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Abstract 

The SIMAC project addresses the study and development of 
innovative components for a music information retrieval 
system. The key feature is the usage and exploitation of 
semantic descriptors of musical content that are automatically 
extracted from music audio files. These descriptors are 
generated in two ways: as derivations and combinations of 
lower-level descriptors and as generalizations induced from 
manually annotated databases by the intensive application of 
machine learning. The project aims also towards the 
empowering (i.e. adding value, improving effectiveness) of 
music consumption behaviours, especially of those that are 
guided by the concept of similarity. 

1 Introduction 

In recent years the typical music consumption behaviour has 
changed dramatically. Personal music collections have grown 
favoured by technological improvements in networks, 
storage, portability of devices and Internet services.The 
amount and availability of songs has de-emphasized its value: 
it is usually the case that users own many music files that 
they have only listened to once or even never. It seems 
reasonable to think that by providing listeners with efficient 
ways to create a personalized order on their collections, and 
by providing ways to explore hidden ``treasures'' inside them, 
the value of their collection will drastically increase. 

Beside, on the digital music distribution front, there is a need 
to find ways of improving music retrieval effectiveness. 
Artist, title, and genre keywords might not be the only criteria 
to help music consumers in finding music they like. This is 
currently mainly achieved using cultural or editorial metadata 
(“this artist is somehow related with that one”) or exploiting 
existing purchasing behaviour data (“since you bought this 
artist, you might also want to buy this one, as other customers 
with a similar profile did”). A largely unexplored (and 
potentially interesting) alternative is using semantic 
descriptors automatically extracted from the music audio 
files. These descriptors can be applied, for example, to 

organize a listener’s collection, recommend new music, or 
generate playlists. 

In the past twenty years, the signal processing and computer 
music communities have developed a wealth of techniques 
and technologies to describe audio and music contents at the 
lowest (or close-to-signal) level of representation. However, 
the gap between these low-level descriptors and the concepts 
that music listeners use to relate with music collections (the 
so-called “semantic gap”) is still to a large extent waiting to 
be bridged.  

The remaining sections of this paper will present the work 
and developments made in the SIMAC project to bridge the 
semantic gap and to enhance the music enjoyment 
experience. We will first introduce several semantic 
descriptors of music contents , developed for different musical 
facets (rhythm, harmony, timbre, etc.). Music similarity will 
be then discussed and the evaluation of a complete system 
will be presented. Three prototypes, incorporating semantic 
descriptors and similarity metrics will be then outlined. A 
discussion on future trends and open issues that deserve 
further research will conclude the paper. 

2. Semantic Description of Music Contents 

Music content processing systems operating on complex 
audio signals are mainly based on computing low-level signal 
features. These features are good at characterising the 
acoustic properties of the signal, returning a description that 
can be associated to texture, or at best, to the rhythmical 
attributes of the signal [1], [42].  

Alternatively, the SIMAC approach proposes that music 
content can be successfully characterized according to several 
“musical facets” (i.e. rhythm, harmony, melody, timbre) by 
incorporating higher-level semantic descriptors to a given 
feature set. Semantic descriptors are measures that can be 
computed directly from the audio signal, by means of the 
combination of signal processing, machine learning 
techniques, and musical knowledge. Their goal is to 
emphasise the musical attributes of audio signals (e.g. chords, 
rhythm, instrumentation), attaining higher levels of semantic 
complexity than low-level features (e.g. spectral coefficients, 
Mel frequency cepstral coefficients, and so on), but without 
being bounded by the constraints imposed by the rules of 
music notation. Describing musical content according to this 



view does not necessarily call for perfect transcriptions of 
music, which are outside the scope of existing technologies, 
even though recent outstanding progress has been reported 
[22]. 

Our view is that several of the shortcomings of the purely 
data driven techniques can be overcome by applying musical 
knowledge. The richness of the description that can be 
achieved is well beyond that from existing music 
downloading and retrieval prototypes . Our results also 
suggest that the use of meaningful descriptors pushes the 
“glass ceiling” for music classification to levels higher than 
originally anticipated for previous data-driven approaches. 

Our proposed description scheme can be seen as a function of 
musical dimensions: rhythm, harmony, timbre and 
instrumentation, long-term structure, intensity, and 
complexity. The following sections are devoted to outlining 
SIMAC contributions to all those aspects . 

