
STREAMCATCHER: INTEGRATED VISUALIZATION OF MUSIC CLIPS
AND ONLINE AUDIO STREAMS

Martin Gasser, Arthur Flexer
Austrian Research Institute

for Artificial Intelligence (OFAI)
Freyung 6/6

A-1010 Vienna, Austria

Gerhard Widmer
Department of Computational Perception

Johannes Kepler University
Linz, Austria

ABSTRACT

We propose a content-based approach to explorative visu-
alization of online audio streams (e.g., web radio streams).
The visualization space is defined by prototypical instances
of musical concepts taken from personal music collections.
Our system shows the relation of prototypes to each other
and generates an animated visualization that places repre-
sentations of audio streams in the vicinity of their most simi-
lar prototypes. Both computation of music similarity and vi-
sualization are formulated for online real time performance.
A software implementation of these ideas is presented and
evaluated.

1 INTRODUCTION

A massive amount of music is already available on the web
in the form of internet radio streams. At the time of writ-
ing this paper, the “radio-locator” website 1 lists more than
2500 entries in its directory of free internet radio stations, a
number that is likely to increase rapidly in the future. Be-
cause it is infeasible for users to keep an overview of avail-
able radio streams, software that recommends possibly in-
teresting radio streams would be desirable.

When talking about music, humans usually use exam-
ples of similar music to describe new and unknown songs
or artists. For example, one might characterize Nirvana as a
combination of the Pixies’ and Sonic Youth’s guitar sound,
the Beatles’ sense for catchy melody lines, and the heritage
of American folk-rock music in the style of Neil Young. So,
instead of resorting to predefined taxonomies for music cat-
egorization (e.g., by Genre), an alternative is to present a
“query by example” based user interface directly to the user.

To support the user in finding new music he or she might
like in audio streams, we propose a simple interactive visu-
alization approach that incorporates the user’s musical vo-
cabulary into the definition of semantic spaces for music
similarity judgement. The user defines her own semantic

1 http://www.radio-locator.com/

space by supplying, coloring and labeling an arbitrary num-
ber of reference songs from her own music collection. In
this way, she can define her personal musical concepts via
examples she is familiar with.

In our application, songs from personal music collections
are imported in an incremental, user-feedback based man-
ner: (1) A new sound clip (concept prototype) is loaded
into the system and it is compared to already loaded clips
with a content-based music similarity measure, (2) the soft-
ware shows the user what it thinks the new music is similar
to and puts a preliminary label on it, (3) the user refines
the software suggestion by correcting the label, (4) go back
to (1). When the user decides that the concepts he or she
is interested in are sufficiently well represented, unknown
music from internet radio streams can be compared to the
sound prototypes (using the same similarity metric), and a
visualization is generated by means of a multidimensional
scaling [4] technique. The visualization also provides di-
rect interaction facilities that allow the playback of streams
and clips to interactively explore the audio streams audio-
visually.

Additionally to mapping acoustic similarity to proximity
information in the 2D visualization, color is used to encode
the user’s view of what the music sounds like. Colors can be
assigned to songs upon loading them into the system by the
user. This idea is motivated by the neurologically based phe-
nomenon of synesthesia [1, 14], in which stimulation of one
sense automatically triggers experiences in another sense.

2 RELATED WORK

Berenzweig et al. [3] construct an Anchor Space by training
N classifiers to prototypical instances of concepts, classify-
ing unknown music, and mapping posterior probabilities to
the individual dimensions of vectors in an N -dimensional
space. Distances in this space have been shown to better
reflect the user’s notion of music similarity.

Lidy and Rauber [7] calculated features derived from long-
term observations of (terrestrial) radio stations and used a
SOM to generate a 2D visualization of the types of music

Personal
Music

Collection

Stream Stream Stream

Distance
calculation

User Interface
+

Visualization
+

Playback

Prototype selection

Feature Extraction

Feature Extraction

Figure 1. System components

played in different radio stations. However, they do not per-
form online analysis of radio streams.

Tzanetakis [13] extracted features from audio streams in
real time and displayed genre membership of the streams
in a real time visualization. By reducing dimensionality of
the feature space with a Principal Component Analysis, he
also mapped audio signals from high-dimensional timbre-
similarity space into a three-dimensional visualization space.
To the authors’ knowledge, this was the first published im-
plementation of online/real time audio signal classification
and similarity analysis.

