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ABSTRACT

We present a probabilistic way to extract beat positions
from the output (activations) of the neural network that is at
the heart of an existing beat tracker. The method can serve
as a replacement for the greedy search the beat tracker cur-
rently uses for this purpose. Our experiments show im-
provement upon the current method for a variety of data
sets and quality measures, as well as better results com-
pared to other state-of-the-art algorithms.

1. INTRODUCTION

Rhythm and pulse lay the foundation of the vast major-
ity of musical works. Percussive instruments like rattles,
stampers and slit drums have been used for thousands of
years to accompany and enhance rhythmic movements or
dances. Maybe this deep connection between movement
and sound enables humans to easily tap to the pulse of a
musical piece, accenting its beats. The computer, however,
has difficulties determining the position of the beats in an
audio stream, lacking the intuition humans developed over
thousands of years.

Beat tracking is the task of locating beats within an au-
dio stream of music. Literature on beat tracking suggests
many possible applications: practical ones such as auto-
matic time-stretching or correction of recorded audio, but
also as a support for further music analysis like segmenta-
tion or pattern discovery [4]. Several musical aspects hin-
der tracking beats reliably: syncopation, triplets and off-
beat rhythms create rhythmical ambiguousness that is dif-
ficult to resolve; varying tempo increases musical expres-
sivity, but impedes finding the correct beat times. The mul-
titude of existing beat tracking algorithms work reasonably
well for a subset of musical works, but often fail for pieces
that are difficult to handle, as [11] showed.

In this paper, we further improve upon the beat tracker
presented in [2]. The existing algorithm uses a neural net-
work to detect beats in the audio. The output of this neural
network, called activations, indicates the likelihood of a
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beat at each audio position. A post-processing step selects
from these activations positions to be reported as beats.
However, this method struggles to find the correct beats
when confronted with ambiguous activations.

We contribute a new, probabilistic method for this pur-
pose. Although we designed the method for audio with a
steady pulse, we show that using the proposed method the
beat tracker achieves better results even for datasets con-
taining music with varying tempo.

The remainder of the paper is organised as follows: Sec-
tion 2 reviews the beat tracker our method is based on. In
Section 3 we present our approach, describe the structure
of our model and show how we infer beat positions. Sec-
tion 4 describes the setup of our experiments, while we
show their results in Section 5. Finally, we conclude our
work in Section 6.

2. BASE METHOD

In this section, we will briefly review the approach pre-
sented in [2]. For a detailed discourse we refer the reader
to the respective publication. First, we will outline how
the algorithm processes the signal to emphasise onsets. We
will then focus on the neural network used in the beat
tracker and its output in Section 2.2. After this, Section 3
will introduce the probabilistic method we propose to find
beats in the output activations of the neural network.

2.1 Signal Processing

The algorithm derives from the signal three logarithmi-
cally filtered power spectrograms with window sizes W
of 1024, 2048 and 4096 samples each. The windows are
placed 441 samples apart, which results in a frame rate of
fr = 100 frames per second for audio sampled at 44.1kHz.
We transform the spectra using a logarithmic function to
better match the human perception of loudness, and filter
them using 3 overlapping triangular filters per octave.

Additionally, we compute the first order difference for
each of the spectra in order to emphasise onsets. Since
longer frame windows tend to smear spectral magnitude
values in time, we compute the difference to the last, sec-
ond to last, and third to last frame, depending on the win-
dow size W . Finally, we discard all negative values.
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(a) Activations of a piece from the Ballroom dataset
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(b) Activations of a piece from the SMC dataset

Figure 1. Activations of pieces from two different datasets. The activations are shown in blue, with green, dotted lines
showing the ground truth beat annotations. On the left, distinct peaks indicate the presence of beats. The prominent
rhythmical structure of ballroom music enables the neural network to easily discern frames that contain beats from those
that do not. On the right, many peaks in the activations do not correspond to beats, while some beats lack distinguished
peaks in the activations. In this piece, a single woodwind instrument is playing a solo melody. Its soft onsets and lack of
percussive instruments make detecting beats difficult.

2.2 Neural Network

Our classifier consists of a bidirectional recurrent neural
network of Long Short-Term Memory (LSTM) units, called
bidirectional Long Short-Term Memory (BLSTM) recur-
rent neural network [10]. The input units are fed with the
log-filtered power spectra and their corresponding positive
first order differences. We use three fully connected hidden
layers of 25 LSTM units each. The output layer consists of
a single sigmoid neuron. Its value remains within [0, 1],
with higher values indicating the presence of a beat at the
given frame.

