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Abstract

For the past few decades there has been considerable scientific interest in expression in music per-
formance (Gabrielsson, 2003). A particularly relevant aspect of music performance is expressive
timing, that is, the intentional fluctuations of tempo during a performance. Accordingly, expressive
timing has been one of the major topics in music performance research. As an expressive parameter,
timing is used to clarify the musical structure of the piece (Clarke, 1988), among other things. The
problem of explaining expressive timing in music performances can be regarded as a special case of a
very wide range of problems where we want to learn experimentally about the temporal behavior of
some dynamical system based on limited observation. A common way of studying data in dynamical
systems theory is by phase-plane representation. In this paper we argue that phase-plane represen-
tations of expressive timing provide a useful way of visualizing data, and furthermore, we show that
such representations are promising in the context of performer characterization and identification.

1 Introduction and related work

For the past few decades there has been considerable scientific interest in expression in music perfor-
mance (Gabrielsson, 2003). A particularly relevant aspect of music performance is expressive timing,
that is, the intentional fluctuations of tempo during a performance. Accordingly, expressive timing has
been one of the major topics in music performance research. A well-known function of timing as an ex-
pressive parameter is the clarification of structural aspects of the music, like metrical, phrase, and voice
structure (Clarke, 1988; Palmer, 1997). Furthermore, timing and other temporal aspects such as global
tempo and articulation play a role in the communication of semantic content, including emotional (Juslin
and Sloboda, 2001), and sensorial (Canazza et al., 2003) information. In addition to establishing such
global relationships, more detailed accounts of expressive timing have been given using several distinct
methodologies, such as analysis-by-synthesis (Sundberg et al., 1991), and machine learning (Widmer,
2003). A particularly profound and relatively large-scale analysis of expressive timing can be found in
Repp (1992).

The problem of explaining expressive timing in music performances can be regarded as a special case
of a very wide range of problems where we want to learn experimentally about the temporal behavior
of some dynamical system based on limited observation, as for example in population biology, and
meteorology. This dynamical systems paradigm aims at models that describe how the state of the
system changes over time. Rather than predicting individual state-space trajectories, the focus is on
the qualitative structure of the state-space that results from the influence and interaction of possibly
unknown factors and constraints. Such a dynamical approach has been applied to various aspects of
music, including acoustic modeling (Schoner, 1997), gesture-based virtual instrument control (Métois,
1996), and analysis of temporal/pitch complexity of compositions (Boon and Decroly, 1995).

In the case of music performance, as mentioned above, past research has already revealed some
valuable insights about the way factors like musical structure and intended mood influence expressive
timing. In addition, there has been a long-standing metaphor of music as a form of motion (Truslit,
1938; Friberg and Sundberg, 1999; Todd, 1992). This metaphor has led to kinematic models of expressive



dynamics and timing in music performance (Todd, 1992; Friberg and Sundberg, 1999). Even if the
proposed models have limitations, and the motion metaphor maybe incomplete as an explanation for
expressive phenomena (Desain and Honing, 1996; Honing, 2005), we believe that it is worthwile to explore
the dynamical systems view of expressive performance in more depth.

As in any field concerned with data analysis, visualization techniques are often very helpful for
studying observations from dynamical systems. In particular, phase-plane visualization can reveal char-
acteristics of time-series data that are less evident from plots of the data against time (in the rest of
the paper we will refer to this as time-series plots). The phase-plane is a two-dimensional plot of some
aspects of a dynamical system. In the case of a simple pendulum for example, a useful phase-plane
is the one that plots the velocity against the position of the pendulum, as it completely describes the
behavior of the system. If multiple signals are observed from the system, phase-plane trajectories can be
drawn by plotting the signals against each other. An example of this in expressive music performance is
the performance worm (Langner and Goebl, 2003), which visualizes performances by plotting loudness
versus tempo.

In this paper we choose a different phase-plane method, that exclusively represents tempo informa-
tion.1 We focus on first-order and second-order phase-planes. The former plots the derivative of tempo
versus tempo, whereas the latter plots the second versus the first derivative of tempo. After intro-
ducing the visualization method using schematic examples and describing the procedure for computing
phase-plane trajectories from expressive performances in section 2, we review two expressive gestures in
performances of Schumann’s Träumerei (section 3). Finally, in section 4, we describe an experiment in
which we determine the effects of several parameters of phase-plane representation on tasks like performer
identification.