Lamere [6] uses a technique based on acoustic similarity
and multidimensional scaling to visualize and explore music
collections in 3D space. This work is related to our work in
that it also shows the disparity between acoustic and high-
level similarity.

Lübbers [9] derives prototypical songs by hierarchically
clustering music collections, and proposes a multi-modal
user interface for interactively exploring the cluster centers’
neighborhood.

Recently, some work in the field of Human-Computer In-
teraction has been published (see also [1, 14]) that gives rise
to the presumption that organizing music by color is quite
intuitive. We also used this idea in our application to iden-
tify music that belongs to a common abstract concept, which
could be a genre, a particular kind of instrumentation, a cer-
tain guitar sound, and so on.

3 SYSTEM OVERVIEW

To evaluate our approach, we implemented an application
prototype that performs online (a) feature extraction, (b)
similarity calculation, and (c) visualization. Figure 1 sketches
the main components of the application.

The feature extraction subsystems are responsible for ex-
tracting feature frames from offline clips and online streams
of audio data. The distribution of these feature frames is
then modeled as a single Gaussian with full covariance [10]
per clip/stream.

Central to our framework is the similarity calculation com-
ponent that calculates distance matrices holding clip-to-clip
and stream-to-clip similarities by calculating the symmetric
Kullback-Leibler (KL) divergence [5] between each pair of
Gaussians.

Distances between clips are then projected to a 2D visu-
alization space with a Multidimensional Scaling [4, 2] algo-
rithm, whereas streams are linearly embedded into a local
subspace spanned by the 3 nearest neighbors of a stream
model in feature space.

3.1 Implementation notes

The application was implemented in C++ using the Open-
Source QT 2 toolkit , and we use OpenGL 3 for the visu-
alizations. All signal processing and statistical computing
was implemented within the FLOWer framework, a portable
and efficient C++ library for data flow-oriented media pro-
cessing, which is being developed by the first author of this
paper.

4 FEATURE EXTRACTION & SIMILARITY
CALCULATION

In order to be able to extract features from offline files as
well as from live streams, the system contains two feature
extraction pipelines. In both pipelines, Mel Frequency Cep-
stral Coefficients (MFCCs) [8] are computed for each frame
of audio data. The main difference between online and of-
fline analysis is the way statistics (means and covariances)
are calculated. While in the offline case, the distribution
of MFCC’s in an entire audio file is estimated, the online
scenario requires more diligence; since the distribution of
features in an internet radio stream is not likely to stay con-
stant, we only take the most recent feature frames into ac-
count. For performance reasons, we decided to use a recur-
sive estimator for means and covariances instead of a sliding
window approach.

The input to the feature extraction stage is either an MP3
file or an MP3 stream (which can be transmitted over an
HTTP connection). This data is decoded to PCM at a sample
rate of 44.1kHz, converted to mono, and sliced into frames
of size 2048 samples with 50% overlap. Then, the frames
are multiplied with a Hamming window, the magnitude spec-
trum and MFCCs are calculated, and a statistical model is
derived from the data.

2 http://www.trolltech.com/products/qt
3 http://www.opengl.org

4.1 Offline processing

In the offline case, the calculation the mean vector µ and the
covariance matrix Σ in the stream processing framework is
straighforward. Let X be a vector of random variables, and
xi a concrete instantiation (sample) of X (in our case an
MFCC vector from frame i).
Since

Σ = E(XX>)− µµ> (1)

and

µ =
1
n

Σxi (2)

E(XX>) =
1
n

Σxixi
> (3)

all that is needed is one accumulation vector and one accu-
mulation matrix for the sums and the sums of products of
observations, respectively.