After we initialise the network weights randomly, the
training process adapts them using standard gradient de-
scent with back propagation and early stopping. We obtain
training data using 8-fold cross validation, and randomly
choose 15% of the training data to create a validation set.
If the learning process does not improve classification on
this validation set for 20 training epochs, we stop it and
choose the best performing neural network as final model.
For more details on the network and the learning process,
we refer the reader to [2].

The neural network’s output layer yields activations for
every feature frame of an audio signal. We will formally
represent this computation as mathematical function. Let
N be the number of feature frames for a piece, and N≤N =
{1, 2, . . . , N} the set of all frame indices. Furthermore,
let υn be the feature vector (the log-filtered power spectra
and corresponding differences) of the nth audio frame, and
Υ = (υ1, υ2, . . . , υN ) denote all feature vectors computed
for a piece. We represent the neural network as a function

Ψ : N≤N → [0, 1] , (1)

such that Ψ(n; Υ) is the activation value for the nth frame
when the network processes the feature vectors Υ. We will
call this function “activations” in the following.

Depending on the type of music the audio contains, the
activations show clear (or, less clear) peaks at beat posi-
tions. Figure 1 depicts the first 10 seconds of activations

for two different songs, together with ground truth beat an-
notations. In Fig. 1a, the peaks in the activations clearly
correspond to beats. For such simple cases, thresholding
should suffice to extract beat positions. However, we often
have to deal with activations as those in Fig. 1b, with many
spurious and/or missing peaks. In the following section,
we will propose a new method for extracting beat positions
from such activations.

3. PROBABILISTIC EXTRACTION OF BEAT
POSITIONS

Figure 1b shows the difficulty in deriving the position of
beats from the output of the neural network. A greedy local
search, as used in the original system, runs into problems
when facing ambiguous activations. It struggles to correct
previous beat position estimates even if the ambiguity re-
solves later in the piece. We therefore tackle this problem
using a probabilistic model that allows us to globally opti-
mise the beat sequence.

Probabilistic models are a frequently used to process
time-series data, and are therefore popular in beat track-
ing (e.g. [3, 9, 12, 13, 14]). Most systems favour generative
time-series models like hidden Markov models (HMMs),
Kalman filters, or particle filters as natural choices for this
problem. For a more complete overview of available beat
trackers using various methodologies and their results on a
challenging dataset we refer the reader to [11].

In this paper, we use a different approach: our model
represents each beat with its own random variable. We
model time as dimension in the sample space of our ran-
dom variables as opposed to a concept of time driving a
random process in discrete steps. Therefore, all activations
are available at any time, instead of one at a time when
thinking of time-series data.

For each musical piece we create a model that differs
from those of other pieces. Different pieces have different
lengths, so the random variables are defined over differ-
ent sample spaces. Each piece contains a different number
of beats, which is why each model consists of a different
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Figure 2. The model depicted as Bayesian network. Each
Xk corresponds to a beat and models its position. Y rep-
resents the feature vectors of a signal.

number of random variables.
The idea to model beat positions directly as random

variables is similar to the HMM-based method presented in
[14]. However, we formulate our model as a Bayesian net-
work with the observations as topmost node. This allows
us to directly utilise the whole observation sequence for
each beat variable, without potentially violating assump-
tions that need to hold for HMMs (especially those re-
garding the observation sequence). Also, our model uses
only a single factor to determine potential beat positions in
the audio – the output of a neural network – whereas [14]
utilises multiple features on different levels to detect beats
and downbeats.

3.1 Model Structure

As mentioned earlier, we create individual models for each
piece, following the common structure described in this
section. Figure 2 gives an overview of our system, depicted
as Bayesian network.

Each Xk is a random variable modelling the position of
the kth beat. Its domain are all positions within the length
of a piece. By position we mean the frame index of the ac-
tivation function – since we extract features with a frame
rate of fr = 100 frames per second, we discretise the con-
tinuous time space to 100 positions per second.

Formally, the number of possible positions per piece is
determined by N , the number of frames. Each Xk is then
defined as random variable with domain N≤N , the natural
numbers smaller or equal to N :

Xk ∈ N≤N with 1 ≤ k ≤ K, (2)

where K is the number of beats in the piece. We estimate
this quantity by detecting the dominant interval τ of a piece
using an autocorrelation-based method on the smoothed
activation function of the neural network (see [2] for de-
tails). Here, we restrict the possible intervals to a range
[τl..τu], with both bounds learned from data. Assuming a
steady tempo and a continuous beat throughout the piece,
we simply compute K = N/τ .
Y models the features extracted from the input audio.

