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Abstract

This paper brings forward the question of which acoustic features are the
most adequate for identifying beats computationally in acoustic music pieces.
We consider many different features computed on consecutive short portions
of acoustic signal, among which those currently promoted in the literature
on beat induction from acoustic signals and several original features, unmen-
tioned in this literature. Evaluation of feature sets regarding their ability
to provide reliable cues to the localization of beats is based on a machine
learning methodology with a large corpus of beat-annotated music pieces, in
audio format, covering distinctive music categories.
Confirming common knowledge, energy is shown to be a very relevant cue
to beat induction (especially the temporal variation of energy in various
frequency bands, with the special relevance of frequency bands below 500 Hz
and above 5 kHz). Some of the new features proposed in this paper are
shown to outperform features currently promoted in the literature on beat
induction from acoustic signals. We finally hypothesize that modelling beat
induction may involve many different, complementary, acoustic features
and that the process of selecting relevant features should partly depend on
acoustic properties of the very signal under consideration.

Keywords: Beat induction, rhythm, phenomenal accent, acoustic cues,
feature selection



INTRODUCTION

Human perception of music beats —beat induction— is about seeking periodicities in the
occurrences of music events. On the one hand, music sequences carry acoustic evidence of beats
that influence the very rapid formation, in a bottom-up process, of a percept from scratch. And
on the other hand, top-down processes let this induced percept guide the organization of new
incoming music events (Desain & Honing, 1999). The study of beat induction can be divided
into two separable processes: the determination of acoustic cues to beat induction and the task of
periodicity seeking and adaptation to timing deviations from exact periodicities (which can be due
to expressivity in music performance, for instance).

Most theories and models of human beat perception have been tested with simplified music
stimuli: artificial sequences of synthesized notes, or tones, in which it is possible to thoroughly con-
trol timing deviations from exact periodicities as well as acoustic properties of music events. Hence
an extensive literature on the processes that permit human perception to cope with such deviations
and to seek periodicities in music sequences (Povel & Essens, 1985; Clarke, 1999; Large & Palmer,
2002) —while at the same time categorizing deviations as musical features (Clarke, 1987). Different
formalisms can be used to model this phenomenon, e.g. rule-based models, adaptive oscillators,
agents or dynamical systems. In addition, in this context of discrete note-like representation, the
literature refers to different acoustic cues to beat induction. According to Lerdahl and Jackendoff
(1983), different kinds of “phenomenal accents” can influence the perception of “metrical accents”
(“strong” and “weak” beats). They define phenomenal accents as, e.g. sudden changes in dy-
namics or timbre, long notes, pitch leaps and harmonic changes. Behavioral studies report on the
perceptual relevance to beat induction of various such music attributes. For instance, Povel and
Okkerman (1981) and Parncutt (1994) studied the importance of time intervals; Tekman (1995)
the importance of pairs of attributes: intensity and duration, and pitch and intensity; Dawe, Platt,
and Racine (1994) harmonic and melodic cues. Snyder and Krumhansl (2001) show that on the
one hand pitch variations of Ragtime MIDI excerpts have a relatively small effect on the perception
of beat, but that, on the other hand, pitch cues in the low tones only (left-hand part on piano in
their experiments) do affect the perception of downbeat.

Such perceptual findings are used in many computational systems for automatic beat induc-
tion of music signals. While early systems often rely on note duration, pitch, intensity or harmonic
cues, parsed from e.g. scores or MIDI files, many recent systems tend to deal directly with acoustic
music excerpts and intend to derive similar discrete note-like representations via a first step of
automatic onset detection (Dixon, 2001).

However, “there seems to be a general consensus on the notion of discrete elements (e.g.
notes, sound events or objects) as the primitives of music but a detailed discussion and argument
for this assumption is missing from the literature” (Honing, 1993). Scheirer (1998) also argues that
the modelling of human perception of music should not be based upon abstract symbols such as
durations, pitches or chords. Based on this rationale, other recent beat induction systems refer
to a data granularity of a lower level of abstraction and a different (shorter) timescale: time or
frequency domain features, computed on consecutive short portions of signal (“frames,” from now
on). In this context, note pitch, intensity and duration are not available. A scan of the literature
(Gouyon & Dixon, 2005) reveals that few low-level features have been considered so far, mainly
energy values or temporal variations thereof in several frequency bands (Scheirer, 1998; Dixon,
Pampalk, & Widmer, 2003; Klapuri, Eronen, & Astola, 2006).

