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ABSTRACT

We present a performance rendering system that uses a prob-
abilistic network to model dependencies between score and
performance. The score context of a note is used to pre-
dict the corresponding performance characteristics. Two ex-
tensions to the system are presented, which aim at incor-
porating the current performance context into the predic-
tion, which should result in more stable and consistent pre-
dictions. In particular we generalise the Viterbi-algorithm,
which works on discrete-state Hidden Markov Models, to
continuous distributions and use it to calculate the overall
most probable sequence of performance predictions. The
algorithms are evaluated and compared on two very large
data-sets of human piano performances: 13 complete Mozart
Sonatas and the complete works for solo piano by Chopin.

1 INTRODUCTION

Research on performance modelling and rendering constantly
faces the problem of evaluation. The RENCON-Project [2]
addresses this by providing a platform to present rendering
systems to a public audience and in the process rate and
judge the ’naturalness’ and expressiveness of the rendered
performances.

In the following we present YQX, the system that won all
three awards in the autonomous category of the RENCON08
that was hosted by the ICMPC in September 2008 1 . How-
ever successful, the system tended to sometimes produce
unstable, ’nervous’ sounding performances. In response to
this we present two extensions to the system that both aim
for smoother variations in the performance, while ideally
increasing the similarity to human performances. This is

1 Videos of YQX in action at RENCON08 can be found at http:
//www.cp.jku.at/projects/yqx. The test pieces were composed
specifically for the contest by Prof. Tadahiro Murao.
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in concordance with [7] who states that an average of sev-
eral performances can sound more aesthetically appealing
than the actual performances going into the average. To
achieve this we incorporate the performance context, infor-
mation about the performance currently rendered, into the
decisions. In contrast to the original system, which makes
ad hoc decisions based only on the score context at hand,
this adds a dynamic component.

In the first extension we use the additional information
locally: The prediction for the previous note influences the
current prediction according to the relations found in the
training data. In the second extension we use the additional
information to calculate the sequence of predictions that is
globally the most probable of all, given the probabilities
learned. In a series of experiments we test whether and to
what extent the renderings of both extensions are smoother
and more consistent than the renderings of the original sys-
tem.

2 RELATED WORK

Much research has been done on the modelling and synthe-
sis of expressive music. Since e.g. [10] gives a very de-
tailed overview, only a few more recent approaches shall be
mentioned here. Grindlay and Helmbold [1] use hierarchical
Hidden Markov Models to generate expressive tempo values
based on score characteristics. The different levels of hier-
archy are used to represent different phrases of the piece.
Due to the sophisticated learning algorithm and the intuitive
structure the learned model is easy to interpret. They report
good generalisation to new scores and positive evaluation in
listening tests. A more recent approach [8], also submitted
to RENCON08, uses the technique of Gaussian Processes
[6] to automatically learn a mapping between score and per-
formance characteristics. The model aims at predicting a
sequence of performance parameters that is optimal with re-
gard to the whole piece. Although the approach differs from
ours, the intended effect is similar to our second extension
to YQX. However the authors report a rather weak generali-



sation to new scores (perhaps due to the lack of high-quality
training data).

3 THE DATA

In Spring 1989, Nikita Magaloff, a Russian-Georgian pi-
anist famous for his Chopin interpretations, performed the
entire work of Chopin for solo piano that was published
during Chopin’s lifetime (op. 1 - op. 64) in six public ap-
pearances at the Vienna Konzerthaus. These concerts were
recorded with a Bösendorfer computer-controlled grand pi-
ano. The data set comprises over 150 pieces with over 320.000
performed notes. The MIDI data were manually matched
to symbolic scores derived from scanned sheet music. The
result is a unique corpus containing precisely measured per-
formance data for almost all notes Chopin has ever written
for solo piano.

The second data collection we use for the evaluation of
our models are 13 complete Mozart Piano Sonatas played
by the Viennese pianist R. Batik, likewise recorded on a
Bösendorfer computer piano and matched to symbolic scores.
This data set contains roughly 106.000 performed notes.

4 FEATURES AND TARGETS

We aim at learning a mapping between the score notes with
their local score context and the human performance in our
corpus. The prediction, the application of the learned map-
ping to unknown music, will be note-wise: each note of the
melody of the score will be assigned three numeric values,
the targets, determining the performance of the note. The
targets are the dimensions with which we describe a piano
performance: loudness, articulation and tempo. In the fol-
lowing instead of tempo we will actually use ioi ratio, which
is directly related. The characteristics of a note and its local
score context are described by the features extracted from
the score.