2.1 Rhythm 

In its most generic sense, rhythm refers to all of the temporal 
aspects of a musical work, whether represented in a score, 
measured from a performance, or existing only in the 
perception of the listener [16]. In the literature the concept of 
“automatic rhythm description” groups a number of 
applications as diverse as tempo induction, beat tracking, 
rhythm quantisation, meter induction and characterisation of 
timing deviations, to name but a few. In SIMAC, we have 
investigated a number of these different aspects, from the 
low-level of onset detection, to the characterization of music 
according to rhythmic patterns. 

At the core of automatic rhythmic analysis lies the issue of 
identifying the start, or onset time, of events in the musical 
data.  As an alternative to standard energy-based approaches 
we have proposed methodologies that work solely with phase 
information [3], or that are based on predicting the phase and 
energy of signal components in the complex domain [4], 
greatly improving results for both percussive and tonal 
onsets. However, there is more to rhythm than the absolute 
timings of successive musical events. For instance, we have 
proposed a general model to beat tracking [9], based on the 
use of comb filtering techniques on a continuous 
representation of “onset emphasis”, i.e. an onset detection 
function. Subsequently, the method was expanded to 
combine this general model with a context -dependent model 
[10], by including a state space switching model. This 
improvement has been shown to significantly improve upon 
previous results, in particular with respect to maintaining a 
consistent metrical level and preventing phase switching 
between off-beats and on-beats. 

Furthermore, in our work we demonstrate the use of high-
level rhythmic descriptors for genre classification of recorded 
audio. An example is our research in tempo-based 
classification [17], [15], showing the high relevance of this 
feature while trying to characterize dance music. However, 
this approach is limited by the assumption that, given a 

musical genre, the tempo of any instance is among a very 
limited set of possible tempi. To address this, in [11], an 
approach is proposed that uses bar-length rhythmic patterns 
for the classification of dance music. The method 
dynamically estimates the characteristic rhythmic pattern on a 
given musical piece, by a combination of beat tracking, meter 
annotation and a k-means classifier. Genre classification 
results are greatly improved by using these high-level 
descriptors, showing the relevance of musically-meaningful 
representations for MIR tasks. For a more complete overview 
of the state of the art on rhythmic description and our own 
contributions towards a unified framework see [16]. 

2.2 Harmony 

The harmony of a piece of music can be defined by the 
combination of simultaneous notes, or chords; the 
arrangement of these chords along time, in progressions; and 
their distribution, which is closely related to the key or 
tonality of the piece. Chords, their progressions, and the key 
are relevant aspects  of music perception that can be used to 
accurately describe and classify music content [13]. 

Harmonic based retrieval has not been extensively explored 
prior to SIMAC. A successful approach at identifying 
harmonic similarities between audio and symbolic data was 
presented in [32]. It relied on automatic transcription, a 
process that is partially effective within a highly constrained 
subset of musical recordings (e.g. mono-timbral, no drums or 
vocals , small polyphonies). To avoid such constraints we 
adopt the approach where we describe the harmony of the 
piece, without attempting to estimate the pitch of notes in the 
mixture. Avoiding the transcription step allows us to operate 
on a wide variety of mu sic.  

This approach requires the use of a feature set that is able to 
emphasise the harmonic content of the piece, such that this 
representation can be exploited for further, higher-level, 
analysis. The feature set of choice is known as a Chroma or 
Pitch Class Profile , and they represent the relative intensity of 
each of the twelve semitones of the equal-tempered scale. 
This feature is related to one of the two dimensions of the 
pitch helix [36] that is related to the circularity of pitch as 
you move from one octave to another, and that can be 
accurately estimated from raw audio signals.  

In SIMAC, we have proposed a state-of-the-art approach to 
tonality estimation [14] by correlating chroma  distributions 
with key profiles derived from music cognition studies [24]. 
Results show high recognition rates for a database of 
recorded classical music. In our studies, we have also 
concentrated on the issue of chord estimation based on the 
principled processing of chroma features, by means of tuning, 
and a simple template-based model of chords [19]. 
Recognition rates of over 66% were found for a database of 
recorded classical music, though the algorithm is  being used 
also with other musical genres. A recent development 
includes the generation of a harmonic representation by 



means of a Hidden Markov Model, initialized and trained 
using musical theoretical and cognitive considerations [5]. 
This methodology has already shown great promise for both 
chord recognition and structural segmentation. 