The purpose of this article is to determine which low-level features of acoustic music signals
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are the most adequate for the computational identification of beats. That is, we aim at selecting
among several features computed at a regular sampling rate, those whose temporal behavior would
best indicate the presence and localization of beats.

We set up a large set of music pieces, whose beats have been annotated manually. In between
beats, we define “non-beat” instances, that is, time points (audio frames) that are clearly not
related to beats —in the following, the term “instance” refers to beats as well as non-beats, while
the term “piece” refers to a music piece. Each piece therefore contains several instances. Instances
can be described by many different low-level signal features. Previous experiments considered 274
features (Gouyon, 2005). In this paper, we report on experiments with 18 feature sets (specific
combinations of those 274 features) and give a special focus on low-level features promoted in the
literature. These feature sets also include a number of low-level features that (to our knowledge)
have not yet been considered in the task of beat induction. Individual features and feature subsets
are evaluated and ranked according to the following criterium: relevant features are those whose
values permit a machine learning algorithm to achieve high levels of accuracy in beat classification.
That is, considering the two concepts, or classes, “beat” vs “non-beat,” we seek features that
distinguish between these two classes.

Seppänen (2001) proposed a comparable experiment, however, contrarily to Seppänen, we
do not propose a full-fledged method for finding beats in unknown acoustic music signals. In our
view, the experiments presented in this paper only aim at providing useful information for actual
beat induction algorithms, namely which low-level features to focus on. The integration of these
features in a fully functional beat induction algorithm is left for future work.

We first present the data and features used in our experiments, we then detail the method,
results are reported and followed by conclusive remarks, discussions and future work directions.

DATA

There is a total of 1360 audio files in .wav format, ripped from commercial CDs (Gouyon,
2005), which together amount to 90643 beats (with a minimum of 7 beats per piece and a maximum
of 262 beats per piece), 89283 non-beats have been defined as detailed below. Files are between
11 s and 1 mn 56 s long. Audio data is not publicly available for copyright reasons.

The data covers many different types of music. Existing taxonomies of music genres have
shown their inconsistencies and the definition of rigorous and quantifiable dimensions for music
genres are still ongoing research (Pachet & Cazaly, 2000). In this paper, we group music pieces
with respect to timbral and rhythmic contents into the 10 following categories:

• Acoustic: 84 pieces of Folk, Fado and Flamenco music, mostly sung by a single voice
accompanied with few acoustic instruments, mainly guitar, and seldom relatively soft percussion
(no drums).

• Afro-American: 93 pieces of Hip Hop, Rap, Soul, Rhythm n’Blues and Funk music with
4/4 time signatures and a characteristic drum pattern (low-frequency bass drum on first and third
beats and brighter snare drum on second and fourth beats).

• Balkan/Greek: 144 wedding songs, drinking songs and laments from typical Greek and
Balkan folklore music (some with irregular meters) with acoustic instruments such as brass instru-
ments, strings, acoustic guitar and percussions accompanying a leading voice.

• Choral: 21 pieces of a capella Mass choir music (from XVIIth and XVIIIth century).
• Classical: 204 pieces of Classical music for orchestra; symphonies and operas, mainly from

the Romantic repertoire.
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• Classical solo: 79 pieces of Classical music for solo instruments (piano, guitar or organ).
• Electronic: 165 pieces of Dance and Techno music with strong beats usually marked by

electronic drums.
• Jazz/Blues: 194 pieces of Jazz, Blues and Jazz Fusion music, mostly instrumental pieces

with horns and a characteristic jazz-like drum playing style (quarter-note pulse and eighth-note
swing feel, with an extensive use of cymbals).

• Rock/Pop: 334 pieces of Rock and Pop music with a clear presence of leading vocals,
electric guitar, bass and drums.

• Samba: 42 pieces of traditional Samba music in the particular style of Rio de Janeiro’s
“Samba da Roda,” with acoustic guitar, four-stringed small Brasilian guitar, and a percussion
section (tambourine, double bells and friction drums) following a characteristic syncopated duple
rhythm with second and fourth beats marked by a low-frequency percussion sound.

