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ABSTRACT

In the expressive performance of music variation of tempo
plays a major role in shaping and structuring the piece.
We distinguish two aspects of tempo, the current tempo
and the timing of individual notes with respect to the cur-
rent tempo. Those two notions are influenced differently
by the characteristics of the performed score. The re-
lation between score and timing/tempo has many facets,
one of which we examine more closely in the following.
More precisely we provide experimental evidence for the
hypothesis that timing is more aptly modeled with score
characteristics from a small temporal score context, while
tempo modeling profits from a bigger temporal score con-
text.

I INTRODUCTION

The expressive performance of a piece of music is influ-
enced by a variety of factors depending on the epoch and
the score and in large parts on the performing musician
and their personal understanding of the piece. Two main
factors with which expression as well as musical structure
can be made audible are loudness and tempo.

The following experiments investigate the relation be-
tween score characteristics and tempo variation in a ex-
pressive performance. Tempo itself is considered to con-
sist of two different parts: the local tempo, and the timing.
Local tempo refers to the slowly changing current playing
tempo of the performance, used to shape e.g. phrases and
final ritardandi [8]. Individual notes, on the other hand,
though perceived as played in tempo are almost never
played on their exact nominal onsets. Although very small
deviations are beyond the means of both human percep-
tion and human motor control, the greater deviations are
used deliberately to accentuate single notes and create mi-
crostructure via anticipations and delays.

As the two notions of tempo differ mainly in tempo-
ral scope, it stands to reason that the decision whether to
increase or decrease the current tempo, respectively antici-
pate or delay an individual note are also based on informa-

tion from different scopes. More precisely the hypothesis
that shall be tested in the following is that the timing is re-
lated to local characteristics of the score while the tempo
relates to more global information.

To test the proposed hypothesis a machine learning al-
gorithm (a Support Vector Machine, for further informa-
tion see [1]) is trained to predict the tempo and timing
curves separately from score characteristics, or score fea-
tures. The features are calculated over small slices of the
score symmetrically surrounding the note they refer to.
The size of the slices, the feature scope, can be varied
from note-level to several beats. Hence the influence of the
scope on the predictability of the tempo and timing curve
and in consequence the suitability of the different scopes
for the two curves can be analysed. As a by-product the
experiments give insights into which kind of features pro-
vide general clues for modeling tempo and timing.

II RELATED WORK

Some work has been done on modeling performances
through score characteristics. As [11] contains an exten-
sive list of references only some of the more prominent
ones shall be mentioned here. In [10] Widmer presents a
machine learning algorithm that discovers rules governing
performance tempo and loudness from score information.
The score information used contains rhythmic as well as
melodic aspects which are then combined and searched by
a combination of sophisticated association rules and clus-
tering methods.

In [5] the authors present a rule system constructed by
an ”analysis-by-synthesis” approach, a process where a
professional musician evaluates tentative rules by judging
the produced output. The rules work on a local musical
context and describe changes to tempo, loudness and ar-
ticulation that make up the expressive performance. Most
rules describe very local, note-level contexts of indivdual
notes, few rules cover entire phrases.

A very recent approach to modeling tempo is [6],
where a score feature approach using Hierarchical Hid-



den Markov Models is used to learn expressive tempo and
loudness variations.

III DATA

The experiments are based on a recording of Mozart’s pi-
ano Sonata KV 279 on a Boesendorfer SE 290 Computer
Controlled Grand Piano by the Viennese pianist R. Batik.
All played pitches are contained in the data together with
their precise on- and offset, loudness and pedaling infor-
mation. After aligning the performance to a digital repre-
sentation of the score, all score information like nominal
onsets and durations, metrical position, rhythmic context
is available for all played notes. W. Goebl provided a four
level hierarchical phrase analysis of the piece.

IV TEMPO AND TIMING

The terms local tempo and timing refer to two different
notions. Local tempo relates to the current speed of the
performance measured in beats per minute; timing on the
other hand addresses the deviations of individual notes
from their expected onset with respect to the local tempo.
According to [4] smoothing the instantaneous tempo over
3 beats best fits the human perception of playing tempo.
From an analytical point of view this can be identified with
the low frequency content of the instantaneous note tempo
curve.

The smoothed tempo curve is calculated as follows:
first we determine an preliminary tempo value for each so-
prano note (which we assume to carry the melody) based
on inter beat intervals (IBIs). Let ibii denote the dura-
tion of a 1 beat window placed symmetrically around the
onset of the note si. The ibi-tempo is then calculated by
tibi
i = 60

ibii
, measured in beats per minute (bpm). By av-

eraging the tibi
i over a 3 beat window surrounding each

soprano note we get smoothed tempo values tsi for each
soprano note si.

Subtracting the low frequency content from the origi-
nal tempo curve, namely tioi

i calculated directly from the
inter onset intervals of the soprano notes, leaves a residual
containing only the high frequency changes. The ratio of
residual and local tempo represents the timing tti of each
note with respect to the current tempo: tti = tioi

i −ts
i

ts
i

. Fig-
ures 1 and 2 show the resulting curves.