2 Phase-plane plots versus time-series plots

An obvious question that comes to mind when considering phase-plane representations of a function
(or a time-series) as an alternative to plotting the function against time, is what new insights it can
possibly give. After all, the derivatives are fully determined by the function, they don’t convey any
information that is not contained in the function itself. Rather than providing new information, phase-
plane representations show a new perspective on the data, just like for example a transformation of a
function from the time to the frequency domain provides a new perspective. The essential difference
from time-series plots is that the time dimension is implicit rather than explicit in the phase-plane.
Whether this is an advantage depends on the intended kind of analysis. For example, if the aim is to get
an impression of the trends in absolute tempo over the course of a performance, a time-series plot may
be more useful than a phase-plane plot. On the other hand, if the focus is on the particular form that
the change of tempo takes, then phase-plane plots may provide better insight. The reason for this is
that the tempo trajectory in the phase-plane expresses exclusively the change in tempo — any episodes
of constant tempo are projected to a single point in the phase-plane. As opposed to time-series plots,
where tempo trajectories by definition advance steadily in one dimension (time), in phase-plane plots the
change of tempo is expressed in two dimensions, leading to trajectories that are visually more distinct
than their equivalent time-series plots. We will illustrate this shortly.

This emphasis on the dynamic aspects of tempo in phase-plane representations is in accordance
with the observation that the expressive use of timing is mainly manifested through the momentary
fluctuations of tempo. Absolute tempo, or large scale trends in tempo are not commonly regarded as
the principal expressive parameters, even if they do belong to the expressive degrees of freedom of the
performer.

2.1 Examples of basic curve types

To get a feel for how to interpret phase-plane representations, we briefly discuss the phase-plane trajec-
tories of some archetypal curves. In the first column of figure 1, five basic curves are shown as a function
x of time t. The second column shows the corresponding first-order phase-planes, representing the curve
as a trajectory through the dx/dt vs x(t) plane, that is, the first derivative of x(t) against x(t) itself. The

1The phase-plane visualization method was introduced in Grachten et al. (2008). With the current paper, we extend
this work, by a quantitative and qualitative evaluation of the phase-plane representation.



a) Constant

t

x(
t)

Constant − 1st order phase−plane

x(t)

dx
/d

t

Constant − 2nd order phase−plane

dx/dt

d2 x/
dt

2

b) Increase

t

x(
t)

Increase − 1st order phase−plane

x(t)

dx
/d

t

Increase − 2nd order phase−plane

dx/dt

d2 x/
dt

2

c) Decrease

t

x(
t)

Decrease − 1st order phase−plane

x(t)

dx
/d

t

Decrease − 2nd order phase−plane

dx/dt

d2 x/
dt

2

d) Oscillation

t

x(
t)

Oscillation − 1st order phase−plane

x(t)

dx
/d

t

Oscillation − 2nd order phase−plane

dx/dt

d2 x/
dt

2

e) Parabola

t

x(
t)

Parabola − 1st order phase−plane

x(t)

dx
/d

t

Parabola − 2nd order phase−plane

dx/dt

d2 x/
dt

2

Figure 1: Examples of five basic curve types (first column), and their first and second order phase-plane
trajectories (second and third columns respectively); Horizontal and vertical dashed lines represent x
and y axes respectively; Circles indicate the beginning of the curves/trajectories; Units are arbitrary



last column shows the second-order phase-planes, formed by d2x/dt vs dx/dt. The circles indicate the
beginning of the curves, and their corresponding phase-plane trajectories. The horizontal and vertical
dashed lines indicate the origin in the phase-planes.

Note that constant tempo (row (a) in figure 1) corresponds to a single point in the phase-planes, as
all derivatives are zero.2 Constant change of tempo (rows (b) and (c)) leads to a displacement along the
x(t) (horizontal in the first-order phase-plane) axis and a constant offset along the dx/dt axis (vertical
in the first-order phase-plane, and horizontal in the second-order phase-plane).

Row (d) shows one period of a simple harmonic, or oscillatory motion. This type of motion is defined
by a second order differential equation which has sinusoidal functions as its solutions. Such functions
correspond to a circular motion in both phase-planes, where the end position of the trajectory is equal
to its starting position. This example illustrates how, as the time dimension is implicit, repeated curve
segments map to the same trajectory in the phase-plane. Note that due to the derivative relationship
between the vertical dimension with respect to the horizontal dimension, the movement of any phase-
plane trajectory is necessarily clockwise around the origin. More precisely, the trajectory always moves
leftward below the horizontal axis, and rightward above it, and is exactly perpendicular to the horizontal
axis at the time of crossing it.

