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Abstract

Computer supported performance analysis aims at musicians and musicologists in-

vestigating performance-related aspects of music. Since a key component of every

supportive computer environment is the user interface, presentational and inter-

active aspects are of fundamental concern for the design and the implementation

of a computer supported performance analysis system.

In this thesis, an overview of music performance analysis, and of existing visual

representations of musical performance is given. Moreover, well-known methods

from Information Visualization (InfoVis) and User Interface Design (UID) are

reviewed and its applications to the present problem space are discussed.

Finally, a prototypical implementation of an extensible framework for visu-

alization of expressive piano performance is reviewed, and a typical application

scenario is described in a step-by-step fashion.
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Kurzfassung

Computerunterstützte Performanceanalyse soll Musikern und Forschern bei der

Untersuchung von aufführungspraktischen Aspekten von Musik helfen. Da die

Benutzerschnittstelle die Schlüsselkomponente von Computersystemen, welche in

komplexe menschliche Arbeitsabläufe eingebunden sind - und diese teilweise übernehmnen

sollen - ist, sind visuelle und interaktive Aspekte von fundamentaler Bedeutung

für das Design und die Implementierung eines solchen Systems.

Diese Arbeit gibt einen Überblick über zentrale Aspekte der Performance-

Forschung, wobei der Schwerpunkt auf visuelle Repräsentationen von musikalis-

chen Aufführungen gelegt wird.

Methoden aus den Forschungsbereichen der Informationsvisualisierung (Info-

Vis) und des User Interface Design (UID) werden betrachtet, ihre Anwendbarkeit

in der computerunterstützten Performanceanalyse wird diskutiert.

Schließlich wird ein Prototyp eines erweiterbaren Frameworks für die interak-

tive Visualisierung von ausdrucksvollen Klavierinterpretationen beschrieben, und

ein konkreter Anwendungsfall wird Schritt für Schritt durchgespielt.
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Chapter 1

Introduction

Take a music bath once or twice a week for a few seasons, and you

will find that it is to the soul what the water bath is to the body.

Oliver Wendell Holmes (1809 - 1894)

Music performance can be regarded as the interpretation, structuring, and

physical realization of composed music. Music performance research - which tries

to identify and analyze more or less subtle variations between different realizations

of composed pieces - has emerged as a major research area in musicology.

Computer supported performance research provides tools for musicians and

musicologists, who want to investigate performance-related aspects of music. Since

a key component of every supportive computer environment is the user interface,

presentational and interactive aspects are of fundamental concern for the design

and the development of such a system.

This thesis describes the requirement analysis, the design, and the implemen-

tation of an interactive performance analysis tool. We explicitly restrict ourselves

to classical piano music, i.e. music that has been composed during the artistic

eras of classicism and romanticism. We further assume symbolic input data in

the form of MIDI [13] data, which has been aligned to the score notation in a

preprocessing step. The data acquisition process involves a pianist playing on a

Bösendorfer SE 290 computer-controlled grand piano [7], which records perfor-

mances in a proprietary data format. The collected performance data is then fed

to a score-performance matching module, that aligns the performance data to the

corresponding score information on a note-by-note basis. The matched data is

then fed to the analysis system, which is subject to this thesis. See figure 1.1 for

an overview of this workflow.
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Bösendorfer SE 290 Score-Performance
alignment

Score

Analysis

Figure 1.1: Data acquisition, preprocessing, and analysis

The key demands on the user interface of the performance analysis tool that has

been designed in the course of this thesis are usability, comprehensibility, and in-

teractivity. Thus, well-known techniques from Information Visualization (InfoVis),

and User Interface Design (UID) are reviewed and its application in a performance

analysis framework is discussed. Finally, the functionality of the system is demon-

strated in an interactive analysis session, comparing two performances of Chopins

Etude Op. 10, No. 3, and some conclusions and a brief outlook on future work is

given.
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Chapter 2

Music performance research

Those who cannot remember the past are condemned to repeat it.

George Santayana (1863 - 1952)

Music performance research aims at the identification of general rules, that

characterize the artistic style of specific performers. Performance research can be

classified into two major approches. While the analysis-by-measurement approach

is based on the analysis of diversities and commonalities in existing performances,

the analysis-by-synthesis approach modifies performance parameters in a synthetic

performance, until a setting is found that optimally models the audible result. In-

teractive visualization methods can be used to extend an analysis-by-measurement

approach, by providing the user with meaningful visual representations of the

measured data, thus alleviating the process of finding reasonable results.

This thesis will focus on the expressive aspects of music performance. Ex-

pressive performance is characterized by the deliberate shaping of parameters like

tempo, dynamics, timing microstructure, and articulation, by a performer. Bresin

[22] calls those parameters, that make up the expressive structure of a performance,

expressive cues.

In the following, a short historical overview is given, and four examples of

computational models of expressive music performance are mentioned.

2.1 History

In the late 19th century, A. Binet and J. Courtier (1895) and K. Ebhardt (1898)

started to measure musical performances by recording the key depressions of pianos

[30]. In the course of their investigations, they observed that it is possible to clearly
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discriminate amateurs from professional pianists by comparing the performances

with respect to trills, scales, accents and crescendo-decrescendo patterns. Sears

(1902) analyzed key movements on a reed organ, Heinlein (1929, 1930) studied

pedal usage of famous pianists performing Schumann’s Träumerei on a Duo-Art

reproducing piano [30].

Hartmann (1932) carried out a thorough analysis of two pianists’ performances

of the first movement of Beethoven’s Moonlight Sonata. By measuring note lengths

on paper roll recordings for player pianos, he found considerable variation of tempo,

articulation and chord asynchrony specific to the composers.

At the University of Iowa, a large group of researchers headed by C.E. Seashore

[47] studied expressive piano performance by filming the movements of the ham-

mers. Henderson [37] analyzed two performances of Chopin’s Nocturne. In mea-

sures containing three quarter notes, the second was relatively shortened, whereas

measures consisting of a half note plus a quarter, the latter was relatively length-

ened. It was hypothesized that the lengthening was made in order to achieve more

melodic equality between the long and the short notes.

Phrasing was another subject of Henderson’s investigations. A general trend

common to both performances was an acceleration followed by a ritard an a de-

crescendo towards the end of each phrase. Besides those commonalities many

differences became visible; the pianists varied considerably in the tempo chosen

for the performance. Chords were played asynchronously in both performances,

showing melody lead (the melody was played before all other notes) in one case,

whereas in the other case the bass notes where played first (presumably to empha-

size its countermelodic character).

2.2 Contemporary research

Recently, several computational models of expressive performance have been pro-

posed [58]. In the following, four representatives are briefly mentioned.

2.2.1 The KTH model

This model is based on a set of context-sensitive performance rules, that describe

aspects of timing, dynamics, and tempo. The model follows the analysis-by-

synthesis principle, where a professional musician evaluates tentatively parame-

terized rules brought forward by the researcher. Researcher and musician are in

4



a constant feedback loop, trying to find the best parameter setting for each rule

[51].

2.2.2 The Todd model

Whereas the KTH model is a typical representative of the analysis-by-synthesis

approach, Todds model [53] obtains its empirical evidence directly from human

performances. This model is based on the assumption that there is a direct relation

between musical structure and the performance, which can be modeled by a one

simple rule. It is hypothesized by Todd that the hierarchical grouping structure

of music identifies various points of stability in the music, and that a performer

slows down at those points of stability in order to enable the listener to perceive the

hierarchical structure of the music. Apart from the timing structure, Todd’s model

also incorporates dynamics, by directly relating the played tempo to the perceived

intensity. Hammer velocity has been modeled as approximately proportional to

the squared tempo.

2.2.3 The Mazzola model

A model that is based on mathematical considerations is the Mathematical Music

Theory by Guerino Mazzola [42]. It covers analytical as well as performance as-

pects, and it has been implemented in the Rubato system. This system consists

of several modules, the so-called Rubettes. One of them, the EspressoRUBETTE,

implements the inverse performance theory (a subset of Mazzola’s theory), and

analyses performance data by matching the input data to scores and extracting

expressive parameters.

