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ABSTRACT
Chord recognition systems depend on robust feature ex-

traction pipelines. While these pipelines are traditionally
hand-crafted, recent advances in end-to-end machine learn-
ing have begun to inspire researchers to explore data-driven
methods for such tasks. In this paper, we present a chord
recognition system that uses a fully convolutional deep audi-
tory model for feature extraction. The extracted features are
processed by a Conditional Random Field that decodes the
final chord sequence. Both processing stages are trained auto-
matically and do not require expert knowledge for optimising
parameters. We show that the learned auditory system ex-
tracts musically interpretable features, and that the proposed
chord recognition system achieves results on par or better
than state-of-the-art algorithms.

Index Terms— chord recognition, convolutional neural
networks, conditional random fields

1. INTRODUCTION

Chord Recognition is a long-standing topic of interest in the
music information research (MIR) community. It is con-
cerned with recognising (and transcribing) chords in audio
recordings of music, a labor-intensive task that requires ex-
tensive musical training if done manually. Chords are a highly
descriptive feature of music and useful e.g. for creating lead
sheets for musicians or as part of higher-level tasks such as
cover song identification.

A chord can be defined as multiple notes perceived si-
multaneously in harmony. This does not require the notes
to be played simultaneously—a melody or a chord arpeggia-
tion can imply the perception of a chord, even if intertwined
with out-of-chord notes. Through this perceptual process, the
identification of a chord is sometimes subject to interpreta-
tion even among trained experts. This inherent subjectivity is
evidenced by diverse ground-truth annotations for the same
songs and discussions about proper evaluation metrics [1].
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Typical chord recognition pipelines comprise three stages:
feature extraction, pattern matching, and chord sequence de-
coding. Feature extraction transforms audio signals into
representations which emphasise content related to harmony.
Pattern matching assigns chord labels to such representations
but works on single frames or local context only. Chord se-
quence decoding puts the local detection into global context
by predicting a chord sequence for the complete audio.

Originally hand-crafted [2], all three stages have seen at-
tempts to be replaced by data-driven methods. For feature ex-
traction, linear regression [3], feed-forward neural networks
[4] and convolutional neural networks [5] were explored;
these approaches fit a transformation from a general time-
frequency representation to a manually defined one that is
specifically useful for chord recognition, like chroma vectors
or a “Tonnetz” representation. Pattern matching often uses
Gaussian mixture models [6], but has seen work on chord
classification directly from a time-frequency representation
using convolutional neural networks [7]. For sequence de-
coding, hidden Markov models [8], conditional random fields
[9] and recurrent neural networks [10] are natural choices;
however, the vast majority of chord recognition systems still
rely on hidden Markov models (HMMs): only one approach
used conditional random fields (CRFs) in combination with
simple chroma features for this task [9], with limited success.
This warrants further exploration of this model class, since it
has proven to out-perform HMMs in other domains.

In this paper, we present a novel end-to-end chord recog-
nition system that combines a fully convolutional neural net-
work (CNN) for feature extraction with a CRF for chord se-
quence decoding. Fully convolutional neural networks re-
place the stack of dense layers traditionally used in CNNs
for classification with global average pooling (GAP) [11],
which reduces the number of trainable parameters and im-
proves generalisation. Similarly to [7], we train the CNN to
directly predict chord labels for each audio frame, but instead
of using these predictions directly, we use the hidden repre-
sentation computed by the CNN as features for the subsequent
pattern matching and chord sequence decoding stage. We call
the feature-extracting part of the CNN auditory model.

For pattern matching and chord sequence decoding, we
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connect a CRF to the auditory model. Combining neural net-
works with CRFs gives a fully differentiable model that can
be learned jointly, as shown in [12, 13]. For the task at hand,
however, we found it advantageous to train both parts sepa-
rately, both in terms of convergence time and performance.

2. FEATURE EXTRACTION

Feature extraction is a two-phase process. First, we convert
the signal into a time-frequency representation in the pre-
processing stage. Then, we feed this representation to a CNN
and train it to classify chords. We take the activations of a hid-
den layer in the network as high-level feature representation,
which we then use to decode the final chord sequence.