One of these features (IR-Arch, see below) is based on
E. Narmour’s Implication-Realization model of melodic ex-
pectation [5]. The theory constitutes an alternative to Schenke-
rian analysis, focused more on cognitive aspects of expecta-
tion than on musical analysis. The model analyses the mu-
sical progression of a piece and the expectations aroused in
the listener’s mind. One of the main claims of Narmour is
that sequences of intervals, harmonies etc. either produce
further expectations, a situation of non-closure, or not, a
situation of musical closure. Calculating the distance of a
melody note to the nearest point of closure provides clues
about whether a note represents a phrase boundary or not.

In our experiments we use the following (very small) set
of score features:

Pitch Interval The interval between a melody note and its
successor, measured in semitones.

Figure 1. The probabilistic network forming the YQX sys-
tem

Duration Ratio The logarithmic ratio between the score du-
ration of a melody note and its successor.

I-R Arch The distance from the nearest point of closure,
calculated from the Implication-Realization analysis.

The targets to be predicted are defined as follows:

IOI Ratio The logarithmic ratio of the length between two
successive played notes and the length between the
two corresponding score notes. A positive value indi-
cates that the time between two notes is longer than
notated, resulting in a decreased performance tempo.

Loudness The logarithmic ratio of the midi velocity of a
note and the mean velocity of the performance. Thus
positive values are louder than average, negative val-
ues softer.

Articulation This measures the amount of legato that is ap-
plied by a quotient of the gap between two successive
played notes and the notated gap between the two cor-
responding score notes.

5 YQX - THE SIMPLE MODEL

YQX models the dependencies between score features and
performance targets by means of a probabilistic network.
The network consists of several interacting nodes represent-
ing the different features and targets. Each node is associ-
ated with a probability distribution over the values of the
corresponding feature or target. A connection between two
nodes in the graph implies a conditioning of one feature or
target distribution on the other. Discrete score features (the
set of which we call Q) are associated with discrete proba-
bility tables, while continuous score features (X) are mod-
elled by gaussian distributions. The predicted performance
characteristics, the targets (Y), are continuously valued and
conditioned on the set of discrete and continuous features.
Figure 1 shows the general layout. The semantics is that of
a linear gaussian model [4]. This implies that the case of a
continuous distribution parenting a continuous distribution
is implemented by making the mean of the child distribu-
tion depend linearly on the value of the condition. In the



Figure 2. The network unfolded in time

following sets are marked with bold letters, vectors with an
arrow super-scribed over the variable name.

Mathematically speaking this models a target y as a con-
ditional distribution P (y|Q,X). Following the linear Gaus-
sian model this is a gaussian distribution N (y;µ, σ2) with
µ varying linearly with X: given Q = q and X = −→x 2

µ = dq +
−→
k q · −→x ,

where dq and
−→
k q are estimated from the data by least squares

linear regression. The average residual error of the regres-
sion is the σ2 of the distribution. In effect we collect all
instances in the data that share the same combination of dis-
crete feature values and build a joint probability distribution
of the continuous features and targets of those instances.
This implements the conditioning on the discrete features
Q. The linear dependency of the mean of the target distri-
bution on the values of the continuous features introduces
the conditioning on X. This constitutes the training phase
of the model.

The prediction of the performance is done note by note.
The score features of a note are entered into the network as
evidence −→x and q. The instantiation of the discrete features
selects the appropriate probability table and the parameteri-
sation dq and

−→
k q, the continuous features are used for cal-

culating the mean of the target distribution µ. This value is
used as the prediction for the specific note. As the targets are
independent we create model and prediction for each target
separately.

6 YQX - THE ENHANCED DYNAMIC MODEL

In the following we present two extensions of the system
that both introduce a dynamic component by incorporat-
ing the prediction made for the preceding score note into
the prediction of the current score note. Graphically this
corresponds to first unfolding the network in time and then
adding an arc from the target in time-step t− 1 to the target
in time-step t. Figure 2 shows the unfolded network. This
should lead to smoother and more consistent performances

2 We treat the real valued set of continuous score features like a vector

with less abrupt changes and ideally to an increase of the
overall prediction quality.