2.2.4 The machine learning model

An alternative way of building rules for expressive performance is to start from

large collections of measured performance data and to use inductive rule learning

methods to discover significant regularities in the data. Widmer et al. [57] have

used note-level as well as higher-level models to generate performance rules that

can be used to predict both note-level expressive deviations as well as patterns at

the phrase level.

It should be stated, that computational models try to model the commonalities

between performances, whereas this thesis focuses on dissimilarities, i.e, the per-
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sonal artistic style of specific performers. More precisely, methods for interactive

audiovisual exploration of performance data are investigated.

2.3 Data acquisition and preprocessing

The first serious step in performance analysis is the acquisition of data to be

analyzed. Performance data can be measured at various levels: At the low signal

level, the symbolic level (by using MIDI), or even by incorporating information

that has no direct association to the performed music, e.g., by interpreting visual

gestures of performers. This thesis primarily deals with symbolic note-level data

that has been acquired with a computer-monitored Bösendorfer grand piano and

converted to MIDI data. However, for completeness, the following section also

reviews or mentions methods that deal with audio data.

Data acquisition only analyzes parameters like pitch and dynamics. For per-

formance analysis, it is of the utmost importance that note-level semantics with

respect to the score information are known at analysis time. Thus, acquired data

has to be aligned with score information in a preprocessing step.

2.3.1 Score-Performance matching

A fundamental task in performance research is to find the note-level connections

between performances and the corresponding scores. In theory, it is possible to

construct a perfect one-to-one mapping from scores to performances.

However, due to human imperfection, this is not feasible. There are three main

reasons for this:

• Musicians leave out notes by error

• Musicians add notes by error

• Scores contain cues that offer performers a limited degree of freedom (i.e.

glissandi, trills and grace notes)

In order to analyze performances, it is necessary to classify performed notes

with respect to the above mentioned categories.

Several approaches to the solution of the score-performance matching problem

exist. When the input is symbolic (e.g., MIDI messages) the problem is consider-

ably simplified, since onset, offset, and pitch are known, whereas audio information
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needs a preprocessing step that transcribes the audio signal into a symbolic data

stream by applying various DSP methods. Dannenberg [19] has developed a score

following algorithm that aligns MIDI streams and scores in realtime. It is based

on a dynamic programming algorithm (dynamic time warping) that finds an op-

timal path through a similarity matrix built from the score and performance in

an incremental fashion. At IRCAM, the Suivi [46] MIDI score following system

has been developed, which models the performance with Hidden Markov Models

(a specialization of Bayesian networks).

Beat tracking is another approach, that tries to map the real (performance)

time to score time. However, this method does not provide for note-level infor-

mation. The Beat Root beat tracking system [26] is built on a robust multi-agent

algorithm that identifies beat information from peaks in the RMS value of the

audio signal.

Remarkable progress has been done in these fields, however, the problem of

automatic score-performance matching has not been completely solved yet, since

errors of the piano player can failure of the matching. The data that has been used

in this thesis has been produced in the course of a large project headed by Gerhard

Widmer, data from a Bösendorfer SE 290 grand piano has been automatically

matched to score files and manually corrected afterwards.

2.4 Feature extraction from audio data

In this section DSP-related methods that directly process audio data are shortly

reviewed.

2.4.1 DSP methods

The spectrum of a stationary signal can be calculated with well-known tools from

mathematics and digital signal processing. Continuous signals can be transformed

into fourier series, its discrete counterpart, the discrete fourier transform, can be

used to represent sampled signals in the frequency domain. The fourier coefficients

represent the spectral content of the signal (in fact, both fourier series and the

DFT are discrete in the frequency domain, while in the time domain, the series

expansion yields a continuous function while the DFT is only defined for discrete

time values).

Since real sampled signals are not stationary, the DFT - which cannot localize

features in time - will not yield accurate results. A combination of time-based and

7



frequency-based is the STFT (Short Time Fourier Transform [50]). However, the

STFT, which is a windowed version of the discrete fourier transform, suffers from

time-frequency resolution problems related to the window width, which is equal

for all frequency bands, and causes either blurring in the frequency or in the time

domain. An alternative that tries to overcome those drawbacks is the discrete

wavelet transform [55], which has been proven useful for various purposes, such as

beat tracking or speech recognition [43, 54].

To compute perceived loudness accurately, it is inevitable to analyze the audio

signal with methods from signal processing. Various models exist that emulate the

physiology of the human ear (see [59]).

DSP based methods can serve as a foundation to other methods, that derive

higher-level, performance-related information. Dixon [27] has shown the applica-

bility of the STFT for an audio transcription system. If used in an visualization

environment, the STFT can be produce a two dimensional plot, which is called the

spectrogram. From a spectrogram, pitch can be visually estimated by determining

the predominant frequencies (the peaks in the spectrum).

2.5 Feature extraction from MIDI data

The expressive dimensions that are going to be investigated in this thesis are

timing, tempo, dynamics, articulation, and pedal usage.

Several approaches related to the extraction of expressive parameters from

symbolic performance data are reviewed. These features are classified into first-

order and second-order data. First order data do not need further processing (i.e.,

they are already present in the input data), while second-order data are calculated

from first-order data according to pre-defined rules.

2.5.1 First-order data

Dynamics

Dynamics is generally referred to as “loudness”. Since it is not possible to calculate

loudness values from MIDI data, MIDI velocity (see [13]) is taken as the closest

possible estimate of dynamics in the course of this work.
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Note onset/offset

Note onset/offset time specifies the time when a played note starts/stops. Onset

and offset are given in units of MIDI ticks, and can be converted to microseconds

according to the configuration of the MIDI sequencing device in use.

Pedal

Pedal values are stored in MIDI data as controller values and describe the pedal

pressure at certain points in time. Pedal is used by performers to extend the

duration of played notes and to control dynamics.

2.5.2 Second-order data

Note duration

Note duration designates the time interval between note onset and note offset.

Beat&tempo

Beat can be described as a perceived pulse of beat times which are approximately

equally spaced in time. Played notes are aligned with the resulting beat track.

Beat tracks can be perceived (and therefore computed) at different metrical levels.

The default metrical level corresponds to the denominator of the time signature

of the musical piece under consideration (i.e., in 3
4

time, a beat corresponds to a

quarter note, while in 6
8

time, a beat corresponds to an eighth note).

Local tempo is reciprocally related to the time interval between two beats.

An important concept that specifies the way local tempo can be calculated, is the

principle of causality. That is, the exact calculation of local tempo must take place

after the occurence of the corresponding beat. This has important consequences

for real time applications, where tempo must be calculated instantaneously. Real

time applications cannot rely on non-causal decisions because that would require

knowledge about the future. An area of ongoing research is the question how

humans estimate future beat times (e.g., in a live performance of improvised music)

and how a priori knowledge about the rhythmical structure of a musical piece (e.g.,

in live performances of classical music) can be represented. Several researchers have

attacked the problem of causal beat tracking, for instance by proposing agent-based

architectures [34, 33, 26], or bayesian methods [24].
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timeBeat track 2

Beat track 1

Figure 2.1: Two beat tracks

A different approach relies on a priori knowledge of the complete score-performance

matching (see section 2.3.1). Such methods generally can be classified as being

non-causal, since for every point in time, the past and the future is known. In

this thesis, a non-causal tempo calculation model has been implemented, because

the main focus is on the analysis of performances (which implies the presence of a

complete performance).

In figure 2.1, two beat tracks are shown; while in the first track, the beats are

spaced regularly in time, the second track exposes a slight accelerando during the

first four beats.

An inter-onset interval (IOI) is the time interval between the onsets of two

notes.

IOIp(Nx, Ny) = onsetp(Ny)− onsetp(Nx), y > x (2.1)

IOIs(Nx, Ny) = onsets(Ny)− onsets(Nx), y > x (2.2)

where the functions onsetp(Nx) and onsets(Nx) return the played onset time and

the score onset time, respectively, of a given note Nx. Score time is in beats, while

played time is assumed to be in microseconds.

