
Searching for Music Using Natural Language

Queries and Relevance Feedback

Peter Knees1 and Gerhard Widmer1,2

1 Dept. of Computational Perception, Johannes Kepler University Linz, Austria
2 Austrian Research Institute for Artificial Intelligence (OFAI)

peter.knees@jku.at

Abstract. We extend an approach to search inside large-scale music
collections by enabling the user to give feedback on the retrieved music
pieces. In the original approach, a search engine that can be queried
through free-form natural language text is automatically built upon
audio-based and Web-based similarity measures. Features for music pieces
in the collection are derived automatically by retrieving relevant Web
pages via Google queries and using the contents of these pages to con-
struct term vectors. The additional use of information about acoustic
similarity allows for reduction of the dimensionality of the vector space
and characterization of audio pieces with no associated Web information.
With the incorporation of relevance feedback, the retrieval of pieces can
be adapted according to the preferences of the user and thus compensate
for inadequately represented initial queries. The approach is evaluated
on a collection comprising about 12,000 pieces by using semantic tags
provided by Audioscrobbler and a user study which also gives further
insights into users search behaviors.

1 Introduction

When searching for (popular) music, users’ options are currently very limited.
Existing music search systems, i.e. the search systems offered by commercial
music portals, make use of meta-data like artist, album name, track name, or
year as well as arbitrarily determined, subjective meta-information like genre or
style to index their music repository. As a consequence, when searching for music,
the customer must already have a very precise conception of the expected result
set. In fact, none of these systems allows its users to formulate natural language
queries that describe the music they intend to find. For example, instead of
just finding tracks that are assigned to the genre Rock, a user could want to
formulate a query like “rock with great riffs” to emphazise the importance of
energetic guitar phrases in the desired music pieces. Another example would be
the query chicago 1920, which could express the intention to find Jazz pieces
originating from this particular area and time.

To address the shortcomings of current search systems, in [11] we proposed
a method to build a music search engine that is capable of processing arbitrary
queries. For each piece in a music collection, features are derived automatically

from relevant Web pages by constructing term vector representations using stan-
dard Information Retrieval methods. Furthermore, a state-of-the-art audio sim-
ilarity measure is incorporated to characterize audio pieces with no (or little)
Web information associated. Thus, we combine information about the context

of music with information about the content.

However, although the musical, or more general, the cultural context of music
pieces can be captured to a certain extent with this method, there are still
limitations. One obvious problem is the appropriate translation of queries into
the term vector space of music pieces to calculate similarities to all retrievable
pieces. Furthermore, we have to deal with the fact that users are actually not
accustomed to use free-form text input to search for music. Even if these issues
can be sorted out in the near future, the problem of individual concepts and
intentions behind the issued queries remains. For example, different users will
have different expectations of the resulting pieces for the query folk. Some users
may aim to retrieve music pieces from american singers and songwriters, while
others may intend to find all sorts of folkloristic music. While these user specific
interests may not be adequately expressible via a query, getting explicit feedback
on the relevance of the retrieved pieces from the users can give extremely valuable
information to disambiguate query meaning and clarify the original intention.

In this paper, we incorporate Rocchio’s relevance feedback method to adapt
the retrieval of music pieces to the user’s preferences. Not only that the retrieval
process can increasingly accommodate to users expectations, the approach can
also help to compensate for inadequately translated initial queries that would
otherwise result in low performance.

