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ABSTRACT

Score followers often use spectral templates for notes and
chords to estimate the similarity between positions in the
score and the incoming audio stream. Here, we propose
two methods on different modelling levels to improve the
quality of these templates, and subsequently the quality of
the alignment.

The first method focuses on creating more informed tem-
plates for individual notes. This is achieved by estimat-
ing the template based on synthesised sounds rather than
generic Gaussian mixtures, as used in current state-of-the-
art systems.

The second method introduces an advanced approach to
aggregate individual note templates into spectral templates
representing a specific score position. In contrast to score
chordification, the common procedure used by score fol-
lowers to deal with polyphonic scores, we use weighting
functions to weight notes, observing their temporal rela-
tionships.

We evaluate both methods against a dataset of classical
piano music to show their positive impact on the alignment
quality.

1. INTRODUCTION

Score following, in particular its application for automatic
accompaniment, is one of the oldest research topics in the
field of computational music analysis. First approaches
[1,2] worked with symbolic performance data, and applied
adapted string matching techniques to the problem. With
the availability of sufficient computational power, the fo-
cus switched to directly processing sampled audio streams,
widening the possible application areas. Systems for track-
ing monophonic instruments [3], especially singing voice
[4–7] and finally polyphonic instruments [8–12] have
emerged. Their common main task is, given a musical
score and a (live) signal of a performance of this score,
to align the signal with the score, i.e. to compute the per-
formers’ current position in the score.

The tonal content is the most important source to deter-
mine the current score position, an obvious commonality
of most score following systems. One of the central prob-
lems a music tracker needs to address is thus how to create
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the connection between the tonal content extracted from
the audio and what is expected according to the score. This
task can be divided into three parts: computing features
on the incoming signal to estimate the tonal content; mod-
elling the score and expected tonal content for every score
position; defining the likelihood of the signal for a score
position, usually by employing a similarity measure be-
tween expected and actual tonal content.

First-generation score following systems for audio sig-
nals focused on tracking monophonic instruments. In this
cases the score is simply a sequential list of pitches, which
can be easily transferred into formal frameworks like Hid-
den Markov Models. Since robust and accurate pitch track-
ing methods exist for monophonic audio, the feature ex-
traction yields exact pitch information for the incoming
audio stream. The expected pitch for a score position is
given directly by the score model, and the likelihood is
defined by a Gaussian distribution to take the performer’s
expressiveness (e.g. vibrato) into account.

Score followers for polyphonic audio introduce another
level of complexity. On the one hand, polyphonic scores no
longer resemble linear sequences of pitches. On the other
hand, real-time music transcription for polyphonic audio
signals is far from solved. Hence, score following systems
usually utilise features other than the extracted pitch con-
tent, less precise but easier to compute.

A prominent method for estimating the similarity between
score and audio signal is to create spectral templates for
score positions and use a distance measure to compare the
template to the signal’s spectrum, as done in [13,14]. While
most systems use generic templates to model the expected
tonal content (features) according to the score, in this pa-
per we propose modelling techniques which incorporate
instrument-specific properties to improve the alignment
quality. One concerns the spectral modelling of individ-
ual notes, the other one the composition of these into com-
bined templates representing polyphonic score positions.
We evaluate both methods on a set of classical piano record-
ings.

The remainder of this paper is organised as follows: Sec-
tion 2 describes our proposed methods and compares them
to the current state of the art. Our experiments are de-
scribed in Section 3. Finally, we present and discuss the
results in Section 4.

2. SPECTRAL TEMPLATES

In general, methods to model the expected tonal content
of a score heavily depend on the design of the feature ex-
tractor, i.e. on how information regarding the tonal content
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is computed from the incoming audio stream. Usually the
signal’s magnitude spectrum or related representations like
chroma vectors or semitone spectra are used. Here, we as-
sume that the magnitude spectrum is used directly as an es-
timator for the actual tonal content. However, the methods
presented here can easily be adapted to any other represen-
tation.

We assume that the signal’s spectrum is computed us-
ing the short-time Fourier transform (STFT) with a win-
dow size of Nwin. Using the STFT we can compute the
magnitude spectrum Y for frame t, resulting in a vector
Yt = (y1, . . . , yNb

), whereNb = Nwin/2 is the number of
frequency bins. Each value yn contains the magnitude of
the nth frequency bin of the spectrum of frame t. We de-
note as F = (f1, . . . , fNb

) the centre frequencies of each
frequency bin of the spectrum.

