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ABSTRACT

In this paper we present a score following system based
on a Dynamic Bayesian Network, using particle filtering
as inference method. The proposed model sets itself apart
from existing approaches by including two new exten-
sions:

A multi-level tempo model to improve alignment qual-
ity of performances with challenging tempo changes, and
an extension to reflect different expressive characteristics
of notated rests.

Both extensions are evaluated against a dataset of clas-
sical piano music. As the results show, the extensions im-
prove both the accuracy and the robustness of the algo-
rithm.

1. INTRODUCTION

Score following systems, which listen to a (live) music
performance through a microphone and at any time rec-
ognize the current position in the score, facilitate a wide
range of applications. Given robust and accurate score fol-
lowing, the computer can serve as a musical partner to the
performer(s) by, e.g., automatically accompanying them,
interacting with them, giving audio-visual feedback, or
simply turning the pages for them.

The task of score following is far from trivial, as such
a system has to be able to cope with (possibly extreme) de-
viations from the score (e.g., in tempo and timing, loud-
ness, structure, left-out/added/changed notes). Classical
music, the focus of the proposed system, allows a lot of
expressive freedom, and as a consequence these deviation
happen constantly.

Over time, various approaches to this task have been
presented, ranging from simple string matching techniques
[7] to systems based on dynamic time warping with vari-
ous extensions [1, 2], and sophisticated probabilistic mod-
els [5, 14].

In recent years, several authors proposed the applica-
tion of particle filters to estimate the current performance
position in a continuous “score space” measured in beats.
While [10] and [12] adapt a standard tracking network to
the score following problem, [13] presents a multi-level
tracker, switching between position and tempo prediction
depending on its tracking confidence.

The results seem promising enough to encourage fu-
ture work. So far mostly basic models were used, which,
depending on the complexity of score and performance,
might compromise alignment quality. In this paper we in-
troduce a real-time score following system, showing how
meaningful extensions to the standard position/tempo
model can improve the alignment.

The contributions of this paper are the extensions of
the standard position/velocity model typically used so far,
especially designed to resolve alignment problems emerg-
ing when working with complex musical performances.
Specifically, we will describe an extension to handle rests,
robust to reverberation and the artist’s expressiveness. We
will also introduce a multi-level tempo model based on the
work in [11] to better represent performances with strong
tempo fluctuations.

2. SYSTEM DESCRIPTION

The overall structure of our system, as depicted in Fig-
ure 1, is similar to other score followers, and can be di-
vided in three parts. The only off-line part is the score
modeller, which reads the notes from a symbolic repre-
sentation of the score and creates a model for each one.
The feature calculator computes features on the incoming
audio, capturing different kinds of information present in
the signal. The matcher connects the outputs of the two
parts and computes and estimates the current score posi-
tion.
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Figure 1. Overall structure of our score following system

The different parts are described in detail in the fol-
lowing.
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2.1. Feature Calculator

We are interested in three properties of the incoming au-
dio, namely tonal content, onsets and loudness. Our sys-
tem has a time resolution of 50 ms, resulting in a hop size
of 2205 samples for input signals with a sampling rate of
44.1 kHz.

2.1.1. Tonal Content

To analyse the tonal content, we estimate the incoming
signal’s magnitude spectrum using the STFT with a win-
dow size of Nwin = 4096 samples and a Hann window.
Let Nb = 2048 be the number of bins in the spectrum,
the magnitude spectrum will be denoted as X (n, t), where
1 ≤ n ≤ Nb is the frequency bin and t is the point in time
in hops for which the spectrum was computed.

2.1.2. Onset Function

Our onset function is a spectral flux based method inspired
by [3]. After calculating the logarithmic spectrum X̂(i, t),
we compute the spectral flux fo(t), which takes the fol-
lowing form:

fo(t) =
1
2

(
1+

1
Nb

Nb

∑
i=1

X̂(i, t)− X̂(i, t−1)

)
. (1)

X̂(n, t) = log(γ ·X(n, t)+1) , (2)

where, as suggested by [3], γ is set to 20:
In practice, the values after this transformation are

within the interval [0,1], which will be important later on,
when defining the observation probabilities.