2.3 Timbre and instrumentation 

Another dimension of musical description is that defined by 
the timbre or instrumentation of a song. Extracting truly 
instrumental information from music, as pertaining to 
separate instruments or types of instrumentation implies 
classifying, characterizing and describing information which 
is buried behind many layers of highly correlated data. Given 
that the current technologies do not allow a sufficiently 
reliable separation, work has concentrated on the 
characterization of the “overall” timbre or “texture” of a 
piece of music as a function of low-level signal features. This 
approach implied describing mostly the acoustical features of 
a given recording and gaining little abstraction about its 
instrumental contents.  

Even though it is not possible to separate the different 
contributions and “lines” of the instruments, there are some 
interesting simplifications that can provide useful descriptors. 
Examples are: lead instrument recognition, solo detection, or 
instrument profiling based on detection without performing 
any isolation or separation [20]. The recognition of 
idiosyncratic instruments, such as percussive ones, is another 
valuable simplification. Given that the presence, amount and 
type of percussion instruments are very distinctive features of 
some music genres and, hence, can be exploited to provide 
other natural partitions to large music collections, we have 
defined semantic descriptors such as the percussion index or 
the percussion profile [21]. Although they can be computed 
after some source separation [18], reasonable approximations 
can be achieved using simpler sound classification 
approaches that do not attempt separation [43], [34].  

Additionally, our research in the area of instrumentation has 
contributed to the current state of the art in instrument 
identification of mono-instrumental music [7], using line 
spectral frequencies (LSF) and a k-means classifier. An 
extension to this work is currently exploring the possibility of 
enhancing this approach with a source separation algorithm, 
aiming at selective source recognition tasks, such as lead 
instrument recognition. 

2.4 Intensity 

Subjective intensity, or the sensation of energeticness we get 
from music, is a concept commonly and naïvely used to 
describe music content. Although intensity has a clear 
subjective facet, we hypothesized that it could be grounded 
on automatically extracted audio descriptors.  

Inspired by the findings of Zils and Pachet [44], our work in  
this area has resulted in a model of subjective intensity built 

from energy and timbre low-level descriptors extracted from 
the audio data [35].  We have proposed a model that decides 
among 5 labels  (ethereal, soft, moderate, energetic, and 
wild), with an estimated effectiveness of nearly 80%. The 
model has been developed and tested using several thousands 
subjective judgements. 

2.5 Structure 

Music structure refers to the ways music materials are 
presented, repeated, varied or confronted along a piece of 
music. Strategies for doing that are artist, genre and style-
specific (i.e. the A-B themes exposition, development and 
recapitulation of a sonata form, or the intro-verse-chorus-
verse-chorus-outro of “pop music”). Detecting the different 
structural sections, the most repetitive segments, or even the 
least repeated segments, provide powerful ways of interacting 
with audio content by means of summaries, fast-listening and 
musical gist-conveying devices, and on-the-fly identification 
of songs.  

The section segmenter we have developed extracts segments 
that roughly correspond to the usual sections of a pop song 
or, in general, to sections that are different (in terms of timbre 
and tonal structure) from the adjacent ones. The algorithm 
first performs a rough segmentation with the help of change 
detectors, morphological filters adapted from image analysis, 
and similarity measurements using low-level descriptors. It 
then refines the segment boundaries using a different set of 
low-level descriptors. Complementing this type of 
segmentation, the most repetitive musical pattern in a music 
file can also be determined by looking at self-similarity 
matrices in combination with a rich set of descriptors 
including timbre and tonality (i.e. harmony) information [26]. 
Ground-truth databases for evaluating this task are still under 
construction, but our first evaluations yielded an 
effectiveness of section boundary detection higher than 70%. 

