As we have seen, slight target smoothing improves the results, as does
using a temperature softmax (see Eq. 7.4). We use both techniques: first, we
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Figure 8.1: Sketch of a RNN used for next step prediction, where u�u� refers to an arbitrary
categorical input, u�(⋅) is a (learnable) input embedding vector, and u�u� the hidden state at step u�.
Arrows denote matrix multiplications followed by a non-linear activation function. The input is
padded with a dummy input u�0 in the beginning. The network then computes the probability
distribution for the next symbol.

train the model using uniform smoothing (i.e. we assign 0.1 of the probability
mass to other classes during training); second, during inference, we apply the
temperature softmax function with 𝜏 = 1.3.

8.1.2 Language Model
The language model 𝑃u� predicts the next chord, regardless of its duration, given
the chord sequence it has previously seen. As shown in Chapter 6, RNN-based
models perform better than n-gram models at this task.

We follow the set-up introduced by Mikolov et al. (2010) and use a recurrent
neural network for next-chord prediction. The network’s task is to compute a
probability distribution over all possible next chord symbols, given the chord
symbols it has observed before (see Chapter 6 for details. Figure 8.1 shows an
RNN in a general next-step prediction task. In our case, the inputs 𝑧u� are the
chord symbols given by 𝐶 (𝑦1∶u�).

We will describe in detail the network’s hyper-parameters in Section 8.2, where
we will also evaluate the effect the language models have on chord recognition.

8.1.3 Duration Model
The duration model 𝑃u� predicts whether the chord will change in the next time
step. This corresponds to modelling the duration of chords. Existing temporal
models induce implicit duration models: for example, an HMM implies an
exponential chord duration distribution (if one state is used to model a chord),
or a negative binomial distribution (if multiple left-to-right states are used per
chord). However, such duration models are simplistic, static, and do not adapt
to the processed piece.
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An explicit duration model has been explored by Chen et al. (2012), where
beat-synchronised chord durations were stored as discrete distributions. Their
approach is useful for beat-synchronised models, but impractical for frame-wise
models—the probability tables would become too large, and data too sparse
to estimate them. Since our approach avoids the potentially error-prone beat
synchronisation, the approach of Chen et al. (2012) does not work in our case.

Instead, we opt to use recurrent neural networks to model chord dura-
tions. These models are able to adapt to characteristics of the processed data
(as shown in Chapter 6), and have shown great potential in processing periodic
signals (Böck and Schedl, 2011) (and chords do change periodically within a
piece). To train an RNN-based duration model, we set up a next-step-prediction
task, identical in principle to the set-up for harmonic language modelling:
the network has to compute the probability of a chord change in the next
time step, given the chord changes it has seen in the past. We thus simplify
𝑃u�(𝑠u� ∣ 𝑦1∶u�−1) =̂ 𝑃u�(𝑠u� ∣ 𝑠1∶u�−1), as mentioned earlier. Again, see Fig. 8.1 for an
overview (for duration modelling, replace 𝑧u� with 𝑠u�).

In Section 8.2, we will describe in detail the hyper-parameters of the networks
we employed, and compare the properties of various settings to baseline duration
models. We will also assess the impact on the duration modelling quality on the
final chord recognition result.

8.1.4 Model Integration
Dynamic models such as RNNs have one main advantage over their static
counter-parts (e.g. 𝑛-gram models for language modelling or HMMs for dura-
tion modelling): they consider all previous observations when predicting the
next one. As a consequence, they are able to adapt to the piece that is currently
processed—they assign higher probabilities to sub-sequences of chords they have
seen earlier (see Chapter 6), or predict chord changes according to the harmonic
rhythm of a song (see Section 8.2.3). The flip side of the coin is, however, that
this property prohibits the use of dynamic programming approaches for efficient
decoding. We cannot exactly and efficiently decode the best chord sequence
given the input audio.

Hence we have to resort to approximate inference. In particular, we employ
hashed beam search (Sigtia et al., 2015) to decode the chord sequence. General
beam search restricts the search space by keeping only the𝑁u� best solutions
up to the current time step. (In our case, the𝑁u� best paths through all possi-
ble chord-time lattices, see Fig. 7.2.) However, as pointed out by Sigtia et al.
(2015), the beam might saturate with almost identical solutions, e.g. the same
chord sequence differing only marginally in the times the chords change. Such
pathological cases may impair the final estimate. To mitigate this problem,
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hashed beam search forces the tracked solutions to be diverse by pruning similar
solutions with lower probability.

The similarity of solutions is determined by a task-specific hash function. For
our purpose, we define the hash function of a solution to be the last𝑁ℎ chord
symbols in the sequence, regardless of their duration; formally, the hash function
𝑓ℎ (𝑦1∶u�) = �̄�(u�−u�ℎ)∶u�. (Recall that �̄�1∶u� = 𝐶 (𝑦1∶u�).) In contrast to the hash
function originally proposed by Sigtia et al. (2015), which directly uses 𝑦(u�−u�ℎ)∶u� ,
our formulation ensures that sequences that differ only in timing, but not in
chord sequence, are considered similar.

To summarise, we approximately decode the optimal chord transcription as
defined in Eq. 7.1 using hashed beam search, which at each time step keeps the
best𝑁u� solutions, and at most𝑁u� similar solutions.

8.2 Experiments
In our experiments, we will first evaluate harmonic language and duration
models individually. Here, we will compare the proposed models to common
baselines. Then, we will integrate these models into the chord recognition
framework we outlined in Section 7.1, and evaluate how the individual parts
interact in terms of chord recognition score.

8.2.1 Data
We use the following datasets in 4-fold cross-validation. Isophonics1: 180 songs
by the Beatles, 19 songs by Queen, and 18 songs by Zweieck, 10:21 hours of au-
dio; RWC Popular (Goto et al., 2002): 100 songs in the style of American and
Japanese pop music, 6:46 hours of audio; Robbie Williams (Di Giorgi et al.,
2013): 65 songs by Robbie Williams, 4:30 of audio; andMcGill Billboard (Bur-
goyne et al., 2011): 742 songs sampled from the American billboard charts
between 1958 and 1991, 44:42 hours of audio. The compound dataset thus
comprises 1125 unique songs, and a total of 66:21 hours of audio.

Furthermore, we used the following data sets (with duplicates removed) as
additional data for training the language and duration models: 173 songs from
the Rock corpus (de Clercq and Temperley, 2011); a subset of 160 songs from the
UsPop20022 for which chord annotations are available3; 291 songs fromWeimar
Jazz4, with chord annotations taken from lead sheets of Jazz standards; and Jay

1http://isophonics.net/datasets
2https://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
3https://github.com/tmc323/Chord-Annotations
4http://jazzomat.hfm-weimar.de/dbformat/dboverview.html
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GRU-512 GRU-32 4-gram 2-gram

log-P -1.293 -1.576 -1.887 -2.393

Table 8.1: Language model results: average log-probability of the correct next chord computed
by each model.

Chou (Deng and Kwok, 2016), a small collection of 29 Chinese pop songs.
We focus on the major/minor chord vocabulary, and following (Cho and

Bello, 2014), map all chords containing a minor third to minor, and all others to
major. This leaves us with 25 classes: 12 root notes × {major,minor} and the ‘no-
chord’ class.