2 Related Work

In the following, we review music information retrieval systems that enable cross-
media retrieval, i.e. in our case, systems that allow queries consisting of arbitrary
natural language text, e.g. descriptions of sound, mood, or cultural events, and
return music pieces that are semantically related to this query. Compared to
the number of presented query-by-example systems (e.g. [13, 8]), the number
of systems allowing for this form of query is very little. Beside our own ap-
proach [11], the most elaborate work has been presented in [5]. The system is
supported by a semantic ontology which integrates meta-data as well as auto-
matically extracted acoustic properties of the music pieces and defines relations
between these informations. In the end, the system allows for semantic queries
like “something fast from...” or “something new from...”. In [7], the music search
engine Search Sounds3 is presented. A special crawler that focuses on a set of
“audio blogs” is used to find blog entries consisting of music files with associated
explanations. The related textual information can then be used to match text
queries to actual music pieces. Furthermore, acoustically similar pieces can be
discovered by means of content-based audio analysis. Another system that opts

3 http://www.searchsounds.net

to enhance music search with additional semantic information is Squiggle [6].
Queries are matched against meta-data provided from the freely available com-
munity databases MusicMoz4 and MusicBrainz5. Based on this data, related
queries are proposed, for example, searching for rhcp results in zero hits, but
suggests to search for the band “Red Hot Chili Peppers”.

A system that is not limited to a fixed set of predefined meta-data is the
recommendation service Last.fm6. Last.fm monitors each user’s listening prefer-
ences by integrating into music player applications. Based on the collected data,
similar artists or tracks are identified and can be recommended to other users.
Additionally, users can assign tags to the tracks in their collection. These tags
provide a valuable source of information on how people perceive and describe
music. A drawback of the system is that the assigned tags are highly inconsistent
and noisy, cf. [11].

Beside music information systems that deal solely with popular music, there
exist a number of search engines that use specialized (focused) crawlers to find all
types of sounds on the Web. The traced audio files are indexed using contextual
information extracted from the text surrounding the links to the files. Examples
of such search engines are Aroooga [12] and FindSounds7.

3 Technical Realization

In Sections 3.1 to 3.5, we review our technique to build a natural language search
engine for music as described in [11]. Instead of describing every step in detail,
we will solely present the settings that yielded best results during evaluation. In
Section 3.6, we describe the straight-forward incorporation of Rocchio’s relevance
feedback technique into our system.

3.1 Web-based Features

We rely on the Web as our primary source of information. While previous work
exploiting Web data for Music Information Retrieval operates solely on the artist
level (e.g. [19, 10]), we try to derive descriptors for individual tracks. To this end,
we opt to gather as much track specific information as possible while preserving
a high number of available web pages (via artist related pages) by joining results
of three queries issued to Google for each track in the collection:

1. “artist” music

2. “artist” “album” music review

3. “artist” “title” music review -lyrics

4 http://www.musicmoz.org
5 http://www.musicbrainz.org
6 http://www.last.fm
7 http://www.findsounds.com

While the first query is intended to provide a stable basis of artist related
documents, the second and third query target more specific pages (reviews of the
album and the track, respectively). For each query, at most 100 of the top-ranked
Web pages are retrieved and added to the set of pages relevant to the track. All
retrieved pages are cleaned from HTML tags and stop words in six languages8.

For each music piece m and each term t appearing in the retrieved pages, we
count tftm, the number of occurrences (term frequency) of term t in documents
related to m, as well as dftm, the number of pages related to m in which the
term t occurred (document frequency). All terms with dftm ≤ 2 are removed
from m’s term set. Finally, we count mpft the number of music pieces that
contain term t in their set (music piece frequency). For pragmatic reasons, we
further remove all terms that co-occur with less than 0.1% of all music pieces.
For our evaluation collection, this results in a vector space with about 78,000
dimensions. To calculate the weight w(t,m) of a term t for music piece m, we use
a straight forward modification of the well-established term frequency × inverse
document frequency (tf × idf) function [18]:

w(t,m) =

{

(1 + log2 tftm) log2
N

mpft
if tftm > 0

0 otherwise
(1)

where N is the overall number of music pieces in the collection. From the given
definition, it can be seen that all Web pages related to a music piece are treated
as one large document. Furthermore, the resulting term weight vectors are Cosine
normalized to remove the influence of the length of the retrieved Web pages as
well as the different numbers of retrieved pages per track.