This method has one definite drawback. It is a widely
accepted fact that phrase boundaries are often marked by
a decelerando followed by an accelerando with the phrase
boundary somewhere near the slowest point. As a con-
sequence the tempo undergoes a few very fast alterations
near this minimum. Although being part of the tempo vari-
ation rather than the timing of individual notes those fast

Figure 1. The instantaneous tempo and smoothed tempo
curves of KV279:1b

Figure 2. Local timing of KV279:1b, relative to the
smoothed tempo curve

changes are filtered out in the smoothing process, leav-
ing them in the timing curve. With prior knowledge of
the phrases this flaw could be eliminated by weighting the
points appropriately but this would limit tempo calculation
to problems where phrase information is at hand. Estimat-
ing the phrase boundaries beforehand e.g. with a dynamic
programming [3] approach could help to solve this prob-
lem.

V SCORE FEATURES

In the following the score features used for the prediction
task are described. The same features are used for both
tempo and timing prediction. Each of the features can be
evaluated at different levels of locality corresponding to



the size of the context window. Let si denote the i-th so-
prano note of the score, tni its nominal onset and Sx

i the set
of soprano notes within a window of x beats surrounding
si.

Melodic Progression (MP) This features describes the
evolution of the melody line by means of an aver-
age pitch. To induce temporal dependency the differ-
ence in average pitch between two consecutive con-
texts Sx

i−1 and Sx
i is is taken as feature value for si.

Rythmic Context (Rh) The rhythmic Context addresses
the current liveliness of the piece in the form of a
moving average of the nominal note duration over the
chosen scope.

Harmonic Consonance (H) This feature measures the
degree of harmonic consonance of a soprano note
with the most probable key for the beat in question.
The most probable key is decided by correlating the
encountered pitchclasses with key profiles extracted
from annotated corpora and assuming the key with
the highest correlation. This is a part of Temperley’s
key finding algorithm described in [9]. The conso-
nance of a soprano note is then measured by the prob-
ability of the note given the most probable key using
the same key profiles. The value of harmonic conso-
nance for a context is calculated by averaging over all
soprano notes within and then taking the difference to
the previous context to induce temporal relations.

Phrase Position (P1-P4) This features is based on a hi-
erarchical phrase analysis with four levels. Accord-
ingly each soprano note can be assigned four val-
ues, describing its position within the current phrase
of each phrase level. Following Todd’s approach in
[7] the positions are calculated relative to the begin-
ning of the phrase. Hence if sk

i,1 and sk
i,n are the so-

prano notes marking the beginning and the end, re-
spectively, of the i-th phrase in phrase level k and sj

a soprano note within the phrase the level k phrase
position phrk of sj is calculated as follows:

phrk(si) =
t(sj)− t(sk

i,1)
t(sk

i,n)− t(sk
i,1)

.

The phrase position is the only feature that can not be
made to depend on the scope due to the discrete and
not beat related nature of the four hierarchical levels.
It is obviuos however that the first phrase level is the
most local and the fourth phrase level the most global
of the four.

Metrical Strength (MS) The accents of the onsets define
the metrical structure of the piece, which implies a
metrical grid and a segmentation into measures. The
metrical grid of a measure consists of several levels
of beats, corresponding to different rhythmic values.
Every second or third beat of one level is a beat at the

immediately higher level. The duple or triple rela-
tionships between the levels define different time sig-
natures [9]. The amount of levels at a certain rhyth-
mic value corresponds to the metrical strength of the
position. For this feature we associate scope with the
resolution of the metrical grid. This seems justified as
the taking smallest scope of 0 leads to a grid distin-
guishing the smallest rhythmic unit occurring in the
piece, and so giving the most local information.The
grid with the lowest resolution, distinguishing only
between beats, is considered to be the widest scope
for this feature. Scopes greater than 1 will lead to the
same feature values.

Grace Context (G) The grace context is a binary feature
that indicates if there is a grace note immediately be-
fore the chosen context.

Rest Context (R) The Rest context specifies the length of
a rest immediately preceding the context or is zero if
there is no rest.

VI EXPERIMENT SETUP

As outlined above the main goal is to investigate relations
between feature scope and scope of tempo. We look for
experimental support for the hypothesis that the timing of
individual notes depends on local characteristics while the
current tempo relates to more global characteristics of the
score.

A Support Vector Machine (SVM) is used for the pre-
diction task, for reasons of high generalization as well as
quick training and few structural parameters. A gaussian
kernel with a kernel parameter of 0.35 was found to work
best. We used the SVM-KM implementation [2] for Mat-
lab in our experiments. The SVM was trained on the sec-
ond part of the piano sonata KV279:1 of Mozart (bars 39-
100, 639 soprano notes) and tested on the first part (bars
1-38, 393 soprano notes) of the same movement. The qual-
ity of prediction is measured by the correlation coefficient
between the output and the target curves of the test data.

The experiment is conducted as follows: tempo and
timing are both predicted with a scope gradually increas-
ing from 0 to 5 beats; for each scope each of the 2n pos-
sible feature combinations is tested for the training. In
this way the set of features producing the best results as
well as the highest prediction quality for the current scope
can be discovered. Furthermore although the phrase posi-
tions only provide four different levels of globality that can
not be related to the chosen scope, by using all available
phrase levels in the combination tests the same informa-
tion can be gathered.