8.2.2 Language Models
The performance of neural networks depends on a good choice of hyper-
parameters, such as number of layers, number of units per layer, or unit type (e.g.
vanilla RNN, gated recurrent unit (GRU) (Cho et al., 2014) or long short-term
memory unit (LSTM) (Hochreiter and Schmidhuber, 1997)). The findings in
Chapter 6 provide a good starting point for choosing hyper-parameter settings
that work well. However, we strive to find a simpler model to reduce the compu-
tational burden at test time. To this end, we perform a grid search in a restricted
search space, using the validation score of the first fold. We search over the fol-
lowing settings: number of layers ∈ {1, 2, 3}, number of units ∈ {256, 512},
unit type ∈ {GRU,LSTM}, input embedding ∈ {one-hot,�8,�16,�24},
learning rate ∈ {0.001, 0.005}, and skip connections ∈ {on, off}. Other hyper-
parameters were fixed for all trials: we train the networks for 100 epochs using
stochastic gradient descent with mini-batches of size 4, employ the Adam update
rule (Kingma and Ba, 2015), and starting from epoch 50, linearly anneal the
learning rate to 0.

To increase the diversity in the training data, we use two data augmenta-
tion techniques, applied each time we show a piece to the network. First, we
randomly shift the key of the piece; the network can thus learn that harmonic
relations are independent of the key, as in roman numeral analysis. Second, we
select a sub-sequence of random length instead of the complete chord sequence;
the network thus has to learn to cope with varying context sizes.

The best model turned out to be a single-layer network of 512 GRUs, with
a learnable 16-dimensional input embedding and without skip connections,
trained using a learning rate of 0.005. We compare this model and a smaller,
but otherwise identical RNN with 32 units, to two baselines: a 2-gram model,
and a 4-gram model. Both can be used for chord recognition in a higher-order
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Figure 8.2: Chord embedding projected into 2D using PCA (left); Tonnetz of triads (right). The
“no-chord” class resides in the centre of the embedding. Major chords are upper-case and orange,
minor chords lower-case and blue. Clusters in the projected embedding and the corresponding
positions in the Tonnetz are marked in colour. If projected into 3D (not shown here), the chord
clusters split into a lower and upper half of four chords each. The chords in the lower halves are
shaded in the Tonnetz representation.

HMM, as presented in Chapter 7. We train the 𝑛-gram models using maximum
likelihood estimation with Lidstone smoothing as described in Chapter 6, using
the key-shift data augmentation technique (sub-sequence cropping is futile for
finite context models). As evaluation measure, we use the average log-probability
of predicting the correct next chord. Table 8.1 presents the test results. The GRU
models predict chord sequences with much higher probability than the baselines.

When we look into the input embedding 𝑣(⋅), which was learned by the
RNN during training from a random initialisation, we observe an interesting
positioning of the chord symbols (see Figure 8.2). We found that similar patterns
develop for all 1-layer GRUs we tried, and these patterns are consistent for all
folds we trained on. We observe (i) that chords form three clusters around the
centre, in which the minor chords are farther from the centre than major chords;
(ii) that the clusters group major and minor chords with the same root, and the
distance between the roots are minor thirds (e.g. C, E, F, A); (iii) that clockwise
movement in the circle of fifths corresponds to clockwise movement in the
projected embedding; and (iv) that the way chords are grouped in the embedding
corresponds to how they are connected in the Tonnetz.

At this time, we cannot provide an explanation for these automatically emerg-
ing patterns. However, they warrant a further investigation to uncover why this
specific arrangement seems to benefit the predictions of the model.
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GRU-256 GRU-16 Neg. Binom. Exp.

log-P −2.014 −2.868 −3.946 −4.003

Table 8.2: Duration model results: average log-probability of chord durations computed by each
model.

8.2.3 Duration Models

As for the language model, we performed a grid search on the first fold to find
good choices for the recurrent unit type ∈ {vanilla RNN,GRU,LSTM}, and
number of recurrent units ∈ {16, 32, 64, 128, 256} for the LSTM and GRU,
and {128, 256, 512} for the vanilla RNN. We use only one recurrent layer for
simplicity. We found networks of 256 GRU units to perform best; although this
indicates that even bigger models might give better results, for the purposes of
this study, we think that this configuration is a good balance between prediction
quality and model complexity.

The models were trained for 100 epochs using the Adam update rule (Kingma
and Ba, 2015) with a learning rate linearly decreasing from 0.001 to 0. The data
was processed in mini-batches of 10, where the sequences were cut in excerpts
of 200 time steps (20 s). We also applied gradient clipping at a value of 0.001 to
ensure a smooth learning progress.

We compare the best RNN-based duration model with two baselines. The
baselines are selected because both are implicit consequences of using HMMs
as temporal model, as it is common in chord recognition. We assume a single
parametrisation for each chord; this ostensible simplification is justified, because
simple temporal models such as HMMs do not profit from chord informa-
tion (Chen et al., 2012; Cho and Bello, 2014). The first baseline we consider is
a negative binomial distribution. It can be modelled by a HMM using 𝑛 states
per chord, connected in a left-to-right manner, with transitions of probability
𝑝 between the states (self-transitions thus have probability 1 − 𝑝). The second,
a special case of the first with 𝑛 = 1, is an exponential distribution; this is the
implicit duration distribution used by all chord recognition models that employ
a simple 1-state-per-chord HMM as temporal model. Both baselines are trained
using maximum likelihood estimation.

To measure the quality of a duration model, we consider the average log-
probability it assigns to a chord duration. The results are shown in Table 8.2.
We further added results for the simplest GRU model we tried—using only 16
recurrent units—to indicate the performance of small models of this type. We
will also use this simple model when judging the effect of duration modelling on
the final result in Sec. 8.2.4. Both GRU models clearly out-perform the baselines.
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Figure 8.3: Probability of chord change computed by different models. Gray vertical dashed lines
indicate true chord changes.

Figure 8.3 shows the reason why the GRU performs so much better than
the baselines: as a dynamic model, it can adapt to the harmonic rhythm of
a piece, while static models are not capable of doing so. We see that a GRU
with 128 units predicts chord changes with high probability at periods of the
harmonic rhythm. It also reliably remembers the period over large gaps in which
the chord did not change (between seconds 61 and 76). During this time, the
peaks decay differently for different multiples of the period, which indicates
that the network simultaneously tracks multiple periods of varying importance.
In contrast, the negative binomial distribution statically yields a higher chord
change probability that rises with the number of audio frames since the last
chord change. Finally, the smaller GRU model with only 16 units also manages
to adapt to the harmonic rhythm; however, its predictions between the peaks are
noisier, and it fails to remember the period in the time without chord changes.

8.2.4 Integrated Models

The individual results for the language and duration models are encouraging,
but only meaningful if they translate to better chord recognition scores. This
section will thus evaluate if and how the duration and language models affect the
performance of a chord recognition system.

The acoustic model used in these experiments was trained for 300 epochs
(with 200 parameter updates per epoch) using a mini-batch size of 512 and the
Adam update rule with standard parameters. We linearly decay the learning rate
to 0 in the last 100 epochs.
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Model Root Maj/Min Seg.

2-gram / neg. binom. 81.2 79.5 80.4
GRU-512 / GRU-256 82.1 80.5 81.4

Table 8.3: Results of the standard model (2-gram language model with negative binomial
durations) compared to the best one (GRU language and duration models).

We compare all combinations of language and duration models presented in
the previous sections. For language modelling, these are the GRU-512, GRU-32,
4-gram, and 2-gram models; for duration modelling, these are the GRU-256,
GRU-16, and negative binomial models. (We leave out the exponential model,
because its results differ negligibly from the negative binomial one.) The models
are decoded using the Hashed Beam Search algorithm, as described in Sec. 8.2.4:
we use a beam width of𝑁u� = 25, where we track at most𝑁u� = 4 similar
solutions as defined by the hash function 𝑓ℎ, where the number of chords
considered is set to𝑁ℎ = 5. These values were determined by a small number of
preliminary experiments.

Additionally, we evaluate exact decoding results for the n-gram language
models in combination with the negative binomial duration distribution. This
will indicate how much the results suffer due to the approximate nature of beam
search.