An inter-beat interval (IBI) refers to the inter-onset interval of two beats.

IBIp,m(x, y) = IOIp(Bx,m, By,m) (2.3)

IBIs,m(x, y) = IOIs(Bx,m, By,m) (2.4)

In this formalization, a beat is a specialization of a note, with the restriction that

its onset time is a multiple of the chosen metrical level.
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Local tempo (in beats per minute) can be calculated as

tempo(Bx,m) = 60000000.0× IBIs,m(x, x + 1)

IBIp,m(x, x + 1)
(2.5)

where B1 and B2 are two successive beats at the desired metrical level.

In case that a score note corresponding to a beat time does not exist (e.g.,

in the case of rests), played beat times are linearly interpolated from neighboring

beats.

onsetp(Bx,m) = onsetp(Bx−1,m)+IBIp,m(x−1, x+1)× IBIs,m(x− 1, x)

IBIs,m(x− 1, x + 1)
(2.6)

Articulation

Articulation is modeled as the amount of overlap of two successively played notes,

normalized by the theoretical duration of the first note when played in the current

local tempo.

overlap(Nx) = offsetp(Nx)− onsetp(Nx+1) (2.7)

articulation(Nx) =
overlap(Nx)

duration(N1)× 60000000.0
tempo(Bx,m)

(2.8)

In this model, a note is played in legato, if its articulation value is greater than

0. If it is smaller than 0, it is assumed to be staccato. As human performances

always bear a certain amount of imprecision, an articulation value of 0 is extremely

unlikely. It should be explicitly mentioned, that this model is only a very rough

approximation to articulation, as it is defined in musicology.

11



Chapter 3

Performance visualization

One picture is worth a thousand words.

Fred R. Barnard

3.1 Related work

Recently, music visualization has become an attractive field of research. While the

term music visualization has not been given a strict definition, this thesis will focus

on performance visualization, i.e. the visualization of expressive parameters that

shape the audible appearance of a performance. Schoonderwaldt et al. [45] have

explored the usability of visualization methods in an interactive feedback learning

system aimed at improving the expressive skills of performers. Hiraga et al. [38, 39,

44] have proposed an interactive performance visualization system, which allows

the user to explore performance data in a 3D visualization system. Dixon et al. [25]

have used interactive visualization of expressive performances in tempo/dynamics-

space to discover commonalities and dissimilarities in performances.

3.2 Direct visualization of sampled audio data

Audio data can be visualized in the time domain and/or the frequency domain.

The time domain representations (waveform views) of audio signals give clues

about the amplitude structure of the signal. However, to draw conclusions from

such a visualization, the analyzed signal has to be strictly band-limited and mono-

phonic, otherwise spectral masking effects make it very difficult to identify mean-

ingful patterns.
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Figure 3.1: A score of the beginning of a Chopin etude

Frequency domain visualizations are based on a signal transform and show the

spectral energy of the signal. A combination of time-based and frequency-based

is the STFT (Short Time Fourier Transform [50]) that can be visualized in a

spectrogram, that shows the amount of spectral energy in the sub-bands of the

audio data.

3.3 Visualization of symbolic data

Since this thesis focuses on piano music that has been recorded on a computer

monitored grand piano, symbolic information consists of note onset, note offset,

pitch, and MIDI velocity (which is related to the loudness of the played note).

3.3.1 Score

In classical western music, the score representation has become the most widespread

means for communicating musical intentions of composers. Therefore, a natural

choice for music visualization would be a score. A drawback of the score represen-

tation is that it isn’t well suited for the visualization of musical performance, since

its main intention is to transport the composer’s idea, rather than the performer’s

interpretation (see figure 3.1).

3.3.2 PianoRoll

A visualization metaphor that has gained widespread application is the PianoRoll

representation. A PianoRoll is basically a two-dimensional chart, where the x

axis denotes time, and the y axis pitch. Key depressions are represented as bars

with constant constant height and variable width (according to the duration of

13



Figure 3.2: A PianoRoll in Cubase TM

Figure 3.3: A 3D PianoRoll

the key press). As mentioned in the historical overview (see section 2.1), its origin

are player pianos, where paper rolls where used to record key depressions of a

piano player, in order to replay performances at a later point in time. Ingenious

researchers very soon discovered that those paper rolls - the PianoRolls - can be

used to analyze piano performances very precisely.

PianoRolls are a powerful visualization metaphor. Apart from the onset, offset,

and pitch information, articulation - which is related to the amount of overlap of

two successive notes - is clearly visible in PianoRolls. Figure 3.2 shows a PianoRoll

representation in the commercial software package Cubase [11].

An extension based on the PianoRoll representation are 3D PianoRolls (see

3.3), which have been developed in the course of this thesis. In a right-handed

coordinate system, time is denoted by the x-axis, pitch by the z-axis, and a third

data dimension, commonly loudness or a related measure, by the y axis.
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Figure 3.4: Tempo diagrams at the bar/beat/halfbeat/quarterbeat metrical levels
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Figure 3.5: A velocity curve at the beat level

3.3.3 Tempo diagram

Apart from the visualization of first-order features (note onset, note offset, MIDI

pitch, MIDI velocity), second-order features (tempo, articulation) also can be di-

rectly visualized. Multi-level tempo diagrams - which have been implemented in

this thesis - (see figure 3.4) show the local tempo at various metrical levels (bar,

beat, sub-beat). The smallest rhythmical unit in a musical piece determines the

bottom level of the piece. Starting from this level, the local tempo is calculated

at successively larger time windows, until the bar level is reached. An exten-

sion to higher structural levels (phrase-level) has been considered, but not been

implemented, due to lack of structural information above the bar level.

Formally, a tempo diagram can be defined as

tempogram(Bx) = tempo(Bx,m, Bx+1,m) (3.1)

for all possible values of the metrical level m.

3.3.4 Dynamics diagram

Similarly to multi-level tempo diagrams, a hierarchical visualization of dynamics

can be constructed (see figure 3.5). When working with MIDI data, loudness can

be only estimated from velocity values. This is not very accurate, since hammer

velocity and perceived loudness are not linearly related. The current approach

models dynamics by summing up MIDI velocities of all played notes in a given

time window. As in the tempo diagrams, the time windows are aligned with a

given metrical level.
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Figure 3.6: The performance worm

Formally, the dynamics measure is calculated as

dynamics(Bx,m) =

∑idp(Bx+1,m)

idp(Bx,m) velocity(Ny)

IBIs,m(x, x + 1)
(3.2)

where the function id(Bx,m) returns a position in the performance that corresponds

to the beat time Bx,m.

3.3.5 Performance worm

The performance worm is a metaphor that has been developed by Langner [40] and

implemented as a real time animation by Dixon et al. [25]. It represents tempo

and dynamics curves at the beat-level in an integrated way as trajectories in two-

dimensional tempo-loudness space. Tempo and dynamics points are convolved

with a gaussian kernel, and the resulting points are interpolated to form a smooth

curve (see figure 3.6). The width of the gaussian kernel determines the degree of

variation that is visible in the resulting trajectory.
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In this thesis, some of the here presented visual representations (PianoRoll,

PerformanceWork, tempo/dynamics curves) will be extended with special em-

phasis on interactivity. Moreover, the individual visual representations will be

integrated in an environment that links them with respect to their common pa-

rameters, which will enable the simultaneous analysis of performances in several

visual representations.
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Chapter 4

Requirement analysis

To accomplish great things, we must dream as well as act.

Anatole France (1844 - 1924)

This chapter describes the main requirements that were posed to the system

that has been designed.

4.1 Early considerations

The first fundamental question that arose was whether the system should be ca-

pable of real-time operation. An obvious realization was that such a thing as “real

time analysis” is rather unrealistic. Since analysis is the emphasis of this work,

the idea of an online visualization system has been abandoned in favor of an offline

system with more sophisticated analysis capabilities.