FEATURES

Audio data are chopped into 23.2 ms frames (corresponding to 1024 signal samples at a
sampling frequency of 44100 Hz), from which both time and frequency domain features can be
computed. Consecutive frames are considered with some overlap for smoother analysis. The so-
called hop size —the frame size minus the overlap— has been set here to 11.6 ms (512 samples).
Feature time series are therefore characterized by a sampling rate of 44100/512 = 86.1 Hz.

Complementary to instantaneous feature values, i.e. frame values, we also consider two
measures of temporal variation of most features: on the one hand, an estimator of the derivative
of feature values, the first-order differential (i.e. x(n + 1) − x(n), where x(n) represents the value
of a given feature x at the time index n) and on the other hand the magnitude-normalized first-
order differential (i.e. (x(n + 1) − x(n))/x(n)), hence following Weber’s law that states that the
just-noticeable-difference (JND) in the increment of a physical attribute depends linearly on its
magnitude before incrementing.1 Finally, negative values are set to 0 (i.e. this process is called
“half-wave rectification”). For the sake of simplicity, these measures of temporal variation will
hereafter be referred to as the “first and second measure of temporal variation,” respectively.

In initial experiments, a total of 274 features were used (Gouyon, 2005). This leads to a
potentially very large number of combinations of features into feature subsets. In this paper, we
focus on a selection of 18 feature subsets comprising those promoted in the literature as well as
a selection of new subsets. We detail these feature subsets in the remainder of this section, and
specify for each subset the precise number of features (its dimensionality). For more details on
feature implementation, see (Gouyon, 2005).

Energy features

We first consider low-level features proposed in the literature on beat induction and track-
ing from acoustic music signals: energy computed on the whole frequency range (hereafter, FS1,
dimensionality = 1), energy in 8 frequency subbands as proposed by Dixon et al. (2003) (FS2,
dim. = 8), the first measure of temporal variation of the energy in 6 bands as proposed by Scheirer
(1998) (FS3, dim. = 6) and the reduction in 4 combined bands of the second measure of temporal
variation of the energy in 36 Equivalent Rectangular Bandwidth (ERB)2 bands (Klapuri et al.,

1This is in fact calculated differently to avoid numerical problems around 0 (Klapuri et al., 2006).
2the ERB filterbank implements some knowledge of human frequency perception: filter bandwidths are larger for

high frequencies than for lower ones (Moore, 1995).
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2006) (FS4, dim. = 4).
Alternatively, we consider the second measure of temporal variation of the energy in the 36

ERB bands (FS5, dim. = 36), and in a selection of 17 ERB bands below 500 Hz and above 5 kHz
(i.e. bands 1 to 7 and 27 to 36, FS6, dim. = 17).

Onset detection features

Note onsets are used in many beat induction algorithms. As our approach is restricted
to frame features, we cannot consider onset times, however, we can consider features commonly
used for the detection of note onsets of acoustic signals. Bello et al. (2005) provide a good
overview of the literature on onset detection and propose many such features (under the term
“onset detection functions”). Therefore, we also consider 3 onset detection features: Spectral
Difference (the magnitude difference between the spectra of consecutive frames, FS7, dim. = 1),
Complex Spectral Difference (the spectral difference between consecutive frames computed in the
complex domain, i.e. accounting for magnitude and phase, FS8, dim. = 1) and Phase Deviation
(a measure of the shape of the distribution of phase deviations between consecutive frames, FS9,
dim. = 1). In addition to considering them individually, we also consider grouping them in a single
feature set (FS10, dim. = 3).

Spectral features

We also consider new sets of features that have not been related to beat induction so far.
First of all, spectral features: the spectrum mean, the spectrum geometric mean, the spectrum
flatness (i.e. the flatness of the frequency spectrum, indicates whether a spectrum is flat or peaky)
and the spectrum low-frequency energy relation (ratio of the spectrum energy below 100 Hz to the
total energy), as well as the spectrum magnitude kurtosis (which indicates whether the magnitude
distribution of a spectrum3 has large or small tails around its mean value) and the spectrum
magnitude skewness (a measure of the asymmetry of the magnitude distribution of a spectrum).

The magnitude spectrum is also further processed in order to parse local maxima of the
spectrum into harmonic peaks (corresponding to harmonics of an instrument) and spurious peaks
due e.g. to noise (Serra, 1989). Spectral peak features are computed on the series of spectral
peak magnitudes corresponding to each frame: spectral peak magnitude mean, harmonic centroid
(center of gravity of the series of peak magnitudes) and harmonic deviation (sum of the absolute
deviation of peaks with respect to the mean of surrounding peaks, normalized by the sum of all
peak magnitudes).

