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ABSTRACT

Expressive timing is vital for the aesthetic quality that makes us ap-
preciate performed music. It is a largely tacit skill that musicians ac-
quire by practice. A long-standing intuition is that expressive timing
is closely related to the concept of motion. This view leads naturally
to the adoption of a dynamical systems approach to the study of ex-
pressive timing. A well-known visualization technique from dynami-
cal systems theory is the phase-plane representation. The application
of this technique, that highlights the dynamic aspects of the data, is
demonstrated in a case study on the final ritard in performances of
Schumann’s Träumerei. We argue that expressive gestures are visible
in a clear and intuitive manner in the phase-plane representations. An-
other striking aspect of the phase-plane trajectories is their suggestion
of human gestural motion.

I. INTRODUCTION AND RELATED WORK

Expressive timing is vital for the aesthetic quality that makes
us appreciate performed music. It is a largely tacit skill that
musicians acquire by practice. Empirical research concerning
expressive timing dates back to the beginning of the 20th cen-
tury and has boomed over the past decennia. Several distinct
approaches have been taken to model and more in general to
gain understanding of the phenomenon. Two main strategies for
modeling expressive timing can be characterized as knowledge-
driven and data-driven respectively. A good example of the
former is the ‘analysis-by-synthesis’ method used by Sundberg
et al. (1991). The latter approach is exemplified by the applica-
tion of machine learning algorithms, such as by Widmer (2002).

A long-standing intuition is that music is closely related
to the concept of motion. This idea has been elaborated by
Truslit (1938) (see also Repp (1993)), who claimed that mu-
sic is essentially the transmission of motion information from
the musician to the listener. This analogy between music and
motion has inspired several kinetic models of expressive tim-
ing (and dynamics) (Todd, 1995; Friberg and Sundberg, 1999).
These models are derived from the laws of physical motion
from classical mechanics. In particular musical circumstances
these models provide quite accurate descriptions of expressive
timing observed in actual performances. However, as pointed

out by Repp (1992); Honing (2006), these models are limited
in the sense that they model expressive timing as a function of
score time, and neglect any structural aspects of the music.

An important implication of the analogy between motion
and music, in particular expressive timing, is the view that the
timing of notes in music performances is the result of some
underlying process, and that this process, however complex
it may be, is governed or constrained by certain principles.
This perspective renders the problem of understanding expres-
sive timing in music as a special case of a general branch of
problems that occur throughout empirical science, in which we
want to learn something about a dynamical system through the
limited observation of its behaviour. A dynamical system is
formally defined by a collection of states (the state-space, or
phase-space) together with an evolution function that maps any
state to the next state in time. Usually, the evolution function
is assumed to be smooth. The observations of such a system
typically come in the form of a series of measurements of some
quantity through time. From the resulting time-series we wish
to infer qualitative information about the underlying system. In
particular, we want to reconstruct the behaviour of the system
as a trajectory through its state-space (or phase-space). Even if
the dimensions of the state space are unknown, as is often the
case in practice, principally the state-space can still be recon-
structed from the data.i This is achieved by representing the
time-series as a trajectory through an m-dimensional space that
is defined by taking m values of the time-series with a fixed
time delay τ (the lag). This technique is called delay recon-
struction, and is a common tool in nonlinear time-series anal-
ysis (Kantz and Schreiber, 1997). Such a dynamical approach
has been applied to various aspects of music, including acous-
tic modeling (Schoner, 1997), and gesture-based virtual instru-
ment control (Métois, 1996).

Of course the dynamical system we assume to underlie the
expressive timing of musical performances is highly complex,
especially relative to the number of observations we have in the
form of time-series of tempo or IOI values describing the ex-
pressive timing of performances. As a result, state-space recon-
struction by techniques such as delay reconstruction is likely to
be unfeasible. Nevertheless, visualization techniques related



to state-space representations are useful for exploring obser-
vations from dynamical systems. In particular, phase-plane
visualization can facilitate observations of the characteristics
of time-series data that are less evident from plots of the data
against time (in the rest of the paper we will refer to this as
time-series plots). The phase-plane is a two-dimensional plot
of some aspects of a dynamical system. In the case of a sim-
ple pendulum for example, a useful phase-plane is the one that
plots the velocity against the position of the pendulum, as it
completely describes the behaviour of the system. If multiple
signals are observed from the system, phase-plane trajectories
can be drawn by plotting the signals against each other. An ex-
ample of this in the context of expressive music performance
is the performance worm (Langner and Goebl, 2003), which
visualizes performances by plotting loudness versus tempo.