The score is available in a symbolic representation, e.g.
as MIDI file. Let G be the set of all score notes, then for
all g ∈ G we have the start position sg and end position
eg in beats, and the note’s fundamental frequency f0(g) in
Hz.

We differentiate two levels of spectral templates: “note
templates” are spectral templates for individual notes, de-
nominated formally by φ; “score templates” represent spec-
tral templates on the score level, including all sounding
notes at a specific score position, and are denoted as Φ.

Having clarified the nomenclature, the next section de-
scribes our method to create spectral templates for individ-
ual notes.

2.1 Note Templates

Spectral templates for individual notes are the basic build-
ing blocks of spectral score models in most state-of-the-
art score followers. Usually, these templates are generated
using Gaussian mixtures in the frequency domain, where
each Gaussian represents the fundamental frequency or a
harmonic of a tone, as introduced by [15]. Similar meth-
ods are also used in [13] and [14], as these generic models
have proven to work well in practice, and to some degree
generalise over instrumental configurations.

However, it is reasonable to assume that adjusting the
templates to the sonic characteristics of the currently
tracked performance should improve the alignment. At-
tempts have been made to adapt basic templates on the
fly using latent harmonic allocation in [11], however the
method’s complexity makes it currently unusable in real-
time settings, as [11] reports computation times of about
10 seconds for one second of audio.

If we assume that the instrumentation of a performance
is known beforehand (e.g. defined by the score), we could
create instrument-specific models in advance. The authors
of [16] introduced an improved method to compute
chromagram-like representations of both score and audio
by learning transformation matrices based on a diverse mu-
sical dataset. Given that their method could be extended to
the spectral representation used in this paper, feeding their
system with training data containing solely specific instru-
ments could result in templates specialised for this instru-
ment. In [9], templates are learned using non-negative ma-

trix factorisation on a database of instrument sounds, an
idea similar to what we propose in this paper. However,
no comparison to the generic Gaussian mixture approach
is given, and the method was dropped in subsequent publi-
cations of the author.

Here, we present two methods for modelling the spectral
content of a note. The first one, which represents the stan-
dard approach inspired by the work of [15], is presented
in the following section. The second one constitutes our
proposed method, in which we try to incorporate charac-
teristics of the tracked instrument. It is described in Sec-
tion 2.1.2.

2.1.1 Gaussian Mixture Spectral Model

The first template modelling technique we present resem-
bles the state-of-the-art methods used in most score follow-
ing systems. Assuming a perfectly harmonic sound created
by the instrument, we use Eq. 1 to create a spectral tem-
plate for a note g ∈ G:

φ̂gGMM (f) =

Nh∑
i=1

√
i−1N

(
f ; i · fg0 , (σφ · siφ)2

)
, (1)

where Nh is the number of modelled harmonics,
N (f ;µ, σ2) is the probability density at f of the Gaussian
distribution with mean µ and variance σ2, fg0 is the funda-
mental frequency of note g, σφ is the standard deviation of
the Gaussian representing the fundamental frequency, and
sφ is the spreading factor, defining how the variance of the
components increases for each harmonic. For the experi-
mental evaluation, we empirically chose the parameters to
be Nh = 5, σφ = 5, sφ = 1.1.

We then need to discretise the continuous model φ̂gGMM

to compare it to the actual tonal content of the signal. As
written above, we use the magnitude spectrum to represent
the audio’s tonal content, which gives us the magnitudes
for discrete frequency bins. Therefore, we discretise the
model at the frequency bin centres in F , resulting in a vec-
tor

φgGMM = (z1, . . . , zNb
), and (2)

zi = φ̂gGMM (fi), 1 ≤ i ≤ Nb,

where fi is the ith element of F , thus the centre frequency
of the ith frequency bin, andNb is the number of frequency
bins. Figures 1a and 1b show examples of this model.

2.1.2 Synthesised Spectral Model

As stated above, the Gaussian mixture note model shown
in Section 2.1.1 is a generic approximation of how the
magnitude spectrum looks like when a note is played. In
particular, harmonic structures strongly vary depending on
the instrument, instrument model and even individual pitch.
Adapting generic templates on-line to the current sound
texture is possible, as shown in [11], but currently compu-
tationally unfeasible for real-time applications.