We consider three feature sets: the instantaneous values of these 9 spectral features (FS11,
dim. = 9) and the first and second measures of temporal variation (FS12, dim. = 9, and FS13,
dim. = 9, respectively). Note that these feature sets do not include energy features.

Cepstral features

Also in the pool of new features, we consider Mel-Frequency Cepstrum Coefficients (MFCCs).
After computation of a frequency spectrum, the following steps are followed:

1. Projection of the frequency axis from linear scale to the Mel scale, of lower dimension-
ality (i.e. 20, by summing frequency-bin powers within each triangularly-weighted band of a Mel
critical band filterbank). In an approximation to human perception of frequencies, the Mel scale is
approximately linear for low frequencies and logarithmic for higher frequencies.

3Here we are not looking at the shape of the spectrum itself but at the distribution of its magnitude values.
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2. Computation of the logarithm of Mel-band power values. This models human perception
of loudness (the JND in loudness for sounds with a low intensity is smaller than for sounds with a
high intensity).

3. Computation of the Discrete Cosine Transform (DCT). The DCT projects the Mel power
spectrum into a representation of (usually) lower dimensionality, via a projection on a cosine basis.
The number of output coefficients of the DCT is variable, here, we define 13 MFCCs following
the implementation of the widely-used speech processing software Hidden Markov Model Toolkit
(HTK, version 3.2.1).4

MFCCs are widespread features in speech research (Oppenheim & Schafer, 2004). The first MFCC
amounts to the signal energy in decibel (dB). In the literature on computational analysis of acoustic
music signals, MFCCs are believed to represent some timbral characteristics of music signals (Logan,
2000).

Note that the first-order difference on a logarithmic scale is equivalent to the magnitude-
normalization of the first-order difference on a linear scale. Therefore, as the computation of
MFCCs entails a logarithm, we only consider the first measure of temporal variation for MFCCs,
and do not compute the second measure for these coefficients.

In order to consider separately energy features and others, we consider 3 feature sets: the
first measure of temporal variation of the first MFCC (FS14, dim. = 1), the instantaneous values of
MFCCs 2 to 13 (FS15, dim. = 12) and their first measure of temporal variation (FS16, dim. = 12).

Additional feature sets

In addition to the 16 feature sets above, we consider a feature set made up of all 274 features
(FS17, dim. = 274) as well as a feature set (made up of 59 features) that was identified as the
most efficient set in previous experiments (Gouyon, 2005) and comprising the second measure of
temporal variation of energy in 36 ERB bands, together with the phase deviation, the first measure
of temporal variation of the 13 MFCCs and the second measure of temporal variation of the spectral
features (FS18, dim. = 59).

METHOD

Computation of beat and non-beat features

Given the time indexes of beats and the continuous time series of frame feature values com-
puted at a regular sampling rate (see Figure 1), we wish to determine feature values characterizing
beats and non-beats. The simplest way to compute beat features would be to select feature values
on the frame closest to each annotated beat. A reason not to do this is that we cannot assume that
beat annotations are accurate at the fine time precision of the frame rate (i.e. 11.6 ms). An im-
provement over the previous method would be to define regions of signal containing several frames
around each beat and compute feature averages over these regions. However, because their purpose
is to make sure to retain at least one relevant frame, such regions would contain both relevant and
irrelevant frames, and computing feature averages on such regions would put too much emphasis
on irrelevant frames. We believe that it is more relevant to select a single frame for each low-level
feature and compute beat feature values as follows: regions of N frames (N=9 in our case) are
selected around each annotated beats, in each region the maximum value (over 9 possible values)
of each feature is selected.

4http://htk.eng.cam.ac.uk/
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Figure 1. Illustration of an audio signal, its annotated beats and the temporal evolution of two features
computed on signal frames (sampling frequency of 44100 Hz).

On the other hand, non-beat features are defined on frames chosen randomly between each
pair of beats (the frames of the aforementioned regions surrounding beats are not considered in
this process). There is hence approximatively the same number of beat and non-beat instances
(exactly M-1 non-beats for a piece containing M beats). Examples of beat and non-beat features
are illustrated in Figure 2.