2.1.3. Loudness

We estimate the loudness of the input signal by computing
the sound pressure level of the incoming audio frame. The
sound pressure level l(t) is defined as

l(t) = 20 · log10

(
prms(t)

pre f

)
(3)

prms(t) =

√√√√ 1
Nwin

Nwin

∑
i=1

Y (i, t), (4)

where Y (i, t) are the samples of the tth audio frame of
length Nwin. Since the microphone used for recording
is not calibrated, we don’t know pre f , and hence set this
value to 1.

2.2. Matcher

The matcher is the connecting component between the in-
coming audio stream and the score. Given the features of
the current audio frame and the score notes, it estimates
the performer’s position in the score and hence works on
the same time resolution as the feature computation. Its
underlying basis is a Dynamic Bayesian Network (DBN).

DBNs consist of a set of random variables whose inter-
dependencies are defined by a Bayesian network. This
network is duplicated an unfolded in time: For each time
step there exists a copy of the initial network. Connec-
tion between variables at time t and t− 1 introduce con-
ditional dependencies through time. Additionally, initial
probabilities have to be defined for t = 0. More formally,
let St =

{
s1

t , . . . ,s
N
t
}

be the set of random variables at time
step t, then

P(sn
0 | S0 \{sn

0}) 1≤ n≤ N and
P(sn

t | St \{sn
t },St−1) 1≤ n≤ N

describe the conditional probabilities of all variables.
DBNs are often used to describe generative models,

with Hidden Markov Models and Kalman Filters as pop-
ular, specialised examples. A generative model typically
consists of hidden variables that describe the system’s
state at each point in time, and observed variables that
are generated by the system and depending on the hidden
variables. The general assumption is that given the hid-
den state at time t, the corresponding observable variables
are independent of those at time t− 1. Given a sequence
of observations, one can infer the state of the hidden sys-
tem.

In our system, the observable variables are features
computed from the audio, while the hidden variables rep-
resent information about the underlying performance gen-
erating the audio signal. Figure 2 shows an overview of
the complete DBN describing our model. Table 1 lists all
variables with a short description.

ltlt−1

xtxt−1

mt−1 mtet−1 et

yl
t−1ys

t−1 ys
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t
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st−1 st

Figure 2. Graphical model of the DBN used in our score
follower

The following sections describe the conditional prob-
ability distributions (CPDs) for each variable.

2.3. Hidden Variables

The core random variables of our model are the current
position in the score in beats, xt , and the current tempo,
mt . Similar to [4], we use a perceptually motivated scale
representing the tempo by taking the logarithm to base 2



Var Unit Description

xt beats position
mt log2(bpm) note tempo
lt log2(bpm) local tempo
ot 0, 1 onset presence
st ss,sr sounding status
et 0, 1 note onset in score between

xt−1 and xt

ys
t - spectral content

yl
t dB loudness

yo
t - onset function

Table 1. Variables used in our DBN

of the tempo in bpm, reflecting the assumption that tempo
changes are relative rather than absolute. At each time
step, the position is updated using the tempo as defined
by Eq. 5.

xt = xt−1 +2mt−1 · τ ·60, (5)

where τ is the time between t−1 and t in seconds. Written
as a probability distribution this is equivalent to

P(xt | xt−1,mt−1) = δ (xt − xt−1−2mt−1 · τ ·60) , (6)

where δ is the Dirac function.
The tempo variable is not updated at every step, but

only at note onsets. This is even more restrictive than in
[10], where tempo changes are allowed both at onsets and
offsets. Let Eo = {e1, . . . ,eNo} be the onset positions in
beats, we define an auxiliary variable et that takes on the
value 1 if there is a score note onset between beat positions
xt−1 and xt .

et =

{
1 if ∃e∈Eo : xt−1 < e < xt

0 else
(7)

The tempo variable update is then defined as

P(mt | mt−1,et) =

{
N (mt−1,σm) if et = 1
δ (mt −mt−1) else

, (8)

where we set the tempo variation per note onset σm = 0.1.
This two variable model roughly corresponds to the

models found in [10] and [12], and works fine for a vari-
ety of pieces. However, certain peculiarities found in mu-
sical performances cannot be adequately represented by
this basic model. In particular, we found that it is difficult
to cope with performances with long rests in the score,
as found in many sonatas by Mozart, or large changes
in tempo as found in most of the romantic repertoire. In
this paper, we present two extensions designed to address
these cases.