2.6 Complexity 

We define music complexity as the property of a musical 
element that determines how much effort the listener has to 
put into following and understanding that element. Music 
complexity in this context is understood as a multifaceted, 
semantic descriptor of musical audio content, which can be 
decomposed into timbral, rhythmic, structural, tonal and 
other facets. It is interesting to note the relationship between 
complexity and preference that has been put forward in the 
theory of Arousal Potential [6], which states that an 
individual’s preference for a certain piece of music is related 
to the amount of activity it produces in the listener’s brain, to 
which he refers as the arousal potential. According to this 
theory, there is an optimal arousal potential that causes the 
maximum liking, while a too low, as well as a too high, 
arousal potential results in a decrease of liking (i.e., it follows 
an inverted U-shaped curve). Since then, many experiments 
have been conducted showing clear interdependence between 



the complexity of musical instances and the preference for 
them. Therefore, we can assume that complexity might be of 
relevance for systems dealing with music recommendation. 

A complexity-related descriptor, computed by means of 
applying detrended fluctuation analysis (DFA), which reveals 
correlations within data series across different time scales, 
was found to be tightly correlated to semantic concepts linked 
to danceability [37]. Descriptors related to acoustic 
complexity (i.e. disparity of left and right channels, and 
dynamic changes), to timbre complexity (by means of 
exploiting data compression algorithms), and to harmonic 
complexity (from the existing tonal descriptors of section 2.2) 
have also been developed and included in an exploration 
prototype. Ground-truth databases for testing the 
effectiveness of musical complexity algorithms require 
massive listening tests which are currently being prepared.  

3. Music Similarity 

Finding ‘similar’ songs, albums, or artists is  one of the 
most appreciated features for music playing systems and 
devices capable to get access to large music collections [38]. 
From a user perspective, judging similarity of songs either 
involves the comparison of two songs or the comparison of a 
set of alternative songs to a referent or ideal (e.g., a seed 
song). Simply stating that two songs are similar is not 
sufficient: we need to say that two songs are similar because 
of their instrumentation, their compositional style, their 
performers, the subject of their lyrics, etc. Evidently, 
similarity needs to be explained with respect to a feature or a 
set of features, which may change according to user 
education and preferences, listening context, attentional and 
cognitive limitations, and even depending on the songs that 
have to be compared at a given moment. A straightforward 
method is to list all features of the songs involved and find 
the overlap in features. The reality is more complicated: 
similarity judgements seem to come down to the 
computation of a ‘psychological function’ of shared, 
distinctive, and comparable features of the objects involved 
(i.e., songs, in our case). In order to perform this comparison, 
cognitive processes and reasoning using knowledge and 
conventions from the real world play an important role. 
Music psychology has already pointed out that besides 
instrumentation, at least tempo and genre information are 
relevant for generating similarity judgments of music [8]. 
We believe that, besides the involvement of various features, 
the contribution of each individual feature to the overall 
similarity needs to be weighted. Given that the importance of 
features is heavily dependent on the context and the listening 
intention at hand, the user should be empowered to have 
total control on this weighting procedure. 

In this section we consider two sources  from which similarity 
can be computed: (1) the audio signal and (2) information on 
the web. Audio-based similarity is usually based on low-level 
audio statistics and therefore it disregards most of the truly 
“musical” facets and, not less important, all the cultural 

background where music is generated and “consumed”. This 
lack of cultural information can be addressed by web-based 
approaches which use, e.g., Google to find web-pages related 
to an artist and extract relevant information (e.g. word lists) 
from these pages. Based on these word lists, the similarity of 
two artists can be computed. In the remainder of this section, 
we briefly describe one approach for each source. 

3.1 Audio-Based Similarity 

As we stated in Section 2, there are a number of interesting 
descriptors that can be extracted directly from the audio 
signal. However, for a simple playlist generator [31] which 
requires minimum user interaction we have implemented a 
similarity measure based on simple low-level audio statistics 
[29]. In particular, we use a combination of two techniques : 
spectral similarity and fluctuation patterns.  

