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Background in music performance research For the past few decades there has been con-
siderable scientific interest in expression in music performance (Gabrielsson, 2003). A particularly
relevant aspect of music performance is expressive timing, that is, the fluctuations of tempo during
a performance. Accordingly, expressive timing has been one of the major topics in music perfor-
mance research. As an expressive parameter, timing is used to clarify the musical structure of the
piece (Clarke, 1988), among other things.

Background in computing, mathematics, and statistics A common situation in the natural
sciences is the limited observability of complex systems, e.g. the weather. The observed variables
typically exhibit little regularity due to the influence of unknown and interacting underlying factors.
A helpful method in the study of such systems is the graphical presentation of typical trajectories
through its phase-space, or state-space, the space of all the possible states the system can be in.
The system state is represented by state variables. The complexity of the system is intrinsically
related to the number of state variables that are necessary to completely describe its behaviour.
The phase-plane is a two-dimensional plot of two state variables against each other. Such plots
can give insights in the temporal behaviour of the system, and sometimes allow for a qualitative
description of the behaviour.

Aims Tempo measured as the reciprocal of the interbeat-interval defines tempo at discrete points
in time. In between the musical events that imply the beat there is no way of inferring the tempo
and therefore a tempo-curve as a continuous function of score time probably does not correspond
to any percept in the listener (Desain and Honing, 1993). However, in order for the rhythmical
structure of a piece to be perceptible, tempo must satisfy certain smoothness constraints. This
coherence between consecutive tempo perceptions is expressed by the representation of tempo as
a continuous function of time.

One of the goals of the study of music performance is to develop models of expressive timing.
A particularly interesting set of models are those that are grounded in the metaphor of physical
motion (e.g. Todd (1989) ). Although such models have limitations (Honing, 2004), we do believe
that the interpretation of expressive timing as the result of an underlying continuous process can
prove fruitful. Consequently, we intend to show that visualization and analysis methods common in
dynamical systems theory can be helpful in developing models of expressive timing.

Main Contribution In this paper we illustrate the use of phase-plane representations for inves-
tigating expressive timing in music. We survey of the relation between the phase-plane plots and
the more common time series plots, and describe the construction of the phase-plane representa-
tion from the time series using a functional approximation of the data. Then we illustrate its use
by showing discussing the phase-plane representations of performance fragments from Schumann’s
Träumerei by two different pianists.

Implications Compared to time series plots, phase-plane representations emphasize the dynami-
cal aspects of expressive timing data. This makes it arguably a suitable tool for studying and model-
ing expressive gestures in timing. As shown by the examples discussed in the paper, it may be easier
in phase-plane representations to determine which model fits best to a particular tempo-curve.



Introduction and related work

For the past few decades there has been con-
siderable scientific interest in expression in mu-
sic performance (Gabrielsson, 2003). A partic-
ularly relevant aspect of music performance is
expressive timing, that is, the fluctuations of
tempo during a performance. Accordingly, ex-
pressive timing has been one of the major topics
in music performance research. A well-known
function of timing as an expressive parameter
is the clarification of structural aspects of the
music (Clarke, 1988), like metrical, phrase, and
voice structure. Furthermore, timing and other
temporal aspects such as global tempo and ar-
ticulation play a role in the communication of
semantic content, including emotional (Gabriels-
son and Juslin, 1996), and sensorial (e.g. dark,
light, heavy, soft) (Canazza et al., 1997) infor-
mation. In addition to the establishment of such
global relationships, more detailed accounts of
expressive timing have been given using sev-
eral distinct methodologies, such as analysis-by-
synthesis (Sundberg et al., 1991), and machine
learning (Widmer, 2003). A particularly profound
and relatively large-scale analysis of expressive
timing can be found in Repp (1992).

The problem of explaining expressive timing
in music performances can be regarded as a
special case of a very wide range of problems
where we want to learn experimentally about
the temporal behaviour of some complex system
based on limited observation. Examples of this
can be found in population biology, and mete-
orology. In cognitive science and developmen-
tal psychology, such a dynamical systems per-
spective has been proposed as a viable alterna-
tive to symbolic and connectionist approaches
(Beer, 2000). This approach aims at developing
models that describe how the state of the sys-
tem changes over time. Rather than predicting
individual state trajectories, the aim is to gain
insight in the qualitative structure of the state-
space that results from the influence and inter-
action of possibly unknown factors.