3.2 Audio-based Similarity

In addition to the context-based Web features, information on the content of the
music is derived by following a well-established procedure, e.g. [3, 15]: For each
audio track, 19 Mel Frequency Cepstral Coefficients (MFCCs) are computed on
short-time audio segments (called frames) to describe the spectral envelope of
each frame. Thus, perceived acoustical similarity is assessed by modeling timbral

properties. For MFCC calculation, we use the definition given in [2]:

cn =
1

2π
×

ω=+π
∫

ω=−π

log
(

S
(

ejω
))

· ejω·ndω (2)

According to [14], a Single Gaussian Model with full covariance matrix is
sufficient to model the distribution of MFCCs. This facilitates computation and
comparison of the distribution models, since a symmetrized Kullback-Leibler di-

vergence can be calculated on the means and covariance matrices in order to
derive a similarity measure.

8 English, German, Spanish, French, Italian, and Portuguese

However, applying the Kullback-Leibler divergence entails some undesirable
consequences [1, 16], e.g., it can be observed that some pieces (“hubs”) are fre-
quently “similar” (i.e. have a small distance) to many other pieces in the col-
lection without actually sounding similar, while on the other side, some pieces
are never similar to others. Furthermore, the Kullback-Leibler divergence is no
metric since it does not fulfill the triangle inequality. To deal with these issues,
we apply a simple rank-based correction called Proximity Verification [16]. As
a consequence, all further steps presented here will be based on the ranking
information of the audio similarity measure only.

3.3 Dimensionality Reduction

For dimensionality reduction of the feature space, we use the χ2 test, e.g. [20].
Since we have no class information (e.g. genre) available, we make use of the
derived audio similarity. For each track, we define a 2-class term selection prob-
lem and use the χ2 test to find those terms that discriminate s, the group of the
100 most similar tracks, from d, the group of the 100 most dissimilar tracks. For
each track, we calculate

χ2(t, s) =
N(AD − BC)2

(A + B)(A + C)(B + D)(C + D)
(3)

where A is the number of documents in s which contain term t, B the number of
documents in d which contain t, C the number of documents in s without t, D

the number of documents in d without t, and N the total number of examined
documents. The number of documents refers to the document frequency from
Section 3.1. We found to yield best results when joining into a global list the
50 terms of each track’s calculation that have highest χ2(t, s) values and occur
more frequently in s than in d. After feature selection, for our collection, 4,679
dimensions remain.

3.4 Vector Adaptation

Another application of the information provided by the audio similarity measure
is the modification of the term vector representations toward acoustically similar
pieces. This step is mandatory for tracks for which no related information could
be retrieved from the Web. For all other tracks, the intention is to enforce those
dimensions that are typical among acoustically similar tracks. To this end, a
simple Gauss weighting over the n = 10 most similar tracks is performed for
each piece. Modified weights of term t for music piece m are defined as

gaussn(t,m) =
n

∑

i=0

1√
2π

e−
(i/2)2

2 · w(t, simi(m)), (4)

where simi(m) denotes the ith most similar track to m according to audio
similarity and sim0(m) is m itself. Vectors are again Cosine normalized after
term weight adaptation.

3.5 Querying the Music Search Engine

Finding those tracks that are most similar to a natural language query is a non
trivial task. In [11], queries are translated to vector space representations by
adding the extra constraint music, sending them to Google and constructing
a term vector from the 10 top-most Web pages returned. The resulting query
vector can then be compared to the music pieces in the collection by calculating
Euclidean distances on the Cosine normalized vectors. Based on the distances,
a relevance ranking can be obtained which forms the response to the query.