Spectral similarity reflects to some extent timbre 
characteristics [25], [2],[25] which, additionally, are assumed 
to correlate with instrumentation. Numerous research efforts 
have already been devoted to timbre similarity in music [2], 
[12], [23], [25]. Unquestionably, timbre similarity is 
grounded by perception; non-musicians rather choose 
instrumentation over correct melody and harmony in 
similarity judgement of music by mere listening [41]. The 
basic idea is to summarize tracks by the typical spectra that 
occur in them. These summaries are then compared to each 
other to obtain a similarity value. In particular this is done by 
dividing the track into many very short (e.g. 20ms) frames. 
For each frame, the Mel frequency cepstral coefficients 
(MFCCs) are computed. These MFCCs are then clustered to 
find the most typical spectral shapes that occur. Once these 
cluster models are computed there are different ways to 
compare them (see Figure 1). One approach is to compute the 
likelihood of generating samples from one cluster by the 
other one. 

To complement the spectral similarity we analyze periodic 
fluctuations in the loudness over time. These fluctuations are 
related to the beats, tempo and rhythm [27]. However, it is 
important to consider that these fluctuation patterns (FPs) are 
not comparable to what is know as rhythm patterns in music 
[12]. FPs are computed by cutting the track into 6 second 
segments. For each of these segments the spectrogram is 
computed and psychoacoustic transformations are applied 
(e.g. MFCCs). For each frequency band we compute the 
loudness amplitude modulations with a FFT. Thus, if there is 
an event periodically reoccurring every 500ms (2Hz or 
120bpm) then this will be reflected in the fluctuation pattern. 
For each segment we thus obtain a 2-dimensional FP matrix 
where each row represents one frequency bands, each column 
a specific modulation frequencies and the values in the cells 
are the strength of the fluctuation. To summarize the multiple 
FPs per piece we compute the median of each cell and thus 
obtain a single pattern. 

From the FPs we extract two descriptors: Focus (FP.F) and 
Gravity (FP.G). Focus relates to the clearness of the beats. 
Gravity is related to the perceived tempo. Focus is computed 



as the mean of the fluctuation pattern after normalizing the 
pattern so that the maximum value equals 1. Gravity is 
computed as the centre of gravity on the modulation 
frequency axis minus the theoretical centre of gravity. The 
distance between two FPs is comp uted by interpreting the 
matrices as vectors and computing the Euclidean distance. 
The distance between the single value descriptors (FP.F, 
FP.G) is computed as the absolute difference. All distances 
are combined by linearly weighting their values and 
summarizing them to one value.  

 

Figure 1. Visualization of the features used for audio-based 
similarity computations for five songs. On the y-axis of the 
cluster model (CM) is the loudness (dB-SPL), on the x-axis are 
the Mel frequency bands. The plots show typical spectral shapes 
and their variances on top of each other. On the y-axis of the FP 
are the Bark frequency bands, the x-axis is the modulation 
frequency (in the range from 0-10Hz). The y-axis on the FP.F 
histogram plots are the counts, on the x-axis are the values of the 
FP (from 0 to 1). The y -axis of the FP.G is the sum of values per 
FP column; the x-axis is the modulation frequency (from 0-
10Hz). In the FPs, vertical lines indicate reoccurring periodic 
beats. 

 

3.2 Web-based Similarity 

A very different approach to compute the similarity of artists 
is to analyze the content of webpages that contain their 
names. In particular, an artist name and some constraints (e.g. 
“music” and “review”) are used to query the World Wide 
Web through a search engine such as Google. The top ranked 
pages (e.g. the first 50) are retrieved and parsed. For each 
artist we obtain a long list of word occurrences  [40]. Lists 
from different artists are then compared to each other using 
standard text retrieval techniques [33]). Using this type of 
similarity we can either classify artists into genres [23] or 
develop interfaces to browse music collections on the artist 

level [30]. In particular, the word occurrences can be used to 
automatically generate text summaries that describe an artist.  

3.3 Evaluation 

Direct evaluation of a similarity measure is rather difficult as 
it would require extensive listening tests (to annotate a music 
collection), or would require running a listening test for every 
variation of the algorithm (that is, for all parameter settings of 
interest). Alternatively, we can measure the performance 
indirectly through genre classification, for example, by using 
a nearest neighbour classifier, and assuming that (very) 
similar pieces (or artists) belong to the same genre. 

In order to avoid unrealistic results due to overfitting the data, 
these techniques need to be correctly applied to several 
independent music collections, splitting them into training 
and testing sets, and ensuring the exclusion of the same artist 
in the training and in the testing (this is required to block the 
effect of having similar production effects, or artist voices in 
both sets).   