In this paper we choose a different phase-plane method,
that exclusively represents tempo information. We focus on
first-order and second-order phase-planes. The former plots
the derivative of tempo versus tempo, whereas the latter plots
the second versus the first derivative of tempo. We intend to
demonstrate the suitability of these phase-plane representations
as a visualization technique for expressive timing. We argue
that expressive gestures are visible in a clear and intuitive man-
ner in the phase-plane representations. Moreover, a striking as-
pect of the phase-plane trajectories is their suggestion of human
gestural motion. In particular cyclic phase-plane trajectories
corresponding to periodic patterns in timing data illustrate this.

In section II, we discuss the phase-plane representation of
expressive timing as an alternative to the more conventional
times-series plots. We show the phase-planes of some archety-
pal curve segments to demonstrate the relation between the two.
Then, we introduce the method of computing the phase-planes
representations from a series of tempo or IOI values. This in-
volves a functional approximation of the data using splines. In
section III, we discuss the final ritards of three performances
of Schumann’s Träumerei (Opus 15, Nr. 7) using phase-planes.
We end the paper with some conclusions and future work in
section IV.

II. PHASE-PLANE PLOTS VERSUS
TIME-SERIES PLOTS

An obvious question that comes to mind when considering
phase-plane representations of a function (or a time-series) as
an alternative to plotting the function against time, is what new
insights it can possibly give. After all, the derivatives are fully
determined by the function, they don’t convey any information
that is not contained in the function itself. Rather than provid-
ing new information, phase-plane representations show a new
perspective on the data, just like for example a transformation
of a function from the time to the frequency domain provides
a new perspective. The essential difference from time-series
plots is that the time dimension is implicit rather than explicit
in the phase-plane. Whether this is an advantage depends on
the intended kind of analysis. For example, if the aim is to get
an impression of the trends in absolute tempo over the course

of a performance, a time-series plot may be more useful than a
phase-plane plot. On the other hand, if the focus is on the partic-
ular form that the change of tempo takes, then phase-plane plots
may provide better insight. The reason for this is that the tempo
trajectory in the phase-plane expresses exclusively the change
in tempo — any episodes of constant tempo are projected to a
single point in the phase-plane. As opposed to time-series plots,
where tempo trajectories by definition advance steadily in one
dimension (time), in phase-plane plots the change of tempo is
expressed in two dimensions, leading to trajectories that are vi-
sually more distinct than their equivalent time-series plots. We
will illustrate this shortly.

This emphasis on the dynamic aspects of tempo in phase-
plane representations is in accordance with the observation that
the expressive use of timing is mainly manifested through the
momentary fluctuations of tempo. Absolute tempo, or large
scale trends in tempo are not commonly regarded as the princi-
pal expressive parameters, even if they do belong to the expres-
sive degrees of freedom of the performer.

A. Examples of basic curve types

To get a feel for how to interpret phase-plane representations,
we briefly discuss the phase-plane trajectories of some archety-
pal curves. In the first column of figure 1, five basic curves are
shown as a function x of time t. The second column shows the
corresponding first-order phase-planes, representing the curve
as a trajectory through the dx/dt vs x(t) plane, that is, the first
derivative of x(t) against x(t) itself. The last column shows the
second-order phase-planes, formed by d2x/dt vs dx/dt. The
circles indicate the beginning of the curves, and their corre-
sponding phase-plane trajectories. The horizontal and vertical
dashed lines indicate the origin in the phase-planes.

Note that constant tempo (row (a) in figure 1) corresponds
to a single point in the phase-planes, as all derivatives are zero.ii

Constant change of tempo (rows (b) and (c)) leads to a dis-
placement along the x(t) (horizontal in the first-order phase-
plane) axis and a constant offset along the dx/dt axis (verti-
cal in the first-order phase-plane, and horizontal in the second-
order phase-plane).