Finally, row (e) shows a parabolic curve x(t) = t2. Since its first derivative dx/dt = 2t is linear in
time, the first-order phase-plane is also a parabola, with the horizontal and vertical axis interchanged.
The second-order phase-plane trajectory is a straight line segment, since dx/dt = 2. Note that although
it is hard to visually distinguish the parabola from a semiperiod of a simple oscillation in the time-series
plot (first column), the phase-plane trajectories of both types of curves are very distinct. This is a
particularly interesting feature for mathematical modeling of tempo curves, such as in Todd (1985), and
Repp (1992).

2.2 From time-series to phase-plane trajectories

The concept of a tempo curve, even if ubiquitous in expressive music performance research, is not straight-
forward. Given that tempo can be loosely defined as the rate at which events take place, it is inherently
related to a temporal context of events, rather than a single point in time. For the sake of quantifying
tempo over the course of a performance, it is commonly measured as the reciprocal of the interval between
two consecutive metrical beats (IBI), and this value is associated either with the first or the second of the
beats for which the IBI was measured. As the tempo quantity is undefined in the absence of events, it is
questionable whether tempo is perceived as a constant entity by humans (Desain and Honing, 1993), and
therefore whether it is justified to interpolate the time-series of tempo values to obtain a continuous tempo
curve. On the other hand, there are reasons to consider the construction of continuous and smooth tempo
curves from discrete timing information as appropriate. Firstly, in order for the rhythmical structure of a
piece to be perceptible, tempo must satisfy certain smoothness constraints Honing (2004). Furthermore,
Dixon et al. (2006) argue that tempo perception of human listeners discards a certain variability in
performed note onsets, implying a beat-grid that is slightly smoothed with respect to the exact timing
of onsets. This coherence between consecutive tempo perceptions is expressed by the representation of
tempo as a continuous function of time.

The problem of finding a function that fits to a series of data values is well-known in statistical data
analysis, since a very common situation in empirical studies is to have a series of measurement values
that we hypothesize or assume to be result of some process of which the behavior can be adequately
described by some smooth function. As is unavoidable in any measurement, the measured values will
include measurement errors and possibly other distortions of the values that we actually intended to
measure. This view is known as the signal plus noise model, which is formally represented as:

y = x(t) + e (1)

where y is a vector of length n containing the measured values, t is a vector of length n containing the
time values associated with each measurement, x is the unknown function that we wish to estimate, and
e is a vector of length n containing the error values associated with each measurement. The function x
is often chosen to be of the form:

2We interpret the curves as tempo curves, although these remarks of course hold independently of the interpretation of
the dimensions



x(t) = c′φ (2)

that is, a linear combination of a set of K basis-functions φ, where c is a vector of length K containing
the weight for each basis-function. The fitting of the function x to the data y can be done by minimizing
the summed squared error:

SSE = ||y −Φc||2 (3)

where Φ is a n by K matrix such that Φi,k contains φk(i), value of the k-th basis-function at sampling
point i.

As the number of basis-functions K increases, the fit to the data becomes better, reducing the bias
of the estimation. But large values for K also increase the variance of the estimation, resulting in a less
smooth fitted curve. To take the smoothness constraint into account, a penalty term for roughness is
included the quantity that is minimized:

PENSSE = SSE2 + λPEN (4)

The relative importance of the penalty term is controlled by the smoothing parameter λ. The penalty
term quantifies the roughness as the integrated square of the second derivative of x:

PEN =
∫

[D2x(s)]2ds (5)

This minimization criterion is independent of the choice of the system of basis-functions φ. There
is a wide variety of bases that can be sensibly used. Typical bases are Fourier series and polynomials.
Furthermore, with a slight change of the minimization criterion, kernel smoothing (e.g. using a Gaussian
kernel) can be construed as a special case of basis expansion with one basis-function φ(t) = 1.

In the work described here, we use a B-spline basis for smoothing, as described in Ramsay and
Silverman (2005). B-splines are piecewise polynomial. This means that the spline consists of segments
defined by a series of breakpoints, and on each of those segments S the B-spline is a polynomial. A
B-spline S is defined by an order m, and a sequence of breakpoints τ , and is computed from a set of
basis-functions B:

S(t) =
m+L−1∑

k=1

ckBk(t, τ) (6)

Here, Bk(t, τ) is the value at point t of the k-th basis-function. L is the number of intervals as defined by
the breakpoint sequence τ . The basis-functions are themselves B-splines, with compact support. They
are constructed recursively from B-splines of a lower degree. B-spline smoothing of data is achieved by
choosing the coefficients c = (c1, · · · , cm+L−1) such that the criterion PENSSE is minimized.

After computing c, the phase-plane representations are obtained by computing the first and second
derivatives of the spline S, D1S(t) and D2S(t).