Another presumption of the author is, that a real-time system would have

biased the choice of the implementation environment (from Java towards C++) in

the first place, because an efficient multi-threaded message passing infrastructure

would have been essential to ensure reliable operation of such a system.

4.2 Functional requirements

In this section, the main functional requirements for an interactive performance

visualization and analysis system are reviewed.
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4.2.1 Data processing

Data input

As input to the system, data files that store the score-performance matching in-

formation, should be accepted. Data files in our own match file format, which

has been designed in the course of a large project headed by Gerhard Widmer,

store score data, performance data, and score-performance matching information.

Thus, the association between score notes and corresponding performed notes is

known.

In addition to match files, standard MIDI [13] files have to be loaded, since

match files don’t provide information about pedal controller values.

Data derivation

The expressive cues (tempo, articulation, dynamics), as described in 2.5, should

be computed and provided in a data structure for further usage in the application.

4.2.2 User interaction/visualization

In the following, the UI elements that should be implemented are defined.

A central controlling instrument

Similar to common MIDI sequencing applications, the system should offer an in-

terface that allows the user to

• playback the loaded performance

• change the current position in time

• modify the lower and upper bounds of the time range under investigation

• alter the overall MIDI tempo

The PianoRoll visualization

The system should provide a 3D PianoRoll view, that acts as a navigational el-

ement as well as a visualization of MIDI velocity, tempo, and articulation in the
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time/pitch/dynamics space. User interaction should occur directly in the 3D vi-

sualization via common drag&drop metaphors. The user interface should provide

basic operations, like translation, rotation and zooming.

Apart from the actual visualization of the played notes, primitives that desig-

nate the current position in time, as well as the lower and upper bounds of the

current time range in focus, should be provided.

Changes of the current time position that emanate from the user should be

propagated to the other views that show the same performance, but with respect

to different expressive parameters.

The PerformanceWorm visualization

As an extension to the PerformanceWorm, as described in section 3.3.5, a 3D

PerformanceWorm view should be integrated into the system. The basic user

interface of the worm view is modeled after the piano roll view, as described in

the last subsection, but the worm is embedded into time/tempo/dynamics space.

The primitive used in the worm visualization should be modeled as a continuous

space curve, in contradiction to Dixon’s implementation, where the worm is a

series of points in tempo/dynamics space. Additionally to the visualization of

tempo and dynamics (with respect to time), melody articulation should be shown

in this visualization by modulating the shape of the worm according to smoothed

articulation values.

Tempo and dynamics visualization

Tempo and dynamics should be visualized with the methods described in 3 (tempo

diagram and dynamics diagram). Additionally to the visualization of the perfor-

mance parameter at a given point in time, the lower and upper time range bounds

should be visualized in the diagrams by employing the fisheye view [29] concept.

Fisheye views apply a non-linear scaling function, that enlarges the area of interest,

to the visualized data.

The metrical level for the computation of performance parameters should be

adjustable by subdividing the bar level. For consistency, the following time sub-

division rule has been defined:

Subdivide according to

{
PFD(ML) if (Beat ≤ML ≤ Bar)

BS(ML) if (ML < Beat)
(4.1)
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where PFD(ML) refers to the prime factor decomposition and BS(ML) refers to

the binary subdivision of the metrical level ML.

Thus, for example, in a 3
4

time signature, the possible metrical levels would be
3
4
, 1

4
, 1

8
, 1

16
, in 6

8
time signature, it would be 6

8
, 3
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.

Pedal visualization

Pedal visualization should be based on a user interface similar to the on of the

tempo/dynamics diagrams. The two pedal types used in expressive piano per-

formance are sustain pedal, which elongates a played note to the duration of the

pedal pressure, and the damper pedal, which dampens played notes according to

the pressure of the pedal. It should be noted that usually MIDI synthesizers don’t

reproduce the pedal characteristics of real pianos (in fact, many synthesizers use a

cutoff value of 64 to divide pedal controller values (which can take values between

0 and 127) into a On (if value >= 64) and Off values (if value < 64). Thus, the

visualization that is provided does not actually correspond to the audible MIDI

reproduction of the performance.

Like the tempo/velocity diagrams, the pedal visualization should support the

fisheye concept, which supports the investigation of the microstructure of pedal

usage.

4.2.3 Linking

Linking of multiple views

Until now, several requirements to the individual views that should be offered to

the user have been defined. However, the key hypothesis of this thesis is that it

is possible to alleviate the work of researchers by linking those views with respect

to certain parameters. In the current implementation, this concept should be

demonstrated by linking the views via their most common parameter, which is

time. In such a setting, all views that are associated with a specific performance

show the same point in time, but with respect to the performance parameters that

are visualized in the individual views.

Additionally to the linking at the performance level (linking via performance/real

time), linking at the score level should be supported. That is, the system should

support the analysis of several performances of the same musical piece.
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4.3 Non-functional requirements

4.3.1 Portability

A key assertion was that the implemented system can be run on the three major

platforms (Linux, MacOS X, MS Windows).

4.3.2 Usability

The system should provide an intuitive user interface. Its functionality should be

modeled after workflows that are well-known to musicologists.

4.3.3 Performance

The system should perform seamlessly on common PC hardware (since laptop

computers are a target environment for the application, the performance bounds

are even tighter).
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Chapter 5

Design and implementation

Imagination is the beginning of creation. You imagine what you

desire, you will what you imagine and at last you create what you

will.

George Bernard Shaw (1856 - 1950)

5.1 Choice of the implementation environment

Initially, a combination of C++, OpenGL [9], the QT GUI toolkit [14], and Por-

tAudio [10] for MIDI I/O has been the favored environment. However, due to

certain circumstances, Java has been chosen. In particular, the author planned to

reuse existing code, and the application had to be cross-platform without recom-

pilation.

At development time, Java 1.4.2 was the version of the Java Development En-

vironment that was available for the target platforms (Linux, MacOS X, Windows

XP), and was therefore chosen for the implementation of the application. As a crit-

ical remark, the author would like to state that Java is definitely cross-plattform

in the sense that applications run on all platforms; however, Java doesn’t perform

equally well on all platforms. Especially on the MacOS X platform, Java suf-

fers from severe performance problems - unfortunately, the author is a passionate

Apple user. However, the situation is likely to improve in the future.

5.1.1 Hardware accelerated rendering in Java

Since a pure software rendering environment would not support real-time render-

ing of arbitrarily complex scenes, access to the native rendering capabilities of the
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graphics hardware was necessary. Java3D [4] provides hardware accelerated ren-

dering of scenegraphs (see section 5.1.2), however, due to the internal thread-safe

design of Java3D, rendering speed is not always satisfying. In particular, Java3D

allows several threads to modify the scenegraph structure. The library synchro-

nizes updates to to the scenegraph and rendering, which results in perceptible

performance overhead.

In theory, it would have been possible to access an OpenGL context via the

Java Native Interface [5], and perform the core rendering in native code, but

that would have introduced considerable implementation overhead. Luckily, Sun

now officially supports a Java interface to OpenGL (JOGL, [6]), which enables

direct access to hardware accelerated rendering from Java. Nevertheless, since

OpenGL is a hierarchical, state-oriented API, it does not fit well into the object-

oriented design of Java. Thus, on top of JOGL, several OpenSource projects which

implement a scenegraph interface similar to Java3D, have been introduced (Xith3D

[16], Aviatrix3D [12]). While providing the object-oriented advantages of Java3D,

thread-safety has been abandoned in favor of rendering speed. Thus, the developer

has to synchronize scenegraph updates and scenegraph traversal.

For the current implementation, the scenegraph library Xith3D has been cho-

sen. Although its developers follow a rather game-oriented approach (they put

strong emphasis on technologies that are heavily used by game developers, like

collision detection, level loaders, etc.), it is currently the most powerful Open-

Source Java scenegraph library.

5.1.2 Scenegraph basics

A scenegraph is a directed acyclic graph that organizes objects in a three-dimensional

universe in a hierarchical fashion. Figure 5.1 shows a simple scenegraph.

