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An assessment of learned score features for

modeling expressive dynamics in music

Maarten Grachten, Florian Krebs

Abstract

The study of musical expression is an ongoing and increasingly data-intensive endeavor, in which

machine learning techniques can play an important role. The purpose of this paper is to evaluate the

utility of unsupervised feature learning in the context of modeling expressive dynamics, in particular note

intensities of performed music. We use a note centric representation of musical contexts, which avoids

shortcomings of existing musical representations. With that representation, we perform experiments in

which learned features are used to predict note intensities. The experiments are done using a data set

comprising professional performances of Chopin’s complete piano repertoire. For feature learning we

use Restricted Boltzmann machines, and contrast this with features learned using matrix decomposition

methods. We evaluate the results both quantitatively and qualitatively, identifying salient learned features,

and discussing their musical relevance.

I. INTRODUCTION

The performance of music is a human activity that has sparked scientific interest for more than

a century, with pioneering works like [1] and [2]. An important challenge has been to account

for the variations in tempo, dynamics, and articulation (among other things), that are inherently

present in expressive performances of a musical piece by a skilled musician. Research in this

area has employed various methodologies. Some accounts of musical expression, in line with

philosophy and traditional musicology, take a dialectic form, where views are put forward and

disputed by authors, typically in the form of essays, where insights developed by the author
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are illustrated in the context of excerpts from selected musical works, as in [3]. A substantial

amount of music performance research adopts methodologies more common to psychology, in

which controlled experiments are carried out to test a particular hypothesis, as in [4].

More recently, music performance has been viewed from data mining and machine learning

perspectives, where the aim is to take advantage of large amounts of measurement data from

music performances, in order to find statistically significant patterns that can be related to

principles of expressive performance . Most of the existing work in this area focuses on training

computational models that link one or more aspects of musical expression (such as variations in

tempo or dynamics) to underlying factors, most prominently the written musical score. Whether,

and if so which, expressive patterns can be found is largely determined by the way the musical

score is represented in such models. Most, if not all computational models of expression to

date make use of hand-designed features to describe the musical score, based mostly on the

researcher’s intuitions, or those of a musical expert [5].

A strong dependence on hand-designed features has also characterized many classifiers and

predictive models in image processing (notably the successful SIFT features [6]). In this field

however, the past decade has witnessed a strong development of computational methods for

learning features from data, rather than hand-crafting them. A notable example that has proven

useful for face recognition is nonnegative matrix factorization (NMF) [7]. Biologically plausible

visual features have also been reported by slow feature analysis [8]. Furthermore, the use of

deep belief networks [9], has been proven highly effective for a variety of complex learning

tasks, such as handwriting recognition [10], and object recognition in images [11]. Such archi-

tectures typically consist of stacked two-layer networks, each of which represents a generative

probabilistic model of the data at a different level of abstraction.

The purpose of this paper is to evaluate the utility of unsupervised feature learning methods

in the context of music expression modeling. We will limit ourselves to the prediction of note

intensities in classical piano performances based on learned features. The predictive model

we use to evaluate the learned features is not intended as a system, or application in itself

(although successful predictive models of expression can be beneficial to tasks like automatic

score-following [12]). Rather, the reported experiments are intended as a case study of how

feature learning methods can be used in computational models of musical expression.

Although it is undisputed that a minimally comprehensive model of note intensities should
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include notions of higher level structure and dependencies [13], our focus will for now be on

learning features that describe local contexts in musical scores, comparable in scope to hand-

designed features used in other work, such as [14], [15], [16], and [17]. In terms of feature

learning methods, our prime interest is in the use of RBM’s, and deeper learning structures

based on RBM’s. We compare the RBM based methods with more straight-forward matrix

decomposition techniques, specifically NMF and principal component analysis (PCA).

We evaluate these methods both in quantitative and in qualitative terms. For quantitative

evaluation, we perform an experiment in which we use the sets of features learned by each

method to train models of musical expression (in particular in the form of note intensities) and

test their predictive accuracy. Because the focus is on the utility of the learned features, we use

linear regression models, as the simplest sensible class of models. For qualitative evaluation,

we discuss the types of features that are learned, and review their musical significance in cases

where this is possible. We also use the regression coefficients of the expressive models to identify

which features are relevant for predicting expression.