2.3.1. Handling Rests

The first extension propose addresses the handling of rests
in the score. While we are able to detect rests in the per-
formance audio using the features we described in Sec-
tion 2.1, rests, like every other entity in the score, are sub-
ject to the expressiveness of the performer, as well as to
degradations during the recording process. For example,
a performer might decide to let the previous notes sus-
tain during a rest, or the audio signal might be subject
to strong room reverberation. Or, especially in singing
performances, the artist might introduce rests that are not
notated in the score, e.g. to take a breath. While a robust
tracker might overcome these deviations up to a certain
limit, the alignment quality suffers in these cases.

To handle this problem we introduce a discrete vari-
able st , which can take on the values Ωs = {ss,sr}, repre-
senting a sounding and a resting state. The idea is to relax
the connection between what is written in the score and
what is being performed, by deliberately allowing sound-
ing notes during rests, and pauses where notes should be
played. We also take into account temporal coherence,
e.g. it can not be possible to silence the previous notes dur-
ing a rest and let them sound again later. We distinguish
between two basic types of score positions: sustain posi-
tions, where notes should be sounding, denoted as snd(xt)
and rest positions, where there should be silence, denoted
as rst(xt). Table 2 shows our complete conditional prob-
ability distribution for st . The exact values were deter-
mined empirically.

snd(xt) rst(xt)

st = ss
1.0 0.8 st−1 = ss
1.0 0.0 st−1 = sr

st = sr
0.0 0.2 st−1 = ss
0.0 1.0 st−1 = sr

Table 2. Conditional probability table for P(st | xt ,st−1)

The peculiarity that in Table 2 a sounding position im-
mediately implies a sound status reflects that our database
comprises only piano music and does not contain cases
where the performer paused although a note was written
in the score. Were we to work with e.g. singing perfor-
mances, this would certainly change, as singers tend to
shorten longer notes to breath.

2.3.2. Handling Tempo

In particle filter systems, changes in tempo are usually as-
sumed to behave randomly, with the tempo variable being
drawn from a normal distribution at each time step. While
this seems to be a valid but coarse approximation of the
true tempo process in performances of classical music, it
is agnostic to a multi-level composite concept of tempo, as
proposed by [11]. Basically, three different tempo levels
can be distinguished: global tempo, referring to the initial
tempo annotation in the score, local tempo, describing the



tempo of the current musical unit, and note timing, indi-
cating the deviation of a single note from the local tempo.

Here, we model local tempo and note timing, using
the variables lt and mt , while the annotated global tempo
is used for the initial probability distribution for the local
tempo. The local tempo is regarded as the low-frequency
part of the composite tempo curve and is estimated by
applying a modified moving average filter as defined by
Eq. 9. Note that we use the note timing in bpm rather than
the perceptual log2(bpm) value to compute the mean.

mmat,n = log2

(
(n−1)2lt−1 +2mt−1

n

)
(9)

We allow for new note timing only at note onsets, ad-
hering to the restriction that tempo changes are only per-
ceivable at note onsets. We further assume that consecu-
tive note timings only depend on the local tempo:

P(lt | et , lt−1,mt−1) =

{
δ (lt −mmat,3) if et = 1
δ (lt − lt−1) else

.

(10)

We use a mixture of two Gaussians to represent the
note timing: one with a small variance σms to model the
usual tempo fluctuation, and one with a greater variance
σm f to capture strong fluctuations and sudden tempo
changes. Although we assume the current note timing to
be only dependent on the current local tempo, its variable
has to be conditioned on the previous note timing to en-
sure consistency when no score note onset occurred in the
meantime.