Figure 3. Tempo prediction using only single phrasal fea-
tures

VII RESULTS

A Single Features

The first issue to be discussed is the predicting quality of
single features. The scope, i.e. the size of the score slices
measured in terms of beats, is increased from 0 to 5 by
steps of 0.5 beats. At each level of scope both curves are
predicted using only one feature at a time. Because the
phrase level features don’t depend on the scope parameter,
the results are shown in separate figures (Figures 3 and 4).
Figures 6 and 5 shows the remaining non-phrasal features.

On the timing data the most local phrase position,
phrase level 1 achieves a correlation coefficient of 0.3076
and clearly outperforms all other phrase levels by more
than 100%. On the tempo data phrase levels 2 and 3 per-
form best with the correlation of phrase level 3 (0.2182)
being slightly higher than for phrase level 2 (0.2103).

The picture of tempo and timing prediction with non-
phrasal features basically shows the same tendencies.
Only two features seem able to model the tempo, the
rhythmic context and the melodic progression which peak
at a window size of 3 beats (rhythmic context, correla-
tion of 0.5297) respectively 3.5 beats (melodic progres-
sion, correlation of 0.2264). The correlations on the tim-
ing data are generally lower which is clearly due to the
rough nature of the target curve. Very interesting is the
peak of the rhythmic context at a context size of 1, which
suggests that a small amount of information on the sur-
rounding notes clearly influences the timing of individual
notes.

Figure 4. Timing prediction using only single phrasal fea-
tures

Figure 5. Tempo prediction using only single, non-phrasal
features

Figure 6. Timing prediction using only single, non-
phrasal features.



B Best Feature Combinations

Testing all possible combinations of features also provides
the overall best feature set for each scope, which are pre-
sented in table B and shall be discussed briefly in the fol-
lowing. The corresponding correlations can be seen in
Figure 7. The prediction of timing generally produces
lower correlations than the prediction of tempo due to the
very fast changing nature of the target curve. As the re-
sults suggested a peak between 0.5 and 0.75 this additional
scope was also evaluated and produced a very clear peak
of 0.53367 for the prediction of the timing. The phrase
feature dominating the timing predictions is phrase level
1, describing the smallest possible phrase context. To-
gether with rhythmic context and metrical strength this
seems to build a good basis for modeling the timing. The
predicted curve using the best cconfiguration of features
(Rh,MS,G,P1) at a scope of 0.5 is depicted in 8. As can be
seen, although of course the peaks cannot be modeled to
their full extent, it models the main tendencies quite well
in large parts.

The best feature combinations for tempo prediction are
dominated by the rhythmic context and phrase levels 2
and 3. The prediction quality is lowest at a scope of 0
and peaks at a scope of 3.5 beats with a correlation of
0.60637. The predicted smoothed tempo (feature set: Rh,
MS,R,MP,P3) is shown in figure 9. Some of the phrases
are modeled very nicely, e.g. roughly note 180 - 260 and
280 - 360, while in the beginning the curves seem to be-
have quite contradictory in small parts. Generally though,
the main trends and tendencies are reflected quite well in
the predicted tempo.

Table 1. Best Combinations of Features
Scope Timing Tempo

0 Rh,R,P1 Rh,MS,H,P2
0.5 Rh,MS,G,P1 Rh,MS,H,P2

0.75 Rh,MS,G,P1 Rh,MS,P2
1 Rh,MS,G,P1 Rh,MS,P2

1.5 Rh,MS,R,H,P1 Rh,MS,P2
2 Rh,MS,R,H,P1 Rh,MS,P2

2.5 Rh,MS,P1 Rh,H,R,P3
3 Rh,MS,P1 Rh,H,R,P3

3.5 Rh,MS,R,G,P1 Rh,MS,R,MP,P3
4 Rh,MS,R,G,P1 Rh,H,G,R,P2

4.5 Rh,MS,G,P1 Rh,H,G,P3
5 Rh,MS,H,P1 Rh,MP,P3

VIII CONCLUSION

The intention of this research was to investigate the re-
lations between the tempo and timing variations in the
performance of a piece of music and the score. The hy-
pothesis was that the local timing can more aptly be de-

Figure 7. Prediction of tempo and timing, best results per
scope

Figure 8. Predicted timing with the best found configura-
tion (scope 0.5, Rh,MS,G,P1)

Figure 9. Predicted tempo with the best found configura-
tion (scope 3.5, Rh,MS,R,MP,P3)



scribed and modeled by local features while the tempo is
more strongly related to large scoped characteristics of the
score.

The experiments support this hypothesis. Especially
the rhythmic context and the phrase position show a strong
relation between the feature scope and the prediction qual-
ity. This can be valuable information when working with
feature based tempo models. The way we treat the tempo
information, splitting it into tempo and timing by low-pass
filtering, proved a very suitable way of making this data
more easily manageable and interpretable.
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