Each scene graph has a single VirtualUniverse. The VirtualUniverse object has

a list of Locale objects. A Locale object provides a reference point in the virtual

universe, being a landmark used to determine the location of visual objects in the

virtual universe.

A BranchGroup (the BG nodes) object is the root of a subgraph. There are

two different categories of scene subgraphs: the view branch graph and the content

branch graph. The content branch graph (the left one in the figure) specifies the

contents of the virtual universe - geometry, appearance, behavior, location, sound,

and lights. The view branch graph specifies the viewing parameters such as the
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Figure 5.1: A simple scenegraph

viewing location and direction. Together, the two branches specify much of the

work the renderer has to do.

A TransformGroup (TG nodes) specifies geometric transformations to be ap-

plied to all sub-objects. Basically, a TransformGroup encapsulates a transforma-

tion matrix, that is multiplied onto the internal OpenGL stack during traversal of

the scenegraph.

Leaf nodes specify the actual content of the universe. Shape3D nodes are

specific leaf nodes that have a certain appearance (material properties, texture)

and geometry data.

5.1.3 JavaSound

JavaSound is Java’s abstraction layer to audio and MIDI capabilities of the oper-

ating system. Since the JavaSound implementation in Java 1.4.2 is rather buggy

and provided very unstable MIDI playback, the Tritonus sequencer plug-in library

[15] has been used for MIDI sequencing.

5.2 Region of interest specification

As mentioned in section 5.3, visual information seeking requires the user to specify

a region of interest (ROI) in the data. This ROI specification can then be used to

link several visualizations of the data.
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Figure 5.2: Region of interest concept

In the current implementation, a ROI is specified in the time domain, by pro-

viding a lower and an upper time bound in the performance under investigation.

(Linked) views can then visually emphasize data items which lie between the lower

and the upper bound. User interfaces may or may not provide locator user inter-

face elements (widgets) to manipulate the actual ROI, therefore they are divided

into active and passive user interfaces.

Figure 5.2 visualizes the concept of the ROI.

5.3 Visual information seeking

Shneiderman [48] proposed the Visual Information Seeking Mantra as a general

guideline for the implementation and evaluation of interactive information visual-

ization systems.

The basic principles of Shneiderman’s proposal - first overview, then zoom&filter,

then details on demand - are reviewed and its application to the design of a user

interface for interactive visualization of piano performance is discussed.

5.3.1 Overview

Visualizations should provide an entry point to the information that is visualized.

By presenting an overview, the user should be able to get a grasp of the basic

structure of the data.

A common way to handle large amounts of highly detailed data is to increase

the space that is available in the visualization domain and to embed the data into
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this space. An intuitive way to do this is to raise the two-dimensional screen space

to three dimensions. By providing appropriate navigational capabilities - which

allow the user to change his or her viewpoint - it is easy to get an overview of the

basic data layout.

Zooming

The user should be able to zoom into regions of interest.

In a three-dimensional environment, zooming can be implemented with a change

of the viewpoint. If the user is interested in a certain feature, he or she just moves

close to it.

Since human beings are used to living in a three-dimensional world, the possi-

bilities for user interaction are less intuitive when the available space is restricted

to two dimensions. In this setting, distortion techniques like the fisheye view [29]

can be employed, where a subset of the available space is used to show the area of

interest enlarged, while the remaining space is used to show the rest of the data as

context information (in order to keep the amount of shown information constant,

the context information has to be scaled down).

Filtering

It should be possible to filter out uninteresting/unimportant data regions interac-

tively by making them invisible on demand, thereby making it easier for the user

to concentrate on important data items.

Details on demand

The user interface should provide a means to select a subset of the data and to show

detailed information about the data items present in that subset. This interaction

pattern can be exemplified by considering a PerformanceWorm visualization, which

provides overview information and points out potentially interesting performance

parts, and a tempo curve representation, that shows exact tempo values at user-

definable metrical levels of detail.

5.3.2 Focus+context

Shneiderman’s concepts can be effectively supported by the idea of focus+context

visualization [35, 1]. In focus+context visualization, data items of interest (the

focus) are visually emphasized, while the remaining data items are still shown as
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context information. This approach supports the user in perceiving the important

data characteristics while still keeping the contextual relations in mind.

A common concept is the degree-of-interest function [35], which assigns an

importance measure to each data item. The interactive designation of data items

that are of interest is commonly referred to as brushing [56], since the idea of

“painting” on the data region of interest seems to be very intuitive.

5.3.3 Multiple linked views

Linking of several views to propagate changes in one view to all other views showing

a different representation of the same data has been proven to be a powerful

concept in various application areas [23, 28].

5.3.4 Direct interaction widgets

Another proposal by Ben Shneiderman [49] are direct interaction widgets. The

term widget has its origins in the words window and gadget, and has been used since

the introduction of the X Window environment for arbitrary user interface elements

(Menus, Windows, Buttons, etc.). Direct interaction widgets are - in contradiction

to traditional widgets, which are based on the Look&Feel of the windowing system

used - directly embedded into the visualization domain, which makes it possible

for the user to manipulate them very intuitively with an appropriate input device

(e.g., a mouse, a touch screen, or even haptic devices like a force-feedback data

glove).

5.3.5 Application concept

The main subject of this thesis is the design and the implementation of a sys-

tem based on focus+context visualization and multiple linked views. There are

several implementations of systems making use of these techniques in the area of

visualization of abstract data (commonly referred to as information visualization,

InfoViz) and the visualization of medical and flow data (scientific visualization,

SciViz), e.g., the XmdvTool [41, 56], XGobi [52, 52], Spotfire [17], IVEE [18], and

SimVis [28, 32]. However, to the author’s knowledge, there doesn’t exist a system

that explicitly employs those techniques for the visualization of musical data.

In “classical” musicology, researchers would use a combination of several ap-

plications to analyze musical performance; a sequencing application (e.g., Apple

Logic Audio [2], Steinberg Cubase [11]) to record/edit and pinpoint sections of
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interest in a performance. Thereafter, a data analysis/visualization package (e.g.,

MATLAB [8]) would be employed to create plots of certain interesting parameters

for visual comparison.

This workflow should be effectively supported by the application. To meet this

requirement, the following main components have been identified.

File loader

The file loader is capable of loading match files, which map performances to cor-

responding scores, into the application’s internal data structures (see section 5.4).

Application core

The application core implements the handling of the score-performance matching

information and the linking of associated views via a centralized time base (see

section 5.5), that keeps track of the current region of interest.

View classes

View classes visualize the performance data and implement user interaction (see

section 5.6). Changes to the region of interest are communicated to the time base,

which propagates them to the other views.

Inter-application linking module

The inter-application linking modules is capable of propagating region of inter-

est/position updates emanating from user interactions over a TCP/IP (see section

5.5.1) to other instances of the application, which can either reside at the same

or at a remote machine. The goal of the inter-application linking facility is to

enable simultaneous analysis of several performances of the same score. Linking

of several performances can only occur on the score time level (whereas linking of

several visualizations of the same performances occurs on the performance time

level). Therefore, it is necessary to convert the local performance time to the cor-

responding score time before sending it to another application instance)

Figure 5.3 sketches the application architecture and the data flow between the

main components.
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Figure 5.3: Application architecture

5.4 File reader

The file reader is responsible for parsing files in a proprietary data format, that

stores score-performance matching information (match files). In addition to match

files, MIDI files, which provide pedal controller information, are loaded and the

corresponding data is fed into the internal data structures.