This method has two major drawbacks. First, it depends on the availability
of Google, i.e. to query the local database, the Internet must be accessible,
and second, the response time of the system increases by the time necessary
to perform the on-line retrieval. To by-pass these shortcomings, we utilize the
Web pages retrieved for term vector creation to create an off-line index that can
be used instead of Google. For our purpose, we configured the Java-based open
source search engine Nutch9 to index the off-line collection of documents. Since
information on in- and out-links is not available for the stored documents, Nutch

calculates the document relevances for a query based on tf × idf values.10

3.6 Relevance Feedback

Relevance feedback is an iterative process, in which the user is presented with a
ranked list of the music pieces that are most similar to the query. After examina-
tion of the list, the user marks those pieces which are relevant in his/her opinion
(explicit relevance feedback).11 The intention is to modify the query vector such
that it moves toward the relevant and away from the non-relevant pieces. Since
both music pieces and queries are representable as weighted term vectors, we can
easily incorporate Rocchio’s relevance feedback method to adapt search results
according to users’ preferences [17]. Thus, based on the relevance judgments, we
calculate the modified query vector ~qm by (cf. [4])

~qm = α ~q +
β

|Dr|
∑

∀~dj∈Dr

~dj −
γ

|Dn|
∑

∀~dj∈Dn

~dj , (5)

where ~q is the original query vector constructed from the stored Web pages,
Dr the set of relevant music pieces (according to the user) among the retrieved
pieces, and Dn the set of non-relevant pieces among the retrieved pieces. The pa-
rameters α, β, and γ can be used to tune the impacts of original vector, relevant
pieces, and non-relevant pieces, respectively. For our experiments, we decided to
assign equal values to all parameters, i.e. α = β = γ = 1. The modified vector

9 http://lucene.apache.org/nutch/
10 Note that due to time constraints, only a subset (approx. 100,000 documents) of the

stored files (consisting solely of the pages returned for the “artist” music queries)
has been indexed.

11 For future work also implicit relevance feedback could be deployed by measuring e.g.
the time a user is listening to the returned tracks.

is again Cosine normalized. Based on the new query vector, new results are pre-
sented to the user in the next step. The effect of relevance feedback (modification
after 20 pieces) can be seen in Table 4 for the example query speed metal.

Note that, in contrast to information retrieval systems for text documents
that often benefit from additional techniques like query expansion [9], our system
is currently restricted to the query vector modification step due to the two-
layered query processing.

4 Evaluation

In this section, the performance of our extended music search engine is evaluated.
For reasons of comparability, we evaluate the impact of relevance feedback on the
evaluation collection from [11]. The collection comprises 12,601 different tracks
by 1,200 artists. Evaluation is carried out on the same set of related Web pages
using the same semantic tags. Additionally, we report on a user study that has
been conducted to uncover the impact of relevance feedback.

4.1 Evaluation against Audioscrobbler Ground Truth

As in [11], we utilize the track specific tag information provided by Last.fm/Audio-
scrobbler for evaluation. Although this method has severe shortcomings (for a
discussion see [11]), for lack of a real golden standard, using Last.fm/Audio-
scrobbler tags is still a viable option. The same set of 227 test queries is used to
evaluate the performance of our system. As reference values, we include the best
performing method from [11] which was obtained by pruning the vector space
to 4,679 dimensions, Gaussian smoothing over ten nearest neighbors and query
construction by invoking Google.

To measure the impact of relevance feedback, for each test query we construct
two rankings. The first is the standard ranking for the whole collection based on
a query vector constructed from the offline-index of Web pages. For the second
ranking, we simulate relevance feedback by starting with the first 20 results
obtained through an off-line based query vector. The next 20 results are then
calculated from the query vector modified according to the relevances of the
already seen music pieces, and so on.

We measure the quality of the rankings obtained with the different retrieval
approaches by calculating the precision at 11 standard recall levels for the three
compared retrieval methods, cf. [4]. This measure is useful to observe precision
over the course of a ranking. Since we evaluate the system using a set of 227
queries, we calculate the average of the precision values at each recall level after
interpolating to the 11 standard values. The resulting plots are depicted in Fig-
ure 1. Not surprisingly, the usage of relevance feedback has a very positive effect
on the precision of the returned music pieces. Starting from the same level (about
0.49 precision at recall level 0.0) the traditional approach without relevance feed-
back drops to 0.34 precision at recall level 0.1, while relevance feedback boosts
precision to 0.52. Also for all other recall levels this trend is clearly visible. Beside

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.15

0.35

0.25

0.45

0.55

Recall

P
re

c
is

io
n

Google on−line query

off−line index (subset)

off−line index (subset) w/ relevance feedback

baseline

Fig. 1. Precision at 11 standard recall levels (average over all 227 test queries) for the
different retrieval approaches.

this, it can also be seen that the values of the off-line index approach without
relevance feedback are thoroughly below the values of the on-line approach that
uses Google for query vector construction.