2.1. Pre-processing

The first stage of our feature extraction pipeline transforms
the input audio into a time-frequency representation suitable
as input to a CNN. As described in Sec. 2.2, CNNs consist of
fixed-size filters that capture local structure, which requires
the spatial relations to be similarly distributed in each area of
the input. To achieve this, we compute the magnitude spectro-
gram of the audio and apply a filterbank with logarithmically
spaced triangular filters. This gives us a time-frequency rep-
resentation in which distances between notes (and their har-
monics) are equal in all areas of the input. Finally, we loga-
rithmise the filtered magnitudes to compress the value range.
Mathematically, the resulting time-frequency representation
L of an audio recording is defined as

L = log
(
1 +B4Log |S|

)
,

where S is the short-time Fourier transform (STFT) of the
audio, and B4Log is the logarithmically spaced triangular fil-
terbank. To be concise, we will refer to L as spectrogram in
the remainder of this paper.

We feed the network spectrogram frames with context, i.e.
the input to the network is not a single column li of L, but a
matrix Xi = [li−C , . . . , li, . . . , li+C ], where i is the index of
the target frame, and C is the context size.

We chose the parameter values based on our previous
study on data-driven feature extraction for chord recogni-
tion [4] and a number of preliminary experiments. We use
a frame size of 8192 with a hop size of 4410 at a sample
rate of 44100 Hz for the STFT. The filterbank comprises 24
filters per octave between 65 Hz and 2100 Hz. The context
size C = 7, thus each Xi represents 1.5 sec. of audio. Our
choice of parameters results in an input dimensionality of
Xi ∈ R105×15.

2.2. Auditory Model

To extract discriminative features from the input, in [4], we
used a simple deep neural network (DNN) to compute chro-

magrams, concise descriptors of harmonic content. From
these chromagrams, we used a simple classifier to predict
chords in a frame-wise manner. Despite the network being
simple conceptually, due to the dense connections between
layers, the model had 1.9 million parameters.

In this paper, we use a CNN for feature extraction. CNNs
differ from traditional deep neural networks by including two
additional types of computational layers: convolutional layers
compute a 2-dimensional convolution of their input with a set
of fixed-sized, trainable kernels per feature map, followed by
a (usually non-linear) activation function; pooling layers sub-
sample the input by aggregating over a local neighbourhood
(e.g. the maximum of a 2 × 2 patch). The former can be re-
formulated as a dense layer using a sparse weight matrix with
tied weights. This interpretation indicates the advantages of
convolutional layers: fewer parameters and better generalisa-
tion.

CNNs typically consist of convolutional lower layers that
act as feature extractors, followed by fully connected layers
for classification. Such layers are prone to over-fitting and
come with a large number of parameters. We thus follow [11]
and use global average pooling (GAP) to replace them. To
further prevent over-fitting, we apply dropout [14], and use
batch normalisation [15] to speed up training convergence.

Table 1 details our model architecture, which consists of
900k parameters, roughly 50% of the original DNN. Inspired
by the architecture presented in [16], We opted for multiple
lower convolutional layers with small 3× 3 kernels, followed
by a layer computing 128 feature maps using 12× 9 kernels.
The intuition is that these bigger kernels can aggregate har-
monic information for the classification part of the network.
We will denote the output of this layer as Fi, the features ex-
tracted from input Xi.

We target a reduced chord alphabet in this work (major
and minor chords for 12 semitones) resulting in 24 classes
plus a “no chord” class. This is a common restriction used
in the literature on chord recognition [18]. The GAP con-
struct thus learns a weighted average of the 128 feature maps
for each of the 25 classes using the 1 × 1 convolution and
average pooling layer. Applying the softmax function then
ensures that the output sums to 1 and can be interpreted as a
probability distribution of class labels given the input.

Following [19], the activations of the network’s hidden
layers can be interpreted as hierarchical feature representa-
tions of the input data. We will thus use Fi as a feature rep-
resentation for the subsequent parts of our chord recognition
pipeline.