As main evaluation metric, we use the weighted chord symbol recall (WCSR)
over the major/minor chord alphabet, as defined in (Pauwels and Peeters, 2013).
We thus compute WCSR = u�u�/u�u�, where 𝑡u� is the total duration of chord segments
that have been recognised correctly, and 𝑡u� is the total duration of chord seg-
ments annotated with chords from the target alphabet. We also report chord
root accuracy and a measure of segmentation (see Harte (2010), Section 8.3).
Table 8.3 compares the results of the standard model (the combination that
implicitly emerges in simple HMM-based temporal models) to the best model
found in this study. although the improvements are modest, they are consistent,
as shown by a paired t-test (𝑝 < 2.4869𝑒 − 23 for all differences).

Figure 8.4 presents the effects of duration and language models on the WCSR.
Better language and duration models directly improve chord recognition results,
as the WCSR increases linearly with higher log-probability of each model. As this
relationship does not seem to flatten out, further improvement of each model
type can still increase the score. We also observe that the approximate beam
search does not impair the result by much compared to exact decoding (compare
the dotted blue line in the upper plot with the solid one).
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76



8.3 Conclusion
In this chapter, we developed better duration and language models based on
recurrent neural networks, and employed them in the probabilistic chord
recognition framework presented in Chapter 7. We illustrated why the RNN-
based duration models perform better and are more meaningful than their static
counterparts implicitly employed in HMMs. (For a similar investigation for
chord language models, see Chapter 6.) Finally, we showed that improvements in
each of these models directly influence chord recognition results.

We hope that our contribution facilitates further research in harmonic lan-
guage and duration models for chord recognition. These aspects have been
neglected because they did not show great potential for improving the final re-
sult (Chen et al., 2012; Cho and Bello, 2014). However, as argued in the preceding
chapters, we believe that this was due to the improper assumption that temporal
models applied on the time-frame level can appropriately model musical knowl-
edge. The results presented here indicate that chord transitions modelled on the
chord level, and connected to audio frames via strong duration models, indeed
have the capability to improve chord recognition results.
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9
Key Classification: An Overview

9.1 The State of the Art

The musical key is the highest-level harmonic representation in Western tonal
music. The key of a piece defines its harmonic centre, gives meaning to its
harmonic progression, and provides the backdrop for the build-up and release
of harmonic tension. It thus plays a central role in understanding the semantic
content of a piece. Such understanding drives not only theoretical analyses of
music, but is also relevant for modern music creators, who mix samples from
various different pieces that fit well harmonically into a new composition.

However, deriving the key of a musical piece is a demanding task that only
experts can perform. It is thus impractical to annotate large music collections
by hand. Therefore, if we want to automatically detect tension and its release in
musical audio, if we want to find similarities in harmonic structure in recordings
of songs, or if we want to assist disc jockeys or creators of electronic music in
finding appropriate musical samples to work with, we need reliable methods that
extract the key from a musical piece.

Most key classification systems (e.g. Noland and Sandler (2007); Pauws
(2004); Temperley (1999); ?) conform to the same principle: first, they extract a
time-frequency representation of the audio (such as a spectrogram or a constant-
q-transform), and filter out nuisances (such as transient noise or de-tuning); then,
they map this representation to pitch-class-profiles (or, chroma vectors) in order
to be invariant to octaves and timbre; finally, they aggregate these features over
time, and match them with template vectors for each key.

Such systems typically report a single global key for a piece. This limitation
is reasonable for a variety of genres (like pop/rock or electronic music), but
fails to cope with pieces that contain key modulations (as common in classical
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music). Other drawbacks of such approaches include that key templates differ
for different musical genres (Faraldo et al., 2016) and favour one key mode over
another (Albrecht and Shanahan, 2013). This leads to key classification systems
that perform well only on the musical styles they were designed for. Although
there are attempts to address these issues (Bernardes et al., 2017), ideally, we
would want a model that handles different kinds of input autonomously, and
does not need human intervention to e.g. balance mode probabilities.

Another line of work considers estimating key and chords simultaneously,
e.g. (Di Giorgi et al., 2013; Mauch and Dixon, 2010b; Ni et al., 2012a; Pauwels and
Martens, 2014). Such systems aim at exploiting the musicological relationship
between key and chords in order to improve the accuracy of both. They typically
estimate local keys, and are thus able to cope with key modulations. However,
while they bear the potential to explain the harmonic content of musical audio
more holistically, dedicated systems currently seem to achieve better results1.

As with chords, deriving the key of a piece is a subjective endeavour, par-
ticularly if we want to consider key modulations. The exact position of a key
change in the piece is debatable, as is the question whether the key changed in
the first place. As with chord recognition, I will ignore the ramifications of this
subjectivity for the sake of this thesis, and assume the given annotations to be
absolute. Since the work presented in the following chapters focuses on the classi-
fication of a global key (on which experts tend to agree), I find this simplification
appropriate.

9.2 Contributions
This part of the thesis will take the task of key classification from hand-crafted
processing pipelines to end-to-end learnable models based on modern neural
networks. In Chapter 10, we will design a convolutional neural network that
mimics traditional key classification pipelines. We will show that such a data-
driven model generalises better than previous approaches, but still performs best
when trained for a specific genre. In Chapter 11, we will lift this constraint by
adapting the training procedure and network architecture of the model. This
will result in a key classifier that can be trained to work with multiple genres and
perform better than if trained for a specific one.

1See results of the yearly MIREX challenges at www.music-ir.org/mirex.
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10
Musical Key Classification using a
Convolutional Neural Network

This chapter targets the classification of a single global key for pieces of musical
audio. In contrast to previous works, we abandon hand-crafting or tuning
elements in the key classification pipeline. Instead, we employ a convolutional
neural network that encompasses the three stages of pre-processing, feature
extraction, and classification. Although neural networks have been used for key
classification, the existing approaches rely on a hand-crafted feature extraction
stage: for example, Sun et al. (2009) feeds a pitch class distribution matrix into
a neural network classifier; Dieleman et al. (2011) uses beat-aligned chroma and
timbre features as input. Our system operates directly on the spectrogram, and it
can estimate all its parameters from the data. To our knowledge, this is the first
work that replaces the complete key classification pipeline with a model that can
be optimised in an end-to-end manner1.

This work has been first published in Korzeniowski and Widmer (2017a).

10.1 Method

Our system consists of two steps: first, we compute from the audio a logarithmi-
cally filtered log-magnitude spectrogram. This process is detailed in Sec. 10.1.1.

1One might argue that (Ni et al., 2012a) is also an “end-to-end” system that detects both
chords and keys. However, they used feature extraction methods heavily based on expert
knowledge (tuning correction, harmonic-percussive source separation, beat synchronisation,
frequency-split chroma computation), and trained a dynamic Bayesian network whose structure
is based on domain knowledge. Also, its key classification performance was never evaluated.
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Then, we feed this time-frequency representation to the convolutional neural
network, described in Sec. 10.1.2, for classification.

10.1.1 Input Processing
We input a spectral representation of the audio to our models. Based on our
previous work on extracting harmonic information from audio as described
in Chapter 3 and 4, we first compute from the audio the magnitude spectro-
gram |u�| (frame size of 8 192 at 5 frames per second, where the sample rate is
44.100 kHz); then, we apply a filter bank u�△log with logarithmically spaced tri-
angular filters (24 bands per octave, from 65Hz to 2 100Hz), which results in a
time-frequency representation in which the fundamental frequencies of notes
are spaced linearly; finally, we logarithmise the magnitudes of the filtered spec-
trogram to compress the value range, resulting in the logarithmically filtered
log-magnitude spectrogram

u� = log (1 + u�△log |u�|) .