In figure 5.4, a short section from a match file is shown. The first part of a line

(before the dash sign) corresponds to a score note:

snote(Anchor,[NoteName,Modifier],Octave,Bar:Beat,Onset,

Duration,BeatNumber,DurationInBeats,ScoreAttributesList)

while the second part denotes a played note:
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...

snote(n1,[e,n],5,1:1,0,1/4,0,1.0,[arp])-note(1,[e,n],5,4831,5421,5421,60).

snote(n2,[g,n],5,1:1,0,1/4,0,1.0,[arp])-note(2,[g,n],5,4884,5402,5402,74).

snote(n3,[c,n],4,1:1,0,1/16,0,0.25,[])-note(3,[c,n],4,4954,5012,5012,65).

snote(n4,[c,n],6,1:1,0,1/4,0,1.0,[s,arp])-deletion.

snote(n5,[c,n],5,1:1,1/16,1/16,0.25,0.5,[])-note(5,[c,n],5,5097,5251,5251,67).

snote(n6,[b,n],4,1:1,2/16,1/16,0.5,0.75,[])-note(6,[b,n],4,5221,5269,5269,63).

snote(n7,[c,n],5,1:1,3/16,1/16,0.75,1.0,[])-note(7,[c,n],5,5346,5395,5395,56).

insertion-note(8,[c,n],4,5469,5680,5769,62).

...

Figure 5.4: A part of a match file

Score

Performance

n1 n2 n3 n4 n5 n6 n7 n8 n9

1 2 3 4 5 6 8 9 10

Figure 5.5: Score-performance matching

note(Number,[NoteName,Modifier],Octave,

Onset,Offset,AdjOffset,Velocity)

The data present in a match file is mapped to an internal data structure (see figure

5.5). Note that score note n4 does not have a corresponding played note (in the

match file, this situation is designated as deletion), whereas played note 8 does

not correspond to any score note (referred to as insertion in the match file).

5.5 Application core

The application core consists of data provider components, and it exposes a central

time base to all user interface components that are present in the system. The

time base maintains the current position in time as well as the lower and upper

bound of the region of interest, that is, the smallest and greatest value the current

position locator can take.
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Figure 5.7: Time base

The data provider components supply first order data (see section 2.5.1) as

well as second order features, as described in 2.5.2. First order data are stored

statically, whereas second order features are computed dynamically via specialized

calculator classes (see figure 5.6).

The time base encapsulates a MIDI sequencer. Performance data is converted

to a MIDI data stream and fed to the sequencer. The current time position is also

kept by the sequencer, therefore timing information is always accurate, whether

the sequencer is running or stopped.

To directly support the control of the region of interest, the current time po-

sition, playback state, and warping of the MIDI clock, a controller GUI has been

implemented (see figure 5.8).

5.5.1 Inter-application linking

The application core also exposes an external linking interface to other instances

of the application via TCP/IP (Java RMI [3]). The network linking architec-

ture is based on a simple publish-subscribe mechanism; the application instances
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Figure 5.8: Controller panel

subscribe for time changes, thus they act as observers [31], that are notified by

the server (the observable) whenever updates have been sent to the server by an

individual client.

In the actual implementation, one application has to start a server. Then

the application connects to this server. Other applications can also connect to

this server (under the precondition that they have already loaded a compatible

performance, i.e., one that is based on the same score data). From this point

on, all changes to the actual time position and the lower and upper bound are

propagated not only to the local views of each application, but also propagated

over the network to all applications that have logged into the server. Figure 5.9

sketches the distributed linking facility.

Conceptually, linking of two applications works like local linking. The current

locator position and the region of interest are sent to a server, which in turn prop-

agates updates to all subscribed clients. However, since the clients are associated

with different performances (of the same score), updates have to occur in score

time, which is given in beats, in contradiction to the local linking, which is done

with regard to performance time (in seconds). Therefore, clients have to translate

score time back into their own performance time after receipt of a time update.

Score time ts can be converted to performance time tp by linear interpolation:
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Figure 5.9: Distributed linking

P = findPrevs(ts)

N = findNexts(ts)

α =
onsets(ts − onsets(P ))

IOIs(P, N)

converts(ts) = onsetp(P ) + αIOIp(P, N) (5.1)

and performance time tp can be converted to score time ts:

P = findPrevp(tp)

N = findNextp(tp)

α =
onsetp(tp − onsetp(P ))

IOIp(P, N)

convertp(tp) = onsets(P ) + αIOIs(P, N) (5.2)
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Figure 5.10: 2D view architecture

5.6 Visualization views

This section describes the implementation of the visualization views present in the

system.

5.6.1 2D views

In the 2D views, a simplified concept has been followed. Since 2D visualizations

are comparably simple, no scenegraph structure has been used, incoming data is

rendered directly. Moreover, no direct interaction widgets have been implemented

(see figure 5.10).

5.6.2 3D views

3D views are responsible for visualization and user interaction.
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Figure 5.11: 3D View architecture

Lifecycle

In the current architecture, every view contains its own scenegraph, which is cre-

ated during initialization of the view (see figure 5.11). After that, a rendering

thread is started. The rendering thread loops over the following steps:

Algorithm 5.6.1: RenderLoop()

repeat
CheckInput()

UpdateScenegraph()

TraverseScenegraph()

until (exit = true )

5.6.3 Widget framework

To manipulate the bounds of the ROI, time plane widgets have been implemented

(see figure 5.12).

Time plane widgets have been implemented as direct interaction widgets. That

means that they can be directly manipulated in the 3D domain by dragging the

red cube at the bottom part of the plane with the mouse.

Besides the time plane widgets, there are two more interaction tools available.

First, by dragging the ground plane of the visualization, it can be translated along

the time dimension. Second, the viewpoint can be freely changed by common

rotate/translate interaction patterns. In combination, those techniques effectively

implement overview- and zoom-functionality.
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Figure 5.12: A time plane widget

Figure 5.13: Line tempo cues Figure 5.14: Color tempo cues

The basic widgets (time planes, ground plane) have been also extended to di-

rectly incorporate visualization elements. To display numerical parameters (exact

time values, tempo at a certain point in time), text labels have been attached to

the time planes.

The bottom plane has been also enriched visually. Two different types of

tempo cues, which sketch the beat/tempo structure of the performance, have been

implemented (see figure 5.6.3. In the line visualization, the distance of beats (at

a selectable metrical level) is visible, while the color visualization shows tempo

mapped to color values (blue corresponds to a low, while red corresponds to a

high relative tempo).

Alongside the widget elements, bar numbers are displayed.
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5.6.4 Implementation of the 3D widgets

All 3D widgets are implemented as nodes in the scene graph. Thus, user interaction

implies an update to the scenegraph structure.

Since the current implementation is based on traditional input and output

devices (mouse and screen), a mapping from two-dimensional input space to three-

dimensional world space has to be defined.

Picking is a well-known concept that enables users to select objects in a three-

dimensional world by pointing on its two-dimensional representation in screen

space. The actual conversion from 2D input coordinates to 3D world is done by

constructing a picking ray that emanates from the viewer and passes through the

point on the screen that has been designated by the input device, and testing the

objects in the world representation for intersection with this ray. However, this

has solved only a part of the problem.

The open question is how objects should react to user gestures. In two-

dimensional user interfaces, a drag is performed by the following steps:

Algorithm 5.6.2: Drag()

selected← true

repeat
coords← GetCoords()

MoveTo(object, coords)

selected← IsSelected()

until (selected = false )

It is easy to compute object positions during a drag operation, since the object is

flat and completely embedded in input space. However, in three-dimensional ob-

ject space this is not the case. It is therefore necessary to map the two-dimensional

screen input space to a plane, which is perpendicular to the picking ray (a drag

plane). If the intersection point of the picking ray with the picked object’s ge-

ometry and the plane are coplanar, new positions can be computed - like in the
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two-dimensional case - by intersection the picking ray with the plane. Thus, the

necessary steps to perform a drag operation in 3D are:

Algorithm 5.6.3: Drag3D()

selected← true

ray ← CreateRay()

objCoords← ObjectIntersect(ray)

plane← CreatePlane(objCoords, ray)

repeat
newCoords← PlaneIntersect(plane, ray)

MoveTo(object, newCoords)

selected← IsSelected()

until (selected = false )

The lastly described algorithms and components provide a framework for the vi-

sualizations that will be described in the following sections.

5.6.5 PianoRoll implementation

In this section, the piano roll implementation is described.