The paper is organized as follows: In section II we discuss related work in both music

performance research, and unsupervised feature learning. We will also discuss music oriented

applications of the latter. In section III, we describe the representation of musical data as input

for feature learning, and subsequently we briefly introduce the feature learning methods to be

used. Section IV contains a description of the musical corpus used for feature learning and

evaluation and presents the feature learning and evaluation procedure in more detail. The results

are presented and discussed in section V, conclusions and future work are presented in section VI.

II. RELATED WORK

The application of unsupervised feature learning in the context of sound and music processing

is relatively new, but the method is rapidly gaining popularity. Humphrey et al. [18] argue that

the use of feature learning with deep learning architectures is the key to improve the state of

the art in many areas of music informatics.

Previous applications of feature learning can roughly be categorized according to the nature

of the input data. On the one hand, there are audio based applications. For example, phones in

recorded speech can be successfully recognized using deep belief networks on MFCC’s features

of the audio [19]. Furthermore, music similarity can be computed competitively with mean-
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covariance RBM features computed from audio, using whitened, block-level, Mel-scale spectral

bins [20].

Feature learning has also been applied to symbolic representations of music. A time recurrent

specialization of RBM’s has been applied to model the conditional probability of musical notes,

given their preceding musical context [21]. It was shown that using the predictions of this model

the accuracy of polyphonic music transcription was improved.

A similar RBM architecture has been used by Spiliopoulou and Storkey, to model temporal and

tonal structure in monophonic melodies [22]. In contrast to [21], and other RBM architectures

for sequence modeling [23], [24], their architecture is convolutional through time, and models

the joint probability of notes with their preceding context, rather than the conditional probability.

III. FEATURE LEARNING

In this section we describe how we use PCA, NMF, and (stacked) RBM’s to learn features

from musical material. We start by describing the way music is represented as input for feature

learning.

A. Data representation

As stated in the introduction, we focus on the performance of classical piano music, in

particular the piano works of Chopin (see section IV-A). This means that the musical material

we deal with is mono-instrumental and polyphonic.

We choose to work with the piano roll representation of music, a time-frequency representation

roughly analogous to the spectrogram representation for audio. A musical piece can then be

described as a sequence of (possibly overlapping) note configurations, by taking snapshots of

parts of the piano roll, as illustrated in figure 1.

Unlike related approaches to modeling symbolic music we do not map absolute pitches [21],

or chroma-like [22] attributes to input variables. The disadvantage of mapping absolute pitches

is that the input is not transposition-variant. This means for example that a major triad is mapped

to a different set of input variables, depending on the pitch and octave at which it is played.

Using pitch chroma (the absolute pitch modulo 12) brings only octave invariance, but not pitch

invariance. A chroma-like approach may be acceptable in the context of monophonic melodies,

but in the case of polyphonic piano music, mapping all pitches to one or two octaves gives a
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Fig. 1. Note centered piano roll representation of symbolic music (Excerpt from Chopin’s Nocturne, Op. 15, No. 3)

severely distorted image of the musical context. This is especially true for piano music from the

romantic period, where dramatic passages may span virtually the whole keyboard.

To avoid these undesired consequences, we take a note centric approach. This means that

the context of each note is described relative to the centered note. Thus, in terms of pitch, a

particular context note does not represent, say, an A4 pitch, or an A chroma, but rather a pitch

interval, say, 5 semitones above the centered note.

Note that this approach implies that to represent a musical context where the highest and

the lowest possible pitch occur simultaneously, the input needs to span twice the range of the

piano keyboard. Consequently, our input representation for piano roll fragments has a vertical

dimension of 174, that is 87 semitones (the typical range of a piano keyboard) above the current

note, and 87 below1. The horizontal dimension was varied between 16, 32 and 64 units (2, 4

and 8 beats, respectively), where each unit corresponds to the duration of a 32th note. Thus, a

fragment spans one, two or four beats before and after the onset of the current note. The onset

and offset times of all notes are quantized to the 32th grid. We refer to the horizontal dimension

as the score context size.