In the case of expressive music performance
we are not completely ignorant about these fac-
tors. As described above, past research has re-
vealed valuable insights about how factors like
musical structure and intended mood influence
expressive timing. Also, there has been a long-
standing metaphor of (the performance of) mu-
sic as a form of motion (Truslit, 1938; Friberg and
Sundberg, 1999). Several approaches exist that
take kinetic models as a basis for modeling ex-
pressive tempo, most notably Todd (1985). Still,

we are far from giving a full account of expres-
sive timing.

A dynamical view of expressive timing

A helpful method in the study of a dynamical
system is the graphical presentation of typical
trajectories through its phase-space, or state-
space, the space constituted by all of the pos-
sible states the system can be in. The system
state is represented by state variables. The com-
plexity of the system is intrinsically related to
the number of state variables that are necessary
to completely describe its behaviour. An exam-
ple of a relatively simple system in mechanics
is the simple pendulum. Its behaviour is com-
pletely determined by its position and velocity
(the derivative of position with respect to time).
In that case the phase-plane showing velocity
versus position provides a complete overview of
the behaviour of the system. By determining for
example the attractors in the state-space, the
phase-plane representation allows for a qualita-
tive description of the behaviour of the system.

Of course expressive timing in music per-
formance is vastly more complex than the be-
haviour of pendula or any other didactic exam-
ple from mechanics, and it is highly unlikely that
a complete and adequate description of expres-
sive timing by a system of differential equations
is feasible. However, this does not imply that
a dynamical perspective cannot help to give a
better understanding of the phenomenon. An
example of the application of phase-plane visu-
alization in music performance research is the
performance worm (Langner and Goebl, 2003),
which displays the performance as a trajectory
through the loudness-tempo space. In the work
presented here, we will consider only timing in-
formation. The phase-planes we investigate are
constructed by plotting tempo against its deriva-
tive (the first-order phase-plane), and the first
and second derivatives of tempo against each
other (the second-order phase-plane).

In the rest of the paper we will present
and discuss the phase-plane representation for
studying expressive timing in music. We discuss
the main differences to conventional time series
plots of tempo, and illustrate the representation
using some archetypal curve forms. Then we
explain how phase-plane trajectories are com-
puted from measured tempo curves. Finally, we
demonstrate the phase-plane visualization using
performances of Schumann’s Träumerei.



Phase-plane plots versus
time series plots

An obvious question that comes to mind when
considering such phase-plane plots of a function
(or a time series) as an alternative to plotting
the function against time, is what new insights it
can possibly give. After all, the derivatives are
fully determined by the function, they don’t con-
vey any information that is not contained in the
function itself. Rather than providing new infor-
mation, phase-plane representations show a new
perspective on the data, just like for example
a transformation of a function from the time to
the frequency domain provides a new perspec-
tive. The essential difference from time series
plots is that the time dimension is implicit rather
than explicit in the phase-plane. Whether this is
an advantage depends on the intended kind of
analysis. For example, if the aim is to get an im-
pression of the trends in absolute tempo over the
course of a performance, a time series plot may
be more useful than a phase-plane plot. On the
other hand, if the focus is on the particular form
that the change of tempo takes, then phase-
plane plots may provide better insight. The rea-
son for this is that the tempo trajectory in the
phase-plane expresses exclusively the change in
tempo — any episodes of constant tempo are
projected to a single point in the phase-plane. As
opposed to time series plots, where tempo tra-
jectories by definition advance steadily in one di-
mension (time), in phase-plane plots the change
of tempo is expressed in two dimensions, lead-
ing to trajectories that are visually more distinct
than their equivalent time series plots. We will
illustrate this shortly.

This emphasis on the dynamic aspects of
tempo in phase-plane representations is in ac-
cordance with the observation that the expres-
sive use of timing is mainly manifested in the
momentary fluctuations of tempo. Absolute
tempo, or large scale trends in tempo are not
commonly regarded as the principal expressive
parameters, even if they do belong to the ex-
pressive degrees of freedom of the performer.

Examples of basic curve types

To get a feel for how to interpret phase-plane
representations, we briefly discuss the phase-
plane trajectories of some archetypal curves. In
the first column of figure 1, five basic curves
are shown as a function  of time t. The sec-
ond column shows the corresponding first-order
phase-planes, representing the curve as a trajec-

tory through the ′(t) vs (t) plane, that is, the
first derivative of (t) against (t) itself. The last
column shows the second-order phase-planes,
formed by ′′(t) vs ′(t). The circles indicate the
beginning of the curves, and their correspond-
ing phase-plane trajectories. The horizontal and
vertical dashed lines indicate the origin in the
phase-planes.

