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ABSTRACT

Using a simple pattern finding approach, we investigate to what 
degree patterns found in the tempo and loudness curves measured 
from  piano  performances  of  a  classical  piece  coincide  with 
repeated musical structures in the score that was performed. We 
show that high frequency content in such curves is more useful for 
finding  repetitions  of  musical  structures  than  low  frequency 
content.  In  some  cases  removing  low  frequency  content  even 
improves the accuracy of pattern finding.

1. INTRODUCTION

It  is  commonly  asserted  that  a  primary  function  of  musical 
expression is  to  clarify the  structure of the music that  is  being 
played [3,5]. And indeed,  countless studies of expressive music 
performance find that structural aspects of the musical score are in 
some way or another reflected in the expressive information that is 
extracted from performances. One such aspect is phrase structure, 
which  is  typically  marked  by  a  decrease  of  both  tempo  and 
loudness at phrase boundaries [9].

The  observation that  phrase  structure  is  reflected  in  expressive 
tempo and loudness information as measured from performances, 
raises the question whether it would be possible to recognize the 
phrase structure by merely observing expressive information (and 
not, for example, pitch, or rhythmic information). This would form 
a complementary approach to studies that investigate regularities 
in expressive data in a score-driven way (for example [6]).  From a 
practical  point  of  view,  performance-based  phrase  structure 
reconstruction could provide additional cues to systems that try to 
infer the structure of music pieces from, e.g., scores or MIDI files. 
Furthermore, applications such as score-following/automatic page 
turning could benefit from phrase-structure recognition.

An  apparently  discouraging  argument  against  the  endeavor  of 
reconstructing phrase structure from expressive information is that 
a musician is by no means obliged to play repeated parts of the 
score in a similar way (a phenomenon termed `consistency' in [4]). 
It can even be argued that playing repeated parts in different ways 
is one of the aspects that make human performances intriguing. In 
practice however, there is often considerable agreement between 
the performance of repeated parts [6].

In this paper we investigate to what degree the phrase structure of 
a  piece  is  reflected  in  the  tempo  and  loudness  information 
measured  from  performances  of  the  piece.  We  do  this  by 
measuring  how well  patterns  found  in  the  tempo and  loudness 
curves  coincide  with  the  phrase  structure,  more  specifically 
melodic  gestures,  relatively  small  musical  constructs  (typically 
containing  less  than  ten  notes).  Rather  than  determining  the 
precise beginnings and endings of phrases and melodic gestures, 
our first goal is to establish which parts of the piece are repeated, 
and where.  We measure accuracy in terms of how many of the 
instances of the pattern span repeated melodic gestures (precision), 
and  how  many  repeated  melodic  gestures  are  identified  as 
instances  of  the  same  pattern  (recall).  Obviously,  a  phrase 
structure  reconstruction  is  not  correct  if  the  boundaries  of  the 
melodic gestures are not correct, but we believe that if repeated 
parts  of  the  score  are  identified  largely correctly,  a  useful  step 
towards phrase structure reconstruction has been made.

2. RELATED WORK

It  is  undisputed that  phrase  structure  is  one  of  the  factors  that 
determine the  expressive features of performance.  Nevertheless, 
most of the work on automatic pattern finding and recognition of 
structure in music pieces has focused on score information. The 
pattern  finding  problem  is  often  conceptually  divided  into  a 
segmentation step, in which the boundaries of musical compounds 
are  determined,  and  a  clustering  step,  in  which  the  delimited 
segments are grouped by identity, similarity or any other musically 
meaningful  relation.  Some  approaches  just  deal  with  the 
segmentation  problem  [9,1],  others  deal  with  the  clustering 
problem [2], or with both [8].

The strategy we present in this paper, as said before, deals with 
performance  information  rather  than  score  information. 
Furthermore, no prior segmentation of the data is used. Instead, 
our algorithm considers all non-overlapping pairs of equally long 
subsequences  as  possible  instances  of  a  single  pattern.  In  this 
sense,  our  approach is  related  to  that  of  [4],  in  which  patterns 
found  in  expressive  information  are  used  to  characterize  the 
degree to which performers play repeated parts similarly.
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3. METHOD

In this section we report the setup of an experiment in which we 
apply  a  pattern  finding  algorithm  to  expressive  performance 
information  in  order  to  find  repeated  musical  structures.  We 
compare the results under three conditions: 1) using the original 
tempo  and  loudness  curves,  2)  using  only  the  low-frequency 
content of the tempo and loudness curves, and 3) using only the 
high frequency content.