1Note that the range has been truncated in figure 1, for display purposes
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For a given note, the piano roll fragment is represented as a binary matrix, where 1’s indicate

the presence of a context note at a given relative pitch and time with respect to the current note.

One possibility is to indicate only the onset of each note with a 1 at the matrix cell corresponding

to its relative onset time and pitch. Alternatively, the entire duration of each note can be coded

by setting all cells to 1 which lie between the relative onset and offset of the note. With this

latter coding however, it is not possible to distinguish between a single longer note and several

consecutive notes of the same pitch where the offset of one note coincides with the onset of the

next note. To avoid this ambiguity, the last matrix cell before offset of each note is left at 0,

creating a gap of minimal size between consecutive notes of the same pitch.

In the rest of the paper, we will refer to the former, onset-only representation as onset coding,

and to the latter as duration coding. For computation, each score fragment (a binary matrix of size

174× 32 per note) is arranged linearly into a vector v of length m, where m = 174 · 32 = 5568.

B. Principal Component Analysis

PCA is a frequently used tool for dimensionality reduction of data. It transforms data using

a set of orthogonal (i.e., linearly uncorrelated) basis vectors. These basis vectors are selected to

be the eigenvectors of the covariance matrix of the n×m data matrix V . The k basis functions

that explain most of the variance in the data correspond to the k largest eigenvalues and yield

the k ×m projection matrix E. Using E, the data vector v can be transformed into the feature

space using the multivariate function fpca(v) by

fpca(v) = vE ′. (1)

As k < m, the projected data vector fpca(v) has lower dimensionality than the original data

vector v. The basis vectors in E can be interpreted as vectorized images. Therefore, we will

refer to the rows of E as (PCA) basis images.

We compute the principal components based on randomized singular value decomposition [25].

C. Nonnegative matrix factorization

Nonnegative matrix factorization of a non-negative matrix V is the problem of finding non-

negative matrices Fnmf and H such that:

V ≈ FnmfH (2)
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Note that this corresponds to equation 1 with the difference that with NMF, the matrices Fnmf

and H are restricted to non-negative values and the basis functions H are not orthonormal. In

our context, H is a k × m matrix that holds vectorized basis images as rows, and Fnmf is a

n× k matrix that holds basis image activations of note contexts as rows.

We use a projected gradient [26] method to solve the NMF problem (2), where the mini-

mized quantity is the euclidean norm of the difference between the target matrix and its NMF

approximation.

Once a matrix of basis images H has been learned from the data, we take the activation

pattern of H for a given data vector v as the feature description fnmf (v) of v:

fnmf (v) = argmin
f
||v − f ′H|| (3)

D. Restricted Boltzmann machines

Boltzmann machines are stochastic neural networks, whose global state is characterized by an

energy function (that depends on the activation of units, their biases and the weights between

units) [27]. The probability of a unit being active depends on the difference in energy between

the state where the unit is on and the state where the unit is off. When the units in the

network represent the state of a set of (binary) observation variables, a Boltzmann machine

with a particular set of bias and weight parameters defines a joint probability mass function over

observations. The model parameters that minimize the total energy of the model on the data, are

the maximum likelihood parameter estimates for the data.

Restricted Boltzmann machines (RBM’s) are a special case where the network is a complete

bipartite graph, such that units are divided into visible units and hidden units. The visible units

are used to represent data, and the hidden units are interpreted as factors that jointly (and

non-linearly) determine the probability that visible units are activated2. It has been shown that

RBM’s can be effectively be trained to approximate the probability distribution of data using an

approximate learning procedure called Contrastive Divergence [28].

A trained RBM with visible-to-hidden weights W and hidden bias b can be used as a feature

extractor, where the features frbm(v) of a data point v are defined as the hidden activation

2Due to the bipartite structure, visible units are conditionally independent given the hidden units, and vice versa
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probabilities p(h|v):

frbm(v) = σ(W ′v + b) (4)

where σ(x) = (1 + exp(−x))−1. The columns of matrix W can be interpreted as basis images,

analogous to those of the PCA and NMF methods.