For further comparisons, we average single value summaries over all queries.
The average precision at seen relevant documents indicates the ability of the
different settings to retrieve relevant documents quickly. A similar measure is
R-Precision. It corresponds to the precision at the Rth position in the ranking,
where R is the number of relevant documents for the query. For both measures,
the approach utilizing relevance feedback yields the highest values. Finally, we
calculate the precision after 10 documents. Since returning 10 results is the
default for nearly all search engines, we think it is valuable to examine how
many relevant music pieces can be expected “at first sight”. This setting is only
meaningful to compare the on-line Google query approach and the off-line index
approaches. As expected, Google performs better here (about every second piece
among the first ten is relevant in average). Using the off-line index, in average 4
returned music pieces among the first ten are relevant. This complies with the
results obtained by means of a user study presented in the next section.

Google query off-line query off-line/RF

Avg. prec. at seen relevant docs 25.29 22.99 35.80

R-Precision 26.41 23.48 37.66

Precision after 10 documents 49.56 39.74 39.74

Table 1. IR measures for different retrieval approaches (average over all 227 test
queries). The first column shows values obtained by constructing query vectors via
Google. The second column displays the values obtained by using the constructed off-
line index instead. The third column shows the obtained values for relevance feedback
enabled (off-line query).

4.2 Evaluation via User Experiments

We conducted a small user study with 11 participants to assess the impact of the
relevance feedback under less artificial conditions. To this end, each participant
was asked to submit 5 queries of choice to the system. For each query, in total 100
results, whose relevance to the query had to be judged, were presented in groups
of 20 (thus, a run consisted of 5 feedback iterations). Additionally, each query had
to be evaluated twice. In one run, the ranking was not influenced by the ratings
at all, i.e. the first 100 retrieval results without relevance feedback have been
presented in groups of 20. In the other run, relevance feedback was enabled. Thus,
the ratings of the documents had a direct influence on the following 20 results.
Whether the first or the second run was presented first was chosen randomly
for each query to avoid learning effects. Furthermore, the users were told to
evaluate two different feedback strategies. The fact that one run included no
feedback strategy at all was concealed. The 55 different queries issued by the
participants can be found in Table 3.

Since obtaining users’ relevance judgments for all pieces in the collection for
all queries is infeasible, other measures than those used in Section 4.1 have to be
applied to illustrate the impact of relevance feedback, e.g. those proposed in [9].
Table 2 displays the results of the user study. Interestingly, for the first iteration,
results are not consistent. Obviously, users have considered different tracks to
be relevant in the first and in the second run (even if only very sporadically).
Nevertheless, the general trend of better results when using relevance feedback
can be observed in the user study.

5 Conclusions and Future Work

We successfully incorporated relevance feedback into a search engine for large
music collections that can be queried via natural language text input. One of
the central challenges of our method is to assign semantically related informa-
tion to individual music pieces. We opt to accomplish this by finding relevant
information on the Web. The extracted text-based information is complemented
by audio-based similarity, which leads to improved results of the retrieval due to
the reduced dimensionality of the feature space. Information about the acoustic

iter.1 iter.2 iter.3 iter.4 iter.5 total

No relevance feedback

relevant retrieved/iter. (mean) 7.13 5.02 4.05 3.76 3.71 4.73
relevant retrieved/iter. (sum) 392 276 223 207 204 1,302
cumulative relevant retr. (sum) 392 668 891 1,098 1,302 1,302