We try to reach a compromise by leaving out the costly
on-line adaption, and instead learning initial models which
are already adjusted to the instrument they are represent-
ing. Similar ideas have already been described in the field



of polyphonic music transcription [17], and as stated above,
also for score following [9]. While in these papers the tem-
plates are learned using non-negative matrix factorisation,
we apply a simpler and more direct method to derive those.
Furthermore, we provide a quantitative analysis on the ef-
fect of using informed templates compared to the generic
templates based on Gaussian mixtures, which was missing
so far in the context of score following.

To create the spectral note templates we utilise a soft-
ware synthesizer 1 to generate short sounds for each MIDI-
representable note. These sounds are then analysed using
the STFT with the same parameters as used for estimat-
ing the tonal content of the performance audio. Finally, for
each note g we average its spectrogram over time, resulting
in a vector of the same form as in Eq. 2:

φgS = (z1, . . . , zNb
) . (3)

Here, zi stands for the mean of the ith frequency bin in the
magnitude spectrogram of the training sound.

Clearly, this still is a very rough approximation, since the
harmonic structure of a played note is all but invariant in
time. Additionally, the dynamics have a considerable im-
pact on the harmonics for certain instruments. However,
as we will show experimentally, it seems to resemble the
true magnitude spectrum generated by a specific instru-
ment better than the unadapted manually designed model
based on Gaussian mixtures, at least for instruments where
the aforementioned problems have a lower impact, like the
piano. Still, there’s space for further improvements in fu-
ture work. Figures 1c and 1d show exemplary synthesised
spectral templates.

Figure 1 reveals considerable differences between tem-
plates generated by the two methods outlined before, espe-
cially regarding the number of harmonics and the harmonic
structure. The shown examples resemble the general trends
we saw examining a larger set of templates. For lower
notes, the synthesised templates contain more harmonics
than their GMM counterparts. The number of harmonics
is comparable for higher notes, however their structure dif-
fers notably. As preliminary experiments showed, simply
increasing the number of harmonics for the GMM tem-
plates did not improve the alignment quality of our score
follower. On the contrary, we chose to model 5 harmonics
due to these preliminary experiments - using more harmon-
ics degraded the results.

Having discussed methods for creating spectral templates
for individual notes, the following section elaborates on
how to combine those to obtain templates representing the
expected spectral content at polyphonic score positions.

2.2 Score Templates

Score models for monophonic scores can easily be repre-
sented as sequences of consecutive pitches. This facilitates
the usage of established formal frameworks like Hidden
Markov Models for score following. However, polyphonic
scores in general no longer resemble linear sequences of

1 specifically, we use the commonly available TiMidity++ software
with its standard sound font
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(a) C4 GMM template

0 1000 2000 3000 4000
Hz

(b) C3 GMM template

0 1000 2000 3000 4000
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(c) C4 synthesised template

0 1000 2000 3000 4000
Hz

(d) C3 synthesised template

Figure 1. Spectral templates for two different notes. The
left column shows the template for middle C, while the
right column the C one octave lower. The upper row,
shown in red, are templates computed by the GMM ap-
proach, the lower row, in blue, depicts the synthesised tem-
plates. As our evaluation database consists of piano music,
we used piano sounds for the synthesised templates.

notes. Hence, for polyphonic score following so-called
chordification is generally applied to transform polyphonic
scores into a series of concurrently sounding sets of notes,
called concurrencies. The score can then be seen as a se-
quential list of concurrencies, and the well-known meth-
ods used for monophonic instrument tracking can be ap-
plied directly on the problem. Figure 2 shows an example
chordification of a short snippet of piano music.
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(b) Chordified

Figure 2. Original and chordified version of the 11th bar
of Mozart’s Sonata in B (KV 333)

From a musical point of view, reducing polyphonic scores
to their concurrencies seems unnatural. The information
on how long a note is sounding, and hence how prominent
it appears to a listener, is lost. In Figure 2, the F4 in the
inner voice of the right hand is an exemplary case for this
issue: a single note is separated into five.

We believe this approximation is superfluous and present
a method to avoid it. The method itself is not necessarily
tied to our system, where we use a continuous state space
for the score position, but can be adapted for approaches
with an explicit state space discretisation, like HMMs. We



introduce a “weighting function” for each score note g ∈
G, which is inspired by the common “Attack-Decay-
Sustain-Release” (ADSR) amplitude envelopes used in
sound synthesisers to model the volume dynamics of gen-
erated sounds (see Figure 3). The attack phase defines how
fast the tone reaches the initial maximal volume. The de-
cay phase defines how the tone’s volume decreases until it
finally reaches the volume of the sustain phase. The release
phase models how the volume dies away after the musician
has stopped playing the note.

attack decay sustain release

Amax

Asus

Figure 3. A generic linear ADSR (Attack-Decay-Sustain-
Release) envelope.