E. Stacked Restricted Boltzmann machines

Given an RBM that extracts features from the data, it is trivial to train a subsequent RBM that

takes the features of the first RBM as inputs. This stacking of RBM’s can be repeated multiple

times. In this way, higher level features can be learned. For a stack of l RBM’s, we define the

features as the activation probabilities of the top hidden layer, which are defined in terms of the

activation probabilities in the lower layers:

frbml
(v) = σ(W ′

l frbml−1
(v) + bl) (5)

...

frbm1 (v) = σ(W ′
1v + b1). (6)

In the case of stacked RBM’s, there are multiple layers of basis images, where the basis

images in the higher layers can not be interpreted with the same semantics as the input (as is

the case with the other feature learning methods).

F. Features and Basis Images

Because the matrix decomposition methods (NMF and PCA) and the RBM based methods

described above are quite dissimilar, it may be helpful to be explicit on how we use them, and

in particular what we mean by features and basis images.

The above methods have in common that they produce a transformation that maps data from

the input space into a new (learned) space. We call the dimensions of the new space features.

Each feature has a corresponding basis image, that has the dimensionality of the input space.

A basis image gives a visual impression of the type of data that will “activate” the feature. A

fundamental difference between NMF and PCA on the one hand, and (stacked) RBM’s on the

other, is that in the former, the input activates the features linearly through the basis image, and
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in the latter, the features are activated non-linearly. A further difference is that in the case of

stacked RBM’s, it is not trivial to produce basis-images3.

IV. METHODOLOGY

A. data

For the evaluation we use the Magaloff corpus [30] – a data set that comprises live per-

formances of virtually the complete Chopin piano works, as played by the Russian-Georgian

pianist Nikita Magaloff (1912-1992). The music was performed in a series of concerts in Vienna,

Austria, in 1989, on a Bösendorfer SE computer-controlled grand piano [31] that recorded the

performances onto a computer hard disk. The recorded data contains highly precise measurements

of the times any keys (and pedals) were pressed and released, and the intensity with which they

were pressed.

Symbolic scores were obtained from scanned sheet music using optical music recognition.

Performances were aligned to the score automatically using an adaptation of the edit-distance

based method used in [32]. Subsequently, the alignments were corrected manually.

The data set consists of 155 pieces, adding up to over 320,000 performed notes, almost 10

hours of music.

B. Prediction of note intensities with learned features

In addition to the question how precisely the learned features sets described in section III

encode musical contexts, we evaluate their utility with respect to predicting expressive dynamics,

in particular note intensities. We do so by using linear regression from the feature sets to the

target variable, the intensities with which score notes are performed.

For each score feature setting, we learn the features on the complete data set and then learn

the prediction coefficients employing a leave-one-out evaluation approach. That is, for each of

the 155 pieces in the data set, regression coefficients are computed on the remaining pieces.

As the score features are learned in a purely unsupervised manner and the objective functions

that are minimized in order to learn the features have no relation with the prediction task, we

believe that this is a valid approach - in contrast to scenarios where unsupervised pre-training is

3See [29] for some possible approaches
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combined with a supervised stage and the learned features are fine-tuned to optimize prediction

accuracies.

In the first half of this section, we describe the different setups we use for learning features

using NMF, PCA, and both single and stacked RBM’s, respectively. In the second half, we

describe how the learned features are used to predict note intensities.

1) Feature learning: configurations and setup: The input data is identical for all feature

learning methods used. We apply each method to both onset and duration coded music, as

described in subsection III-A. Furthermore, for each method, we test different numbers of features

to be learned. In summary, we vary:

• Input data representation: onset coding, duration coding

• Feature learning method: NMF, PCA, RBM, stacked RBM

• Number of features learned: 50, 100, 200, 300, 400, 500, and 1000

• Score context size: 2, 4, and 8 beats

The NMF projected gradient method is run until convergence (or close to convergence in

case of larger feature dimensionalities). In the case of RBM’s, we always train the models for

100 epochs, although the learning typically converges after 20 to 50 epochs. Furthermore, we

consider stacks of two RBM’s, where the lower RBM always has 1000 hidden units.