Feature evaluation

We define relevant features as those whose values permit a machine learning algorithm to
achieve high levels of accuracy in beat classification. There are several ways to evaluate the relevance
of features via machine learning. For instance, Seppänen (2001) considers all instances at once and
evaluates features on the whole data set. This amounts to seeking universal models for beat
and non-beat. Here, we advocate a different methodology: models are learned and evaluated on
individual music pieces. Decisions are taken on each individual piece regarding the relevance of
given features or feature subsets. and then, results are integrated (averaged) over either the whole
set of music pieces or the pieces of a specific music category to make a final decision.

As previously mentioned, the definition of feature subsets is done manually (in contrast to
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Figure 2. Example of audio signal and values for N imaginary features on beats and non-beats.

an automatic procedure that would explore systematically the space of possible feature subsets).
We consider various feature subsets promoted in the literature as well as a selection of new feature
subsets. Feature subsets are then evaluated according to the classification accuracy of a given
classifier trained using these features. We use an instance-based classifier (k-Nearest Neighbor, or
k-NN, with k = 3). For each new instance of data to be classified, k-NN retrieves from the set of
training instances the k nearest ones. This process requires a distance metric between instances
based on their feature values. We use the Euclidean distance between feature values. The new
instance is classified as belonging to the most frequent class in the set of k nearest neighbours.
Experiments described in this paper have been conducted with the free software Weka (Witten &
Frank, 2000), available under General Public Licence (GPL) at http://www.cs.waikato.ac.nz/

ml/weka.

Classification accuracies reported in this paper are computed via 10-fold cross-validations
as follows. The data set is randomly divided into 10 equally sized parts, and each part is used
for testing a classifier trained with the 9 remaining parts. Each part is selected once for testing,
resulting in 10 classification accuracies. The average of these 10 runs is taken to be the final
accuracy. Note that in our case, 10-fold cross-validations are computed on individual pieces. An
accuracy estimate of a given feature subset is obtained for each piece, the final accuracy estimate
is then computed as the average over the whole set of pieces (or the pieces of a specific music
category, when indicated). As we defined the same number of beats and non-beats for each piece,
the classification rate when always guessing the most probable class (i.e. the baseline) is 50% for
each file. This value should be kept in mind when assessing the goodness of any feature set (an
accuracy of 50% is bad as it corresponds to the chance level).5

In the following, statistical significance in the difference of achieved accuracies is assessed
using a two-way analysis of variance.

5One should recall that accuracies reported here are not comparable to accuracies of beat induction systems
described in the literature; they should only be seen as a metric for comparing different features.
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Figure 3. Mean accuracies and 95% confidence intervals for each feature set.

RESULTS

We performed a two-way analysis of variance (ANOVA) with the following factors: “Feature
set” (X1, 18 levels: FS1,..., FS18) and “Music Category” (X2, 10 levels: “Choral,”..., “Electronic”).
We also looked into possible interactions between these factors. The dependent variable is the
accuracies measured on individual pieces of music. The differences in accuracy between feature
sets (F (17, 1342) = 1720.00,MSE = 90741.7, p < .01) and between music categories (F (9, 1350) =
544.18,MSE = 28709.2, p < .01) are statistically significant. The same holds for the interaction
between the two factors: F (153, 1180) = 34.18,MSE = 1803.2, p < .01. Therefore the accuracy
achieved with a certain feature set depends on the music category of the pieces of music it is
measured on.

Figures 3 and 4 show the mean accuracies and 95% confidence intervals for each feature
set and for each music category, respectively. Based on the results from the ANOVA, we have
computed a series of t-tests to compare accuracies of individual feature sets and music categories
(level of significance α = 5%). We used a Bonferroni adjustement to account for the effect of
multiple comparisons.

Energy features

According to our experiments, when applied to the task of distinguishing beats from non-
beats, the energy features promoted by Klapuri et al. (2006) are significantly better than those
promoted by Scheirer (1998), which in turn are significantly better than those promoted by Dixon
et al. (2003). As can be seen in Figure 3, respective mean accuracies for FS4, FS3 and FS2 are
94.66%, 89.17% and 77.54%. (Recall that the first two subsets represent the temporal variation of
the energy in different frequency bands while the third subset represents instantaneous values.)