If we divide the signal into N frames, Y is a sequence of
vectors:

Y ∈ {(y1, . . . , yN )} , (3)

where each yn is in the domain defined by the input fea-
tures. Although Y is formally a random variable with a
distribution P (Y ), its value is always given by the con-
crete features extracted from the audio.

The model’s structure requires us to define dependen-
cies between the variables as conditional probabilities. As-
suming these dependencies are the same for each beat but
the first, we need to define

P (X1 | Y ) and

P (Xk | Xk−1, Y ) .

If we wanted to compute the joint probability of the model,
we would also need to define P (Y ) – an impossible task.
Since, as we will elaborate later, we are only interested in
P (X1:K | Y ) 1 , and Y is always given, we can leave this
aside.

3.2 Probability Functions

Except for X1, two random variables influence each Xk:
the previous beat Xk−1 and the features Y . Intuitively, the
former specifies the spacing between beats and thus the
rough position of the beat compared to the previous one.
The latter indicates to what extent the features confirm the
presence of a beat at this position. We will define both as
individual factors that together determine the conditional
probabilities.

3.2.1 Beat Spacing

The pulse of a musical piece spaces its beats evenly in
time. Here, we assume a steady pulse throughout the piece
and model the relationship between beats as factor favour-
ing their regular placement according to this pulse. Fu-
ture work will relax this assumption and allow for varying
pulses.

Even when governed by a steady pulse, the position of
beats is far from rigid: slight modulations in tempo add
musical expressivity and are mostly artistic elements in-
tended by performers. We therefore allow a certain devi-
ation from the pulse. As [3] suggests, tempo changes are
perceived relatively rather than absolutely, i.e. halving the
tempo should be equally probable as doubling it. Hence,
we use the logarithm to base 2 to define the intermediate
factor Φ̃ and factor Φ, our beat spacing model. Let x and
x′ be consecutive beat positions and x > x′, we define

Φ̃ (x, x′) = φ
(
log2 (x− x′) ; log2 (τ) , σ2

τ

)
, (4)

Φ (x, x′) =

{
Φ̃ (x, x′) if 0 < x− x′ < 2τ

0 else
, (5)

where φ
(
x;µ, σ2

)
is the probability density function of a

Gaussian distribution with mean µ and variance σ2, τ is
the dominant inter-beat interval of the piece, and σ2

τ repre-
sents the allowed tempo variance. Note how we restrict the
non-zero range of Φ: on one hand, to prevent computing
the logarithm of negative values, and on the other hand, to
reduce the number of computations.

1 We use Xm:n to denote all Xk with indices m to n
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The factor yields high values when x and x′ are spaced
approximately τ apart. It thus favours beat positions that
correspond to the detected dominant interval, allowing for
minor variations.

Having defined the beat spacing factor, we will now
elaborate on the activation vector that connects the model
to the audio signal.

3.2.2 Beat Activations

The neural network’s activations Ψ indicate how likely 2

each frame n ∈ N≤N is a beat position. We directly use
this factor in the definition of the conditional probability
distributions.

With both factors in place we can continue to define
the conditional probability distributions that complete our
probabilistic model.

3.2.3 Conditional Probabilities

The conditional probability distribution P (Xk | Xk−1, Y )
combines both factors presented in the previous sections. It
follows the intuition we outlined at the beginning of Sec-
tion 3.2 and molds it into the formal framework as

P (Xk | Xk−1, Y ) =
Ψ (Xk;Y ) · Φ (Xk, Xk−1)∑
Xk

Ψ (Xk;Y ) · Φ (Xk, Xk−1)
.

(6)

The case ofX1, the first beat, is slightly different. There
is no previous beat to determine its rough position using
the beat spacing factor. But, since we assume that there
is a steady and continuous pulse throughout the audio, we
can conclude that its position lies within the first interval
from the beginning of the audio. This corresponds to a
uniform distribution in the range [0, τ ], which we define as
beat position factor for the first beat as

Φ1(x) =

{
1/τ if 0 ≤ x < τ,

0 else
. (7)

The conditional probability for X1 is then

P (X1 | Y ) =
Ψ (X1;Y ) · Φ1 (X1)∑
X1

Ψ (X1;Y ) · Φ1 (X1)
. (8)

The conditional probability functions fully define our
probabilistic model. In the following section, we show
how we can use this model to infer the position of beats
present in a piece of music.