queries with all relevant 9 3 3 2 1 0
queries with no relevant 22 26 25 28 30 17

With relevance feedback

relevant retrieved/iter. (mean) 7.22 4.15 6.47 5.73 6.18 5.95

relevant retrieved/iter. (sum) 397 228 356 315 340 1,636

cumulative relevant retr. (sum) 397 625 981 1,296 1,636 1,636

queries with all relevant 8 1 6 4 5 0
queries with no relevant 23 27 20 23 22 11

Table 2. Results of the user study over 5 iterations. In each iteration, 55 queries
have been evaluated (the maximum achievable number of relevant retrieved pieces
for each query is 20; the maximum achievable number per iteration is thus 1,100).
For comparison between results obtained with relevance feedback and results obtained
without, the more advantageous values are set in bold typeface.

similarity is also mandatory to describe music pieces for which no related pages
can be found on the Web. Due to the chosen vector space model, Rocchio’s rele-
vance feedback could be integrated smoothly. The conducted evaluations showed
that relevance feedback provides a valuable extension to the system in that it
adapts to users’ preferences.

Since relevance feedback has a positive impact on the system’s performance,
we can conclude that the vector space representations of the music pieces are well
suited to model the similarity between pieces. To further advance the system, the
translation of queries into the term vector space has to be improved. Starting
with better initial results is also mandatory for the acceptance of the system
since people usually judge the quality based on the first results.

Finally, for future work, we plan to create a music-related Web page index
on our own with the intention to further improve the applicability of the system
by abolishing the dependency on external search engines.

6 Acknowledgments

Special thanks are due to all volunteers that helped evaluating the search engine.
This research is supported by the Austrian Fonds zur Förderung der Wissenscha-
ftlichen Forschung (FWF project number L112-N04) and the Vienna Science and
Technology Fund (WWTF project CIO10 “Interfaces to Music”). The Austrian
Research Institute for Artificial Intelligence is supported by the Austrian Fed-
eral Ministry for Education, Science, and Culture and by the Austrian Federal
Ministry for Transport, Innovation, and Technology.

”plastic band” jazz
80ies synth pop latin pop
ac/dc mass in b minor
acdc melodic metal with opera singer as
american folk front woman
angry samoans metal
barbie girl metallica
cello ndw
comedy neomedieval music
dancehall new orleans
don’t dream it’s over new zork scene
drude no new york
eurodance nur die besten sterben jung
female electro oldies slow jazz
filmmusik postmodern
gangsta punk
german hip hop punk rock
ghost dog rammstein music with strong keyboard
green day rem
groove schoenheitsfehler
guitar rock brit pop sicherheitsmann
happy sound soundtrack
hard rock fast guns’n roses vienna electro dj
heavy metal with orchestra violin
herr lehmann weilheim
in extremo live wie lieblich sind deine wohnungen
indie rock world
industrial rock trent reznor zztop

Table 3. 55 queries issued by users during the user study.

References

1. Jean-Julien Aucouturier. Ten Experiments on the Modelling of Polyphonic Timbre.
PhD thesis, University of Paris 6, 2006.

2. Jean-Julien Aucouturier and François Pachet. Music Similarity Measures: What’s
the Use? In Proceedings of the 3rd International Conference on Music Information
Retrieval (ISMIR’02), pages 157–163, Paris, France, October 2002. IRCAM.

3. Jean-Julien Aucouturier, François Pachet, and Mark Sandler. ”The Way It
Sounds”: Timbre Models for Analysis and Retrieval of Music Signals . IEEE
Transactions on Multimedia, 7(6):1028–1035, December 2005.

4. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, Reading, Massachusetts, 1999.

5. Stephan Baumann, Andreas Klüter, and Marie Norlien. Using natural language
input and audio analysis for a human-oriented MIR system. In Proceedings of the
2nd International Conference on Web Delivering of Music (WEDELMUSIC 2002),
Darmstadt, Germany, 2002.