3 Phase-planes of expressive gestures in Schumann’s Träumerei

We will illustrate the phase-plane visualization for two performances of a melodic gesture (or motif) from
Schumann’s Träumerei. We will do this in relation to an earlier study of expressive timing in that piece
(Repp, 1992).3 Repp describes the results of an extensive study of expressive timing of 28 performances
of this piece by renowned pianists. A part of this study is a detailed investigation of the timing of
notes in a particular melodic gesture (labeled MG2 in Repp, 1992) present in the piece. A majority
of the performances showed an IOI pattern that could be modeled quite well with a parabolic curve
segment, where the curvature of the fitted parabola varied from performance to performance. However,
the goodness of fit of the curves to the measured IOI’s was only informally assessed.

Figure 2 shows the IOI curves (the reciprocals of the tempo curves) and corresponding phase-plane
trajectories of two performances of MG2, by Zak (1960) and Horowitz (1947) respectively. The first

3The data used here originates from that study
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Figure 2: Fitted IOI curves and corresponding phase-plane trajectories for two exemplary performances
of a melodic gesture (MG2, fourth instance, half beats 136–140) from Schumann’s Träumerei, by Zak
(1960) (a), and Horowitz (1947) (b) respectively; In the first column, the circles connected by dashed
lines are the measured IOI values (normalized), and the solid line is the fitted spline; Diamonds indicate
the breakpoints of the spline; the phase-plane trajectories are annotated with half beat numbers; The
units are shown in square brackets in the axis labels; σ denotes the standard deviation of the normalized
IOI values

column shows the normalized measured IOI values as circles connected by dashed lines, together with
the fitted splines, as solid curves. The splines are constructed from cubic polynomials, and are thus of
order 4. The breakpoints are identical for both examples, and their positions (at half beats 137 and 139)
are chosen manually to provide a good fit to the data with a relatively low number of breakpoints.4 The
roughness penalty λ is set to .001.

The phase-plane trajectories of Zak’s performance (figure 2a) indeed bear a striking resemblance to
those of the parabola shown before, in figure 1e. The first-order phase-plane trajectory strongly resembles
a rotated parabola, and the second-order phase-plane trajectory is approximately a straight horizontal
line segment going from left to right. Consequently, this is a performance that can be very well modeled
with a parabola. Horowitz’s performance (figure 2b) on the other hand, is apparently not a prototypical
instance of a parabola. A parabola fitted to this performance would show a rather poor fit, especially
due to the non-constant curvature in the IOI data. This is confirmed by the phase-plane trajectories
of the fitted spline, which are rather different from those of the parabola in figure 1e. In particular,
the first-order phase-plane trajectory is circular rather than parabolic, and also the second-order phase-
plane trajectory is curved rather than straight. Especially the first-order phase-plane trajectory suggests
oscillatory motion.

Discussion

The purpose of this example is not so much to challenge the hypothesis that this particular performance
gesture can be adequately modeled with a parabola (that would require a more thorough investigation),
but to show that the phase-plane visualization can ‘amplify’ differences between time series plots. As
the example illustrates, in some cases where one may be inclined to apply the same model for two tempo
(or IOI) curves, the phase-planes show very distinct trajectories for the two curves.

We believe that phase-plane visualizations can be of help in modeling expressive tempo precisely for
4A common practice in spline fitting is to put a breakpoint at each data point



this reason. It is important to note that the phase-plane trajectories of common functions like a parabola
or a sinusoidal, did not emerge because we used those functions as a model. This illustrates the flexibility
of the spline basis expansion for fitting the data.

However, care must also be taken when interpreting the phase-plane trajectories. Firstly, the examples
shown here are based on a small number of data points, and thus the trajectories to a certain degree
describe ‘space’ in between the measured data points. Secondly, the fact that the phase-plane trajectories
tend to diverge more than the time series plots has the downside that small artifacts of the fitting (for
example some ripples in the curve between two data points) can have a large impact on the appearance
of the trajectories. Therefore, when interpreting phase-plane trajectories, it is essential that the fit of
the basis expansion to the data is also inspected, to verify that the major forms in the trajectories are
not due to curve fitting artifacts.

4 An assessment of alternative phase-plane representations

In the previous section we have illustrated the use of the phase-plane representation to visually compare
expressive timing gestures of different performers. We have shown the phase-plane trajectories in different
spaces, in particular the first-order phase-plane, and the second-order phase-plane. The smoothness of
the spline-approximation of the measured data was chosen manually. Affine transformations, which are
typically used to compare geometric shapes in a scale, position, and rotation independent way, were not
applied in the examples given.