A different type of evaluation can be done by studying in 
practice the results of different similarity functions. To 
achieve this goal, we have developed a system in which the 
similarity is based on a weighted combination of timbre, 
genre, tempo, year, and mood. The end-user can specify her 
personal definition of similarity by weighting these aspects 
on a graphical user interface. A conclusive user evaluation 
was conducted to assess the usability of the system (User 
Defined Similarity or UDS) in comparison to two control 
systems (CTRL1 and CTRL2) in which the user control on 
defining the similarity function was diminished. When a user 
asks for songs similar to a seed song in the UDS system, the 
jukebox displays the screen shown in Figure 2.  The 
similarity components are represented by adapters. These 
adapters can be dragged on the bull’s eye (as shown on the 
right-hand side of the screen). The radial distance of an 
adapter to the centre determines the weight of its 
corresponding similarity component in the similarity 
function. In this way, a user has the possibility to change the 
similarity function that is applied to the music collection. 
The list of songs on the left-hand side of the screen is sorted 
according to the degree of similarity; the songs that are 
closest to the seed are positioned at the top of the list. When 
using the two control systems (CTRL1 and CTRL2) the user 
interaction with of the system was the same, although users 
could not manipulate the definition of similarity. The 
similarity in CTRL1 was set accordingly to timbre only, in 
CTRL2 it was set to a fixed combination of timbre, genre 
and tempo. A thorough description of the experiment is 
provided in [39].  The user evaluation involved twenty-two 
participants, who were invited to use the three systems. The 
task was to compile a playlist of ten songs and the only 
criterion given was the quality of the playlist. The 
performance of the participants was analysed with respect to 
two types of measures: objective measures such as time 
spent and number of actions executed and subjective 
measure such as perceived quality and ease of use of the 
system and system preferences. From the results of the three 



runs, two groups of people with different behaviour were 
identified. The “slow” group spent much time to explore the 
possibilities offered by the systems, while the “fast” group 
tried to minimize the time spent with the system. The user 
evaluation revealed also that some additional effort was 
needed to learn to work with the user-driven similarity 
function during first-time use, and therefore most users find 
the proposed system somewhat less easy to use than the 
other systems.  

In conclusion, providing users with complete control on their 
personal defin ition of music similarity is found to be more 
useful and preferred than providing closed definitions that 
allowed no control on the involved musical facets.  

 

Figure 2. The E-Mu jukebox in "Similar Songs" mode. The user 
can define the similarity function applied to the music collection 
by dragging the sound/tempo/mood/genre/year adapters on the 
screen. An adapter that is close to the center is weighted more 
than when it is positioned in the periphery. 

 

4. Prototypes 

Three software prototypes integrating state-of-the-art 
automatic audio description and music similarity technology 
are under development: 

The Music Annotator  is an environment for the annotation 
and generation of music metadata at different levels of 
abstraction. It is composed of three tiers: an annotation client 
that deals with micro-annotations (i.e. within -file annotations 
about note onsets, chords, percussive events, beats, etc.), a 
collection tagger, which deals with macro-annotations (i.e. 
across-files annotations), and a collaborative annotation 
subsystem, which manages large-scale annotation tasks that 
can be shared among different research centres. The 
annotation client is an enhanced version of WaveSurfer, a 
speech annotation tool. The collection tagger includes tools 
for automatic generation of unary descriptors, invention of 
new descriptors, and propagation of descriptors across sub-
collections or playlists. Finally, the collaborative annotation 

subsystem makes it possible to share the annotation chores 
and results between several research institutions, reducing the 
time and cost of them. 

The Music Organizer and Explorer demonstrates the 
visualization and navigation across existing collections of 
music titles. 2-D maps are used to map songs according to 
semantic descriptors, and different similarity distance metrics 
can be tried in order to find similar music to a given seed 
song. 

The Music Recommender is intended for providing 
recommendations of music titles that are legally 
downloadable from the WWW. We believe this is  one of the 
first systems that combines audio generated information and 
cultural information to produce recommendations. The 
system, named Foafing the Music, relies on user preferences 
and user listening habits (computed from content analyses of 
the user’s music collection). Tracking of preferences is 
managed by means of the Audioscrobbler1 plugin. The 
system also exploits musical information that has been 
specially crawled from the Internet and properly structured 
and mined to generate musical knowledge. Moreover, 
nowadays, music websites are alerting the user about new 
releases or artist's related news, mostly in the form of RSS 
feeds. For instance, iTunes Music Store2 provides an RSS 
(version 2.0) feed generator, updated once a week, which 
publishes new releases of artists' albums. 