This representation is similar to a constant-q transform, but is much cheaper
to compute. Additionally, as shown by Kelz et al. (2016), the constant-q trans-
form does not necessarily lead to better results in tasks relying on pitch informa-
tion.

10.1.2 Model
The proposed neural network is designed to encompass all stages of the classic
key classification pipeline: a pre-processing stage of convolutional layers, a dense
layer that projects the feature maps into a short representation at the time-frame
level, a global averaging layer that aggregates this representation over time, and
a softmax classification layer that predicts the global key of a piece. Figure 10.1
shows our model’s architecture: five convolutional layers with 8 feature maps
computed by 5 × 5 kernels, followed by a dense layer with 48 units applied frame-
wise; this projection is then averaged over time and classified using a 24-way
softmax layer. All layers (except the softmax layer) use the exponential-linear
activation function (Clevert et al., 2016).

The convolutional layers constitute the first part of the “feature extraction”
equivalent in traditional key classification systems. They are intended to process
the input spectrogram, deal with detrimental factors such as noise or slight
detuning, and, together with the projection layer, compute a short frame-wise
description of harmonic content. This part of the network can process inputs of
arbitrary lengths. Its output is aggregated in the following layers.
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Figure 10.1: Neural network for musical key classification. Convolutions are 0-padded, i.e. the
feature maps keep the input shape. All layers are followed by exponential-linear activations (Clev-
ert et al., 2016), except the last, which is followed by a softmax.
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Before classification, an averaging layer reduces the extracted representation
to a fixed-length vector. We could employ other, more powerful methods (like
recurrent layers), but we found in preliminary experiments that they fail to
achieve better results.

Finally, a softmax classification layer predicts the global key for the audio. We
restrict ourselves to major and minor modes only, resulting in 24 possible classes
(12 tonics × {major,minor}) as output. This is a common restriction, since
most musical pieces are in either major or minor, and as of now, there are no
datasets with reliable song-level annotations of other modes.

10.1.3 Training
We train the model using stochastic gradient descent with momentum, back-
propagating through the network the categorical cross-entropy error between
true key label 𝑦u� and network output �̂�u�, and apply weight decay with a factor
of 10−4 for regularisation. The initial learning rate is 0.001, with a momentum
factor of 0.9. If validation accuracy did not increase within 10 epochs, we halve
the learning rate and continue training with the parameters that gave the best
results until then. After 100 epochs, we select the model that achieved the best
validation accuracy.

10.2 Experiments

Our experiments aim at (i) comparing the proposed system to reference systems,
and (ii) examining the effect that the type of training data (in our case, the musi-
cal genre) has on the results. Template-based algorithms require specialised key
templates for genres like electronic dance music in order to perform well (Faraldo
et al., 2016). We want to see if, and how strongly, our system is affected by this. In
the following, we discuss the data, the evaluation metrics, the reference systems,
and the different set-ups of our system that we used in the experiments.

10.2.1 Data
We use three datasets in the course of our experiments: the GiantSteps key
dataset (Knees et al., 2015), the GiantSteps-MTG key dataset, and a subset of the
McGill Billboard dataset (Burgoyne et al., 2011).

TheGiantSteps Key Dataset2 comprises 604 two-minute audio previews
from www.beatport.com, with key ground truth for each excerpt. It consists of

2https://github.com/GiantSteps/giantsteps-key-dataset
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various sub-genres of electronic music. We use this dataset for testing purposes
only, and will refer to it asGS.

TheGiantSteps MTG Key dataset 3, collected by Ángel Faraldo from the
Music Technology Group at Universitat Pompeu Fabra, comprises 1486 two-
minute audio previews from the same source. These excerpts are distinct from
the ones in the GS dataset. From this set, we only use excerpts labelled with a
single key and a high confidence for training (1077 pieces). We will refer to this
dataset asGSMTG.

TheMcGill Billboard Dataset4 comprises 742 unique songs sampled from
the American Billboard charts between 1958 and 1991, and thus consists of mostly
pop and rock music. Unfortunately, only the tonic, and not the mode (major
or minor), is annotated for each piece. We therefore estimate the mode using
the tonic and chord annotations, following a simple procedure for each piece:
1. select all chords whose root is the tonic; 2. if more than 90% of these chords
are major, the key mode is assumed to be major, and vice-versa for minor; 3. else,
discard the song, because we cannot confidently estimate the mode. Similarly,
we discard songs with multiple annotated tonics. This leaves us with 625 songs
with key annotations. We then divide the set into subsets of 62.5% for training,
12.5% for validation, and 25% for testing. The exact division and key ground
truths are available online5. We will refer to this dataset as BBTV and BBTE for
the train/validation and test sub-sets, respectively.

10.2.2 Data Augmentation

The datasets provide only few training data (1077 in GSMTG, 391 in BBTV),
compared to datasets used in computer vision (e.g. 40000 in CIFAR-10 or 60000
in MNIST). The generalisation capability of deep neural networks, however,
depends on a large number of training samples. We thus have to rely on data
augmentation to increase the number of training examples artificially.

Several augmentation techniques for audio input have been explored (Schlüter
and Grill, 2015), with pitch shifting being particularly popular in harmony-
related tasks, as used by Cho (2014); Humphrey and Bello (2012), and for training
the acoustic model for chord recognition in Chapter 4. Since pitch shifting is an
expensive time-domain operation, most works manipulate the time-frequency
representation to emulate it. In this work, however, we found that using a time-
domain pitch shifting algorithm6 directly on the audio gave better results in
terms of classification accuracy. We therefore shift each training song in the range

3https://github.com/GiantSteps/giantsteps-mtg-key-dataset
4http://ddmal.music.mcgill.ca/research/billboard
5http://www.cp.jku.at/people/korzeniowski/bb.zip
6We used the SoX software available at http://sox.sourceforge.net/.
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of -4 to +7 semitones (and adjust the target key accordingly), which increases the
amount of training data by a factor of 12.

10.2.3 Metrics
Evaluating key classification results requires a more detailed quantitative analysis
than computing accuracy scores. In particular, although we consider the task
to be a simple 24-way classification problem when designing the system, some
classes are semantically closer to each other than others. For example, the key
of A-minor is called the “relative minor” to the key of C-major, as they share all
pitch classes, and differ only in the tonic. Therefore, it is reasonable to consider
some errors to be more severe than others.

The MIREX evaluation campaign7 developed an evaluation strategy and
introduced a single weighted measure that reflects the above considerations.
Following their guidelines, key predictions can fall into the following categories:

Correct: if the tonic and the mode (major/minor) of prediction and target
correspond.

Fifth: if the tonic of the prediction is the fifth of the target (or vice versa), and
modes correspond.

Relative Minor/Major: if modes differ and either (a) the predicted mode is
minor and the predicted tonic is 3 semitones below the target, or (b) the
predicted mode is major and the predicted tonic is 3 semitones above the
target.

Parallel Minor/Major: if modes differ but the predicted tonic matches the
target.

Other: Prediction errors not caught by any category, i.e. the most severe errors.

We first compute the ratio of predictions that fall into each category. We then
calculate the MIREX weighted score as 𝑤 = 𝑟u�+0.5⋅𝑟u�+0.3⋅𝑟u�+0.2⋅𝑟u�, where 𝑟u�,
𝑟u� , 𝑟u� , and 𝑟u� are the ratios of the correct, fifth, relative minor/major, and parallel
minor/major, respectively. These ratios reveal more about the capability of the
algorithms than accuracy (i.e., the “correct” ratio) alone. They allow us to see the
kind of mistakes the system makes, and at the same time, assign a single number
for comparing its performance with others.