Different instruments can be characterised using differ-
ent ADSR envelopes, and thus different weighting func-
tions. Our main focus is the tracking of classical piano
music, hence we defined a weighting function designed to
resemble piano sounds. We ignore the attack phase, and
assume the volume reaches its maximum instantly. The
volume then decays following an exponential function un-
til it reaches a level defined by the sustain phase. The re-
lease follows as a rapid linear decrease of volume. Fig-
ure 4 shows the weighting function for an exemplary note,
according to our method.

More formally, given a score position x in beats and play-
ing tempo v in beats per second, we compute the mixing
weight of each note g as

ψ(x, v, g) = ψds(x, v, g) · ψr(x, v, g). (4)

Effectively, we split the function into two parts: the funda-
mental weight defined by the decay and sustain phase ψds,
and the cut-off specified by the release phase, ψr. Both
depend on the time passed after the performer moved past
the note start or note end respectively. Note that the actual
time difference rather than difference in position between
note start/end and the performer’s current score position
is taken into account, since this is what the note’s volume
depends on. We thus define the time difference between
note start and score position as ∆s and note end and score
position as ∆e:

∆s(x, v, g) =
x− sg
v

and (5)

∆e(x, v, g) =
x− eg
v

, (6)

where sg is the note’s starting position and eg the note’s
ending position in beats. For convenience, we will write
∆s and ∆e for ∆s(x, v, g) and ∆e(x, v, g) respectively.

The decay/sustain-weight ψds can then be written as

ψds(x, v, g) =

{
0 if ∆s < 0

max
(
λ∆s , η

)
else

, (7)

where λ = 0.1 is the decay parameter and η = 0.1 is the
sustain weight. Figure 4a shows the decay/sustain portion
of the weighting function. Finally, we define the release
cut-off:

ψr(x, v, g) =

{
1 if ∆e < 0

max
(
1− β ·∆e, 0

)
else

, (8)

where β = 20 is the release rate. This part of the weighting
function is shown in Figure 4b.
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(a) Decay/sustain envelope ψds(x, v, g) as defined in Eq. 7
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(b) Release cutoff ψr(x, v, g) as defined in Eq. 8
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(c) Weighting function ψ(x, v, g) as defined in Eq. 4

Figure 4. Example of a weighting function as defined by
Eq. 4: (a) shows the decay/sustain part, (b) the release cut-
off, and (c) the combination of the two. The backgrounds
show the waveform of a recorded piano note.

Now, to compute the spectral template for score position
x at tempo v we just have to compute a weighted sum over
all note note templates:

Φ(x, v) =
1

Z(x, v)

∑
g∈G

ψ(x, v, g) · φ(g), (9)

Z(x, v) =
∑
g∈G

ψ(x, v, g)

where φ is either φGMM or φS , depending on which type
of spectral models are used for individual notes (see sec-
tions 2.1.1 and 2.1.2).



ID Composer Piece # Perf. Eval. Type

CE Chopin Etude Op. 10 No. 3 (excerpt until bar 20) 22 Match
CB Chopin Ballade Op. 38 No. 1 (excerpt until bar 45) 22 Match
MS Mozart 1st Mov. of Sonatas KV279, KV280, KV281, KV282, KV283,

KV284, KV330, KV331, KV332, KV333, KV457, KV475,
KV533

1 Match

RP Rachmaninoff Prelude Op. 23 No. 5 3 Man. Annotations

Table 1. Performances used during evaluation

As mentioned above, the weighting function we defined
in Eq. 4 is especially designed to reflect the volume enve-
lope of recorded piano notes, which is depicted in Figure 4.
It is conceivable to define individual weighting functions
for different instruments, determined by their particular
sonic characteristics. While instruments with percussive
onsets can be naturally modelled using this technique, it is
difficult to define a static envelope for instruments which
allow the performer to continuously control the volume,
like brass or strings.

The proposed method can be seen as a generalisation of
the standard chordification approach. We can use a specif-
ically designed weighting function to simulate the chordi-
fication process: If we define ψ in a way that it returns
1 between the note start and end positions, and 0 every-
where else, the resulting score template corresponds to the
one yielded when chordification is applied. This generic
weighting function is a natural fall-back option when it is
difficult to define a specialised function for an instrument.