Visualization mapping

3D piano rolls are an extension to the classical 2D piano roll representation. In

3D piano rolls, time, pitch, and velocity are mapped to 3D space, as depicted in

figure 5.15.

Additionally to the spatial mapping, a color mapping has been established:

Legato notes are drawn in greenish tones, while staccato notes are drawn in reddish

colors. This gives the user a quick impression of the pianist’s articulation style.

Additional GUI components

Besides the direct interaction widgets, a set of traditional GUI components, al-

lowing the interactive selection of the beat cue mode, the metrical level used for

the beat cues, and default views, is provided (see figure 5.16). Additionally, it

is possible to enable/disable visualization of notes that are ahead of the actual

position of the current time locator widget, and a special mode forces the camera

to follow the actual position of the time locator widget (sticky camera).
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Figure 5.15: 3D piano roll

Figure 5.16: PianoRoll 2D GUI components

5.6.6 PerformanceWorm implementation

Visualization mapping

Similar to the PianoRoll, the PerformanceWorm visualization is integrated with

the framework that has been described in section 5.6.3. The worm is modeled as a

sweep curve in 3D-space, that interpolates discrete points in time/tempo/dynamics-

space (see figure 5.17).

Excursus: Space curves

As in the implementation by Dixon et al. [25], the PerformanceWorm is calcu-

lated by measuring tempo and dynamics at regularly spaced points in score time.

However, the calculation has been extended to work not only at the beat level, but
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Figure 5.17: The 3D PerformanceWorm visualization

also at the bar- and the sub-beat levels. Thus, it is possible to filter out variations

according to a desired level of detail.

The measured (tempo,dynamics) points are then converted to points in

three-dimensional (tempo,dynamics,performanceTime) space and interpo-

lated by fitting a third-order polynomial (a cardinal spline [36]) to the data. The

resulting continuous space curve is the center line of the PerformanceWorm.

A sweep representation [36] is constructed by moving a two-dimensional ge-

ometric shape along a sweep path. Sweep paths can be straight lines, periodic

curves, or even freely defined space curves. A sweep representation has been used

to model the visual appearance of the 3D PerformanceWorm by sweeping 2D

geometric primitives along a cardinal spline curve, which interpolates points in

(tempo,dynamics,performanceTime) space.

In order to determine the orientation of the shapes that make up the cross-

sections of the sweep, local reference frames - a tool from differential geometry

- are used. A common reference frame has been invented by Frenet. It is an

orthonormal system made up from the tangent, the normal, and the binormal

vector of the space curve.

Given a parametrized space curve f(s), the Frenet reference frame T,N,B is

made up of the tangent vector T(s), the principle normal vector N(s), and the

binormal vector B(s).
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T(s) = f ′(s)
|f ′(s)| (5.3)

B(s) = f ′(s)×f ′′(s)
|f ′(s)×f ′′(s)| (5.4)

N(s) = B(s)×T(s) (5.5)

However, this method is very sensitive to zeros in the second derivative, i.e., it

becomes unstable whenever the space curve approaches a straight line. In [21], a

more stable incremental calculation rule has been proposed:

T(sn+1) = T(sn+1)) (5.6)

N(sn+1) = B(s)×T(sn+1) (5.7)

B(sn+1) = T(sn+1)×N(sn+1) (5.8)

Thus, the binormal vector B(s) is used to calculate the reference frame at the

parameter value s + 1.

From the column vectors T, N, and B, a rotation matrix, that transforms

the cross-sections of the worm into the right orientation with respect to world

coordinates, can be computed:

F(s) = [T(s)N(s)B(s)] (5.9)

If f(s) represents a space curve and c(u) represents a two-dimensional cross-

section in a reference orientation (e.g., c(u) = [cx(u)cy(u)0]T ), the points lying on

the surface of the sweep curve w can be computed as

w(s, u) = F(s)c(u) (5.10)

If the cross-section c(u) is differentiable with respect to u, it is also easy to

calculate normal vectors for the individual points:

nw(s, u) = F(s)c′(u) (5.11)

By taking the above considerations into account, it is possible to construct

a connected set of points (a mesh) that approximates the ideal surface of a

sweep curve. This representation can then be rendered using a graphics API

like OpenGL.
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Figure 5.18: Articulation mapping with superelliptic cross-sections

An extension: The articulation PerformanceWorm

A visualization that shows articulation values by modulating the cross-sectional

shapes of the PerformanceWorm has been implemented. The idea was that legato

articulation style should be reflected with rather round shapes, while staccato

articulation should produce rather angular shapes. In search of an adequate cross-

sectional shape, the superellipse (see section 5.6.6) was chosen, since it provides the

ability to continuously morph from an angular to a round shape, which was nec-

essary to maintain the smooth appearance of the PerformanceWorm. Figure 5.18

shows how the cross-section of the worm modulates over time, thereby indicating

articulation style at that point in time.

Excursus: Superellipses

The superellipse [20] is a generalization of the ellipse. It can be defined in an

implicit equation as ∣∣∣∣ x

rx

∣∣∣∣2/s

+

∣∣∣∣ y

ry

∣∣∣∣2/s

= 1 (5.12)

When rx = ry, one may speak of “supercircles”. Then, variation of the shape

parameter s produces the shapes in figure 5.19.

Equation 5.12 can be rewritten in parametric form as:
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Figure 5.19: Supercircles for values from 0.5 to 3.0

x(u) = rx ∗ sgn(cos(u)) ∗ | cos(u)|s (5.13)

y(u) = ry ∗ sgn(sin(u)) ∗ | sin(u)|s (5.14)

z(u) = 0; (5.15)

The normals can be calculated as:

nx(u) = rx ∗ sgn(cos(u)) ∗ | cos(u)|2−s (5.16)

ny(u) = ry ∗ sgn(sin(u)) ∗ | sin(u)|2−s (5.17)

nz(u) = 0 (5.18)

5.6.7 Additional GUI components

Like the PianoRoll visualization, the PerformanceWorm provides additional 2D

UI elements (see figure 5.20). The worm shape can be adjusted by selecting the

desired metrical level and scaling values for tempo and dynamics values. Display

of the future can be turned on and off, the camera can be switched to sticky,

articulation values can be used to modulate the shape that makes up the cross

sections of the worm (see section 5.6.6). Furthermore, pre-defined viewpoints can

be selected.

5.6.8 Tempo curve, dynamics curve, and pedal curve

The tempo and dynamics curves have been implemented as multi-level, linked fo-

cus+context charts. The current focus is defined as the time span between the

lower and upper time bounds that can be adjusted in the 3D views or in the con-

troller panel. The focus+context visualization is achieved by applying a nonlinear
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Figure 5.20: PerformanceWorm 2D GUI components

distortion function to the data, thus creating a fisheye view-like effect, that mag-

nifies the focus region and scales down the context (the region outside the time

bounds). Figure 5.21 demonstrates the usage of the fisheye view technique to mag-

nify regions of interest in the tempo microstructure of a performance. Additionally

to the lower and upper time bounds, the current position in time is indicated by

a vertical line, and bar lines are denoted by dashed vertical lines.

The tempo/dynamics microstructure can be analyzed at different metrical levels

of detail by selecting an appropriate level in the menu (see figure 5.22).

Like the tempo and the dynamics visualizations, the pedal visualization offers a

fisheye view interface (see figure 5.23); however, no multi-level extension is pro-

vided, since the use of a multi-level expansion of pedal usage is generally question-

able.
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Figure 5.21: Focus+context in the tempo visualization

Figure 5.22: Selection of metrical level
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Figure 5.23: Focus+context visualization of pedal values
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Chapter 6

An interactive analysis session

I am among those who think that science has great beauty. A

scientist in his laboratory is not only a technician: he is also a child

placed before natural phenomena which impress him like a fairy tale.

Marie Curie (1867 - 1934)

In this chapter, a demonstration of the application’s main features is given.

Two performances of the first movement of Chopin’s Etude Op.10, No. 3 are ana-

lyzed with special emphasis on the tempo shaping and the timing microstructure.