Row (d) shows one period of a simple harmonic, or oscilla-
tory motion. This type of motion is defined by a second order
differential equation which has sinusoidal functions as its solu-
tions. Such functions correspond to a circular motion in both
phase-planes, where the end position of the trajectory is equal
to its starting position. This example illustrates how, as the time
dimension is implicit, repeated curve segments map to the same
trajectory in the phase-plane. Note that due to the derivative re-
lationship between the vertical dimension with respect to the
horizontal dimension, the movement of any phase-plane trajec-
tory is necessarily clockwise around the origin. More precisely,
the trajectory always moves leftward below the horizontal axis,
and rightward above it, and is exactly perpendicular to the hor-
izontal axis at the time of crossing it.

Finally, row (e) shows a parabolic curve x(t) = t2. Since
its first derivative dx/dt = 2t is linear in time, the first-order
phase-plane is also a parabola, with the horizontal and vertical
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Figure 1: Examples of five basic curve types (first column), and their first and second order phase-plane trajectories (sec-
ond and third columns respectively); Horizontal and vertical dashed lines represent x and y axes respectively; Circles
indicate the beginning of the curves/trajectories; Units are arbitrary



axis interchanged. The second-order phase-plane trajectory is
a straight line segment, since dx/dt = 2. Note that although it
is hard to visually distinguish the parabola from a semiperiod
of a simple oscillation in the time-series plot (first column), the
phase-plane trajectories of both types of curves are very dis-
tinct. This is a particularly interesting feature for mathematical
modeling of tempo curves, such as in Todd (1985), and Repp
(1992).

B. From time-series to phase-plane
trajectories

The concept of a tempo curve, even when ubiquitous in ex-
pressive music performance research, is not straight-forward.
Given that tempo can be loosely defined as the rate at which
events take place, it is inherently related to a temporal context
of events, rather than a single point in time. For the sake of
quantifying tempo over the course of a performance, it is com-
monly measured as the reciprocal of the interval between two
consecutive metrical beats (IBI), and this value is associated ei-
ther with the first or the second of the beats for which the IBI
was measured. As the tempo quantity is undefined in the ab-
sence of events, it is questionable whether tempo is perceived
as a constant entity by humans (Desain and Honing, 1993), and
therefore whether it is justifiable to interpolate the time-series
of tempo values to obtain a tempo curve. However, the curve
is not meaningless in the way a curve drawn between the out-
comes of rolling a dice would be meaningless. In order for the
rhythmical structure of a piece to be perceptible, tempo must
satisfy certain smoothness constraints Honing (2004). This co-
herence between consecutive tempo perceptions is expressed by
the representation of tempo as a continuous function of time.

The problem of finding a function that fits to a series of data
values is well-known in statistics, since a very common situa-
tion in empirical studies is to have a series of measurement val-
ues that we hypothesize or assume to be result of some process
of which the behaviour can be adequately described by some
smooth function. As is unavoidable in any measurement, the
measured values will include measurement errors and possibly
other distortions of the values that we actually intended to mea-
sure. This view is known as the signal plus noise model data,
which is formally represented as:

y = x(t) + e

where y is a vector of length n containing the measured val-
ues, t is a vector of length n containing the time values asso-
ciated with each measurement, x is the unknown function that
we wish to estimate, and e is a vector of length n containing the
error values associated with each measurement. The function x
is often chosen to be of the form:

x(t) = c′φ

That is, a linear combination of a set of K basis-functions φ,
where c is a vector of length K containing the weight for each

basis-function. The fitting of the function x to the data y can
be done by minimizing the summed squared error:

SSE = ||y −Φc||2

where Φ is a n byK matrix such that Φi,k contains φk(i), value
of the k-th basis-function at sampling point i.

As the number of basis-functions K increases, the fit to the
data becomes better, reducing the bias of the estimation. But
large values for K also increase the variance of the estimation,
resulting in a less smooth fitted curve. To take the smoothness
constraint into account, a penalty term for roughness is included
the quantity that is minimized:

PENSSE = SSE2 + λPEN

The relative importance of the penalty term is controlled by the
smoothing parameter λ. The penalty term quantifies the rough-
ness as the integrated square of the second derivative of x:

PEN =
∫

[D2x(s)]2ds

This minimization criterion is independent of the choice of
the system of basis-functions φ. There is a wide variety of bases
that can be sensibly used. Typical bases are Fourier series and
polynomials. Furthermore, with a slight change of the min-
imization criterion, kernel smoothing (e.g. using a Gaussian
kernel) can be construed as a special case of basis expansion
with one basis-function φ(t) = 1.