3. EXPERIMENTS

We evaluated the methods outlined above using our score
following system to track a variety of classical piano pieces.
The probabilistic framework of a Dynamic Bayesian Net-
work (DBN) establishes the theoretical foundation for this
process. Exact inference is only possible on a subset of
DBNs. Since our system does not fall into this category,
we apply approximate Monte-Carlo methods to estimate
the artist’s current score position. Specifically, we utilise
Rao- Blackwellised particle filtering, where parts of the
model are computed exactly, while intractable portions are
approximated using a standard particle filter. Besides the
spectral content we use an onset function to capture tran-
sients and the signal’s loudness to detect rests as additional
features. Since there is plenty of literature on this topic,
we will not dwell on the inference methods, but refer the
reader to [18] for a comprehensive tutorial on particle fil-
tering, and to [19] for a more detailed elaboration on the
application in our system.

We use the same dataset of piano music as in [20] (see
Table 1) for evaluation. Two different types of ground truth
data are available: For pieces performed on a computer-
monitored piano full matches exist, where the exact onset
time for each note in the performance is known; for the
performances of Rachmaninoff’s Prelude Op. 23 No. 5
we only have manual annotations at the beat level. We

group the performances as shown in Table 1 and evaluate
the alignment quality for each group. This way we are able
to grasp the impact of our methods depending on the type
of composition and recording situation.

From the alignment quality measures introduced by [21],
we use the misalign rate to evaluate our experiments. In
short, the misalign rate is the percentage of notes for which
the computed alignment differs from the correct alignment
by more than a specified threshold. In our evaluation, we
set this threshold to 250 ms. Due to the inherently proba-
bilistic nature of particle filters, results necessarily vary be-
tween multiple alignments of the same performance. Hence,
we repeated each experiment 10 times and used the aver-
aged misalign rate for each piece.

To assess the influence of each proposed method, we ran
our score follower in four different configurations. The
baseline setup used the Gaussian mixture note models and
score chordification (GC). One configuration included our
method to aggregate note models using mixing functions,
but still relied on the baseline note models (GM). The syn-
thesised note models were used together with score chordi-
fication in the third configuration (SC). Both proposed
methods were applied in the last configuration (SM). Ta-
ble 2 shows an overview of the evaluated configurations.

ID Note Model Score Model

GC Gaussian mixture Chordified
GM Gaussian mixture Mixture function
SC Synthesised Chordified
SM Synthesised Mixture function

Table 2. Evaluated configurations

4. RESULTS AND DISCUSSION

Tables 3 and 4 show the results of our experiments, indicat-
ing that both proposed methods improve alignment quality.

Using synthesised note templates instead of those based
on Gaussian mixtures improves alignment quality for three
of four piece groups (GC vs. SC and GM vs. SM). The
quality degradation when aligning Chopin’s Etude Op. 10
No. 3 is marginal but noticeable. The reasons for this dis-
crepancy are to be investigated. A good clue could be that
the harmonic structure of piano sounds, especially inhar-



ID GC GM SC SM

CB 8.65% 7.75% 8.23% 7.56%
CE 7.39% 4.09% 7.53% 4.69%
MS 2.25% 2.16% 1.76% 1.48%
RP 23.17% 12.17% 8.98% 7.13%

Table 3. Mean misalign rates for the performance groups

ID GC GM SC SM

CB 0.91 0.73 0.72 0.59
CE 1.19 0.79 1.19 0.68
MS 0.60 0.42 0.61 0.54
RP 12.31 3.25 0.75 1.45

Table 4. Standard deviation of misalign rates per piece,
averaged over performance groups, in percentage points
(pp)

monic components, can vary considerably for individual
instruments. However, a real-time capable way to cope
with such problems, e.g. by adapting the templates on-line,
is yet to be found.

Our proposed method for creating spectral templates for
score positions using mixing functions impacts the align-
ing process in a positive way, as suggested by our experi-
mental results (compare GC vs. GM and SC vs. SM in Ta-
ble 3). This corresponds to our expectations based on the
argumentation in Section 2.2. Further examinations will
analyse how mixing functions can be defined for other in-
struments than the piano, and whether their impact in these
cases is comparable to what we were able to show here.

Table 4 shows the standard deviation of the piecewise
misalign rate, averaged for each piece group. High devia-
tions would indicate that the alignment quality differs con-
siderably over multiple runs of the algorithm on the same
piece. The results suggest that the proposed methods have
also a positive effect on the score follower’s robustness.