The ratios of the individual error categories cannot be compared in isolation,
but only in context with the other ratios. The only numbers that can be com-
pared individually are the weighted score (because it aggregates all error types),

7http://www.music-ir.org/mirex
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Test Set Method Train Set Weighted Correct Fifth Relative Parallel Other

GS CK1 GSMTG 74.3 67.9 6.8 7.1 4.3 13.9
CK2 BBTV 57.3 47.0 6.5 12.6 16.6 17.4
CK3 GSMTG, BBTV 69.2 61.9 6.8 8.6 6.3 16.4
EDMA 65.6 57.8 7.3 6.6 10.8 17.6
EDMM 70.1 63.7 8.6 2.7 6.5 18.5
EDMT 44.6 33.6 8.8 15.4 9.9 32.3
QM 50.4 39.6 11.9 13.2 4.3 31.0

BBTE CK1 GSMTG 72.8 62.5 7.6 13.2 12.5 4.2
CK2 BBTV 83.9 77.1 9.0 4.9 4.2 4.9
CK3 GSMTG, BBTV 79.7 70.8 9.7 9.0 6.3 4.2
EDMA 78.7 70.8 11.8 2.8 5.6 9.0
EDMM 28.9 14.6 2.1 16.0 42.4 25.0
EDMT 75.4 66.7 12.5 6.3 2.8 11.8
QM 60.9 52.1 11.8 4.2 8.3 23.6

Table 10.1: Results of various training configurations of our proposed model and of reference
systems. Boldface indicates best results. GS and GSMTG refer to the GiantSteps datasets (elec-
tronic music), BB* to various subsets of the Billboard dataset (pop/rock music). CK* denote
the proposed model trained on different data sets, EDM* and QM denote reference systems
by (Cannam et al., 2016; Faraldo et al., 2016).

percentage of correct classifications (because it corresponds to classification accu-
racy), and the “other” error ratio (because it tells us how often a system predicts
unrelated keys). That is why, in Table 10.1, we will highlight the best results only
for these categories.

10.2.4 Setups and Reference Systems

We train our method in three configurations: CK1, trained on GSMTG; CK2,
trained on BBTV; and CK3, trained on both GSMTG and BBTV. We evaluate each
of the trained models on GS and on BBTE. This way, we observe the system’s
performance when trained on the same genres as it is tested on, when trained on
a different genre (the cross-genre setup), and when trained on multiple genres (to
see if it can learn a unified model for different genres).

We compare our method against the Queen Mary Key Detector (QM) (Can-
nam et al., 2016) and three variations of the method presented by Faraldo et al.
(2016) (EDMA, EDMM, EDMT). For both systems, open source implemen-
tations are available8. QM consists of a hand-crafted pre-processing stage and
correlates the obtained chromagrams with key profiles based on Bach’s Well Tem-
pered Clavier. The three EDM systems also use a hand-crafted pre-processing

8http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
https://github.com/angelfaraldo/edmkey
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stage, but use different key profiles for classification: EDMA uses key profiles
automatically derived from a set of electronic music; EDMM uses hand-tuned
profiles based on the automatically derived ones (effectively disabling the pre-
diction of major keys); EDMT uses profiles based on European classical music.
Of all submissions to MIREX, EDMM and QM achieved the best results on the
electronic and classical music datasets used for evaluation, respectively. We thus
consider both to be state of the art.

10.2.5 Results
Table 10.1 shows the evaluation results of all training configurations of our
proposed model, and of the reference systems. We determine the statistical
significance of the results using a Wilcoxon signed rank test, with the error
types representing the ranks. If trained on the correct genre, our model clearly
outperforms the reference systems: 74.3 vs. 70.1 (𝛼 = 0.001) for the GiantSteps
dataset, and 83.9 vs. 78.7 (𝛼 = 0.014) for the Billboard dataset.

Examining the cross-genre setups, we observe a significant drop in key clas-
sification accuracy: tested on GS (electronic music), a model trained on BBTV

(pop/rock) achieves a weighted score of only 57.3, compared to 74.3 when trained
on electronic music from GSMTG. However, we also see that the number of
severe mistakes (category “other”) that our system commits in this setup is not
higher than those of the reference systems: the model only predicts a completely
unrelated key 17.4% of the time—similar to the reference systems specialised
on this genre (17.6% and 18.5% for EDMA and EDMM, respectively); vice-versa,
when trained on GSMTG and evaluated on BBTE, it achieves the lowest rate of
severe mistakes (4.2%).

The most common error occurring in these cross-genre setups is predicting
the wrong mode (resulting in parallel minor/major) and predicting the relative
minor/major key. This suggests that while the model is still able recognise some
fundamental concepts of tonality, finer characteristics vary too much between
pieces of different genres.

We wanted to see if the proposed model can be trained to provide a good
unified key estimator for multiple genres by combining training data. The
resulting system CK3 does not reach the performance of the specialised ones
(69.2 vs 74.3 on GS, 79.7 vs. 83.9 on BBTE); however, on GS, it performs as well
as EDMM, which is tuned manually to give good results on electronic music
datasets (69.2 vs. 70.1, 𝛼 = 0.94). It still performs better than EDMA, which is
also trained on electronic music, but without manual post-training adaptations
(69.2 vs. 65.5, 𝛼 = 0.02).

The numbers presented for the EDM* systems for the GiantSteps dataset
differ from the ones originally reported in (Faraldo et al., 2016). This is mainly
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because we applied a stricter criterion for the “fifth” category: we require the
predicted mode to match the target mode, while (Faraldo et al., 2016) ignores
the mode for this category. Also, according to personal correspondence with the
author, changes in the library used in the original implementation worsened the
results relative to the original ones.

10.3 Conclusion and Future Work
We have presented a global key classification system based on a convolutional
neural network. Compared to previous work, this model can be automatically
trained end-to-end, without the need of expert knowledge in feature design or
specific pre-processing steps such as tuning correction or spectral whitening.

We have shown experimentally that the model performs state-of-the-art on
datasets of electronic music and pop/rock music. Additionally, we are planning
to evaluate the proposed model on more genres, e.g. classical music.

Another feature of the proposed model is its ability to adapt to multiple types
of music without changing the model itself; it just needs to be re-trained with
a training set extended to the type of music of interest. While it still showed
good performance in such a scenario, it did not reach the level of its specialised
counterparts.

A clear limitation of the proposed method is that it only estimates a global
key for a complete piece. While this is adequate for certain types of music, other
types (e.g. classical music) involve key modulations that our method currently
cannot capture. A possible easy fix could be to apply our model using a sliding
window over the spectrogram. Extending the proposed method in such a way is
left to future work.

Finally, we have to keep in mind that even with data augmentation, we are
still working with small datasets. Although we increase the number of training
samples by a factor of 12 using pitch-shifting, this is not equivalent to having
available 12 times as many musical pieces: the musical content of the artificial
data points is still the same as in the seed data point, just in a different key. We
expect the system’s performance to improve once more training data is available.
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11
Genre-Agnostic Key Classification

The model developed in Chapter 10 generalised better across musical genres
than hand-crafted approaches, but it still achieved the best results when tuned
specifically for a musical style. In this chapter, we present modifications to the
model structure and its training procedure that enable the model to learn a
key classifier that is agnostic to genre. Not only does it perform better than the
model from Chapter 10 on all genres the latter is optimised for; it does so not
despite, but because it is trained on various musical styles, instead of a specific one
(see Section 11.2.4).

This work has been previously published in Korzeniowski and Widmer
(2018b).

11.1 Method

We build upon the same audio processing pipeline used in Chapter 10, and
input to the network a log-magnitude log-frequency quarter-tone spectrogram
(5 frames per second, frame size 8 192, sample rate 44 100Hz). We limit the
frequency range to the harmonically most relevant 65Hz to 2 100Hz, based on
the findings in Chapter 3.