2) Prediction of note intensities: With the feature sets learned as described above, we predict

the note intensities as measured in the music performances of the Magaloff data set. In the

Magaloff data set, note intensities are represented as MIDI velocities, which are roughly linearly

proportional to peak sound pressure level (measured in dB) [33]. The note intensities encode

what we refer to as expressive dynamics: intentional variations in loudness of performed notes

to convey information to the listener (ignoring non-expressive, non-intentional variations due

to e.g., motoric imprecisions of the performer). In this work, we address expressive dynamics

exclusively, ignoring additional expressive parameters like tempo and articulation.

To predict the MIDI velocity for each note in the data set we proceed as follows: The note

velocities for each piece are normalized to have zero mean, in order to be independent of the

absolute velocity. After having learned the features as described in section III which yields the

matrices E, H , W , Wl and the vectors b, bl, we compute the activations f(v) of the features

for each note in the data set (feature extraction). Finally, the velocity yi of a note i is predicted
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by a linear function g of the feature activations f(vi) and a vector of regression coefficients c:

yi ≈ g(f(vi), c) = c′f(vi) (7)

The regression coefficients c are obtained by finding the least squares solution

c = argmin
c
||y − c′f(v)||. (8)

For each of the feature sets, we predict the velocities in a leave-one-out scenario and a best-fit

scenario. In the leave-one-out scenario, the coefficients c are computed separately for each piece,

using the whole data set except the piece of interest. In the best-fit scenario, the coefficients are

also computed separately for each piece, but using only the piece of interest as training data.

Note that the latter yields optimal coefficients for each piece in terms of prediction error and

provides an upper bound to the prediction results that can be obtained by a given feature set

using linear prediction.

C. Prediction measure

We quantify the prediction results in terms of the coefficient of determination R2, which

measures the proportion of variance in target that is explained by the linear model.

V. RESULTS AND DISCUSSION

A. Reconstruction of the input data with learned features

In table I we show the reconstruction errors, i.e., the squared distance between the original

data V and its “estimate” Ṽ . In the case of NMF and PCA, the reconstruction of an image is

obtained projecting its feature activations back linearly into the input space, through the basis

images. As expected, PCA shows a smaller reconstruction error than NMF. This is because by

definition, its objective is to minimize the reconstruction error.

In the case of RBM’s, the reconstruction of an image is a non-linear projection of the feature

activations into the input space. The comparatively high error for the stacked RBM’s can be

explained by the fact that the first level hidden unit activations are not determined only by the

data to be reconstructed, but also by the second layer of hidden units, which serves as a prior

over the first hidden layer. This prior can make reconstructions more robust when the input is

degraded, but in case the input data is presented as is, it tends to distort the input.
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TABLE I

RECONSTRUCTION ERRORS OF SCORE FEATURES WITH SCORE CONTEXT SIZE OF EIGHT BEATS

# duration coding onset coding

feat. NMF PCA RBM sRBM NMF PCA RBM sRBM

50 116.6 114.5 115.7 154.0 40.4 40.0 45.6 48.4

100 101.7 99.2 93.8 140.0 37.4 36.7 43.0 48.2

200 82.2 79.5 67.5 117.9 32.7 32.0 31.1 43.6

300 68.6 66.1 51.2 103.8 29.0 28.4 20.7 38.9

400 59.0 56.3 39.4 74.8 26.3 25.4 15.5 36.5

500 51.7 48.6 31.4 64.3 23.8 23.0 11.5 34.9

1000 38.9 27.3 14.4 39.4 23.5 14.6 4.0 26.2

B. Prediction of note intensities

The prediction results as measured in terms of R2 are shown in figure 2 in four different

plots. Note that the data shown in the plots is the same in all four plots, only the x-axis and the

color/shape coding differs, to highlight different trends. Each point in the plots represents the

average R2 value of predicted note intensities over all performed notes of the 155 musical pieces,

where the note intensities for one piece are predicted using a regression model trained on the

154 other pieces. Furthermore, by number of features we refer to the number of basis functions

in NMF, the number of principal components in PCA, number of hidden units in RBM’s, and

to the number of top-level hidden units in stacked RBM’s.