The question which phase-plane order is most informative, at which degree of smoothing, and with or
without applying affine transforms, is likely to depend on the purpose of the analysis. Generally speaking,
we would like to know whether similarities between phase-plane trajectories tend to be indicative of
musically relevant commonalities between the performances that those phase-plane trajectories represent.
In the current experiment, we limit ourselves to two such aspects: the identity of the performer, and the
place of occurrence within the musical piece.

In the literature there is evidence that performers have, sometimes strongly, idiosyncratic ways of
performing music (Repp, 1998). On the other hand, it is known that timing profiles of performances tend
to have a component that is common among performers, mainly due to generally adopted (but mostly
implicit) conventions of how to convey musical structure through timing (Todd, 1985). The context of
the occurrence of a phrase may therefore have an effect on how it is played. For example, a phrase or
musical fragment that is repeated several times throughout a piece, may be played differently depending
on whether it occurs at the beginning, middle, or ending.

Parallel to these two aspects of expressive performance, in the experiment described here, we focus on
the comparison of phase-plane trajectories for two contrary purposes. The first is performer identification,
in which the task is to partition a set of phase-plane trajectories such that for each performer there is a
group that contains all trajectories of that performer. The second task is to group fragments of phase-
plane trajectories according to their position in the piece. We regard the accuracy on each of these tasks
as an indicator of how well the phase-plane representation reflects the performer’s characteristics, and the
score context, respectively. Furthermore, we investigate whether, and how, the choice of the parameters
of representation (i.e. phase-plane order, the degree of smoothing, normalization) affects this balance.

4.1 Data and Procedure

To address these questions, we use data sets containing phase-plane trajectories describing the perfor-
mances of musical fragments. Each data set contains performances of a single musical piece by several
performers. Rather than using the entire performances, we select those parts that correspond to the
occurrences of a single musical fragment which is repeated multiple times5. Thus, with K performers
and N occurrences of the selected fragment, a data set is a collection of K × N phase-plane trajecto-
ries. Each phase-plane trajectory is labeled with a pair of identifiers (k, n), where k denotes the k-th
performer, and n indicates that the instance is the n-th occurrence of the fragment in the piece. We can
then compare a clustering of the data set that was computed from the phase-plane trajectories, to the
performer-partitioning of the data set on the one hand, and to the order-of-occurrence-partitioning on

5The pieces are selected to contain at least three occurrences of a single musical fragment
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the other. This gives us a way to evaluate different representations of the performance data with respect
to the partitioning tasks.

Because our prime interest is in the assessment of experimental parameters that concern the repre-
sentation of the data, rather than parameters that concern the decision-theoretic aspect of clustering,
we avoid direct partitional clustering techniques (such as k-means, or EM clustering). Instead, we opt
for hierarchical clustering, and using full knowledge of the instance labels, select a subset of nodes from
the dendrogram to form an optimal partitional clustering.

In the rest of this subsection we will respectively discuss the alternative data representations of tempo
curves that we consider, the musical material used in the experiment, and the evaluation of results.

4.1.1 Alternative Data Representations

The tempo measurements from the performances are represented as a series of timestamp/tempo pairs,
i.e. (t,y) = (t1, y1), · · · , (tM , yM ), where ti denotes the time at which the i-th beat occurred (the whole
piece spanning M beats), and yi the tempo value at that time, measured as the reciprocal of the IBI
between beat i and beat i− 1. The vector y is normalized by subtracting the mean and dividing by the
standard deviation of the values. We use S to denote the spline approximation of the data as described
in subsection 2.2, that is S(t) ≈ y.

The parameter λ in equation (4) weights the impact of the roughness penalty of the functional
approximation on the minimization criterion. Low values of λ will provide better approximations S(t)
of the measured tempo values y, but at the cost of increasing fluctuations in between the measurement
points t. Higher values of λ will result in smoother curves, that may not fully approximate the measured
values however. In the experiment we use spline-approximations with varying λ values, that jointly cover
the effective range of the parameter.

To produce the phase-plane trajectories of S, we use the first and second derivatives of S, D1 and
D2 respectively, which can be obtained in closed form from S. In principle, any subset of (S,D1, D2)
can be used to represent the data. In the rest of the paper, we will refer to such subsets as spaces.
By a trajectory of a musical fragment spanning beats k through l in the space (S,D1, D2), we mean a
sequence vk, · · · , vl, where vi = 〈S(ti), D1(ti), D2(ti)〉 (and analogous for other spaces). In the current
experiment, we compare the six (redundant) spaces S, D1, D2, (S,D1), (D1, D2), and (S,D1, D2).