Note that constant tempo (row (a) in fig-
ure 1) corresponds to a single point in the phase-
planes, as all derivatives are zero.i Constant
change of tempo (rows (b) and (c)) leads to a
displacement along the (t) (horizontal in the
first-order phase-plane) axis and a constant off-
set along the ′(t) axis (vertical in the first-order
phase-plane, and horizontal in the second-order
phase-plane).

Row (d) shows one period of a simple har-
monic, or oscillatory motion. This type of motion
is defined by a second order differential equation
which has sinusoidal functions as its solutions.
Such functions correspond to a circular motion
in both phase-planes, where the end position of
the trajectory is equal to its starting position.
This example illustrates how, as the time dimen-
sion is implicit, repeated curve segments map
to the same trajectory in the phase-plane. Note
that due to the derivative relationship between
the vertical dimension with respect to the hori-
zontal dimension, the movement of any phase-
plane trajectory is necessarily clockwise around
the origin. More precisely, the trajectory always
moves leftward below the horizontal axis, and
rightward above it, and is exactly perpendicular
to the horizontal axis at the time of crossing it.

Finally, row (e) shows a parabolic curve
(t) = t2. Since its first derivative ′(t) = 2t
is linear in time, the first-order phase-plane is
also a parabola, with the horizontal and verti-
cal axis interchanged. The second-order phase-
plane trajectory is a straight line segment, since
′′(t) = 2. Note that although it is hard to visu-
ally distinguish the parabola from a semiperiod
of a simple oscillation in the time series plot (first
column), the phase-plane trajectories of both
types of curves are very distinct. This is a partic-
ularly interesting feature for mathematical mod-
eling of tempo curves, such as in Todd (1985),
and Repp (1992).

From time series to phase-plane
trajectories

The concept of a tempo curve, even when
ubiquitous in expressive music performance re-
search, is not straight-forward. Given that tempo
can be loosely defined as the rate at which
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Figure 1: Examples of five basic curve types (first column), and their first and second order phase-plane trajectories (second
and third columns respectively); Horizontal and vertical dashed lines represent x and y axes respectively; Circles indicate the
beginning of the curves/trajectories; Units are arbitrary



events take place, it is inherently related to a
temporal context of events, rather than a sin-
gle point in time. For the sake of quantifying
tempo over the course of a performance, it is
commonly measured as the reciprocal of the in-
terval between two consecutive metrical beats
(IBI), and this value is associated either with the
first or the second of the beats for which the IBI
was measured. As the tempo quantity is unde-
fined in the absence of events, it is question-
able whether tempo is perceived as a constant
entity by humans (Desain and Honing, 1993),
and therefore whether it is justifiable to inter-
polate the time series of tempo values to ob-
tain a tempo curve. However, the curve is not
meaningless in the way a curve drawn between
the outcomes of rolling a dice would be mean-
ingless. In order for the rhythmical structure of
a piece to be perceptible, tempo must satisfy
certain smoothness constraints Honing (2004).
This coherence between consecutive tempo per-
ceptions is expressed by the representation of
tempo as a continuous function of time.

The problem of finding a function that fits to
a series of data values is well-known in statis-
tics, since a very common situation in empiri-
cal studies is to have a series of measurement
values that we hypothesize or assume to be re-
sult of some process of which the behaviour can
be adequately described by some smooth func-
tion. As is unavoidable in any measurement, the
measured values will include measurement er-
rors and possibly other distortions of the values
that we actually intended to measure. This view
is known as the signal plus noise model data,
which is formally represented as:

y = (t) + e

where y is a vector of length n containing the
measured values, t is a vector of length n con-
taining the time values associated with each
measurement,  is the unknown function that we
wish to estimate, and e is a vector of length n
containing the error values associated with each
measurement. The function  is often chosen to
be of the form:

(t) = c′ϕ

That is, a linear combination of a set of K basis-
functions ϕ, where c is a vector of length K con-
taining the weight for each basis-function. The
fitting of the function  to the data y can be done
by minimizing the summed squared error:

SSE = ||y−c||2

where  is a n by K matrix such that ,k con-
tains ϕk(), value of the k-th basis-function at
sampling point .