6. Irene Celino, Emanuele Della Valle, Dario Cerizza, and Andrea Turati. Squiggle:
a semantic search engine for indexing and retrieval of multimedia content. In

Proceedings of the 1st International Workshop on Semantic-enhanced Multimedia
Presentation Systems (SEMPS 2006), Athens, Greece, 2006.

7. Oscar Celma, Pedro Cano, and Perfecto Herrera. Search Sounds: An audio crawler
focused on weblogs. In Proceedings of the 7th International Conference on Music
Information Retrieval (ISMIR’06), Victoria, B.C., Canada, 2006.

8. Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C. Smith. Query by
humming: musical information retrieval in an audio database. In Proceedings of
the 3rd ACM International Conference on Multimedia (MULTIMEDIA’95), San
Francisco, California, United States, 1995.

9. Donna Harman. Relevance Feedback Revisited. In Proceedings of the 15th annual
international ACM SIGIR conference on Research and development in information
retrieval (SIGIR’92), Copenhagen, Denmark, 1992.

10. Peter Knees, Elias Pampalk, and Gerhard Widmer. Artist Classification with Web-
based Data. In Proceedings of 5th International Conference on Music Information
Retrieval (ISMIR’04), pages 517–524, Barcelona, Spain, October 2004.

11. Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Widmer. A Music Search
Engine Built upon Audio-based and Web-based Similarity Measures. In Proceed-
ings of the 30th annual international ACM SIGIR conference on research and de-
velopment in information retrieval (SIGIR’07), Amsterdam, the Netherlands, July
23-27 2007.

12. Ian Knopke. AROOOGA: An audio search engine for the World Wide Web. In
Proceedings of the 2004 International Computer Music Conference (ICMC’04),
Miami, USA, 2004.

13. Namunu C. Maddage, Haizhou Li, and Mohan S. Kankanhalli. Music structure
based vector space retrieval. In SIGIR ’06: Proceedings of the 29th annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, 2006.

14. Michael Mandel and Dan Ellis. Song-Level Features and Support Vector Machines
for Music Classification. In Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR’05), London, UK, 2005.

15. Elias Pampalk. Computational Models of Music Similarity and their Application to
Music Information Retrieval. PhD thesis, Vienna University of Technology, March
2006.

16. Tim Pohle, Peter Knees, Markus Schedl, and Gerhard Widmer. Automatically
Adapting the Structure of Audio Similarity Spaces. In Proceedings of 1st Work-
shop on Learning the Semantics of Audio Signals (LSAS 2006), Athens, Greece,
December 2006.

17. Joseph J. Rocchio. Relevance feedback in information retrieval. In G. Salton,
editor, The SMART Retrieval System – Experiments in Automatic Document Pro-
cessing. Prentice Hall Inc., Englewood Cliffs, NJ, USA, 1971.

18. Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5):513–523, 1988.

19. Brian Whitman and Steve Lawrence. Inferring Descriptions and Similarity for
Music from Community Metadata. In Proceedings of the 2002 International Com-
puter Music Conference (ICMC’02), pages 591–598, Gotheborg, Sweden, Septem-
ber 2002.

20. Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In D. H. Fisher, editor, Proceedings of ICML-97, 14th International
Conference on Machine Learning, pages 412–420, Nashville, US, 1997. Morgan
Kaufman Publishers, San Francisco, US.

no relevance feedback with relevance feedback
1. Deicide - Dead But Dreaming Deicide - Dead But Dreaming
2. Deicide - Trifixion Deicide - Trifixion
3. Deicide - Repent To Die Deicide - Repent To Die
4. Skitzo - Kill With a Vengeance (live) Skitzo - Kill With a Vengeance (live)
5. Deicide - In Hell I Burn Deicide - In Hell I Burn
6. Iron Savior - Protector Iron Savior - Protector
7. Entombed - Chief Rebel Angel Entombed - Chief Rebel Angel
8. Deicide - Satan Spawn, The Caco-Daemon Deicide - Satan Spawn, The Caco-Daemon
9. Iron Savior - Warrior Iron Savior - Warrior