4.2 Online processing

Since in an online scenario the complete sequence of feature
frames is not available beforehand, we use a recursive esti-
mate of mean and covariance to parameterize the distribu-
tion of timbral features (we preferred a recursive estimator
to windowed statistics for performance reasons).
The recursive estimate of the mean vector µ is calculated as:

µn = (1− α)µn−1 + αxn (4)

The covariance matrix Σ of a multidimensional vector of
random variables X can be written as

Σ = E(XX>)− µµ> (5)

E(XX>) can be estimated recursively as

E(XX>) = Rn = (1− α)Rn−1 + αxx> (6)

and

Σn = Rn − µµ> (7)

which can be refactored to

Σn = (1− α)Rn−1 + αxx> − µµ>

= (1− α)[Rn−1 − µn−1µ
>
n−1︸ ︷︷ ︸

Σn−1

+

. . . α (xnx>n − µn−1µ
>
n−1 − xnµ>n−1 + x>nµn−1)︸ ︷︷ ︸

(xn−µn−1)(xn−µn−1)>

]

Thus,

Σn = (1− α)[Σn−1 + α(xn − µn−1)(xn − µn−1)>] (8)

Small values of the parameter α assign small weights to
present values, thus the sequence of estimates is smoother
with smaller α. In experiments, we found α = 0.001 to be
a reasonable setting.

For the implementation of the recursive estimation algo-
rithms only one vector and one matrix accumulator are nec-
essary. This is a clear advantage over windowed estimation
approaches, where all measurements that fall inside the win-
dow must be memorized.

4.3 Distance calculation

Clip-to-clip distance is calculated upon loading of a new clip
by storing the Kullback-Leibler (KL) divergences between
each clip pair to a distance matrix. Clip-to-stream distances
must be recalculated continuously because the distribution
of stream features can change at any time.

4.4 Evaluation of the incremental similarity measure

In figure 2, we have plotted the similarities of a set of music
clips to a music stream. We used the 4 reference clips listed
in table 1.

The 4 plots correspond to the 4 clips, each plot shows the
similarity of the current stream content to the reference clip
(x axis is in audio frame numbers, 1 frame corresponds to
the FFT hop size of 1024 samples). We calculate the simi-
larity of the stream at time t to the clip Ci as the reciprocal
value of the KL divergence between the stream model and
the clip model, and we normalize the sum of clip-to-stream
similarities over all clips at time t to one.

Artist/Composer Title
Absolute Beginner Rock On

Metallica The Four Horsemen
Al Green Listen

Heitor Villa-Lobos Etude n. 1 en mi mineur

Table 1. Reference clips used for the evaluation

Artist/Composer Title Frames
A Tribe Called Quest Buggin Out 0–9388

Megadeth This was my Life 9389–18776
Al Green Listen 18777–25150

Heitor Villa-Lobos Etude n.2 en la majeur 25151–29715
Male Speech 29716–34539

Table 2. Stream used for the evaluation

The similarity measure successfully identifies music from
the same genre, style, or artist (“A Tribe Called Quest” have
the highest similarity with the “Absolute Beginners” clip,
“Megadeth” are most similar to “Metallica”, and the clip-to-
stream self-similarity for Al Green’s “Listen” stays at∼ 0.8
almost over the entire duration of the song). However, the
system tends to confuse Rap vocals with pure speech al-
though it should emit low similarity scores with respect to
all reference clips (last part of the stream versus the “Abso-
lute Beginner” song) - this observation seems to be related
to the fact that simple timbral similarity based on MFCC
statistics wrongly classifies “Rap” and “Speech” as similar.
Another shortcoming can be observed using the Absolute
Beginner’s and Al Green’s songs as examples - both yield
high similarity scores in the beginning of the Al Green tune,
which seems to be related to the use of strong percussion in
both pieces.

Figure 2. Online stream similarity to offline reference clips

5 GRAPHICAL USER INTERFACE

Figure 4 shows a screenshot of the running StreamCatcher
application. The GUI of the application currently consists
of a visualization that allows direct manipulation (zooming,
panning, rotating, playback of clips and streams) of the visu-
alized objects via a pointing device like a mouse or a touch
screen.