2.3. Training and Data Augmentation

We train the auditory model in a supervised manner using
the Adam optimisation method [20] with standard parame-
ters, minimising the categorical cross-entropy between true
targets yi and network output ỹi. Including a regularisation



Layer Type Parameters Padding Output Size

Input 105× 15
Conv-Rectify 32× 3× 3 yes 32× 105× 15
Conv-Rectify 32× 3× 3 yes 32× 105× 15
Conv-Rectify 32× 3× 3 yes 32× 105× 15
Conv-Rectify 32× 3× 3 yes 32× 105× 15
Pool-Max 2× 1 32× 52× 15

Conv-Rectify 64× 3× 3 no 64× 50× 13
Conv-Rectify 64× 3× 3 no 64× 48× 11
Pool-Max 2× 1 64× 24× 11

Conv-Rectify 128× 12× 9 no 128× 13× 3

Conv-Linear 25× 1× 1 no 25× 13× 3
Pool-Avg 13× 3 25× 1× 1
Softmax 25

Table 1. Proposed CNN architecture. Batch normalisation is
performed after each convolution layer. Dropout with proba-
bility 0.5 is applied at horizontal rules in the table. All convo-
lution layers use rectifier units [17], except the last, which is
linear. The bottom three layers represent the GAP, replacing
fully connected layers for classification.

term, the loss is defined as

L = − 1

D

D∑
i=1

yi log(ỹi) + λ |θ|2 ,

where D is the number of frames in the training data, λ =
10−7 the l2 regularisation factor, and θ the network parame-
ters. We process the training set in mini-batches of size 512,
and stop training if the validation accuracy does not improve
for 5 epochs.

We apply two types of data manipulations to increase the
variety of training data and prevent model over-fitting. Both
exploit the fact that the frequency axis of our input represen-
tation is linear in pitch, and thus facilitates the emulation of
pitch-shifting operations. The first operation, as explored in
[7], shifts the spectrogram up or down in discrete semitone
steps by a maximum of 4 semitones. This manipulation does
not preserve the label, which we thus adjust accordingly. The
second operation emulates a slight detuning by shifting the
spectrogram by fractions of up to 0.4 of a semitone. Here,
the label remains unchanged. We process each data point in
a mini-batch with randomly selected shift distances. The net-
work thus almost never sees exactly the same input during
training. We found these data augmenting operations to be
crucial to prevent over-fitting.

3. CHORD SEQUENCE DECODING

Using the predictions of the pattern matching stage directly
(in our case, the predictions of the CNN) often gives good

results in terms of frame-wise accuracy. However, chord se-
quences obtained this way are often fragmented. The main
purpose of chord sequence decoding is thus to smooth the re-
ported sequence. Here, we use a linear-chain CRF [21] to
introduce inter-frame dependencies and find the optimal state
sequence using Viterbi decoding.

3.1. Conditional Random Fields

Conditional random fields are probabilistic energy-based
models for structured classification. They model the condi-
tional probability distribution

p (Y | X) =
exp [E (Y,X)]∑
Y′ exp [E (Y′,X)]

(1)

where Y is the label vector sequence [y0, . . . ,yN ], and X the
feature vector sequence of same length. We assume each yi to
be the target label in one-hot encoding. The energy function
is defined as

E (Y,X) =

N∑
i=1

[
y>n−1Ayn + y>n c+ x>nWyn

]
+ y>0 π + y>Nτ

(2)

where A models the inter-frame potentials, W the frame-
input potentials, c the label bias, π the potential of the first
label, and τ the potential of the last label. This form of en-
ergy function defines a linear-chain CRF.

From Eq. 1 and 2 follows that a CRF can be seen as gen-
eralised logistic regression. They become equivalent if we set
A, π and τ to 0. Further, logistic regression is equivalent to
a softmax output layer of a neural network. We thus argue
that a CRF whose input is computed by a neural network can
be interpreted as a generalised softmax output layer that al-
lows for dependencies between individual predictions. This
makes CRFs a natural choice for incorporating dependencies
between predictions of neural networks.