As the number of basis-functions K increases,
the fit to the data becomes better, reducing the
bias of the estimation. But large values for K also
increase the variance of the estimation, resulting
in a less smooth fitted curve. To take the smooth-
ness constraint into account, a penalty term for
roughness is included the quantity that is mini-
mized:

PENSSE = SSE2 + λPEN

The relative importance of the penalty term is
controlled by the smoothing parameter λ. The
penalty term quantifies the roughness as the in-
tegrated square of the second derivative of :

PEN =
∫

[D2(s)]2ds

This minimization criterion is independent of
the choice of the system of basis-functions ϕ.
There is a wide variety of bases that can be sen-
sibly used. Typical bases are Fourier series and
polynomials. Furthermore, with a slight change
of the minimization criterion, kernel smoothing
(e.g. using a Gaussian kernel) can be construed
as a special case of basis expansion with one
basis-function ϕ(t) = 1.

In the work described here, we use a B-spline
basis for smoothing, as described in Ramsay and
Silverman (1997). B-splines are piecewise poly-
nomial. This means that the spline consists of
segments defined by a series of breakpoints, and
on each of those segments S the B-spline is a
polynomial. A B-spline S is defined by an order
m, and a sequence of breakpoints τ, and is com-
puted from a set of basis-functions B:

S(t) =
m+L−1
∑

k=1

ckBk(t, τ)

Here, Bk(t, τ) is the value at point t of the k’th
basis-function. L is the number of intervals as
defined by the breakpoint sequence τ. The
basis-functions are themselves B-splines, with
compact support. They are constructed recur-
sively from B-splines of a lower degree. B-spline
smoothing of data is achieved by choosing the
coefficients c = (c1, · · · , cm+L−1) such that the
criterion PENSSE is minimized.

After computing c, the phase-plane represen-
tations are obtained by computing the first and
second derivatives D[S(t)] and D2[S(t)].



a)

136 137 138 139 140

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

ZAK 0136−0140

Score time [half beat]

N
or

m
al

iz
ed

 IO
I [

σ]

−0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

ZAK 0136−0140 − 1st order phase−plane

Normalized IOI [σ]

d(
IO

I)
/d

t  
 [σ

/h
al

f b
ea

t]

136

137

138

139

140

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

ZAK 0136−0140 − 2nd order phase−plane

d(IOI)/dt   [σ/half beat]

d2 (I
O

I)
/d

t  
 [σ

/h
al

f b
ea

t2 ] 136 137 138 139 140

b)

136 137 138 139 140

−
0.

5
0.

0
0.

5
1.

0

HO1 0136−0140

Score time [half beat]

N
or

m
al

iz
ed

 IO
I [

σ]

−0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

HO1 0136−0140 − 1st order phase−plane

Normalized IOI [σ]

d(
IO

I)
/d

t  
 [σ

/h
al

f b
ea

t]

136

137

138 139

140

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−
0.

5
0.

0
0.

5

HO1 0136−0140 − 2nd order phase−plane

d(IOI)/dt   [σ/half beat]

d2 (I
O

I)
/d

t  
 [σ

/h
al

f b
ea

t2 ]

136

137

138

139

140

Figure 2: Fitted IOI curves and corresponding phase-plane trajectories for two exemplary performances of a melodic gesture
(MG2, fourth instance, half beats 136–140) from Schumann’s Träumerei, by Zak (1960) (a), and Horowitz (1947) (b) respec-
tively; In the first column, the circles connected by dashed lines are the measured IOI values (normalized), and the solid line
is the fitted spline; Diamonds indicate the breakpoints of the spline; the phase-plane trajectories are annotated with half beat
numbers; The units are shown in square brackets in the axis labels; σ denotes the standard deviation of the normalized IOI
values

Phase-planes of expressive gestures in
Schumann’s Träumerei

We will illustrate the phase-plane visualization
for two performances of a motif (or melodic ges-
ture) from Schumann’s Träumerei. We will do
this in relation to an earlier study of expressive
timing in that piece Repp (1992).ii Repp de-
scribes the results of an extensive study of ex-
pressive timing of 28 performances of this piece
by renown pianists. A part of this study is a de-
tailed investigation of the timing of notes in par-
ticular a motif, or melodic gesture (labeled MG2
in (Repp, 1992)) present in the piece. A major-
ity of the performances showed an IOI pattern
that could be modeled quite well with a parabolic
curve segment, where the curvature of the fit-
ted parabola varied from performance to per-
formance. However, the goodness of fit of the
curves to the measured IOI’s was only informally
assessed.