By pressing the ”Load Clip” button, a new sound clip
is loaded into the application. After analyzing and k-NN-
classifying the clip, a label (consisting of a textual descrip-
tion and a color) is suggested by the software in a dialog
window. Now the user has the possibility to accept the sug-
gestion, to change the label to another – already existing

A B C D

A 0 dab dac dad

B dab 0 dbc dbd

C dac dbc 0 dcd

D dad dbd dcd 0

M
DS

Stream S

A daS

B dbS

C dbS

D ddS

Clip-to-clip distance Clip-to-stream distance

NN

daS dbS

dcS

Stream position

Figure 3. Placement of online streams in visualization space

– label or create a new label. Furthermore, it is always
possible to alter the labeling of the clips later on. If the
“Open Stream” button is pressed, the user can load an MP3
stream, which is subsequently visualized with the algorithm
described below.

5.1 Visualization algorithm

It is well known that the symmetric KL divergence between
Gaussians does not satisfy the requirements to a proper dis-
tance measure [12]. Therefore, we use a visualization tech-
nique that seeks to preserve the KL divergence values in
a low-dimensional visualization space and relaxes this de-
mand if that is not possible. A classic distance-preserving
data mining/visualization technique is Multidimensional Scal-
ing [4], which aims at placing data points in low dimen-
sional visualization space while approximating the distances
in feature space as closely as possible. Multidimensional
scaling can be implemented as a spring model [2, 11], a
physically inspired model of spring-connected nodes aiming
at finding a node placement that minimizes the cumulative
deflection from the springs’ resting states. By mapping dis-
tances in feature space to spring lengths, the spring model
solves the MDS problem approximately.

We chose to use a spring model variant of MDS because
of its ease of implementation and because of the attractive
visualizations that can be generated by constantly drawing
the gradual relaxation of the system. By using a gradient-
descent based solution algorithm (see algorithm 1), a place-
ment of the nodes that minimizes the overall stress (the de-
flection from the springs’ resting state) is constructed.

While the overall stress in the model (Scum) is larger than
a threshold (Sthresh), the algorithm loops over all nodes and
determines for each node a force acting upon the node by
calculating a weighted sum of unit vectors pointing from
the current node to all other nodes. The weights can be pos-
itive or negative, depending on the difference between high-
and low-dimensional distances. Then, a velocity vector is

Figure 4. Screenshot showing the running application

Algorithm 1 Spring model layout algorithm
repeat
Scum = 0
for Ca ∈ C do−→
f =

−→
0

for Cb ∈ C do
−→u ← unit(p(Ca)− p(Cb))
S ← dhigh(Ca, Cb)− dlow(Ca, Cb)−→
f ←

−→
f +−→u ∗ S

Scum ← Scum + |S|
end for
v(CA)← v(CA) +

−→
f

p(Ca)← p(Ca) + v(CA)
v(CA)← v(CA) ∗ dampingFactor

end for
until Scum < Sthresh

Scum : Cumulative stress in the model

C : Set of clip nodes

unit : Function returning a unit vector

p : Vector-valued function returning the 2D position of a clip node

dhigh : Distance of clips in feature space

dlow : Distance of clips nodes in visualization space

v : Vector-valued function returning the current velocity of a clip node
−→
f : Force acting upon a node

updated for the current node by adding the force vector to
its current value. Finally, the node’s position is updated by
moving it into the direction of its velocity, and the node’s
velocity is multiplied with a damping factor.

We use spring model MDS to place the static clips in
a 2D visualization. Upon loading of a new clip, an MDS
procedure is executed until the cumulative stress goes below
a threshold value. The placement of the dynamic streams
is determined by calculating the distances to the 3 nearest
neighbors in the feature space and using the reciprocal value
of those distances to calculate a convex combination of the
positions of the nearest neighbors that have been placed by
the MDS algorithm (see figure 3). Additionally, the true
distances to the anchor clips are visualized by drawing the
audio waveform of the stream’s audio signal between the
stream’s position and the clips’ positions, and by modulating
the opacity of this waveform with the feature space distance.
The smaller the feature space distance, the more opaque is
the drawing of the waveform.

In the screenshot (figure 4), example clips for four dif-
ferent styles/genres of music are loaded (Heavy Metal: Red,
HipHop: Yellow, Jazz Guitar: Green, Classical Guitar: Blue).
The green outlier, which is closer to the Classic Guitar clus-
ter than to Jazz Guitar, is a solo guitar piece by Pat Metheny,
which makes the placement quite reasonable. The two streams
(the loudspeaker-like symbols emanating the waveforms) play
Heavy Rock music and Soul/Funk. The Rock stream is
placed near the Heavy Metal-cluster, whereas the Soul stream

is placed close to the HipHop clusters, which characterizes
the music quite well.