3.3 Inference

We want to infer values x∗1:K for X1:K that maximise the
probability of the beat sequence given Y = Υ, that is

x∗1:K = argmax
x1:K

P (X1:K | Υ) . (9)

Each x∗k corresponds to the position of the kth beat. Υ are
the feature vectors computed for a specific piece. We use

2 technically, it is not a likelihood in the probabilistic sense – it just
yields higher values if the network thinks that the frame contains a beat
than if not

a dynamic programming method similar to the well known
Viterbi algorithm [15] to obtain the values of interest.

We adapt the standard Viterbi algorithm to fit the struc-
ture of model by changing the definition of the “Viterbi
variables” δ to

δ1(x) = P (X1 = x | Υ) and

δk(x) = max
x′

P (Xk = x | Xk−1 = x′,Υ) · δk−1(x′),

where x, x′ ∈ N≤N . The backtracking pointers are set
accordingly.
P (x∗1:K | Υ) gives us the probability of the beat se-

quence given the data. We use this to determine how
well the deducted beat structure fits the features and in
consequence the activations. However, we cannot directly
compare the probabilities of beat sequences with different
numbers of beats: the more random variables a model has,
the smaller the probability of a particular value configura-
tion, since there are more possible configurations. We thus
normalise the probability by dividing by K, the number of
beats.

With this in mind, we try different values for the domi-
nant interval τ to obtain multiple beat sequences, and
choose the one with the highest normalised probability.
Specifically, we run our method with multiples of τ (1/2,
2/3, 1, 3/2, 2) to compensate for errors when detecting the
dominant interval.

4. EXPERIMENTS

In this section we will describe the setup of our experi-
ments: which data we trained and tested the system on,
and which evaluation metrics we chose to quantify how
well our beat tracker performs.

4.1 Data

We ensure the comparability of our method by using three
freely available data sets for beat tracking: the Ballroom
dataset [8,13]; the Hainsworth dataset [9]; the SMC dataset
[11]. The order of this listing indicates the difficulty asso-
ciated with each of the datasets. The Ballroom dataset con-
sists of dance music with strong and steady rhythmic pat-
terns. The Hainsworth dataset includes of a variety of mu-
sical genres, some considered easier to track (like pop/rock,
dance), others more difficult (classical, jazz). The pieces
in the SMC dataset were specifically selected to challenge
existing beat tracking algorithms.

We evaluate our beat tracker using 8-fold cross vali-
dation, and balance the splits according to dataset. This
means that each split consists of roughly the same relative
number of pieces from each dataset. This way we ensure
that all training and test splits represent the same distribu-
tion of data.

All training and testing phases use the same splits. The
same training sets are used to learn the neural network and
to set parameters of the probabilistic model (lower and up-
per bounds τl and τu for dominant interval estimation and
στ ). The test phase feeds the resulting tracker with data
from the corresponding test split. After detecting the beats
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for all pieces, we group the results according to the original
datasets in order to present comparable results.

4.2 Evaluation Metrics

A multitude of evaluation metrics exist for beat tracking al-
gorithms. Some accent different aspects of a beat tracker’s
performance, some capture similar properties. For a com-
prehensive review and a detailed elaboration on each of
the metrics, we refer the reader to [5]. Here, we restrict
ourselves to the following four quantities, but will publish
further results on our website 3 .

F-measure The standard measure often used in informa-
tion retrieval tasks. Beats count as correct if detected
within ±70ms of the annotation.

Cemgil Measure that uses a Gaussian error window with
σ = 40ms instead of a binary decision based on a
tolerance window. It also incorporates false posi-
tives and false negatives.

CMLt The percentage of correctly detected beats at the
correct metrical level. The tolerance window is set
to 17.5% of the current inter-beat interval.

AMLt Similar to CMLt, but allows for different metrical
levels like double tempo, half tempo, and off-beat.

In contrast to common practice 4 , we do not skip the
first 5 seconds of each audio signal for evaluation. Al-
though skipping might make sense for on-line algorithms,
it does not for off-line beat trackers.

5. RESULTS

Table 1 shows the results of our experiments. We obtained
the raw beat detections on the Ballroom dataset for [6, 12,
13] from the authors of [13] and evaluated them using our
framework. The results are thus directly comparable to
those of our method. For the Hainsworth dataset, we col-
lected results for [6,7,12] from [7], who does skip the first
5 seconds of each piece in the evaluation. In our experi-
ence, this increases the numbers obtained for each metric
by about 0.01.