6.1 YQX with local maximisation

The first method is rather straight forward: We stick to the
linear gaussian model and treat the additional parent (the tar-
get yt−1) to the target yt like an additional feature that we
calculate from the performance data. In the training process
the joint distribution of the continuous features, the target yt
and the target in the previous time-step yt−1 given the dis-
crete score features, in mathematical termsP (yt−1, yt,

−→x t|qt),
is estimated. That slightly alters the conditional distribution
of the target yt to P (yt|Q,X, yt−1) = N (y;µ, σ2) with 3

µ = dq,yt−1 +
−→
k q,yt−1 · (−→x , yt−1).

The prediction phase is equally straight forward. Just as
in the simple model, the mean of P (yt|qt,−→x t, yt−1) is used
as the prediction for the score note in time-step t. This is the
value with the locally highest probability.

6.2 YQX with global maximisation

The second approach drops the concept of a linear gaus-
sian model completely. In the training phase the joint condi-
tional distributions P (yt−1, yt,

−→x t|qt) are estimated as be-
fore, but no linear regression parameters need to be calcu-
lated. The aim is to construct a sequence of predictions that
maximises the conditional probability of the performance
given the score features with respect to the complete history
of predictions made up to that point.

This is calculated in analogy to the Viterbi-decoding in
Hidden Markov Models (HMMs), where one tries to find
the best explanation for the observed data [3]. Apart from
the fact that the roles of evidence nodes and query nodes are
switched, the main conceptual difference is that we have to
deal with continuous instead of tabular distributions as used
in the standard HMM setup. This rules out the dynamic
programming algorithm usually applied but calls for an an-
alytical solution, which we present in the following. Like
the Viterbi algorithm the calculation is done in two steps: a
forward and a backward sweep. In the forward movement
the most probable target is calculated relative to the previ-
ous time-step. In the backward movement, knowing the fi-
nal point of the optimal path, the sequence of predictions is
found via backtracking through all time-steps.

6.2.1 The forward calculation

Let −→x t,qt be the sets of continuous and discrete features at
time t and N be the number of data points in piece. Let fur-
ther be αt the probability distribution over the target values

3 The construct (−→x , yt−1) is a concatenation of the vector −→x and the
value yt−1 leading to a new vector with a dimension dim(−→x ) + 1.



yt to conclude the optimal path from time-steps 1 to t − 1.
By means of a recursive formula α(yt) can be calculated for
all time-steps of the unfolded network 4 :

α(y1) = p(y1|x1,q1) (1)
α(yt) = max

yt−1∈R
[p(yt, yt−1|−→x t,qt) · α(yt−1)] (2)

This formula can be interpreted as follows: assuming that
we know for all the target values yt−1 in time-step t− 1 the
probability of being part of the optimal path, we can calcu-
late for each target value yt in time-step t the predecessor
that yields the highest probability for each specific yt of be-
ing on the optimal path. In the backward movement we will
start with the most probable final point of the path (the mean
of the last α) and then backtrack to the beginning by choos-
ing the best predecessors. As we cannot calculate the maxi-
mum over all yt−1 ∈ R directly, we need an analytical way
to calculate α(yt) from α(yt−1), which we will derive in the
following. We will also show that α(yt) remains gaussian
through all time-steps.

In the following we will use the distribution p(yt−1|yt,−→x t,qt)
∝N (yt−1;µt−1, σ

2
t−1) that can be calculated via condition-

ing from the joint conditional distribution p(yt−1, yt,
−→x t|qt)

that is estimated in the training of the model. For details as
to how this is done see e.g. [6]. As we will prove that the
α(yt) are gaussian, we will refer to the mean and variance
by µα,t and σ2

α,t.
The inductive definition of α (eq. 2) can be rewritten (the

conditioning on qt,−→x t is omitted for simplicity):

α(yt) = max
yt−1∈R

[p(yt−1|yt) · α(yt−1)] · p(yt) (3)

Assuming that α(yt−1) is gaussian, the result of the prod-
uct in brackets is gaussian N (yt−1;µ∗, σ2

∗) with a normal-
ising constant z, that also is gaussian in either of the means
of the factors:

σ2
∗ =

σ2
t−1 ∗ σ2

α,t−1

σ2
t−1 + σα,t−1

(4)