From the overall range of the R2 values it becomes clear that roughly 5 to 15% of the variance

in note intensity is explained by the models. This may appear rather low, but it is important

to bear in mind that musical expression is a phenomenon known to be much more complex

than can possibly be captured in terms of local contexts of the musical score, as described in

the introduction. Despite that, the results reveal interesting information, both about the feature

learning methods, and about expressive dynamics.

There are several trends to be observed from the results. Firstly, there is a positive correlation

between the size of the score context modeled by the features and prediction accuracy (figure 2a),

indicating that note intensities can be modeled better on features that describe larger time spans
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Fig. 2. Prediction accuracy (R2) of note intensities using linear regression on learned features, as a function of different

parameters; In plots a-c, the color/shape coding represents the feature learning method; In plot d, the color/shape coding

represents the representation of notes

of the music. On average, best results are obtained for the largest score context computed in

this experiment (8 beats), which corresponds to two bars of music in a 4/4 time signature. This

result is in line with the common idea that the expressive dynamics of performed notes does not

only depend on the immediate context, but also involves longer range dependencies.

A second clear trend is the increase of predictive accuracy with increasing numbers of features

(figure 2b). Using less than 200 features to represent score contexts is detrimental to the suitability

of the learned feature space for predicting note intensities. Again, the best results are obtained for

the largest feature space dimensionality considered in this experiment. Larger dimensionalities

might improve results further, but the trend visible in the plot suggests that the improvement

will be only marginal.

The input coding method (figure 2c) has no clear effect on prediction accuracy. This seems to

suggest that for predicting note intensities, knowing both onset times and durations of notes has

no benefit over knowing just onset times. This result is surprising, since only when the durations

of notes are known, it is possible to determine which notes sound simultaneously. Particular

constellations of notes may sound very different depending on whether (dissonant) notes overlap

or not, and it may be expected that this has an influence on the intensities with which notes are

played.

Figure 2d shows the results grouped by feature learning method. It shows an advantage of the

RBM based methods over the matrix decomposition methods, irrespective of the input coding,
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and the number of features. It is conceivable that this discrepancy is caused by the fact that

the NMF and PCA features depend linearly on the inputs, whereas the RBM based features

involve the non-linear sigmoid function (see subsection III-D), which potentially increases the

flexibility and robustness of the features in the light of deformations in the input. Furthermore,

from the results it appears to be no clear advantage of stacked RBM’s over single RBM’s. In

some cases the stacked RBM’s improve the results, in other cases RBM’s perform better. This

result is consistent with other comparisons of RBM’s with stacked RBM’s (e.g. [20]). For the

success of stacked RBM’s it may be necessary to fine-tune the learned features using supervised

learning [34]. This seems plausible, because as the learned features of deeper networks grow

more abstract, there may be an increased need to “ground” the features in some specific task

(such as predicting note intensities).

Figure 2d also reveals that although on average duration and onset coding perform similarly,

the feature learning methods behave differently on both codings. In particular, the best results

for the matrix decomposition methods are obtained for onset coding, whereas the RBM-based

methods work best for duration coding. This may be an indication that RBM’s are more capable

of exploiting the harmonic structure of the music that is implicit in the duration coding, but it

is not clear which characteristics of the feature learning methods account for this difference.

To get an impression of the type of information that features capture, it is helpful to inspect

their corresponding basis images. A selection of basis images is shown for NMF, PCA, and RBM

(all having size 500, and spanning a score context of 4 beats), in figure 3, top, center, and bottom,

respectively. Each figure shows results for both duration and onset coding. Figure 3-NMF shows

that NMF, most likely due to the non-negativity constraint, learns very sparse features, that often

represent only one or a few notes. Interestingly, the recurring diagonal structures produced with

onset coding are not present in the features learned on duration coding.

The features learned by PCA are much less sparse, and have basis images that are both positive

and negative. Duration based features tend to emphasize harmonic relationships (the horizontal

structures in figure 3-PCA-b,c) and in some cases even harmonic progressions (figure 3-PCA-e).