Data

The performance data used here stems from six performances of 
Schumann's piece ``Träumerei'' by renown pianists. The piece is 
played  by Argerich,  Kempff,  Brendel,  and  Horowitz  (of  whom 
three  different  recordings  of  the  piece  are  included).  For  each 
performance,  instantaneous  tempo  and  loudness  information  at 
half beat level is available (based on semi-automatic beat-tracking, 
cf.  [12]). Thus, the expressive performance information extracted 
from  an  audio  recording  is  represented  as  a  chronological 
sequence of pairs of tempo and loudness values, where each pair 
corresponds to a half beat position in the score. The total sequence 
consists of 255 pairs.

Decomposition of Tempo and Loudness Curves

As stated in the introduction, typically both tempo and loudness 
curves convey phrase structure by a slowly evolving increase and 
decrease  over  the  course  of  a  musical  phrase,   roughly 
approximating  a  parabolic  form.  That  is,  the  phrase  is  started 
relatively  slow  and  soft,  and  after  growing  faster  and  louder 
towards the middle of the phrase,  tempo and loudness decrease 

towards  the  end  of  the  phrase.   Although  this  might  facilitate 
finding the beginnings and endings of phrases, it possibly makes 
distinguishing  phrases  more  difficult,  since  the  tempo  and 
loudness  curves  of  distinct  phrases  have their  overall  parabolic 
form in common.

Assuming that identifying distinct phrases in a piece is hindered 
by the  parabolic  component  they have in  common,  an obvious 
solution is to fit a set of second order polynomials to the tempo 
and loudness curves on the interval of each phrase and subtract 
these  from the  original  curves  (as  in  [10]).  However,  such  an 
approach might introduce a bias towards the structure present in 
the score, a danger of the score-driven approach that we wish to 
avoid. As a simple non score-driven alternative, we apply a low-
pass filter to the curves.  The low-pass filtered curve contains only 
the lower frequency content.  When this curve is subtracted from 
the  original  curve,  the  residual  thus  contains  just  the  high 
frequency  content.  Most  of  the  parabolic  component  will  be 
contained in  the  low frequency curve.  An example  of  a  tempo 
curve and its  low and high frequency components is  shown in 
figure 1. A three point moving average filter is used as a low-pass 
filter both in the example and in the experiments. The peaks in the 
residual correspond to the sides of the parabolic forms, the points 
at which the original curve shows rapid changes.

Pattern Finding

We employ a simple pattern finding approach that is based on the 
correlation coefficient (r) between pairs of subsequences of tempo 
and loudness  values.  Tempo and loudness  curves  are  treated  in 
parallel, and we define the match score of a pair of subsequences 
as the average of the  r values for tempo and loudness (we will 
refer  to  this  average  as  the  r value  of  the  match).   After  a 
subsequence length l and a threshold α for the r values have been 
fixed,  the  pattern  finding  algorithm returns  a  graph  where  the 
vertices are subsequences,  and edges represent  a match (r ≥ α) 
between  two  subsequences.  We  define  the  patterns  to  be  the 
connected components in the graph.

Although  the  instances  of  a  single  pattern  do  not  overlap 
(overlapping  subsequences  are  excluded  from  matching),  the 
instances of different patterns may overlap. When the instances of 
two patterns overlap pairwise by a constant offset, the two patterns 
can be seen as parts of a larger pattern that covers both. In this 
case, the two patterns are fused, so that each instance of the new 
pattern spans an overlapping pair of instances of the old patterns. 
Especially for lower α values, this reduces the number of patterns 
considerably. Note that as a result of this fusing, patterns may have 
different  lengths  (although  the  instances  of  a  single  pattern  of 
course do have the same length), and that the size l that is chosen 
acts a minimum size, rather than a fixed size.

Figure 1: Decomposition of a tempo curve (from Schumann's 
Träumerei, performed by Horowitz, 1987) into slow and fast 
fluctuations. Top: Original tempo (in BPM); Middle: Smoothed 
Tempo (BPM); Bottom: Residual as a proportion of smoothed 
tempo (log scale)
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Evaluation

The patterns that are found are compared to the phrase analysis of 
the piece in terms of melodic gestures (MG) (that  was adopted 
from [6]). We focus on the MG's in the soprano voice. For this 
voice,  the  piece  has  eight  distinct  MG's,  most  of  which  occur 
several  times  throughout  the  phrases.  We  evaluate  repeated 
patterns  found in  the performance data  by measuring how well 
they coincide with repetitions of the MG's.