The approaches of [6, 7] do not require any training.
In [12], some parameters are set up based on a separate
dataset consisting of pieces from a variety of genres. [13]
is a system that is specialised for and thus only trained on
the Ballroom dataset.

We did not include results of other algorithms for the
SMC dataset, although available in [11]. This dataset did
not exist at the time most beat trackers were crafted, so the
authors could not train or adapt their algorithms in order to
cope with such difficult data.

Our method improves upon the original algorithm [1,
2] for each of the datasets and for all evaluation metrics.
While F-Measure and Cemgil metric rises only marginally
(except for the SMC dataset), CMLt and AMLt improves

3 http://www.cp.jku.at/people/korzeniowski/ismir2014
4 As implemented in the MatLab toolbox for the evaluation of beat

trackers presented in [5]

SMC F Cg CMLt AMLt

Proposed 0.545 0.436 0.442 0.580
Böck [1, 2] 0.497 0.402 0.360 0.431

Hainsworth F Cg CMLt AMLt

Proposed 0.840 0.718 0.784 0.875
Böck [1, 2] 0.837 0.717 0.763 0.811

Degara* [7] - - 0.629 0.815
Klapuri* [12] - - 0.620 0.793
Davies* [6] - - 0.609 0.763

Ballroom F Cg CMLt AMLt

Proposed 0.903 0.864 0.833 0.910
Böck [1, 2] 0.889 0.857 0.796 0.831

Krebs [13] 0.855 0.772 0.786 0.865
Klapuri [12] 0.728 0.651 0.539 0.817
Davies [6] 0.764 0.696 0.574 0.864

Table 1. Beat tracking results for the three datasets. F
stands for F-measure and Cg for the Cemgil metric. Re-
sults marked with a star skip the first five seconds of each
piece and are thus better by about 0.01 for each metric, in
our experience.

considerably. Our beat tracker also performs better than
the other algorithms, where metrics were available.

The proposed model assumes a stable tempo throughout
a piece. This assumption holds for certain kinds of music
(like most of pop, rock and dance), but does not for others
(like jazz or classical). We estimated the variability of the
tempo of a piece using the standard deviation of the local
beat tempo. We computed the local beat tempo based on
the inter-beat interval derived from the ground truth an-
notations. The results indicate that most pieces have a
steady pulse: 90% show a standard deviation lower than
8.61 bpm. This, of course, depends on the dataset, with
97% of the ballroom pieces having a deviation below 8.61
bpm, 89% of the Hainsworth dataset but only 67.7% of the
SMC data.

We expect our approach to yield inferior results for
pieces with higher tempo variability than for those with
a more constant pulse. To test this, we computed Pear-
son’s correlation coefficient between tempo variability and
AMLt value. The obtained value of ρ = -0.46 indicates that
our expectation holds, although the relationship is not lin-
ear, as a detailed examination showed. Obviously, multiple
other factors also influence the results. Note, however, that
although the tempo of pieces from the SMC dataset varies
most, it is this dataset where we observed the strongest im-
provement compared to the original approach.

Figure 3 compares the beat detections obtained with the
proposed method to those computed by the original ap-
proach. It exemplifies the advantage of a globally opti-
mised beat sequence compared to a greedy local search.
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Figure 3. Beat detections for the same piece as shown in Fig. 1b obtained using the proposed method (red, up arrows)
compared to those computed by the original approach (purple, down arrows). The activation function is plotted solid
blue, ground truth annotations are represented by vertical dashed green lines. Note how the original method is not able to
correctly align the first 10 seconds, although it does so for the remaining piece. Globally optimising the beat sequence via
back-tracking allows us to infer the correct beat times, even if the peaks in the activation function are ambiguous at the
beginning.

6. CONCLUSION AND FUTURE WORK

We proposed a probabilistic method to extract beat posi-
tions from the activations of a neural network trained for
beat tracking. Our method improves upon the simple ap-
proach used in the original algorithm for this purpose, as
our experiments showed.

In this work we assumed close to constant tempo
throughout a piece of music. This assumption holds for
most of the available data. Our method also performs rea-
sonably well on difficult datasets containing tempo chang-
es, such as the SMC dataset. Nevertheless we believe that
extending the presented method in a way that enables track-
ing pieces with varying tempo will further improve the sys-
tem’s performance.
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