Onset based features on the other hand, represent mainly rhythmical structures. Nevertheless,

the structure in the PCA features is not very localized in pitch and time. Rather, it spans the

central pitch region in a rather homogeneous way across time.

The RBM feature set (figure 3-RBM) also contains both harmony and rhythm related features,
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duration coding onset coding

NMF

a b c d e f g h i j

PCA

a b c d e f g h i j

RBM

a b c d e f g h i j

Fig. 3. Example basis images for duration coding (left) and onset coding (right), produced by NMF (top row), PCA (middle

row), and RBM (bottom row); The center note of the context is indicated with a major tic at the border of each image; Vertical

tics indicate octaves; horizontal tics indicate 8th notes. In the top row, white corresponds to zero values, black to positive values;

in the center and bottom rows, light and dark colors correspond to positive and negative values, respectively

but these are distributed more evenly across duration and onset based features. The RBM

examples also have a more diverse and localized character, with some features being sensitive

only to the harmonic structure in a single beat unit (figure 3-RBM-a), whereas others are sensitive

to the presence of notes in a specific region of the musical context, irrespective of the precise

pitch and time (figure 3-RBM-e, i).

A question of special interest is whether it is possible to identify learned features that are

helpful in predicting note intensities. To this end, we correlate the activation of each feature

with note intensity. For the RBM 500 feature sets, this yields approximately 40 features with

an r value over 0.1. Of those features, the few features with highest correlations have r values

around 0.2. Figure 4 shows a some of those features.
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Even if some harmonic structure is visible in some features (4c,e,h), it is evident that the

features with strongest correlations to note intensity tend to be sensitive mainly to rather fuzzy

regions above and below the center note. A light region above the center activates the feature

when a note is located below other notes, which is typically the case for bass/accompaniment

notes. Moreover, a dark region below the center inhibits the feature in the presence of notes

below the current notes. Features with opposite characteristics (a light region below the center,

and a dark region above), are most strongly activated for notes having neighboring notes below,

but not above, as is usually the case with melody notes. Thus, features a, d, j in figure 4, and to

a lesser extent e and h, can be interpreted as bass/accompaniment note detectors, and features

b, c, f, g, i as melody note detectors.

In this light, it can be observed by means of the r values below the features, that the

bass/accompaniment note features are negatively correlated with note intensity, and the melody

note features positively. This finding is in accordance with results reported in [35]. In that

study, note intensity was modeled using a third degree polynomial function of pitch, yielding a

prediction accuracy of R2 = 0.149 on the same data set as is used in the current experiment.

This result is slightly over the best results we report here. The polynomial pitch model, in

combination with other hand-crafted features, and loudness annotations from the score, gives a

maximal prediction accuracy of R2 = 0.188.

VI. CONCLUSIONS AND FUTURE WORK

A crucial issue in expressive music performance research is the question how musicians shape

the dynamics of their performance as a function of the musical material they are playing. Machine

learning methods are used increasingly to model this relationship, but to date most methods rely

on hand-designed features for representing musical scores. Recent developments in unsupervised

feature learning have proven successful in image processing and other domains, but modeling

symbolic music is a relatively unexplored application domain for unsupervised feature learning

methods.

In this paper, we propose a novel input representation for musical context, that allows for

learning a variety of different features from musical context, including harmonic, and rhyth-

mic characteristics. The learned features are evaluated in the context of predicting expressive

dynamics, in particular note intensities. Several non-supervised feature learning methods have
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-0.20 0.18 0.16 -0.14 -0.14 0.23 0.21 -0.14 0.14 -0.14
Fig. 4. RBM basis images for duration coding (left) and onset coding (right) with strongest note intensity correlation; Correlation

coefficients (r) are printed below each filter

been evaluated in this way. The results show that note intensities can be better modeled by

features that model longer time ranges. Furthermore, predictive accuracy for note intensities

is improved by learning a larger number of features. The results reported here are close to

hand-designed features for modeling note intensities tested in [35].

The experiments reported here include only features learned in an unsupervised way, that have

not been fine-tuned in any way to model note intensities explicitly. It is to be expected that such

a fine-tuning can improve the results further, especially in the case of deep belief networks.
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