5. CONCLUSION

We presented two novel methods for instrument-specific
spectral modelling of musical scores, intended to improve
the alignment quality of score following systems. The first
method assumes that the harmonic structure of a played
tone is static over time. The second can be applied if the
instrument exhibits a fixed volume envelope of a tone, once
a note is played. Thus, the methods are especially useful
for pitched percussive and plucked or struck string instru-
ments. The methods are not specific to our score follow-
ing system, but can be easily adapted and applied to any
spectral-template-based music tracker. Systematic experi-
ments on a variety of classical piano pieces showed their
positive impact on our score follower’s misalign rate, in-
dicating their meaningfulness. Future work could exam-
ine how the methods can be used for different instruments
and if they can uphold their positive impact.
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[8] N. Orio and F. Déchelle, “Score Following Using Spec-
tral Analysis and Hidden Markov Models,” in Proceed-
ings of the International Computer Music Conference
(ICMC), 2001.

[9] A. Cont, “Realtime Audio to Score Alignment for
Polyphonic Music Instruments Using Sparse Non-
negative constraints and Hierarchical HMMs,” in Pro-
ceedings of the IEEE International Conference in
Acoustics and Speech Signal Processing (ICASSP),
2006.

[10] D. Schwarz, N. Orio, and N. Schnell, “Robust poly-
phonic midi score following with hidden markov mod-
els,” in Proceedings of the International Computer Mu-
sic Conference (ICMC), 2004.

[11] T. Otsuka, K. Nakadai, T. Takahashi, T. Ogata, and
H. Okuno, “Real-Time Audio-to-Score Alignment
Using Particle Filter for Coplayer Music Robots,”
EURASIP Journal on Advances in Signal Processing,
vol. 2011, no. 1, 2011.



[12] A. Arzt, G. Widmer, and S. Dixon, “Automatic Page
Turning for Musicians via Real-Time Machine Listen-
ing,” in Proceeding of the 18th European Conference
on Artificial Intelligence (ECAI), 2008.

[13] A. Cont, “A Coupled Duration-Focused Architec-
ture for Real-Time Music-to-Score Alignment,” IEEE
transactions on pattern analysis and machine intelli-
gence, vol. 32, no. 6, pp. 974–987, Jun. 2010.

[14] C. Raphael, “Music Plus One and Machine Learning,”
in Proceedings of the International Conference on Ma-
chine Learning (ICML), 2010.

[15] ——, “Aligning music audio with symbolic scores
using a hybrid graphical model,” Machine Learning,
vol. 65, no. 2-3, pp. 389–409, May 2006.

[16] O. Izmirli and R. B. Dannenberg, “Understanding
Features and Distance Functions for Music Sequence
Alignment,” in Proceedings of the 11th International
Society for Music Information Retrieval Conference
(ISMIR), 2010.

[17] B. Niedermayer, “Non-negative Matrix Division for
the Automatic Transcription of Polyphonic Music,” in
Proceedings of International Conference on Music In-
formation Retrieval (ISMIR), 2008.

[18] A. Doucet and A. M. Johansen, “A Tutorial on Particle
Filtering and Smoothing : Fifteen years later,” in The
Oxford Handbook of Nonlinear Filtering, D. Crisan
and B. L. Rozovsky, Eds. Oxford University Press,
2008, vol. l, no. December, ch. 8.2, pp. 656–704.

[19] F. Korzeniowski, F. Krebs, A. Arzt, and G. Widmer,
“Tracking Rests And Tempo Changes: Improved Score
Following With Particle Filters,” in International Com-
puter Music Conference (ICMC), 2013.

[20] A. Arzt, G. Widmer, and S. Dixon, “Adaptive Distance
Normalization for Real-Time Music Tracking,” in Pro-
ceedings of the European Signal Processing Confer-
ence (EUSIPCO), 2012.

[21] A. Cont, D. Schwarz, N. Schnell, and C. Raphael,
“Evaluation of Real-Time Audio-to-Score Alignment,”
in Proceedings of 8th International Conference on Mu-
sic Information Retrieval (ISMIR), 2007.


	 1. Introduction
	 2. Spectral Templates
	2.1 Note Templates
	2.1.1 Gaussian Mixture Spectral Model
	2.1.2 Synthesised Spectral Model

	2.2 Score Templates

	 3. Experiments
	 4. Results And Discussion
	 5. Conclusion
	 6. References