10. Nightwish - Nightshade Forests Nightwish - Nightshade Forests
11. Powergod - Back To Attack Powergod - Back To Attack
12. Deicide - Oblivious To Evil Deicide - Oblivious To Evil
13. Steel Prophet - Unseen Steel Prophet - Unseen
14. Steel Prophet - The Ides Of March Steel Prophet - The Ides Of March
15. Steel Prophet - Messiah Steel Prophet - Messiah
16. Steel Prophet - Goddess Arise Steel Prophet - Goddess Arise
17. Steel Prophet - Ghosts Once Past Steel Prophet - Ghosts Once Past
18. Deicide - Behead The Prophet Deicide - Behead The Prophet
19. Deicide - Revocate The Agitator Deicide - Revocate The Agitator
20. Steel Prophet - Dawn Of Man Steel Prophet - Dawn Of Man
21. Steel Prophet - 07-03-47 Steel Prophet - 07-03-47
22. Deicide - Holy Deception Steel Prophet - Mysteries Of Inquity
23. Steel Prophet - Mysteries Of Inquity Powergod - Metal Church
24. Deicide - Sacrificial Suicide Powergod - Burning the Witches
25. Powergod - Madhouse Iron Savior - Paradise
26. Crematory - Lost In Myself - Trance Raymix Powergod - Madhouse
27. Tiamat - Cain Powergod - Bleed for the gods
28. Powergod - Bleed for the gods Iron Savior - For The World (Live)
29. Powergod - Ruler Of The Wasteland Iron Savior - Brave New World
30. Powergod - Burning the Witches Iron Savior - Mindfeeder
31. Powergod - Metal Church Powergod - Stars
32. Crematory - Through My Soul Powergod - Ruler Of The Wasteland
33. Crematory - Reign Of Fear Powergod - Esper
34. Powergod - Soldiers Under Command Stratovarius - Rebel
35. Tiamat - Carry Your Cross An Ill Carry Mine Powergod - Soldiers Under Command
36. Powergod - Stars Iron Savior - Crazy (Ltd Ed Bonus
37. Crematory - Revolution Iron Savior - Iron Savior (Live)
38. Crematory - Red Sky Electric Six - She’s White
39. Entombed - Left Hand Path (Outro) Powergod - Salvation
40. Monoide - One year after first love Powergod - Prisoner
41. Finntroll - Ursvamp Powergod - The Eagle & The Rainbow
42. Finntroll - Grottans Barn Powergod - Anybody Home
43. Powergod - Esper Powergod - Lost Illusions
44. Iron Savior - For The World (Live) Powergod - Tor With The Hammer
45. Finntroll - Fiskarens Fiende Iron Savior - Riding On Fire (Live)
46. Finntroll - Nattfodd Powergod - Red Rum
47. Finntroll - Trollhammaren Powergod - Steel The Light
48. Chicks on Speed - Procrastinator Iron Savior - No Heroes
49. Deicide - Crucifixation Powergod - I Am A Viking
50. Entombed - Say It In Slugs Powergod - Into The Battle
51. Iron Savior - Mindfeeder Powergod - Kill With Power
52. Crematory - Dreams Powergod - Mean Clean Fighting Machine
53. Tiamat - Light In Extension Powergod - Children Of Lost Horizons
54. Deicide - Mephistopheles Powergod - I’m On Fire
55. Iron Savior - Brave New World Powergod - Gods Of War
56. Tiamat - Nihil Powergod - No Brain No Pain
57. Iron Savior - Paradise Powergod - Observator
58. Crematory - Human Blood Powergod - Evilution Part I
59. Entombed - Something Out Of Nothing Powergod - Powergod
60. Stratovarius - Rebel Corvus Corax - Bitte Bitte

Table 4. Results for the example query speed metal. Bold entries indicate relevant
pieces according to the tags provided by Last.FM. Query update after 20 results.