In the work described here, we use a B-spline basis for
smoothing, as described in Ramsay and Silverman (1997). B-
splines are piecewise polynomial. This means that the spline
consists of segments defined by a series of breakpoints, and
on each of those segments S the B-spline is a polynomial. A
B-spline S is defined by an order m, and a sequence of break-
points τ , and is computed from a set of basis-functions B:

S(t) =
m+L−1∑

k=1

ckBk(t, τ)

Here, Bk(t, τ) is the value at point t of the k’th basis-function.
L is the number of intervals as defined by the breakpoint se-
quence τ . The basis-functions are themselves B-splines, with
compact support. They are constructed recursively from B-
splines of a lower degree. B-spline smoothing of data is
achieved by choosing the coefficients c = (c1, · · · , cm+L−1)
such that the criterion PENSSE is minimized.

After computing c, the phase-plane representations are ob-
tained by computing the first and second derivatives of the
spline S, D[S(t)] and D2[S(t)].

III. CASE STUDY

In this case study we illustrate the phase-plane visualiza-
tion for the final ritards of three performances of Schumann’s
Träumerei. The relevant score fragment is shown in figure 2.



The score fragment exists of four motifs, or melodic gestures.
Some motif boundaries are accentuated in the score by commas,
as a hint for performance. Even if the ritardando indication is
located at the start of the first motif, this motif in most measured
performances exhibits a short accelerando. This is arguably a
preparation for the ritardando itself, which in most cases starts
effectively at the second motif (starting at IOI number 246). For
this reason, we will be looking at the last three motifs (the IOI
range 246–255). IOI’s correspond to half beats, implying 8 IOI
values per measure.iii

Figure 2: Last two measures of Schumann’s Träumerei (Op
15. nr. 7); The brackets below the score (annotated by au-
thors) indicate the grouping of notes into melodic gestures;
The numbers at the bottom (annotated by authors) indicate
the IOI number; (figure adapted from Repp (1992))

Figure 3 shows the IOI curves and corresponding phase-
plane trajectories of the performances of Horowitz (1982) (fig-
ure 3a), Brendel (1980) (figure 3b), and Argerich (1984) (fig-
ure 3c), for the IOI range 245–255. The first column contains
the measured IOI values (normalized across the complete per-
formance) as circles connected by dashed lines, together with
the fitted splines, as solid curves. The positions of the break-
points in the spline are indicated by diamonds.

The fitted splines were computed as described in section II.
A limitation of the smoothing using the PENSSE criterion
is that when the roughness penalty λ is low enough to allow
for a good fit of relatively sudden fluctuations in the data, the
splines tend to also exhibit large fluctuations in between data
points. To solve this issue, an extra data point was inserted
in between every consecutive pair of data points, by linear in-
terpolation (these points are not shown in the plot). The splines
were subsequently fitted to the linearly interpolated time-series.
The number of breakpoints and their positions were determined
using a simple heuristic based on the angle of the linearly inter-
polated curve.

The second column in figure 3 shows the first-order phase-
plane trajectories corresponding to the fitted splines. The hori-
zontal axis shows normalized IOI values, and the vertical axis
shows the first derivative of IOI values. Analogously, the third
column shows the second-order phase-planes, with the first
derivative of IOI values horizontally, and the second derivative
vertically. Thus, for each row of plots it holds that the vertical
dimension in one plot is identical to the horizontal dimension
in the next plot to the right. The horizontal and vertical dashed
lines indicate the origin in the phase-planes.

The presence of the ritard is easily observed in the time-
series plots, from the increasing trend in the IOI values. In

the first-order phase-plane, this trend corresponds to a leftward
movement of the trajectory (independent of the vertical move-
ment). In addition to the ritard effect, it is clear that the group-
ing of the score into three motifs is somehow reflected in the
IOI curves: In accordance with common knowledge of how
the temporal grouping structure of the score is communicated
(Palmer, 1997), peaks in the time-series plots can be observed
at, or close to the motif boundaries (at IOI numbers 249 and
253). Argerich prolongs IOI 252, the IOI before the IOI that
spans the last motif boundary, and shortens IOI 253. This may
indicate a focus on the lower staff, for which the penultimate
motif effectively ends at IOI 252.