GMMmt(lt) = wsN (lt ,σms)+

w f N (lt ,σm f ) (11)

P(mt | lt ,et ,mt−1) =

{
GMMmt(lt) if et = 1
δ (mt −mt−1) else

(12)

2.4. Observable Variables

The observable variables represent the features we com-
pute on the incoming audio stream: ys

t corresponds to
the spectrum, yo

t to the onset function and yl
t to the loud-

ness. Assuming independence between these variables we
can effectively split the likelihood into a multiplication of
individual likelihoods for each feature, simplifying their
definition. Let Vt be the set of all hidden variables at
time t, then the joint probability distribution over ys

t ,y
o
t

and yl
t is defined by

P
(

y{s,o,l}t |Vt

)
= P(ys

t |Vt)P(yo
t |Vt)P(yl

t |Vt). (13)

2.4.1. Tonal Content

Inspired by [5] and [14], we use a template-based mecha-
nism to match a score position to the audio. In the score
modelling stage, we create a spectral template for each

note in the piece, representing the expected magnitude
spectrum produced by an instrument playing this note.
This is of course a coarse approximation, since the spec-
tral content heavily depends on the harmonic structure of
tones generated by an instrument, which is different for
every instrument type, individual instrument model and
even the recording conditions, but has shown to work well
enough for our purposes.

The templates were defined using a mixture of Gaus-
sians, centred at the fundamental frequency of the note
and some harmonics, with increasing variance for each
harmonic and quadratically decreasing component weight.
We determine all sounding notes for a position xt and
build the overall template by summing the sounding note
templates. Then, we discretise it at the frequency centres
of each frequency bin of the STFT, resulting in a vector
Φxt .

To compare a template to the incoming audio signal,
we compute the correlation between them, unlike [5],
where the Kullback–Leibler divergence is used and [14],
where the signal’s magnitude spectrum is treated as sam-
ples generated by the template. An interesting property of
this method is that it ignores the absolute magnitudes of
the compared vectors, making it independent of the cur-
rent loudness. However, as a result it is not able to detect
silence, as it appears at rests in the score. We will take this
into account by conditioning on st .

We set ys
t = (X(0, t), . . . ,X(Nb, t)) (cf. 2.1.1) and com-

pute the correlation between the spectrum and the discre-
tised template Φxt , cutting off values below zero:

P(ys
t | xt ,st) =

{
H (corr(ys

t ,Φxt )) if st = ss

1 else
, (14)

with H (x) = x+|x|
2 . As mentioned above, this feature gives

us no insight at pauses, so we set the probability to 1 if
st = sr. We will capture pauses using the loudness feature,
neglecting the tonal content, which anyhow is not clearly
definable for rests.

2.4.2. Onsets

We assume that the onset characteristics do not depend on
the exact position in the score, but only on whether there
is an onsetting note at the position. Hence, instead of con-
ditioning yo

t directly on xt , we introduce a discrete hidden
variable ot , taking on the values from Ωo = {0,1} – “no
onset” and “onset” respectively. This variable indicates
the probability of a note onset at a position xt . Given that
Eo = {e1, . . . ,eNo} are the positions of onsetting notes in
the score, we define the probability of an onset at a cer-
tain position as Gaussian mixture with each component
centred at an onset position with a standard deviation of
σo. This value sets the “onset width”, defining the area
around an onset position where the true onset can be ex-
pected. Since the width of the components is very small
compared to the distance between them, we can further
simplify the computation by just using the nearest com-



ponent instead of a sum over all of them, because the in-
fluence of the neighbouring components is very close to
zero. Let en be the onset position nearest to xt , we can
define

P(ot = 1 | xt) = exp
(
− (xt − en)

2

2σ2
o

)
(15)

P(ot = 0 | xt) = 1−P(ot = 1 | xt). (16)