µ∗ = σ2
∗

(
µt−1

σ2
t−1

+
µα,t−1

σ2
α,t−1

)
(5)

z =
1√

2π|σ2
1−1 + σ2

α,t−1|
e

„
−(µt−1−µα,t−1)2

2(σ2
t−1+σ2

α,t−1)

«
(6)

Later on z will be multiplied with a gaussian distribution
over yt, hence z has to be transformed to a distribution over
the same variable. By finding a yt, such that the exponent
in eq. 6 equals 0, we can construct a proper µz and σ2

z .
Note that the variable µt−1 is dependent on yt due to the

4 We useα(yt) and p(yt) as an abbreviation ofα(Yt = yt) and p(Yt =
yt), respectively

conditioning of p(yt−1|yt) on yt.

z ∝ N (yt;µz, σ2
z) (7)

µz = −
σ2
t · (µt−1 + µα,t−1) + µt · σ2

t,t−1

σ2
t,t−1

(8)

σ2
z = σ2

t−1 + σ2
α,t−1 (9)

As z is independent of yt−1 it is not affected by the cal-
culation of the maximum:

α(yt) ∝ max
yt−1∈R

[N (yt−1;µ∗, σ2
∗)] · (10)

N (yt;µz, σ2
z) · p(yt)

=
1√

2πσ2
· N (yt;µz, σ2

z) · p(yt) (11)

The factor 1√
2πσ2 can be neglected as it does not affect

the parameters of the final distribution of α(yt). The distri-
bution P (yt) is gaussian by design and hence the remaining
product again results in a gaussian and a normalising con-
stant. As the means of both factores are fixed, the normalis-
ing constant this time is a single factor. The mean µα,t and
variance σ2

α,t of α(yt) follow:

α(yt) ∝ N (yt;µα,t, σ2
α,t) (12)

σα,t =
σ2
t · σ2

z

σ2
t + σ2

z

(13)

µα,t = σα,t

(
µz
σ2
z

+
µt
σ2
t

)
. (14)

Thus α(yt) is gaussian in yt, assuming α(yt−1) is gaus-
sian. Since α(y1) is gaussian, it follows that α(yt) is gaus-
sian for 1 ≤ t ≤ N . This equation shows that the mean
and variance of α(yt) can be computed recursively over the
mean µα,t−1 and variance σ2

α,t−1 of α(yt−1). The param-
eters of αy1 equal µy1 and σ2

y1 , which are the mean and
variance of the distribution p(y1|−→x 1,q1), and are estimated
from the data.

6.2.2 The backward calculation

Once the mean and variance µt, σ2
t of α(yt) are known for

1 ≤ t ≤ N , the optimal sequence y1, ..., yN can be calcu-
lated:

yN = µα,N (15)
yt−1 = argmax

yt−1

[
N (yt−1;µ∗, σ2

∗
]

(16)

= µ∗ (17)

6.3 The Problem of Flatness

Both extensions presented above are designed to eliminate
fast fluctuations from the predicted curves that, though small



in amplitude, lead to unmusical irregularities in the rendered
performances. The predicted curves are smooth, as we will
show below, and suitable for rendering a consistent and prin-
cipally acceptable performance. On the other hand, the flat-
ter a curve, the more mechanical and unexpressive will the
rendered performance sound. Based on the predictions we
have, we can now try to counter this and superimpose peaks
at selected points in the curves. To do this, a small set
of note-level rules, automatically extracted by Widmer [9]
from real performance data, is applied:

1. Staccato Rule: If two successive notes have the same
pitch and the second of the two is longer, then the first
note is played staccato.

2. Delay Next Rule: If two notes of the same length
are followed by a longer note, the last note is played
slightly delayed.

3. Trill Rule: If a trill is indicated in the score, the dura-
tion of the trill note is slightly prolonged.

7 RESULTS

We evaluated the algorithms on three data sets: The com-
plete Chopin piano works, played by N. Magaloff and 13
complete Mozart Piano Sonatas, played by R. Batik, which
were split into fast movements and slow movements. We
first present the results of three-fold crossvalidations on the
separate data sets and then take a detailed look at the predic-
tions for an exemplary Mozart Sonata, and at the effects of
the note-level rules. The quality of a predicted performance
is measured by Pearson’s correlation coefficient between the
predicted curve and the curve calculated from the training
data.