The network structure proposed in Chapter 10 was modelled after typical
processing pipelines used for key classification. It features five convolutional
layers of 5 × 5 kernels for spectrogram processing, followed by a dense projection
into a frame-wise embedding space, which is then averaged over time and clas-
sified using a softmax layer. All layers except the last use the exponential-linear
activation function (Clevert et al., 2016) (ELU). The architecture, which we name
KeyNet, is summarised in Table 11.1a.
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During training, the model is shown the complete spectrogram of a piece.
Its weights are then adapted using stochastic gradient descent to minimise
the categorical cross-entropy between the predicted key distribution and the
ground truth. We will refer to the KeyNet architecture, when trained using full
spectrograms, asKeyNet/F.

11.1.1 Adaptations of the Training Procedure
The outlined training scheme has two drawbacks. First, the computation of
a single update is expensive; the network has to process the full spectrogram
(e.g. 600×105 values for a two-minute piece), and keep intermediate results for
back-propagating the error. Training is thus slow and requires much memory.
Second, it keeps the variety of the data lower than necessary, as the network sees
the same spectrograms at every epoch.

To circumvent these drawbacks, we show the network only short snippets
instead of the whole piece at training time. These snippets should be as short
as possible to reduce computation time, but have to be long enough to contain
the relevant information to determine the key of a piece. From our datasets, we
found 20 s to be sufficient (with the exception of classical music, which we need
to treat differently, due to the possibility of extended periods of modulation—see
Sec. 11.2.1 below). Each time the network is presented a song, we cut a random
20 s snippet from the spectrogram. The network thus sees a different variation of
each song every epoch.

During testing, the network processes the whole piece. This gives better re-
sults than when using only a snippet. Since we do not have to store intermediate
results and process each piece many times as in training, memory space and run
time are not an issue. We will refer to KeyNet models trained using spectrogram
snippets asKeyNet/S.

We expect this modification to have the following effects. (i) Back-propagation
will be faster and require less memory, because the network sees shorter snippets;
we can thus train faster, and process larger models. (ii) The network will be less
prone to over-fitting, since it almost never sees the same training input; we expect
the model to generalise better. (iii) The network will be forced to find evidence
for a key in each excerpt of the training pieces, instead of relying on parts where
the key is more obvious; by asking more of the model, we expect it to pick up
more subtle relationships between the audio and its key.

11.1.2 Adaptations of the Model Structure
The KeyNet architecture uses a dense layer to project the processed spectrogram
into a key embedding space. In its original formulation, which uses an embed-
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Layer Type FMaps Params

Input
Conv-ELU 𝑁u� 5 × 5

Conv-ELU 𝑁u� 5 × 5

Conv-ELU 𝑁u� 5 × 5

Conv-ELU 𝑁u� 5 × 5

Conv-ELU 𝑁u� 5 × 5

Dense-ELU 2 ⋅ 𝑁u�
Pool-Time Avg.
Dense-Softmax 24

(a)KeyNet Architecture

Layer Type FMaps Params

Input
Conv-ELU 𝑁u� 5 × 5
Conv-ELU 𝑁u� 3 × 3
Pool-Max 2 × 2

Conv-ELU 2𝑁u� 3 × 3
Conv-ELU 2𝑁u� 3 × 3
Pool-Max 2 × 2

Conv-ELU 4𝑁u� 3 × 3
Conv-ELU 4𝑁u� 3 × 3
Pool-Max 2 × 2

Conv-ELU 8𝑁u� 3 × 3

Conv-ELU 8𝑁u� 3 × 3

Conv-ELU 24 1 × 1
Pool-Global Avg.
Softmax

(b)AllConv Architecture

Table 11.1: Neural Network architectures. u�u� is parameter that controls the model complexity.
Horizontal lines denote dropout layers (Srivastava et al., 2014). Here, dropout is applied on
complete feature maps, not individual units. Each convolution is followed by batch normalisa-
tion (Ioffe and Szegedy, 2015). FMaps indicates the number of feature maps, while Params the
parameters of the layer (kernel size, pool size, or number of units).

ding space with 48 dimensions and 8 feature maps in the convolutional layers,
this projection accounts for 65 % of the network’s parameters. Dense layers are
also more prone to over-fitting than convolutional layers.

We thus propose to use a network architecture that does away with dense
layers, and relies on convolutions and pooling only. At the same time, we
move away from modelling the network based on traditional key classification
methods—recall that the components of KeyNet were designed to correspond
to components in typical key classification pipelines—and instead use a general
network architecture for classification, based on the all-convolutional net (Sprin-
genberg et al., 2015). The new architecture is summarised in Table 11.1b, and will
be referred to asAllConv. We will train this architecture only with the snippet
method.
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We expect this change to improve results and generalisation because (i) con-
volutional layers over-fit less than dense layers; (ii) given the same number of
parameters, deeper networks are more expressive than shallower ones (Eldan
and Shamir, 2016; Liang and Srikant, 2017); (iii) comparable architectures have
shown to perform well in other audio-related tasks such as chord recognition (see
Chapter 4) or audio scene classification (Eghbal-Zadeh et al., 2016).

11.2 Experiments

We first evaluate how the proposed modifications affect the key classification
performance in Section 11.2.3. Then, we analyse how the amount and genre of
training data influence results in Section 11.2.4.

11.2.1 Data
Since we are interested in how well the models generalise across different genres,
we use datasets that encompass three distinct musical styles. As in the previous
chapter, we apply pitch shifting in the range of -4 to +7 semitones to increase the
amount of training data.

Electronic Dance Music: Here, we use songs from the GiantSteps MTG Key
dataset1, collected by Ángel Faraldo. It comprises 1486 distinct two-minute
audio previews from www.beatport.com, with key ground truth for
each excerpt. We only use excerpts labelled with a single key and a high
confidence (1077 pieces), and split them into 80% training and 20%
validation. For testing, we use the GiantSteps Key Dataset2. It comprises
604 two-minute audio previews from the same source (but distinct from
the training set).

Pop/RockMusic: For this genre, we use the McGill Billboard dataset (Bur-
goyne et al., 2011)3. It consists of 742 unique songs sampled from the
American Billboard charts between 1958 and 1991. We split these songs into
subsets of 62.5% for training, 12.5% for validation, and 25% for testing. We
determine the global key for each song using the procedure described in
Chapter 10, which leaves us with 625 songs with key annotations in total.
The exact division and key ground truths are available online4.

1https://github.com/GiantSteps/giantsteps-mtg-key-dataset
2https://github.com/GiantSteps/giantsteps-key-dataset
3http://ddmal.music.mcgill.ca/research/billboard
4http://www.cp.jku.at/people/korzeniowski/bb.zip
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Classical Music: To cover this genre, we collected 1504 (mostly piano) pieces
from our internal database for which we could derive the key from the
piece’s title. Classical pieces often modulate their key, but usually start
in the key denoted in the title. We thus only use the first 30 s of each
recording. Tracking key modulations is left for future work. We then select
81 % for training, 9 % for validation, and 10% for testing.

11.2.2 Metrics
We adopt the standard evaluation score for Key Classification as defined in the
MIREX evaluation campaign5. It goes beyond simple accuracy, as it considers
harmonic similarities between key classes. A prediction can fall into one of the
following categories:

Correct: if the tonic and the mode (major/minor) of prediction and target
correspond.

Fifth: if the tonic of the prediction is the fifth of the target (or vice versa), and
modes correspond.

Relative Minor/Major: if modes differ and either a) the predicted mode is
minor and the predicted tonic is 3 semitones below the target, or b) the
predicted mode is major and the predicted tonic is 3 semitones above the
target.