Another issue is the relative size, position, and orientation of phase-plane trajectories. If we treat
phase-plane trajectories as geometrical shapes annotated with landmark points, then a natural method
of comparison would be by Procrustes analysis (Goodall, 1991). This method is common in biomedical
shape comparison, and consists in applying scaling, translation, and rotation transformations to one
shape to make it maximally similar to another, before calculating a measure of distance between the
landmark points that define the shapes. The interpretation of phase-plane trajectories as geometrical
shapes however does not fit completely with the musical aspects that the trajectories represent. In par-
ticular, using a distance measure that is rotation-invariant would imply that, for example, a ritardando
(a lower hemi-circle) could be matched perfectly to an accelerando (an upper hemi-circle), which is obvi-
ously undesirable. On the other hand, translation and scaling invariance may be sensible characteristics
of a distance measure, since they allow us to ignore differences in the absolute range and the ‘intensity’
of gestures. The translation and scaling of trajectories to a common position and size is equivalent to
normalization of the data.

The above steps in the construction of the final data representation are shown schematically in
figure 3.
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Chopin, Op. 10, No. 3 A 3 (repeated at 67, 491) 16 ±16% 8
Chopin, Op. 10, No. 3 B 20 (84, 508) 22 ±21% 8
Chopin, Op. 28, No. 17 A 14 (62, 206, 434) 35 ±26% 10
Schumann, Op. 15, No. 7 MG1/2 3 (35, 67, 99, 131, 163) 9 ±28% 28

Table 1: Description of the data used

intra-performer distance
inter-performer distance

performer A, occurrence 1

Figure 4: Left: small intra-performer distances and large inter-performer distances (that is, high in-
tra/inter performer gap); Right: intra-performer and inter-performer distances are similar (that is, low
intra/inter performer gap)

4.1.2 Musical Material

For this experiment we used four distinct fragments from three classical piano pieces from the romantic
period, as shown in table 1. We manually selected score fragments that occurred identically at least three
times throughout the piece. An additional criterion was that the fragments be of reasonable duration,
roughly speaking two bars or longer, to avoid fragments that are too short to extract any meaningful
expressive information. All timing data was extracted by manual annotation from commercial CD
recordings of performances by professional pianists. The performances of Schumann’s piece (Träumerei)
are the recordings used by Repp (1992).

4.1.3 Evaluation of Clustering

For each data set, all pairwise distances are computed between the data instances. The distance between
a pair of trajectories is calculated as the root summed square (RSS) of the pairwise differences of the
pairs of trajectory points (all trajectories in a data set have the same number of points). We are
primarily interested in how the organization of trajectories of different performers is, given a particular
choice of representation, and the RSS distance measure. Figure 4 shows an example with two imaginary
organizations for three occurrences of a musical fragment performed by two different performers (A and
B). Note that in the organization on the left, it will be easy to separate the data instances by performer
based on the distance measure, whereas in the organization on the right, it will be impossible. To
quantify this, we introduce the notion of inter-intra performer gap (IIPG). For a given performer k, this
quantity is the average distance between k’s trajectories and the trajectories of other performers, minus
the average distance among k’s own trajectories.

More formally, let 〈k, n〉 be the data instance containing the trajectory the k-th performer playing the
n-th occurrence of the musical fragment, and let dC(〈k, n〉, 〈l,m〉) be the distance between data instances
〈k, n〉 and 〈l,m〉 in space C. Then, the IIPG of the k-th performer in C is defined as:

IIPGC(k) =
2

N(N − 1)

N∑
n=2

n−1∑
m=1

−dC (〈k, n〉, 〈k,m〉) +
1

K − 1

K∑
l 6=k

dC (〈k, n〉, 〈l,m〉) (7)

where K is the number of different performers in the data set, and N the number of occurrences of
the musical fragment. Rather than looking at the IIPG of individual performers, we will focus on the
suitability of different spaces for performer identification. Therefore, we additionally define the IIPG of
a space C as the average IIPG per performer:
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Figure 5: Dendrogram obtained from hierarchically clustering the Chopin, Op. 10, No. 3 (fragment B)
performance data set. The clustering is obtained by considering trajectories in the space D2, the second
derivative of tempo. The parameter λ for controlling the roughness penalty is optimized for performer
identification (λ = 10−4); The labels show performer/year and order-of-occurrence; The circled nodes
jointly form the clustering with maximal average cluster F-score, given the performer/year labels

IIPGC =
1
K

K∑
k=1

IIPGC(k) (8)

To be able to compare IIPG’s across spaces and data sets, we normalize the distances within each
space and data set.

Figure 5 shows a dendrogram, as obtained by a complete link hierarchical clustering of a data set,
based on the distances between data instances. In the dendrogram, two sets of instances S1 and S2 are
joined by a node at a height h precisely when RSS(si, sj) ≤ h for any si ∈ S1, and sj ∈ S2.