Figure 2 shows the IOI curves (the reciprocals
of the tempo curves) and corresponding phase-
plane trajectories of two performances of MG2,
by Zak (1960) and Horowitz (1947) respectively.
The first column shows the normalized measured
IOI values as circles connected by dashed lines,

together with the fitted splines, as solid curves.
The splines are constructed from cubic polynomi-
als, and are thus of order 4. The breakpoints are
identical for both examples, and their positions
(at half beats 137 and 139) are chosen manu-
ally to provide a good fit to the data with a rel-
atively low number of breakpoints.iii The rough-
ness penalty λ is set to .001.

The phase-plane trajectories of Zak’s perfor-
mance (figure 2a) indeed bear a striking resem-
blance to those of the parabola shown before, in
figure 1e. The first-order phase-plane trajectory
strongly resembles a rotated parabola, and the
second-order phase-plane trajectory is approxi-
mately a straight horizontal line segment going
from left to right. Consequently, this is a per-
formance that can be very well modeled with
a parabola. Horowitz’s performance (figure 2b)
on the other hand, is apparently not a prototyp-
ical instance of a parabola. A parabola fitted to
this performance would show a rather poor fit,
especially due to the non-constant curvature in
the IOI data. This is confirmed by the phase-
plane trajectories of the fitted spline, which are
rather different from those of the parabola in fig-
ure 1e. In particular, the first-order phase-plane
trajectory is circular rather than parabolic, and



also the second-order phase-plane trajectory is
curved rather than straight. Especially the first-
order phase-plane trajectory suggests oscillatory
motion.

Discussion

The purpose of this example is not so much to
challenge the hypothesis that this particular per-
formance gesture can be adequately modeled
with a parabola (that would require a more thor-
ough investigation), but to show that the phase-
plane visualization can ‘amplify’ differences be-
tween time series plots. As the example illus-
trates, in some cases where one may be inclined
to apply the same model for two tempo (or IOI)
curves, the phase-planes show very distinct tra-
jectories for the two curves.

We believe that phase-plane visualizations
can be of help in modeling expressive tempo pre-
cisely for this reason. It is important to note that
the phase-plane trajectories of common func-
tions like a parabola or a sinusoidal, did not
emerge because we used those functions as a
model. This illustrates the flexibility of the spline
basis expansion for fitting the data.

However, care must also be taken when in-
terpreting the phase-plane trajectories. Firstly,
the examples shown here are based on a small
number of data points, and thus the trajectories
show relatively much ‘space in between the data
points’. Secondly, the fact that the phase-plane
trajectories tend to diverge more than the time
series plots has the downside that small artifacts
of the fitting (for example some ripples in the
curve between two data points) can have a large
impact on what the trajectories looks like. There-
fore, when interpreting phase-plane trajectories,
it is essential that the fit of the basis expansion
to the data is also inspected, to verify that the
major forms in the trajectories are not due to
curve fitting artifacts.

Conclusions and future work

We have demonstrated the representation of
tempo-curves as trajectories in the phase-plane,
the 2-dimensional plane that shows a function
against its derivative. This representation high-
lights the dynamic aspects of expressive timing.
A consequence of this is that functions that look
similar in time series plots, such as a parabola
and a semiperiod of a simple harmonic oscil-
lation, have qualitatively different phase-plane
trajectories, since their derivatives are differ-
ent. As such, phase-plane trajectories can give

a first indication of the class of models that
could fit a particular tempo curve, which is a
benefit in the modeling of expressive timing, as
in Repp (1992); Todd (1985); Friberg and Sund-
berg (1999).

Our investigation into the phase-plane repre-
sentation of tempo-curves has been preliminary
and informal until now. We intend to use this
representation in more elaborate and systematic
experimentation of expressive timing. In par-
ticular, clustering a set of performances of the
same musical fragment based on phase-plane
representations looks a promising approach to
decide whether the performances can be ade-
quately represented by a single model. In combi-
nation with pattern-finding, the phase-plane tra-
jectories of complete pieces could be analyzed
to find an ‘idiom’ of expressive gestures, or al-
ternatively, to reconstruct the phrase structure
of the performed piece, as in Grachten and Wid-
mer (2007). Furthermore, an interesting topic
from a phase-plane perspective is the final ri-
tard, a well-studied expressive gesture for which
several models have been proposed Friberg and
Sundberg (1999); Honing (2004).
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