We set the onset value yo
t = fo(t). Values greater than

0.5 indicate an onset occurrence (the stronger the onset
the larger the value), while values smaller than 0.5 indi-
cate its absence. To capture this characteristic, we de-
fine a probability distribution based on the hyperbolic tan-
gent, and parametrise this distribution in a way that P(yo

t |
ot = 1) yields high values for yo

t > 0.5, and low values
for yo

t < 0.5. P(yo
t | ot = 0) behaves exactly the oppo-

site. Let T (ot) denote the probability distribution out-
lined above, we define the observation probability of yo

t
and consequently the probability of yo

t given xt as follows:

P(yo
t | ot) = T (ot) (17)

P(yo
t | xt) = ∑

ot∈Ωo

P(yo
t | ot) ·P(ot | xt) (18)

2.4.3. Loudness

The signal’s loudness is used to detect rests in the perfor-
mance. The observable variable for loudness yl

t is set to
the sound pressure level of the current audio frame. Its
probability distribution is conditioned on the status vari-
able st and defined by a Gaussian normal distribution.

P(yl
t | st = ss) = N (µls,σls) (19)

P(yl
t | st = sr) = N (µlr,σlr) (20)

The parameters of these distributions were set by hand
to µls =−30dB, µlr =−70dB, and σlr = σls = 82dB.

3. INFERENCE

Using the previously described model we want to estimate
the performer’s position in the score, given the observa-
tions so far. This corresponds to computing P

(
xt | y{s,o,l}1:t

)
,

the so-called filtering distribution, which can be computed
recursively as outlined in Equation 21:

P(xt | y1:t) ∝ P(yt | xt)
∫

P(xt | xt−1)P(xt−1 | y1:t−1)dxt−1.

(21)

For simplicity, we here refer to the whole set of hidden
variables {x,m, l,o,s} as x and refer to the set of observa-
tions {ys,yo,yl} as y.

Due to the nature of our observation probabilities, there
exists no closed form of this probability distribution, which
makes computing the integral intractable. Hence, we need
to approximate the filtering distribution, which will be
done using a Rao-Blackwellised Particle Filter.

3.1. Rao-Blackwellisation

As some variables of the DBN in Figure 2 can be inferred
exactly, the Rao-Blackwellised Particle Filter [8] can be
applied to reduce the size of the sampling space. The
hidden random variables x are divided into two groups
c = {o,s} and z = {l,m,x}, where c are all variables that
can be inferred exactly and z are the remaining ones. Then,
we can decompose the joint posterior density as follows:

P(xt | y1:t) = P(ct ,zt |y1:t) = P(ct |zt ,y1:t)P(zt |y1:t). (22)

If a realisation i of the state zt is given, P(ct |z(i)t ,y1:t) can
be computed exactly using the Equations 14-20. The fil-
tering density of the continuous variables P(zt |y1:t) has to
be approximated by particle filtering.

3.2. Particle Filtering

Even though the computation of the integral in the filter-
ing distribution P(zt |y1:t) is intractable, it can nevertheless
be evaluated point-wise. This is exploited in the particle
filter where the continuous distribution is approximated
by a weighted sum of points in the state space as

P(zt | y1:t)≈
Ns

∑
i=1

w(i)
t δ (zt − z(i)t ). (23)

Here, z(i)t are a set of Ns points sampled from a proposal
distribution q, and w(i)

t are the associated weights that sa-
tisfy ∑

Ns
i=1 w(i)

t = 1. Because sampling from the optimal
proposal distribution q(zt | zt−1,yt) is intractable, we chose
sampling from the transition prior p(zt | zt−1). This im-
plies

w(i)
t = P(yt | zt) ·w(i)

t−1. (24)

as the sequential update equation for the weights.
After having evaluated and renormalised the weights,

we perform resampling if the effective sample size Ne f f is
below a pre-defined threshold NT , where

Ne f f =
1

∑
Ns
i=1(w

(i)
t )2

(25)

For more details on particle filtering we refer the reader to
[9].

Finally, substituting Equation 23 into Equation 22
leads to the approximation of the joint posterior proba-
bility:

P(ct ,zt |y1:t)≈
Ns

∑
i=1

P(ct |z(i)t ,y1:t)w
(i)
t δ (zt − z(i)t ). (26)

3.3. MAP state sequence estimation

To approximate the MAP state sequence up to time t, we
sort the particles at each time frame according to their
weights before the resampling step and compute the mean
score position of the upper 20 percent of the particles.