The dendrogram is evaluated by comparing it to the performer partitioning and the order-of-occurrence
partitioning, respectively. This is done by computing an F-score for each node in the dendrogram, and
selecting the subset of nodes that has the highest average F-score, and partitions the data (that is, each
data instance belongs to exactly one node).

The F-score of a given node C is computed as follows: Let i be the most frequent label in C, and
let 1 ≤ ki ≤ |C| be the number of occurrences of i in C. Furthermore, let Ki be the total number of
instances with label i in the data set. Then, we define the F-score of C in terms of its precision and
recall:

prec(C) =
ki

|C|
(9)

rec(C) =
ki

Ki
(10)

F -score(C) =
2 · prec(C) · rec(C)
prec(C) + rec(C)

=
2ki

|C|+Ki
(11)

These definitions are in accordance with the standard interpretations of precision, recall, and F-score,
used in information retrieval, except for the fact that the label i is not fixed in advance, but is chosen to
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Figure 6: Mean cluster F-scores as a function of spline smoothness, for different combinations of tempo
and derivatives. Legend: a: tempo (S); b: first derivative of tempo (D1); c: second derivative of tempo
(D2); d: (S,D1); e: (D1,D2); f : (S,D1,D2); Horizontal lines indicate estimated baseline F-score (solid)
with standard error (dashed); Left column: non-normalized trajectories; Right column: normalized
trajectories; Top row: performer identification; Bottom row: phrase-occurrence identification

be the label that for a given C maximizes prec(C). Since we have Ki = Kj for any pair of labels (i, j),
the label that maximizes prec(C) also maximizes rec(C), and therefore F -score(C).

4.2 Results and Discussion

With the definition of the F-score for dendrogram nodes (i.e. subsets of the data set), and the mean
F-score per node for partitionings of the data set, we have a means of quantifying how successful a given
phase-plane representation is for the performer and order-of-occurrence identification tasks, respectively.
This enables us to systematically evaluate different representations.

Figure 6 shows the evaluations of different representations for the Schumann data set. Each plot
shows the mean cluster F-score of the optimal partitioning as a function of spline smoothness. Each
curve represents a different space (see the caption in figure 6 for a legend). The top row shows the
results when the clustering is optimized for the performer identification task, the bottom row shows
the results when clustering is optimized for the order-of-occurrence task. Finally, the plots in the left
column were generated using non-normalized trajectories, and plots in the right column using normalized
trajectories.

The figure presents a few interesting outcomes of the experiment. Most notably, the choice of the
degree of smoothing substantially affects the accuracy for both identification tasks. Moreover, the optimal
degree of smoothing is lower for performer identification than for order-of-occurrence identification.
Whereas performer identification benefits from medium levels of smoothing (λ values in the range 10−6–
10−2), order-of-occurrence identification works best with high degrees of smoothing (λ values close to
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Figure 7: First-order phase-plane trajectories for Ashkenazy 1972 (solid curves), and Richter 1988 (dashed
curves) recordings of Chopin, Op. 10, No. 3, fragment A. The numbers along the trajectories indicate the
starting of consecutive bars; Left column: first occurrence of fragment; Right column second occurrence;
Top: unsmoothed trajectories, bottom: smoothed trajectories

104). This difference is confirmed with a t-test on λ values weighted by mean cluster F-score (t = 3.2176;
p < .001).

As an example of this effect at the level of individual phase-plane trajectories, consider the four plots
in figure 7. The figure displays the trajectories of two pianists, Ashkenazy (solid curves), and Richter
(dashed curves), both playing the first and second instances of the same fragment (left and right columns
respectively). The trajectories are plotted in the first-order phase-plane, using low and high levels of
smoothing (top and bottom row respectively). Notice how, with little smoothing (top row), each of the
two pianists has its own characteristic phase-plane form, that is relatively constant throughout the two
occurrences of the same fragment. Richter plays the fragment with more pronounced gestures, while
keeping a fixed base tempo, whereas Ashkenazy slightly increases tempo throughout the fragment in
three less pronounced gestures. Unsurprisingly, when λ is increased such that any note level detail of
the timing profile is eliminated (bottom row), the differences between the two pianists fade. Instead, it
seems that the trajectories now show mainly a distinction between the first occurrence (left plot) and
the second (right plot).

This result suggests that the aspects of phase-plane trajectories that are performer specific are in
the details, whereas the global form of the trajectory is rather determined by the score context. This
claim is only tentative however, because it must be borne in mind that the issue of different but not
performer-specific performance strategies, has not been taken into account in this study. Such strategies
may influence either the detailed or global form of trajectories, or both.