6.1 Application setup

To show commonalities and differences in two performances of the same score,

the inter-application linking feature of the application is used in this session.

Thus, in a first step, two instances of the application are started. Then, the

files op10_3_1#09.match and op10_3_1#18.match are loaded.

Applications can be either linked locally or over a remotely over a network

connection. By using the Java Remote Method Invocation mechanism, it was

possible to implement inter-application communication over TCP/IP with minimal

implementation overhead.

After startup and file loading, the application console, which provides the user

with important messages about application state and errors, is presented to the

user (figure 6.1).

After loading the score-performance matching information, the two application

instances are linked. By linking the applications, updates to lower/upper score

time bounds (region of interest) and current score time position are shared among
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Figure 6.1: The application console

the instances. All associated views show the same time values, either by moving

the direct interaction widgets to the correct location, or, as in the case of the 2D

view, by adjusting the current focus region and positioning the time locator. Thus,

it is possible to directly compare performances interactively.

6.2 Overview

Piano roll visualizations are used to grasp the overall structure of the two per-

formances (6.2). Individual notes, visualized with block-like shapes, are enhanced

with color coding, showing the articulation style of the performer. Articulation

has been modeled as note overlap: Overlapping (legato) notes are greenish, while

non-overlapping (staccato) notes are colored in red tones. Only the melody voice

- which has been marked up in the input data - has been subject to articulation

calculation.

The lower and upper time bounds have been adjusted to bars 6 to 14, since

this region seems to be interesting with respect to the tempo shaping, which will

be subject to further investigation in the following steps.

Tempo values have been encoded as colors at the bottom plane of the piano roll.

Those tempo cues suggest that the performer B varies tempo more expressively

than performer A. Yellowish tones denote faster tempos, while blueish tones denote

slower tempos; performer A plays a slight ritardando at bar 7, while performer

B plays two strong ritardandi at bar 7 and bars 11 and 12. It is also possible

to change the metrical level that is used for the calculation of local tempi in the

piano roll. However, this doesn’t seem appropriate for an overview visualization;

tempo/timing microstructure can be visualized with high accuracy in the detail

visualization, that will be described in the following.
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Figure 6.2: Piano roll visualizations of two performances

6.3 Timing and dynamics microstructure

By opening tempo curve views from both instances, the timing (micro)structure

of the performances can be compared. In figure 6.3, which displays tempo values

averaged over bar durations, it can be observed, that the second pianist puts much

more emphasis on the shaping of the tempo structure. The tempo varies from 28

to 40 beats per minute in the second performance, while in the first performance,

it varies from 33 to 41 BPM.

A linked dynamics visualization 6.3 bares slight correlations between tempo and

dynamics in both performances (accelerando-crescendo and ritardando-decrescendo

patterns). This observation is well known in performance research, and it gives

evidence for a “the faster, the louder” rule. However, performers with advanced

expressive skills often handle tempo and dynamics more independently.
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Figure 6.3: Tempo curves of two performances at the bar level

Figure 6.4: Dynamics curves of two performances at the bar level

At the sixteenth note level (which is the lowest metrical level that appears in

the musical piece under investigation), the local variation of tempo values becomes

clearly visible. Figure 6.3 shows the timing microstructure of the two performances.

Here, it can be clearly observed, that performer A plays in a rather monotonic

style (with the exception of a strong ritardando in bar 7) while performer B puts

more emphasis on expressive timing.

Figure 6.5: Tempo curves of two performances at the sixteenth note level
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Figure 6.6: Tempo projection of two performances

6.4 Integrated tempo-dynamics visualization

The PerformanceWorm provides an integrated visualization of tempo and dynam-

ics in 3D space. By rotating the view, projections of the data can be investigated.

Figure 6.2 shows the evolution of tempo over time. Expressive tempo shaping

becomes apparent in performance B; apart from a ritardando in bars 6 and 7, the

visualization of performance A does not provide an indication of tempo variation.

As the PianoRoll visualization, the PerformanceWorm is intended to provide

an overview of the data, therefore it is not very convenient to construct it at met-

rical levels below the bar level. It would be possible to compute tempo/dynamics

points at lower levels and smooth it afterwards, but that would yield approxi-

mately identical results to the here implemented piecewise cubic interpolation of

tempo/dynamics values which have been computed at the bar level. However, this

problem has not been fully investigated and will be subject to future work.

When viewed from adequate viewpoints, the PerformanceWorm visualization

metaphor clearly shows characteristic expressive aspects of performances. In fig-

ure 6.4, one can clearly observe the counter-clockwise patterns in performance B,

which indicates highly expressive shaping of tempo and dynamics. In performance

A, tempo is relatively constant throughout the whole piece. Variations occur

primarily in dynamics, which results in a less smooth appearance of the Perfor-

manceWorm visualization. An interesting conclusion is, that visually appealing

worm shapes in general correspond to highly musical performances, while “unbal-

anced” PerformanceWorm shapes indicate rather “mechanic” performances that

do not sound very pleasant to the human ear.
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Figure 6.7: Worm visualizations of two performances

6.5 Audio-visual exploration

To fully support exploration in the visual as well as the audible domain, the ap-

plication supports synchronized animated visualization and playback of perfor-

mances. All visualization views have been extended with a user interface element

that lets the user locate the current position in time during exploration or playback.

Furthermore, lower and upper time bounds are interpreted as start/stop markers

for the sequencer that plays back the MIDI file representation of the performance.

Thus, a user can easily specify a region of interest and playback this region mul-

tiple times. To support audio-visual analysis of fast passages, the reference speed

of the MIDI sequencer can be also controlled, effectively providing a global time

warping of the performance. All parameters (current time position, lower/upper

bound, playback state, time warping) can be adjusted with a controller view (see

5, 5.8).
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Chapter 7

Conclusions and future work

The purpose of computing is insight, not numbers.

R.W.Hamming

In this thesis, a framework for interactive visualization of expressive piano

performances has been presented. The design of an easy-to-use graphical interface

and the support for common workflows in music performance research has been

emphasized. Well-know techniques from the field of information visualization, like

focus+context visualization, linked views, and interactive data selection have been

used to provide the user with abilities to specify and investigate regions of interest

in the performance data.

The application of the fisheye view concept to multilevel tempo-, dynamics-

, and pedal-diagrams has been proven as a very useful extension, enabling the

user to investigate performance data at various metrical levels. Focus+context

methods enable interactive zooming into regions of interest while still keeping the

contextual information in mind.

The extension of the well-known visualization metaphors PianoRoll and Per-

formanceWorm to 3D visualizations provides a visually compelling appearance.

However, to actually use those visualizations in performance research, thorough

evaluation and feedback by researchers would be necessary. An exciting project

would be the implementation of the 3D visualizations in immersive environments

like a back-projection table, that enables the user to interact with the direct in-

teraction widgets by pointing directly on them (without the use of a spatially

dislocated pointing device like a mouse).

MIDI data has been proven to be useful for the analysis of discrete features

(pitch, onset, offset), however, it is inferior when it comes to the representation of
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perceptual features (dynamics). Thus, an extension that handles audio and MIDI

data could substantially enhance the visualizations of dynamics.

The visual system is the most powerful sensory organ of humans, providing a

broadband data channel to the human brain, thus visualization methods promise

to be able to transport larger amounts of data than traditional data representa-

tion methods. Visual data mining - the explorative visual detection of previously

unseen structures in large amounts of data - is currently a hot topic in the visual-

ization and in the data mining community. Non-visual data mining methods aim

at answering a set of questions by executing pre-defined algorithms, which always

carry the danger of the introduction of methodological or model errors (in machine

learning speech, this is called a bias). Thus, machine learning methods are always

build on a limited amount of a priori knowledge.

Explorative methods aim at human-understandable data representations, that

allow humans to perform reasoning based on visual representations of the data,

without a priori knowledge of the data characteristics. The framework that has

been presented in this thesis fulfills basic requirements to a visual data mining

system - it supports multiple linked views, interactive data selection, a region-of-

interest concept, and new visualization methods can be easily integrated.
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