3.2. Model Definition and Training

Our model has 25 states (12 semitones× {major,minor} and
a “no-chord” class). These states are connected to observed
features through the weight matrix W, which computes a
weighted sum of the features for each class. This corresponds
to what the global-average-pooling part of the CNN does. We
will thus use the input to the GAP-part, Fi, averaged for each
of the 128 feature maps, as input to the CRF. We can pull
the averaging operation from the last layer to right after the
feature-extraction layer, because the operations in between
(linear convolution, batch normalisation) are linear and no
dropout is performed at test-time.

Formally, we will denote the input sequence as F ∈
R128×N , where each column f i is the averaged feature output
of the CNN for a given input Xi. Our CRF thus models
p
(
Y | F

)
.



Isophonics Robbie Williams RWC

CB3 82.2 - -
KO1 82.7 - -

NMSD2 82.0 - -

Proposed 82.9 82.8 82.5

Table 2. Weighted Chord Symbol Recall of major and mi-
nor chords achieved by different algorithms. The results of
NMSD2 are statistically significantly worse than others, ac-
cording to a Wilcoxon signed-rank test. Note that train and
test data overlaps for CB3, KO1 and NMSD2, while the re-
sults of our method are determined by 8-fold cross-validation.

As with the CNN, we train the CRF using Adam, but set
a higher learning rate of 0.01. The mini-batches consist of
32 sequences with a length of 1024 frames (102.3 sec) each.
As optimisation criterion, we use the l1-regularized negative
log-likelihood of all sequences in the data set:

L = − 1

S

S∑
i=1

log p
(
Yi | Fi

)
+ λ |ξ|1 ,

where S is the number of sequences in the data set, λ = 10−4

is the l1 regularization factor, and ξ are the CRF parameters.
We stop training when validation accuracy does not increase
for 5 epochs.

4. EXPERIMENTS

We evaluate the proposed system using 8-fold cross-validation
on a compound dataset that comprises the following subsets:
Isophonics1: 180 songs by The Beatles, 19 songs by Queen,
and 18 songs by Zweieck, totalling 10:21 hours of audio.
RWC Popular [22]: 100 songs in the style of American and
Japanese pop music originally recorded for this data set, to-
talling 6:46 hours of audio. Robbie Williams [23]: 65 songs
by Robbie Williams, totalling 4:30 hours of audio.

As evaluation measure, we compute the Weighted Chord
Symbol Recall (WCSR), often called Weighted Average
Overlap Ratio (WAOR), of major and minor chords as im-
plemented in the “mir eval” library [24]: R = tc/ta, where
tc is the total time where the prediction corresponds to the
annotation, and ta is the total duration of annotations of the
respective chord classes (major and minor chords, in our
case).

We compare our results to the three best-performing al-
gorithms in the MIREX competition in 20132 (no superior
algorithm has been submitted to MIREX since then): CB3,
based on [6]; KO1, [25]; and NMSD2, [26].

1http://isophonics.net/datasets
2http://www.music-ir.org/mirex/wiki/2013:MIREX2013 Results
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Fig. 1. Correlation between weight vectors of chord classes.
Rows and columns represent chords. Major chords are rep-
resented by upper-case letters, minor chords by lower-case
letters. The order of chords within a chord quality is deter-
mined by the circle of fifths. We observe that weight vectors
of chords close in the circle of fifths (such as ‘C’, ‘F’, and
‘G’) correlate positively. Same applies to chords that share
notes (such as ‘C’ and ‘a’, or ‘C’ and ‘c’).

4.1. Results

The results presented for the reference algorithms differ from
those found on the MIREX website. This is because of minor
differences in the implementation of the evaluation libraries.
To ensure a fairer comparison, we obtained the predictions
of the compared algorithms and ran the same evaluation code
for all approaches. Note however, that for the reference al-
gorithms there is a known overlap between train and test set,
and the obtained results might be optimistic.