We  define  the  precision  of  a  pattern  as  the  degree  of  MG 
agreement among the instances of the pattern at each position. To 
this end, we define an  MGid for each position, that is, a pair of 
(MGlabel,offsetIntoMG). For example, the MGid of a position that 
is the first element of an instance of MG2 would be (MG2,0). We 
define  A to  be  the  set  of  MGid's  of  all  positions  in  the 
performance.   The  precision  of  a  set  of  patterns  is  simply the 
average of the precisions per pattern, which is in turn the average 
of the precisions per position in the pattern.  The precision at  a 
position, finally, is the fraction of pattern instances with MGid a at 
that position, for the a  A that maximizes this fraction:

where  N is the number of patterns,  Ln is the length of the  n-th 
pattern,  Kn the number of instances the  n-th pattern, and sI

k,n is 
the MGid corresponding to the i-th position of instance k of the n-
th pattern.

Given a set of patterns, recall is defined as the average recall over 
all positions. Informally speaking, the recall at a position measures 
the largest fraction of related positions (in terms of MGid's) that is 
covered by a single pattern. More precisely, let aj be the MGid of 
the  j-th position, and let   Bj = { x | ax = aj} be the set of all 
instances  of  aj.  Furthermore, let  pos(si

k,n)  denote the (global) 
position of the i-th element of the k-th instance of the n-th pattern. 
The recall is then defined as:

where  Q is the length of the sequence of tempo/loudness values. 
The interpretation of N, Kn, and Ln is as above.

Using the above definitions of precision and recall, we evaluate 
the overall accuracy of a set of patterns with the F-score: 

F = 2· Prec · Rec / (Prec + Rec)

Results and Discussion

As an illustrative example, figure 2 displays two score fragments 
that  were  matched  based  on  the  tempo  and  loudness  of  the 
performance. Although the fragments are not instances of the same 
melodic gesture according to the phrase analysis, there are several 
interesting similarities.  For example, the position in the metrical 
grid  is  the  same,  both  fragments  end  in  a  chord,  and  are  not 
immediately  continued  in  the  soprano  voice,  and  the  soprano 
voices in both cases are largely ascending. Also, both fragments 
contain  a  crescendo.  This  however  was  not  a  necessary nor  a 
sufficient  condition  for  the  match,  since  other  instances  of  the 
same  pattern  did  not  contain  a  crescendo,  nor  did  the  pattern 
contain all crescendos.

For  each  of  the  six  recordings,  we  applied  the  pattern  finding 
algorithm to the  original  tempo and loudness  curves  (OR),  the 
low-frequency  components  (LF),  and  the  high-frequency 
components (HF) respectively, using various segment sizes and α 
values.   Figure  3  shows  the  F-scores  (averaged  over  the  six 
recordings) for each of the three curve types as a function of α, for 
four different segment sizes.

Figure 2: Two fragments from Schumann's Träumerei that were 
matched using tempo and loudness information

Figure 3: F-scores as a function of α, for segment sizes of 3 beats 
(upper left), 5 beats (upper right), 11 beats (lower left), and 15 
beats (lower right)
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Unsurprisingly,  the  F-scores  for  LF  and  OR peak  at  higher  r-
thresholds  than  HF  (regardless  of  segment  size).  This  is  in 
accordance  with  our  hypothesis  that  the  low  frequency 
components make it  harder  to  discriminate  different  MG's,  and 
thus need a higher  r-threshold.  A more interesting result  is  that 
pattern finding on LF gives systematically lower performance than 
on the others, implying that the high frequency components of the 
tempo  and  loudness  curves  contain  essential  information  for 
telling MG's apart. Moreover, pattern finding on HF gives results 
that are comparable to the results for OR, and in some cases (for 
example, segment size 10) even better.

4. CONCLUSIONS AND FUTURE 
WORK

In  this  paper,  we  have  described  a  first  step  towards  phrase 
reconstruction  from  expressive  performance  data,  by  detecting 
patterns  in  tempo and  loudness  curves.  Although we  have  not 
addressed the question of finding the exact boundaries of musical 
phrases, we have found that repetitions of musical structures can 
be identified with modest success.

Moreover, our experiments show that removing the low frequency 
content  from the tempo and dynamics  curves hardly decreases, 
and  sometimes  even  increases  the  ability  to  find  expressive 
patterns  that  coincide with  musical  structures.  It  must  be  noted 
however that,  even if six different performances were used, the 
current  experiment  covers  just  one  musical  piece.  Further 
experiments are needed to investigate to what extent the results 
generalize to pieces that are performed at very regular tempos.

Lastly, although the F-score that was used for evaluation is a good 
indicator of the accuracy of the individual patterns that are found, 
it does not fully describe the accuracy of a set of patterns when 
interpreted as a hypothetical phrase structure. For example, it does 
not explicitly measure redundancy between patterns, nor incorrect 
phrase boundaries. More elaborate evaluation will be required to 
address such issues.
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