Note that whereas the expressive gestures that accentuate
the motivic structure are apparent from the time-series plots,
they correspond more clearly to individual visual entities in
the first-order phase-plane trajectories. The gestures, that con-
sist of a lengthening of IOI’s, possibly preceded by a short-
ening of IOI’s, appear as partial circular segments in the first-
order phase-plane trajectory. The parts of the circular trajectory
above and below the horizontal axis correspond to the length-
ening and shortening of IOI’s, respectively. In each of the three
plots in the second column of figure 3, the trajectories consist
of three such forms of increasing size. The increase in size
indicates that the expressive gestures become increasingly pro-
nounced for the subsequent motifs. This is effect is observed
consistently in the three performances. The major difference
between the performances is in the shortening of IOI’s as part
of the gesture, corresponding to the lower half of the circular
forms. In Horowitz’s performance, this effect is virtually ab-
sent, whereas in Argerich’s performance the gestures appear as
full circles, indicating a strong IOI shortening in addition to the
IOI lengthening. Brendel’s performance is intermediate in this
respect, showing small downward loops as part of the gestures.
Note also that the performers are very consistent the shaping of
the gestures for the subsequent motifs.

In the second-order phase-planes, shown in third column of
figure 3, the trajectories do not move rightwards, but remain
more centered at the origin. Only the last two IOI values sig-
nificantly depart from the origin.iv This is because the second-
order phase-plane abstracts from IOI durations, which implies
that similar gestures, even at different tempos, map to the same
region in the phase-plane. In this phase-plane, the ‘intensity’ of
the gesture is expressed in the scale of the corresponding tra-
jectory segment. For example, in the second-order phase-plane
of Argerich’s performance, the outward spiraling trajectory in-
dicates a repetition of the same gesture but with increasing ‘in-
tensity’, or amplitude.

It is worth mentioning the similarities that the phase-plane
trajectories bear to the form of the physical gestures that hu-
mans intuitively use to make to mimic the dynamics of pro-
cesses such as music or speech. The circular movements that
are characteristic for the phase-plane trajectories of expressive
timing in performances, are also typical for arm movements
in such gestures. Moreover, it seems natural to express more
dramatic changes with eccentric movements, as is the case in
the phase-planes. Bearing in mind Truslit’s hypothesis (Truslit,
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Figure 3: Fitted IOI curves and corresponding phase-plane trajectories for three performances at IOI range 245-255 from
Schumann’s Träumerei: a) Horowitz (1982); b) Brendel (1980); c) Argerich (1984); In the first column, the circles con-
nected by dashed lines are the measured IOI values (normalized); The solid line is the fitted spline; Diamonds indicate
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1938) that the essence of music is to transmit forms of natural
motion, it can be argued that the phase-plane method applied
here appears to transform expressive timing data into a repre-
sentation that is closer to such forms of motion.

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated the use of phase-plane representations
for the visualization of expressive timing in musical perfor-
mances. Such visualizations show performances as trajectories
through a two-dimensional plane that combines tempo curves
and its derivatives. The essential difference to conventional
time-series plots is that the change in the curves is represented
explicitly as a dimension. An effect of this is that expressive
timing gestures (patterns of changes in timing) tend to be more
pronounced in phase-plane plots.

A striking aspect of phase-plane visualization of expressive
timing is its suggestion of human gestural motion. Although
this observation is based only on a similarity in appearance, it
is an interesting question to what extent the phase-plane trajec-
tories parallel the gestures humans make to mimic expressive
aspects of music.

Apart from the allusion to physical motion, the phase-plane,
by its focus on the derivatives of tempo, sometimes yields rad-
ically different phase-plane trajectories for curves that appear
to be only slight variations in a time-series plot. This makes it
potentially a valuable tool for modeling tempo curves by math-
ematical functions (as in Todd (1985); Friberg and Sundberg
(1999)). This possibility is discussed in more detail in Grachten
et al. (2008).
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NOTES
iThere is a relation between the dimensionality of attractors in the state

space and the number of observations needed for reconstruction, as specified
by the delay embedding theorem (Takens, 1981)

iiWe interpret the curves as tempo curves, although these remarks of course
hold independently of the interpretation of the dimensions

iiiThe use of the term interonset interval (IOI) might wrongly suggest that
precisely one measurement value is given for each interval between consecutive
onsets. Rather, measurement values are present for each eighth note interval,
independently of the presence or absence of note onsets. A more correct term
would be interbeat-interval (IBI) at half beat level

ivUnfortunately the adjustment of the plotting range needed to accommodate
the large curves, somewhat obscures the view of the main part of the trajectory,
mostly so in the case of Horowitz
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