Table 2 shows the results of our method compared to
three state-of-the-art algorithms. We can see that the pro-
posed method performs slightly better (but not statistically
significant), although the train set of the reference methods
overlaps with the test set.

5. AUDITORY MODEL ANALYSIS

Following [11], the final feature maps of a GAP network can
be interpreted as “category confidence maps”. Such confi-
dence maps will have a high average value if the network
is confident that the input is of the respective category. In
our architecture, the average activation of a confidence map
can be expressed as a weighted average over the (batch-
normalised) feature maps of the preceding layer. We thus
have 128 weights for each of the 25 categories (chord classes).

We wanted to see whether the penultimate feature maps
Fi can be interpreted in a musically meaningful way. To this
end, we first analysed the similarity of the weight vectors for
each chord class by computing their correlation. The result

http://isophonics.net/datasets
http://www.music-ir.org/mirex/wiki/2013:MIREX2013_Results
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Fig. 2. Connection weights of selected feature maps to chord classes. Chord classes are ordered according to the circle of fifths,
such that harmonically close chords are close to each other. In the left plot, we selected feature maps that have a high average
contribution to minor chords. In the right plot, those with high contribution to major chords. Feature maps with high average
weights to minor chords show negative connections to all major chords. Within minor chords, we observe that two of them (10
and 101) discriminate between chords that are harmonically close (zig-zag pattern). We observe a similar pattern in the right
plot.
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Fig. 3. Contribution of feature maps to pitch classes. Although these results are noisy, we observe that some feature maps
seem to specialise on detecting the presence (or absence) pitch classes. For example, feature maps 1, 25, and 57 detect single
pitch classes; feature maps 22, 46, and 100 contribute to pairs of related pitch classes—perfect fifth between ‘g’ and ‘d’ in the
22nd, minor third between ‘d’ and ‘f’ in the 46th, and major third between ‘a’ and ‘c]’ in the 85th feature map. Note that the
100th feature map also slightly discriminates ‘d’ and ‘a’ from ‘f’, which would form a d-minor triad together. Other feature
maps that discriminate between pitch classes include the 11th (‘a’ vs. ‘e’, perfect fifth) and the 95th (‘f]’ vs.‘a]’, major third).

is shown in Fig. 1. We see a systematic correlation between
weight vectors of chords that share notes or are close to each
other in the circle of fifths. The patterns within minor chords
are less clear. This might be because minor chords are under-
represented in the data, and the network could not learn sys-
tematic patterns from this limited amount.

Furthermore, we wanted to see if the network learned to
distinguish major and minor modes independently of the root
note. To this end, we selected the four feature maps with
the highest connection weights to major and minor chords re-
spectively and plotted their contribution to each chord class
in Fig. 2. Here, an interesting pattern emerges: feature maps
with high average weights to minor chords have negative con-
nections to all major chords. High activations in these feature
maps thus make all major chords less likely. However, they
tend to be specific on which minor chords they favour. We

observe a zig-zag pattern that discriminates between chords
that are next to each other in the circle of fifths. This means
that although the weight vectors of harmonically close chords
correlate, the network learned features to discriminate them.

Finally, we investigated if there are feature maps that indi-
cate the presence of individual pitch classes. To this end, we
multiplied the weight vectors of all chords containing a pitch
class, in order to isolate its influence. For example, when
computing the weight vector for pitch class ‘c’, we multiplied
the weight vectors of ‘C’, ‘F’, ‘A[’, ‘c’, ‘f’, and ‘a’ chords;
their only commonality is the presence of the ‘c’ pitch class.
Fig. 3 shows the results. We can observe that some feature
maps seem to specialise in detecting certain pitch classes and
intervals, and some to discriminate between pitch classes.



6. CONCLUSION

We presented a novel method for chord recognition based
on a fully convolutional neural network in combination with
a CRF. The method automatically learns musically inter-
pretable features from the spectrogram, and performs at least
as good as state-of-the-art systems. For future work we aim at
creating a model that distinguishes more chord qualities than
major and minor, independently of the root note of a chord.
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