User profiles are based on the Friend of a friend (FOAF) 
initiative. The FOAF project provides a framework for 
representing information about people, their interests, 
relationships between them and their social connections. The 
FOAF vocabulary contains terms for describing personal 
information -name, nick, mailbox, interest, images, group 
membership…-. FOAF is based on the RDF/XML 
vocabulary. A FOAF description, then, describes a person in 
a machine readable format. Currently, the FOAF initiative is 
one of the big attainments of the Semantic Web. 

Music and artists’ recommendations, in the Foafing the 
Music system, are generated through the following steps: 

1. Get interests from user's FOAF profile,  
2. Detect artists and bands from these interests ,  
3. Select related artists, from artists encountered in the 

user's FOAF profile, and 
4. Rate results by relevance. 

The system reads an input FOAF profile -that is, an 
RDF/XML file-, and extracts user's interests. Then, it queries 
a music repository in order to detect whether the interest is a 
music artist (or a band), and selects similar artists to the ones 
found. To get artists' similarities, a focused web crawled has 
been implemented to look for relationships between artists 
(such as: related to, influenced by, followers of, etc.). 
Moreover, a music similarity distance is used to recommend 

                                                                 
1 http://www.last.fm 
2 http://www.apple.com/itunes 



tracks that are similar to tracks composed or played by artists 
found in the FOAF profile. 

Once the related artists have been selected, Foafing the Music 
filters music related information coming form RSS feeds to: 

• Get new music releases,  
• Create, automatically, playlists based on audio similarity. 
• Download (or stream) audio from MP3-blogs and 

Podcast sessions, and 
• View incoming concerts near to user’s city 
• Read art ists’ related news 

5.  Conclusions and further directions  

In this paper we have provided an overview of the scientific 
achievements of the SIMAC project. The combination of 
both semantic descriptors addressing multiple musical facets 
and user-configurable similarity metrics emerge as key 
elements for successful systems aimed to enhance the 
interaction with music audio collections.  

The reported research has purposely left aside one of the 
most important elements for that interaction: melody. There 
are unsolved technological problems regarding the extraction 
of the principal melody of a piece of music (not to mention 
the unreliability of user queries when “query by humming” is 
used). Source separation is another of the “holy grails” in 
music content processing. The benefits of achieving a 
separated representation of the concurrent musical streams 
are obvious but there is still no general approach to achieve 
that goal in a reliable and usable way. Even though most of 
our algorithms do not perform source separation, there is a lot 
of musical information that has been extracted with enough 
reliability and consistency to be exploited in music 
exploration, retrieval and recommendation. 

Similarity metrics that incorporate musical facets beyond 
timbre are still to be exp lored. As this project is providing 
semantic descriptors which cover tonality, instrumentation, 
rhythm, intensity, structure or complexity, new similarity 
metrics will be available soon and will make it possible to 
decide which of them contribute to the perceived similarity 
among songs. Other limitations on the current approaches to 
similarity lie on the facts that similarity judgements are not 
transitive (i.e. the statement “song A is more similar to B 
than to C” cannot be held under all circumstances) nor 
symmetric (symmetric (i.e. artist A may be similar to artist B, 
but artist B may not be similar to artist A in the case that A is 
follower of B). Another shortcoming lies in the fact that 
cultural and individual biases cannot be easily formalized. To 
conclude, web-based similarity has also text -mining inherent 
limitations (e.g. artist names are not unique, some of them 
have multiple meanings, artists that are not very popular have 
very few pages describing them…) . 

Most of the problems addressed in SIMAC could be 
alleviated or would change its focus if music files were 
enriched with metadata from their own origin (i.e. the 

recording studio). As this does not seem to be a priority by 
music technology manufacturers, we foresee a long life to our 
field, as digital music consumers are asking for the benefits 
of populating their music collections with a consistent and 
varied set of semantic descriptors. 
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