6 CONCLUSIONS & FUTURE WORK

We have presented an application prototype for similarity
analysis and visualization of audio files and online audio
streams in a common framework. Music clips from personal
music collections are used as prototypical instances of musi-
cal concepts that define a visualization space in which online
streams are embedded. For the online calculation of mu-
sic similarity from streams we derived a similarity measure
which is based on incrementally updated statistical models.
The system comprises a user interface that supports the user
in identifying prototypical examples of high level musical
concepts. Acoustic similarity is mapped to proximity data
in a 2D visualization, which in turn is derived from a high
dimensional timbre similarity space by means of multidi-
mensional scaling. Sound prototypes can be labeled with
user-definable colors as well as textual labels.

The system successfully identifies streams that sound sim-
ilar to prototypical clips. Thus, it can be used to get a rough
overview of audio stream content, e.g., of internet radio sta-
tions. By exploring the suggestions of the software, the user
may find music he or she likes faster than by just blindly
trying radio stations.

We are currently working on improving the underlying
distance measure and on special cases like speech-music
discrimination, which could be a very useful feature for this
application.

7 ACKNOWLEDGEMENTS

This research is supported by the Austrian Research Promo-
tion Agency (FFG) under project number 815474 B1, and
by the Austrian Science Fund (FWF) under project number
L511-N15.

8 REFERENCES

[1] S. Baron-Cohen and J. Harrison. Synaesthesia: Classic
and Contemporary Readings. Oxford: Blackwell Pub-
lishers, 1997.

[2] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tol-
lis. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

[3] A. Berenzweig, D. P. W. Ellis, and S. Lawrence. An-
chor space for classification and similarity measurement
of music. In ICME ’03: Proceedings of the 2003 In-
ternational Conference on Multimedia and Expo, pages
29–32, Washington, DC, USA, 2003. IEEE Computer
Society.

[4] M.F. Cox and M.A.A Cox. Multidimensional Scaling.
Chapman and Hall, 2001.

[5] S. Kullback and R. A. Leibler. On information and suf-
ficiency. Annals of Mathematical Statistics, 22:79–86,
1951.

[6] Paul Lamere and Douglas Eck. Using 3d visualizations
to explore and discover music. In Proceedings of the
8th International Conference on Music Information Re-
trieval, Vienna, Austria, September 2007.

[7] Thomas Lidy and Andreas Rauber. Visually profiling
radio stations. In Proceedings of the 7th International
Conference on Music Information Retrieval, 2006.

[8] Beth Logan. Mel frequency cepstral coefficients for mu-
sic modeling. In Proceedings of the 1st International
Conference on Music Information Retrieval, Plymouth,
Massachusetts, 2000.

[9] Dominik Lübbers. Sonixplorer: Combining visualiza-
tion and auralization for content-based exploration of
music collections. In Proc. of the 6th International Con-
ference on Music Information Retrieval, London, United
Kingdom, 2005.

[10] Michael Mandel and Dan Ellis. Song-level features and
support vector machines for music classification. In Pro-
ceedings of the 6th International Conference on Music
Information Retrieval, London, United Kingdom, 2005.

[11] Alistair Morrison, Greg Ross, and Matthew Chalmers.
Fast multidimensional scaling through sampling,
springs and interpolation. Information Visualization,
2(1):68–77, 2003.

[12] Elias Pampalk. Computational Models of Music Similar-
ity and their Application in Music Information Retrieval.
PhD thesis, Vienna University of Technology, Vienna,
Austria, March 2006.

[13] George Tzanetakis and Perry Cook. Marsyas3d: A pro-
totype audio browser-editor. In Proceedings of the 7th
International Conference on Auditory Display (ICAD),
Helsinki, Finland, 2001.

[14] M. Voong and R. Beale. Music organisation using colour
synesthesia. In CHI ’07 Extended Abstracts on Human
Factors in Computing Systems, San Jose, CA, USA,
April 28 - May 03 2007.