Parallel Minor/Major: if modes differ but the predicted tonic matches the
target.

Other: Prediction errors not caught by any category, i.e. the most severe errors.

Then, a weighted score can be computed as 𝑤 = 𝑟u� + 0.5 ⋅ 𝑟u� + 0.3 ⋅ 𝑟u� + 0.2 ⋅ 𝑟u�,
where 𝑟u�, 𝑟u� , 𝑟u� , and 𝑟u� are the ratios of the correct, fifth, relative minor/major,
and parallel minor/major, respectively. We will use this weighted score for our
comparisons.

11.2.3 Evaluation of the Adaptations
To evaluate the effect of our proposed adaptations, we train the three setups
(KeyNet/F, KeyNet/S, AllConv) with the combined data of all datasets. We will
consider validation results in the first sets of experiments, and show results on
the testing sets only for our analyses and final evaluations. This way, we ensure
that the final results are unbiased.

5http://www.music-ir.org/mirex
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Figure 11.1: Average validation score over 10 runs for the different model setups. Whiskers
represent 95 % confidence intervals computed by bootstrapping. Transparent dots show results
of the individual runs. We see that given similar network sizes, the AllConv model performs best.
Also, using snippet training (KeyNet/S) improves results compared to full spectrogram training
(KeyNet/F), and enables training larger networks.

The capacity of a neural network depends not only on the architecture, but
also its size (i.e., the number of parameters). For a fair comparison, we evaluate
each architecture with varying network sizes. For the AllConv architecture,
we select the number of feature maps𝑁u� ∈ {2, 4, 8, 12, 16, 20, 24}. For the
KeyNet architecture, the network size depends on the number of feature maps
in the convolutional layers and the size of the embedding space. For practical
reasons, we set the size of the embedding space to be 2𝑁u� , and select𝑁u� ∈
{8, 16, 24, 32, 40}. Note that if we train on full spectrograms (KeyNet/F), we
could not train networks with𝑁u� > 24 due to memory constraints. For each
model, we tried dropout probabilities of 𝑝 ∈ {0.0, 0.1, 0.2}.

Figure 11.1 presents the results of the three model configurations. For each
model and model capacity, we select the best dropout probability based on
the validation results. The experiments show that both adaptations are benefi-
cial. Training with snippets instead of full spectrograms gives better results at
smaller network capacities and enables training of larger networks. The AllConv
architecture achieves even better results, regardless of its size.

We can quantify two reasons for this, which are consequences of the expected
benefits of the adaptations: better generalisation through increased data variety
and the absence of dense layers, and better expressivity through deeper architec-
tures and by training the network on a more difficult task. For the first, better
generalisation, we compare the average ratio of validation accuracy to training
accuracy for each of the models (higher indicates less over-fitting): 0.948, 0.969,
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and 0.982 for KeyNet/F, KeyNet/S, and AllConv, respectively. For the second,
model expressiveness, we compare the model’s capability to fit the training data
in terms of accuracy: 0.837, 0.858, and 0.907 for KeyNet/F, KeyNet/S, and
AllConv, respectively. Stronger models that generalise better achieve better
results.

11.2.4 Influence of Training Data
We then want to see how the amount and genre of the datasets used for training
affects results. To this end, we select the hyper-parameter settings for AllConv
and KeyNet/S that achieved the best average results in the previous experiment:
𝑁u� = 20, 𝑝 = 0.1 for AllConv,𝑁u� = 40, 𝑝 = 0.1 for KeyNet/S. Additionally,
we consider smaller models of each type, i.e. 𝑁u� = 8 for AllConv and𝑁u� = 16
for KeyNet/S, both without dropout. Under these settings, both architectures
have a comparable number of parameters. We train these models using all
possible 1, 2, and 3-combinations of the datasets, and evaluate them on all data.
The results are shown in Fig. 11.2.

The main observations are: (i) increasing model capacity is more beneficial
to the AllConv model than KeyNet/S, regardless of dataset; (ii) adding capacity
to the AllConv model enables it to better deal with diverse data—the biggest
gains of additional parameters are achieved if the model is trained on a combined
dataset (pink line)—while this is not always the case for KeyNet/S (see the
Billboard results, where it seems that adding classical music to the training
set impairs the performance of this model); (iii) given enough capacity in the
AllConv model, training using the complete data performs better than (or almost
equal to) fitting a specific genre, while the opposite is the case for KeyNet/S,
where specialised models outperform the general ones. We thus argue that the
AllConv model not only copes better with diverse training data, but that it
leverages the diversity in the training data to perform as well as it does.

11.3 Evaluation

Motivated by the results above, the remainder of our analysis focuses on the
AllConv model. To thoroughly investigate its performance and compare it to the
state of the art, we evaluate it on the following unseen datasets:

KeyFinder6: 1 000 songs from a variety of popular music genres. Unfortunately,
we have only the audio for 998 of the songs available.

6http://www.ibrahimshaath.co.uk/keyfinder/
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Figure 11.2: Average test scores over 10 runs for each architecture (columns), split by dataset
(rows). The smaller models are on the left of each column. Colours indicate the training data
used: Bb stands for the Billboard dataset, Cm for the classical music dataset, andGs for the
GiantSteps dataset. Each row shows the results of runs where the training set also contained the
training data of the respective test set genre (e.g. in the first row, we only see runs where McGill
Billboard data was included in training).
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Dataset Model Weighted Correct Fifth Relative Parallel Other

GiantSteps AllConv 74.6 67.9 7.0 8.1 4.1 12.9
CK1 74.3 67.9 6.8 7.1 4.3 13.9

Billboard AllConv 85.1 79.9 5.6 4.2 6.2 4.2
CK2 83.9 77.1 9.0 4.9 4.2 4.9

Classical AllConv 96.6 95.2 1.4 1.4 1.4 0.7
- - - - - - -

KeyFinder AllConv 76.1 70.0 5.7 7.4 4.7 12.1
bgate 72.4 65.0 8.6 6.5 5.4 14.4

Isophonics AllConv 82.5 76.3 7.6 5.4 3.7 7.1
BD1 75.1 66.0 13.6 5.1 3.9 9.2

R. Williams AllConv 81.2 72.4 10.8 10.3 1.3 5.2
HS1 77.1 68.8 10.1 9.0 3.2 9.0

Rock AllConv 74.3 69.3 6.5 1.7 6.0 16.5
- - - - - - -

Table 11.2: Evaluation results. Best results are in boldface. CK1 and CK2 refer to the models
presented in Chapter 10, bgate to the one by Faraldo et al. (2017), BD1 to the one by Bernardes
et al. (2017), and HS1 to the one by Schreiber (2017).

Isophonics7: 180 songs by The Beatles, 19 songs by Queen, and 18 songs by
Zweieck. Since these songs contain key modulations, we split them into
single key segments and retain only segments annotated as major or minor
keys, as was done for the 2017 MIREX evaluation campaign8.

Robbie Williams (Di Giorgi et al., 2013): 65 songs by Robbie Williams, which
we also split into single key segments as outlined above.

Rock9 (de Clercq and Temperley, 2011): 200 songs taken from Rolling Stone’s
“500 Greatest Songs of All Time” list. As with the McGill Billboard
dataset, only the tonics are annotated. We first split the songs according
to the annotated tonics, and then follow a similar procedure as described
in Chapter 10: if more than 80% of the tonic chords are in either major
or minor, the mode is set accordingly; if there are no tonic chords in a
segment, we consider dominant chords in the same way.