Among all the energy features tested, the worst is the energy computed on the whole frequency
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range (mean accuracy of FS1 is 68.29%). The best subset is the second measure of temporal
variation of the energy in the 36 bands defined by the ERB filterbank (mean accuracy of FS5 is
99.41%); it shows better performance than a reduction into the 4 combined bands proposed by
Klapuri et al. (2006) (FS4). Focusing only on the 17 ERB bands below 500 Hz and above 5 kHz
(i.e. bands 1 to 7 and 27 to 36), results are statistically equivalent to those obtained with all the
36 bands (mean accuracy of FS6 is 98.67%).

Onset detection features

Mean accuracies of onset detection features are the following: Spectral Difference (FS7)
yields 71.29%, Complex Spectral Difference (FS8) yields 72.61% and Phase Deviation (FS9) yields
76.40%. The first two are not significantly different, but the third one is significantly better. When
considered together, the mean accuracy of these 3 onset detection features (FS10) is 82.78%, which
is significantly better than the value achieved by any of the 3 features individually.

Spectral features

The feature set consisting of spectral features (FS11) yields a mean accuracy of 89.69%.
The first measure of temporal variation thereof (FS12) yields a mean accuracy of 97.53% and the
second measure of temporal variation (FS13) a mean accuracy of 98.29%. Temporal variations
are significantly better than instantaneous values, but there is no significant difference in accuracy
between the two variations. It is interesting to note here again that these feature sets do not include
energy features.

Cepstral features

After exclusion of the first MFCC (amounting to the signal energy in dB), the subset of the
12 remaining MFCCs (FS15) yields a mean accuracy of 87.09%. Considering their first measure
of temporal variation (FS16) yields a mean accuracy of 98.73%, which is significantly better. The
latter is also significantly better than the first measure of temporal variation of the first MFCC
(FS14 yields a mean accuracy of 88.39%).

General results

Our experiments show that accuracy depends significantly on the music category. As can
be seen in Figure 4, results are significantly lower on the Choral data set than on the other sets
(79.57%). Next comes the Classical data set (83.50%), and then the Acoustic data set (86.77%).
Next in the ranking, the differences in the mean accuracies of the Classical Solo, Jazz/Blues and
Balkan/Greek data sets (88.29%, 88.89% and 89.04%, respectively) are not statistically significant.
Then comes the Samba data set (90.53%) and finally the Rock/Pop, Afro-American and Electronic
data sets whose accuracies are statistically equivalent (91.93%, 92.24% and 92.44%, respectively).

Additionally there is a significant interaction effect between the feature sets and the music
categories. The accuracy achieved with a certain feature set depends on the music category of the
pieces of music it is measured on. This means that some feature sets perform better on some music
categories than on others.

The whole feature set (i.e. FS17, made up of 274 features) yields an average accuracy of
99.51%. And when considering the feature set FS18, an average accuracy of 99.71% is achieved,
which according to the statistical significance test is not different from the accuracy obtained with
the whole feature set.
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Figure 4. Mean accuracies and 95% confidence intervals for each music category.

CONCLUSIONS AND DISCUSSION

This paper brings forward a new issue in computational beat induction of acoustic music
signals: determining which acoustic features are the most adequate for identifying music beats. In
the following, we summarize and discuss the most interesting results and provide some pointers
towards future research directions.

On features promoted in the computational beat induction literature

Energy is very relevant to beat induction. Energy features proposed by Klapuri et al. (2006)
are better than those proposed by Scheirer (1998), which are better than those proposed by Dixon et
al. (2003). However, the best energy feature set is yet another one, closely related to that proposed
by Klapuri et al. (2006): the half-wave rectified magnitude-normalized first-order differential of
the energy in the 36 bands defined by an ERB filterbank, or, with equivalent results, in a selection
of 17 ERB bands. It is shown that focusing on the energy in low (below 500 Hz) and high (above
5 kHz) frequency bands leads on average to comparable results than when mid-range bands are
also considered. This seems related to the fact that low tones have a particular relevance in the
perception of beats Snyder and Krumhansl (2001).

Complementary experiments on a larger number of energy features (Gouyon, 2005) show that
the temporal variation of energy features is always better than the instantaneous values.

Our experiments show that a decomposition of the frequency axis into several bands provides
better energy features than the whole frequency range (Scheirer, 1998). However, in contrast to
Scheirer’s observation, the definition of the frequency decomposition does seem to have a signifi-
cant impact. Therefore, we encourage further research in the determination of the most adequate
frequency decomposition for beat induction.
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Considered individually, all three onset detection features tested here (Bello et al., 2005)
represent a significant improvement over the energy computed on the whole frequency range. Con-
sidering the onset detection features together further improved performance. They are however
still outperformed by temporal variations of energy in diverse frequency subbands.