Returning to figure 6, a slight effect of normalizing on mean cluster F-score can be observed. For
performer identification, normalization of trajectories increases mean cluster F-scores over the whole
range of λ. Interestingly, in the case of order-of-occurrence identification, results are better using non-
normalized trajectories. Both effects are present when the results of all four data sets are taken together.
A paired Wilcoxon signed rank test revealed higher accuracies for normalized trajectories in performer
identification (V = 41587, p < .05), and higher accuracies for non-normalized trajectories in order-of-



95% conf. interv.
space A space B IIPGA IIPGB IIPGA − IIPGB lower upper p

D1 S 0.843 0.679 0.164 0.026 0.302 0.009
D2 S 0.849 0.679 0.171 0.033 0.308 0.006

(S, D1) S 0.815 0.679 0.136 -0.002 0.274 0.056
(D1, D2) S 0.883 0.679 0.204 0.066 0.342 0.000

(S, D1, D2) S 0.880 0.679 0.201 0.063 0.339 0.000

Table 2: Results of a Tukey HSD test of the intra/inter performer gap (IIPG) for tempo-only representa-
tion (S), versus representations that include tempo derivatives; Considered trajectories are normalized;
Roughness penalties of considered trajectories range from 10−6 to 1

occurrence identification (V = 58743, p < .0001).
The fact that order-of-occurrence identification is more accurate with non-normalized trajectories

indicates that absolute tempo is a relevant factor for this task. This is plausible, since the higher level
musical structures of which the repeated fragments form part, may impose an evolution of the tempo
curve that differentiates tempo between its constituent structures.

Lastly, we consider the effect of the choice of space (the combination of tempo and its derivatives
to represent trajectories). The plots in figure 6 show that for the Schumann data set, the different
spaces (curves a to f) follow roughly the same trends. A notable exception is the tempo-only space
(curve a) in the non-normalized condition for performer identification, shown in the top left plot. For
moderate degrees of smoothing, which tend to be optimal for performer identification, the tempo-only
representation yields substantially lower F-scores. This effect is also observed in the other data sets.
The top right plot in figure 6 suggests that normalizing trajectories partly alleviates this, since curve a
is slightly raised.

Upon inspection of the joint data sets however, it turned out that even in the normalized condition,
the spaces that include derivatives on average lead to higher F-scores. This is confirmed by an analysis
of variance, which showed an effect of space on the size of IIPG6. we use Tukey’s Honest Significant
Difference test as a multiple comparison procedure to find the differences in IIPG as an effect of space.
For all spaces involving derivatives of tempo except (S,D1), this test shows a significant (α = .05)
increase in IIPG with respect to the tempo-only space. The results of the test are summarized in table 2.
Between spaces involving tempo derivatives no significant differences were found (these comparisons have
been omitted in table 2).

5 Conclusions and future work

Phase-plane representations of expressive timing of music performances include tempo derivatives in
addition to tempo itself. Such representations highlight the dynamic aspects of expressive timing. A
consequence of this is that functions that look similar in time series plots, such as a parabola and a
semiperiod of a simple harmonic oscillation, have qualitatively different phase-plane trajectories, since
their derivatives are different. As such, phase-plane trajectories may suggest a particular class of functions
that could fit a particular tempo curve. This can be a benefit in the modeling of expressive timing, as
in Repp (1992); Todd (1985); Friberg and Sundberg (1999).

In addition, different representations of phase-plane trajectories were compared experimentally. Re-
sults indicate that phase-plane trajectories are most performer specific when moderate degrees of smooth-
ing are used, and normalization is applied. Highly smoothed and non-normalized trajectories on the other
hand, are more indicative of the order of occurrence of the fragment in the musical piece. The experiment
also showed that considering tempo derivatives in addition to tempo in general facilitates the distinction
between performers based on their performances.

In conclusion, we argue that phase-plane representations of expressive timing are an interesting
alternative to conventional time-series plots of expressive timing information. Not only do they allow for
intuitive visualizations of expressive gestures, but they also seem relevant for the characterization of the
timing of individual performers.

6The analysis was performed on the IIPG measure rather than F-score since the F-score data, by repeated summarizing
of intermediate results, is too sparse to make a reliable claim



In this study, phase-plane trajectories were compared using simple root sum squared differences of
trajectory coordinates. A more advanced method of comparison would do more justice to the gestalt
aspect of trajectories, for example through a qualitative characterization of trajectories, ideally in terms
of a small set of prototypical forms. Such an alphabet of phase-plane trajectory fragments may obtained
in a data-driven way, as in Widmer et al. (2003).
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