We select the best AllConv model based on the validation score over the
compound data of Electronic, Pop/Rock and Classical music. On average,

7http://isophonics.net/datasets
8http://www.music-ir.org/mirex/wiki/2017:Audio_Key_Detection_Results
9http://rockcorpus.midside.com/
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Figure 11.3: Distributions of the length of correctly and incorrectly classified excerpts depending
on the dataset they come from. Densities are estimated using kernel density estimation. Hor-
izontal lines with long dashes indicate the median, those with short dashes the quartiles. The
densities are normalised, i.e. they do not indicate how many instances were classified correctly (or
incorrectly), but only the distribution of except lengths within each group.

models with𝑁u� = 20 and dropout probability of 0.1 performed best. However,
the best single model used𝑁u� = 24 (see Fig. 11.1), and was consequently chosen
as final model.

In Table 11.2, we compare this model to other models proposed in the aca-
demic literature. For each dataset, we show the results of the best competing
system, if available. For the GiantSteps and Billboard datasets, the best com-
peting systems were variants of the model we explored in Chapter 10. For the
pre-segmented Isophonics and Robbie Williams datasets, we use the results
available on the MIREX 2017 website8. For the KeyFinder dataset, we report the
best results achieved using the open-source reference implementation10 of the
algorithms from (Faraldo et al., 2017).

As we can see, the proposed model performs best for all datasets for which
comparisons were possible. Keep in mind that the systems we compare to are
often specifically tuned for a genre (CK1, CK2, HS1, bgate) or set up to favour
certain key modes prevalent in a dataset (BD1), while we use the same, general
model for all datasets. For example, CK1 performs badly on the Billboard dataset
(𝑤 = 72.8), BD1 on the GiantSteps (𝑤 = 59.6), and HS1 on the Isophonics
dataset (𝑤 = 64.1). In this light, it is remarkable that the proposed model
consistently out-performs the others.

However, the results also point us to a deficiency of the model. Recall that
for some datasets (e.g. Rock), we split the files according to key annotations,

10https://github.com/angelfaraldo/edmkey
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and process each excerpt individually. If we compare the results on the Rock
dataset with those on the Billboard dataset, we see a large discrepancy, although
both sets comprise similar musical styles. As Fig. 11.3 demonstrates, the duration
of a classified excerpt plays a major role here: for the Billboard set, the median
length of excerpts classified correctly matches the one of incorrect classifications;
for the Rock set, however, the median lengths differ greatly: 131 s vs. 51 s, for
correctly and incorrectly classified excerpts, respectively. The distribution of
excerpt lengths that are classified correctly is thus very different from the one of
incorrectly classified excerpts in the Rock set. The shorter an excerpt, the more
likely it is classified incorrectly.

This is not surprising per se. Determining the key of a piece requires a certain
amount of musical context. However, it shows that in order to move beyond
global key classification, and towards recognising key modulations, it will not
suffice to detect key boundaries and apply known methods within these bound-
aries. To recognise key modulations, classifying short excerpts individually will
reach a glass ceiling. Instead, we will need models that consider the hierarchical
harmonic coherence of the whole piece.

11.4 Conclusion
We have presented a genre-agnostic key classification model based on the system
developed in Chapter 10, with improvements of the training procedure and net-
work structure. These improvements enable faster training, better generalisation,
and training larger and thus more powerful models. These models can leverage
diverse training data instead of being impaired by it. The resulting key classi-
fier generalises well over datasets of different musical styles, and out-performs
systems that are specialised for specific genres.
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12
Conclusion

In the first part of this thesis, we considered chord recognition. We first devel-
oped powerful acoustic models based on deep neural networks, and processed
their predictions with a conditional random field—a simple first-order model
that primarily smoothed the acoustic model’s predictions. We then investigated
how to create data-driven temporal models that go beyond smoothing. We
learned that such models need to be employed at a different hierarchical level
than it is common: instead of audio-frames, they need to operate on sequences
of chord symbols. We further explored two types of such models (finite-context
𝑛-grams and recurrent neural networks), and compared their capability to pre-
dict chord sequences. We found, perhaps to little surprise, that the RNN models
perform better, as they learn to adapt to the processed piece by remembering
sub-sequences of chords. We then developed a probabilistic model that integrates
these chord-level language models with the predictions of an acoustic model, by
using a model of chord duration. Finally, we evaluated how improvements in
language and duration modelling affect the final chord recognition performance.

In the time I conducted these studies, research has further developed the capa-
bility of acoustic models to deal with extended chord vocabularies (Cho, 2014;
Deng and Kwok, 2016; Humphrey and Bello, 2015; McFee and Bello, 2017; Wu
and Li, 2018). This development can be considered orthogonal to my research, as
it focuses on a different facet of the problem. However, at some point, these two
lines of research need to be combined into a full chord recognition system. This
directly leads to a number of open challenges regarding chord language models.
How should they deal with a large vocabulary of symbols that are (i) related
to each other in a hierarchical way (e.g. E:min and E:min9), and treating them
independently neglects important information, (ii) are extremely unevenly dis-
tributed, with rare chords forming a long tail, while major chords alone represent
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up to half of the data (Burgoyne et al., 2011), and (iii) annotator disagreement
increases with annotation granularity, i.e. annotators disagree more about chords
that are rare (de Clercq and Temperley, 2011; Humphrey and Bello, 2015)?

These points outlined above necessitate the development of hierarchical
approaches for modelling and evaluating chord language models, but also full
chord recognition systems, as already delineated by Humphrey (2015) (Section
4.5). Sharing information between related chords was also proven to be useful for
acoustic modelling (McFee and Bello, 2017). Whether hand-modelled or learned
from data (Vendrov et al., 2015), chord language models will need a notion of
chord hierarchy to meaningfully operate with extended chord vocabularies.

In the second part of this thesis, we considered key classification. Here, we
first developed a convolutional neural network whose structure was inspired
by traditional key classification algorithms. Although it performed better than
state-of-the-art methods, its accuracy dropped when it was trained using genre-
diverse data. To overcome this problem, we used a training procedure that
increased data diversity, and applied a VGG-style convolutional neural network
for classification. Using this structure and training procedure, we made the
network learn a genre-agnostic model that out-performs state-of-the-art genre-
specific models on a variety of data sets.

Research on key classification has further focused on tweaking pre-processing
pipelines and key profiles. These methods still require the usage of key profiles
specialised to genres (Faraldo et al., 2017), or setting genre-specific parameters
by hand (Bernardes et al., 2017). The models we developed solve this problem
if training data is available for a specific genre, but their performance still suffers
when confronted with out-of-training genres. However, we do not know
whether this is a problem of the algorithm, or if key classification indeed does
require genre-specific information that cannot be deduced from understanding
other genres.

The main limitation of this approach is that it can only extract the global key
of a piece, and is ignorant of key modulations. Although the presented methods
can be used to detect keys of short segments (using a pre-computed segmentation
or a sliding window), we saw in Chapter 11 that this will likely reach a glass ceiling:
classification accuracy dropped for short audio excerpts. We thus concluded that
future systems need to consider the hierarchical harmonic structure of a piece to
properly track key modulations.

Taking this thought further, we may conjecture that only a model that con-
siders harmony holistically will be able to match human performance for any of
these tasks. We may argue that by dividing the concept of musical harmony into
isolated sub-tasks, we indeed hide information that is hard to recover. Therefore,
we might need a model that considers many hierarchical aspects of harmony at
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the same time to better understand each one of them. Deep neural networks
are a natural choice for such problems. They can easily be trained for multiple
objectives, while learning both shared and task-specific representations of the
input at the same time. However, we can expect that modelling tonal harmony
as a whole in a single neural network will require us to develop novel network
architectures. We might not be able to rely on standard models to solve this task.
This opens up new challenges, but only with challenges come opportunities for
original research.
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