On new features

We also showed that other features, unmentioned in the literature and not based on the
computation of the energy, are also very relevant —in particular, the temporal variations of MFCCs,
as well as of spectral features. This is interesting as it may indicate that sudden changes of timbre
over time, independently of energy changes, are relevant to beat induction.

General findings and conclusions

An interesting result is that, for all features, the temporal variation is more relevant than
instantaneous feature values. Further, the magnitude-normalized first-order differential generally
outperforms (or at least equates) the mere first-order differential. This confirms that Weber’s law
is relevant when considering measures of sensitivity to energy changes, and also indicates that this
may be the case for other acoustic properties as for instance changes of timbre.

Gouyon (2005) shows that the range of accuracies of individual features is very broad (the
worst are around the baseline, 50%, and the best mean accuracy is 88.39%, for FS14). Nevertheless,
the very good performance achieved when using the whole feature set at once (FS17, made up of
274 features) shows that most of the features are relevant. Indeed, classification algorithms usually
suffer from too large a number of input features and the performance of some algorithms (as k-NN,
specifically) typically decreases when irrelevant features are present in the feature set.

On average, the best individual feature is the first measure of temporal variation of the first
MFCC, which amounts to the temporal variation of the signal energy in dB. This is not surprising
as the variation of energy with time is strongly correlated with note onsets, which have been long
thought to be of prime importance in rhythm description. However, the “best individual feature”
also depends on the music category. The average best feature is the best on only 2 categories out
of 10, while the second measure of temporal variation of the spectrum mean is the best feature
on 4 categories and 4 other different features are best on other single categories (Gouyon, 2005).
Further, when focusing on accuracy per piece, Gouyon (2005) shows that a total of 196 features (out
of 274) are the best feature for (at least) one piece. This complements what has been shown in this
paper —with regards to feature sets and not individual features—: there is a significant interaction
effect between the feature sets and the music categories, some feature sets perform better on some
music categories than on others. We can therefore conclude that the relevance of different features
and feature sets differ with respect to conditions (i.e. specific music categories, or specific music
piece). Future work could be dedicated to further seek relations between properties of music pieces,
or music categories, (e.g. timbral properties) and variances in feature relevance.

We therefore propose to conclude that the features proposed in this paper are complementary
in the task of providing reliable cues to the localization of beats and that they represent different
aspects of beat perception.

Beyond the general beneficial effect of combining features, the results show that a specific
combination for each individual piece may be appropriate. This leads us to formulate a hypothetical
avenue for future work: It might be interesting to consider in further experiments whether human
perception of beats may rapidly adapt to auditory signals and focus, depending on the signal
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under consideration, on whichever acoustic cue(s) would show approximate periodicities. This
would be in accordance with the idea inspired by (Bregman, 1990) that human perception seems
to be redundant at many levels, different processing principles serving the same purpose and being
combined “on-the-fly,” depending on the auditory signal under consideration.

It would also be highly desirable to study the perceptual relevance of the results presented
here, by conducting controlled experiments with human subjects, focusing for instance on accuracy
and response time in a tapping task or on neurophysiological evidence obtained by brain imaging
methods. There are some fundamental problems with designing such a study, in particular the gen-
eration of suitable stimuli. Evaluating the perceptual relevance of a specific feature requires control
over its temporal behavior, as well as over the temporal behavior of all other features. It is not
clear to us how to synthesize stimuli from such low-level parameters as, e.g., the spectral centroid or
specific MFCCs, while controlling the behavior of other (possibly correlated) low-level parameters.
Research into this problem by experienced music psychologists would be highly welcome.

The implementation of effective ways of combining a large number of features in a full-
fledged beat induction algorithm is another interesting avenue for future work. Along this research
direction, the implementation of an online feature selection procedure, modeling the hypothetical
focus on different features depending on the specific signal under consideration, would certainly be
interesting.

Finally, we acknowledge that different ways to compute beat and non-beat features could
be devised and assumptions underlying our method could be discussed. For instance, in addition
to excluding regions surrounding beats, the computation of non-beats may exclude regions around
beats of lower metrical levels. However, this would require the knowledge of the complete metrical
structure of each music piece, which for a large number of pieces requires an extremely time-
consuming (and error-prone) effort of annotation.
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