The crossvalidations, the results of which are given in ta-
ble 1, show lower correlations on the Chopin data, implying
that these data are much harder to predict than the Mozart
pieces. This is probably due to the much higher variation
that the limited information in the score features must ac-
count for. Testing with different sets of features shows that
the prediction quality of a particular target depends greatly
on the choice of features. As the goal of this paper is to com-
pare different methods for introducing performance context,
we restrict ourselves to one particular set of features and
thereby refrain from choosing the best set for each target.

On the Mozart Sonatas the globally optimised algorithm
shows a slight quality increase in predictive accuracy of the
ioi ratios (12.5% for the fast movements and 10.9% for the
slow movements) and loudness (10.0% and 7.0%). The
slight decrease in average correlation for the articulation
is not too surprising, as articulation is a rather local phe-
nomenon that does not profit from long-term dependencies.
For the Chopin data only a minor improvement in the pre-
diction of the ioi ratios was registered (2.5%). The loud-

Figure 3. IOI Ratios predicted for bars 31 - 54 of K. 280,
Mv.3

Figure 4. Effect of the note level rules applied to Chopin
Prelude op.28 No. 18, bars 12 - 17

ness in particular yielded low correlations. This is a prob-
lem we already encountered with the original YQX and that
will need to be analysed in more detail in the future.

Figure 3 shows the ioi ratio predictions for bars 31 to 54
in the third movement of the Mozart Sonata K. 280. The
original YQX algorithm exhibits small fluctuations that are
rather uncorrelated with the human performance. This re-
sults in small, but noticeable irregularities in the rendered
performance. In contrast to the human performance, which
is anything but a flat curve, those make the result sound in-
homogeneous instead of lively and natural. The globally
optimised YQX eliminates those while still showing some
of the peaks present in the human performance. The corre-
lation for the movement was improved by 57.2% from 0.29
(YQX) to 0.456 (YQX global).

Figure 4 shows the effect of the note level rules described
in section 6.3 on the ioi ratios predicted for Chopin Prelude
op.28 No.18, bars 12 - 17. Instances of the Delay Next Rule
occur at beats 24, 24.5, 26.5, 28.5 and 29.5, all of which co-
incide with great contrasts in Magaloff’s performance.



Mozart fast Mozart slow Chopin
ioi loud art ioi loud art ioi loud art

YQX 0.233 0.171 0.323 0.339 0.217 0.200 0.160 0.108 0.323
YQX local 0.238 0.160 0.296 0.345 0.196 0.161 0.169 0.053 0.313

YQX global 0.262 0.188 0.319 0.376 0.232 0.190 0.164 0.075 0.316

Table 1. Results of the crossvalidations. The values shown are correlations of the predicted performance with a human
performance

8 CONCLUSION

The automatic synthesis of expressive music is a very chal-
lenging task, especially regarding the evaluation of a sys-
tem, as one cannot really judge the aesthetic qualities of a
performance by numbers. An adequate measure of qual-
ity can only be provided by human judgement. The ren-
dering system we present passed this hurdle in the REN-
CON 2008 and therefore poses a baseline for our current
research. The two extensions we devised address the prob-
lem of unsteady performances by incorporating the current
performance context into the predictions. This proved to be
a tightrope walk: Finding a way to restrain the predicted
curves on the one hand but not losing (ideally increasing)
similarity to the original curves on the other hand.

Of the data we tested our algorithms on, the Mozart Sonat-
as form a simpler task than the Chopin data. We regis-
tered a considerable increase in similarity to the real perfor-
mances while achieving our goal of smoother predictions.
The Chopin data pose a harder nut to crack. Due to the
vast amount of highly heterogeneous data that has to be ac-
counted for by a very limited set of features we were not
able to increase the prediction quality significantly.

We consider this a work in progress. There is still a long
way to go to a machine-generated performance that sounds
profoundly musical. The main goal in the near future will
be to define a set of features that is capable of explaining
data with a high degree of interpretational freedom, like the
Chopin data. This will raise the problem of how to balance
the predicted performances against the peaks superimposed
by the note level rules. We also have to solve the problem of
big tempo or loudness differences within pieces that affect
the global mean, as this is the reference point for our predic-
tions. A promising approach is to calculate the ioi ratios and
loudness relative to a current mean and incorporate the mean
tempo and loudness curves into the prediction process. The
biggest challenge, however, will be to combine the model
with phrase level predictions, as e.g. are made in [11].
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