ID Composer Piece # Perf. Eval. Type

CE Chopin Etude Op. 10 No. 3 (excerpt until bar 20) 22 Match
CB Chopin Ballade Op. 38 No. 1 (excerpt until bar 45) 22 Match
MS Mozart 1st Mov. of Sonatas KV279, KV280, KV281, KV282, KV283,

KV284, KV330, KV331, KV332, KV333, KV457, KV475,
KV533

1 Match

RP Rachmaninoff Prelude Op. 23 Nr. 5 3 Man. Annotations

Table 3. Performances used during evaluation

4. EVALUATION

4.1. Setup

We evaluate our on the same dataset of piano music as in
[2] (see Table 3). We use the misalign rate and miss rate,
two quality criteria introduced by [6]. Alignments that
differ by more than 250 ms are considered misaligned.
Due to the nature of our system, missed notes correspond
to trailing unaligned notes after the recording of the per-
formance finished.

As shown in the table, there are two different types of
ground truth data. For pieces performed on a computer-
controlled piano full matches are available, where the ex-
act onset time for each note in the performance is known.
For the performances of Rachmaninoff’s Prelude Op. 23
No. 5 we only have manual annotations at the beat level.

We group the performances as shown in Table 3 and
evaluate the performance for each group. The reason for
this are the different types of compositions, implying dif-
ferent performance expressiveness. For example, perfor-
mances of the Prelude stand out due to the severe tempo
changes. This way we are able to identify the benefits
of our proposed extensions depending on the piece type.

Due to the inherently probabilistic nature of particle
filters, results necessarily vary between multiple align-
ments of the same performance. Hence, we repeated each
experiment 10 times to be able to compute the alignment
quality.

We evaluate four models: one including both the rest
and tempo extensions (TR), one only using the rest exten-
sion (R), one only using the tempo extension (T), and one
using none of the above (N).

ID TR R T N

CB 8.34% 7.11% 8.37% 7.25%
CE 5.89% 4.65% 5.93% 4.66%
MS 1.92% 2.41% 39.05% 14.29%
RP 15.25% 16.11% 15.32% 22.58%

Table 4. Mean misalign rates for the performance groups

ID TR R T N

CB 0.26% 0.20% 0.11% 0.01%
CE 0.00% 0.00% 0.00% 0.00%
MS 0.12% 1.88% 22.87% 35.28%
RP 0.85% 7.85% 0.00% 16.09%

Table 5. Mean miss rates for the performance groups

4.2. Results

The resulting mean misalignment and miss rates are shown
in Tables 4 and 5.

The results show that the proposed model extensions
improve the alignment quality for performances and scores
involving the characteristics they were designed for. Us-
ing the tempo model, miss rates in the alignment of Rach-
maninoff’s Prelude Op. 23 No. 5 dropped significantly,
since the score follower does not hang at positions with
severe tempo changes, furthermore reducing the number
of misaligned notes. The note model prevents most of
the misalignments and missed notes in the alignments of
Mozart’s sonatas, pieces which contain many longer rests.

While the extensions show almost no impact the align-
ments of Chopin’s Op. 38 No. 1, the tempo model seems
to influence Op. 10 No. 3 negatively. This characteristic
needs further examination and will be pursued in future
work.

5. CONCLUSION

We described a score following system based on a Dy-
namic Bayesian Network, which uses particle filtering to
infer the current score position of the performer. Exten-
sions deduced from musical characteristics of performan-
ces and scores of classical music were introduced and eval-
uated using a comprehensive database including multiple
composers and performers. The evaluation showed the
capability and reasonability of these extensions.

In future work we will try to improve the tempo model
by incorporating ideas derived from [4], like a accelera-
tion variable to model the intended tempo change explic-
itly. Furthermore, we will work on feature models to bet-
ter capture the content of the audio signal.
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