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Abstract. We present YQX, a probabilistic performance rendering system based on
Bayesian network theory. It models dependencies between score and performance and
predicts performance characteristics using information extracted from the score. We
discuss the basic system that won the Rendering Contest RENCON 2008 and then
present several extensions, two of which aim to incorporate the current performance
context into the prediction, resulting in more stable and consistent predictions. Further-
more, we describe the first steps towards a multilevel prediction model: Segmentation
of the work, decomposition of tempo trajectories, and combination of different predic-
tion models form the basis for a hierarchical prediction system. The algorithms are
evaluated and compared using two very large data sets of human piano performances:
13 complete Mozart sonatas and the complete works for solo piano by Chopin.

1 Introduction

Expressive Performance Modelling is the task of automatically generating an
expressive rendering of a music score such that the performance produced sounds
both musical and natural. This is done by first modelling the score or certain
structural and musical characteristics of it. Then the score model is projected
onto performance trajectories (for timing, dynamics, etc.) by a predictive model
typically learned from a large set of example performances.

Unlike models in, for instance, rule-based or case-based approaches, the prob-
abilistic performance model is regarded as a conditional multivariate probability
distribution. The models differ in the way the mapping between score and perfor-
mance model is achieved. Gaussian Processes [31], hierarchical Hidden Markov
Models [9], and Bayesian networks [37] are some of the techniques used.

Aside from the central problem of mapping the score to the performance, the
main challenges in the process are acquisition and annotation of suitable example
performances and the evaluation of the results. The data must encompass both
precise performance data and score information and must be sufficiently large
to be statistically representative. The level of precision required can not yet be
achieved through analysis of audio data, which leaves computer-controlled pi-
anos, such as the Bösendorfer CEUS or the Yamaha Disklavier, as the main data
source. For the training of our system we have available two datasets recorded on
such a device: 13 complete Mozart sonatas, performed by the Viennese pianist
R. Batik in 1990, and the complete works for solo piano by Chopin, performed
by the Russian pianist N. Magaloff in several live performances at the Vienna
Konzerthaus in 1989.

Judging expressivity in terms of “humanness” and “naturalness” is a highly
subjective task. The only scientific environment for comparing models according



to such criteria is the annual Performance Rendering Contest RENCON [11],
which offers a platform for presenting and evaluating, via listener ratings, state-
of-the-art performance modelling systems. Alternatively, rendering systems can
be evaluated automatically by measuring the similarity between rendered and
real performances of a piece. This, however, is problematic: in some situations
small differences may make the result sound unintuitive and completely unmu-
sical, whereas in other situations a rendering may be reasonable despite huge
differences.

In this chapter we discuss a prototypical performance rendering system and
its different stages: The basic system was entered successfully into the RENCON
2008 rendering contest. Several extensions have been developed, that shed light
on the problems and difficulties of probabilistic performance rendering.

2 Related Work

Systems can be compared in terms of two main components: the score repre-
sentation and the learning and prediction model. The way expressive directives
given in the score are rendered also makes a considerable difference in rendered
performances, but this is beyond the scope of this article.

Score models – i.e., representations of the music and its structure – may be
based either (i) on a sophisticated music theory such as Lerdahl and Jackendoff’s
Generative Theory of Tonal Music (GTTM) [15] and Narmour’s Implication-
Realization (IR) model [22] or (ii) simply on basic features capturing some local
score characteristics (see, e.g., [6, 9, 10, 31, 36]). Many current models work
with a combination of computationally inexpensive descriptive score features
and particular structural aspects – mainly phrasal information or simplifications
thereof – that are calculated via musicological models. Examples are the models
of Arcos and de Mántaras [1], who partially apply the GTTM, and our system
[5, 37], which implements parts of the IR model to approximate the phrasal
structure of the score.

Regarding the learning and prediction models used, three different categories
can be distinguished [38]: Case-based Reasoning (CBR), rule extraction, and
probabilistic approaches. Case-based approaches use a database of example per-
formances of music segments. New segments are played imitating stored ones
on the basis of a distance metric between score models. Prototypical case-based
performance models are SaxEx [1] and Kagurame Phase II [29]. In [32, 34], a
structurally similar system is described that is based on a hierarchical phrase
segmentation of the music score. The results are exceedingly good, but the ap-
proach is limited to small-scale experiments, as the problem of algorithmic phrase
detection is still not solved in a satisfactory way. Dorard et al. [2] used Kernel
methods to connect their score model to a corpus of performance worms, aiming
to reproduce the style of certain performers.

Rule-based systems use a matching process to map score features directly to
performance modifications. Widmer [36] developed an inductive rule learning al-
gorithm that automatically extracts performance rules from piano performances;



it discovered a small set of rules that cover a surprisingly large amount of expres-
sivity in the data. Our YQX system uses some of these rules in combination with
a probabilistic approach. Ramirez et al. [25] followed a similar approach using
inductive logic programming to learn performance rules for Jazz saxophone from
audio recordings. Perez et al. [24] used a similar technique on violin recordings.
The well-known KTH rule system was first introduced in [28] and has been ex-
tended in more than 20 years of research. A comprehensive description is given
in [6]. The Director Musices system is an implementation of the KTH system
that allows for expressive performance rendering of musical scores. The rules
in the system refer to low-level musical situations and theoretical concepts and
relate them to predictions of timing, dynamics, and articulation.

The performance model In probabilistic approaches, is regarded as a mul-
tivariate probability distribution onto which the score model is mapped. The
approaches differ in how the mapping is achieved. The Naist model [31] applies
Gaussian processes to fit a parametric output function to the training perfor-
mances. YQX [5] uses Bayesian network theory to model the interaction be-
tween score and performance. In addition, a small set of note-level rules adapted
from Widmer’s rule-based system are applied to further enhance musical qual-
ity. Grindlay and Helmbold first proposed a Hidden Markov Model (HMM) [10],
which was later extended to form a Hierarchical HMM [9], the advantage of
which is that phrase information is coded into the structure of the model. All
approaches mentioned above learn a monophonic performance model, predict
the melody voice of the piece and, in the rendering, synchronize the accompa-
niment according to the expressivity in the lead voice. Kim et al. [13] proposed
a model of three sub-models: local expressivity models for the two outer voices
(highest and lowest pitch of any given onset) and a harmony model for the inner
voices.

Mazzola follows a different concept, building on a complex mathematical
theory of musical structure [16]. The Rubato system [17, 19] is an implementation
of this model.

3 The Data

Probabilistic models are usually learned from large sets of example data. For
expressive performance modelling, the data must provide information on what
was played (score information) and how it was played (performance information).
The richness of available score information limits the level of sophistication of the
score model: the more score information is provided, the more detailed a score
model can be calculated. Piano performances can be described adequately by
three dimensions: tempo, loudness, and articulation (our current model ignores
pedalling). However, the information cannot be extracted from audio record-
ings at the necessary level of precision. This leaves a computer-controlled piano,
such as the Bösendorfer CEUS (or the earlier version, the Bösendorfer SE) or
a Yamaha Disklavier, as the only possible data source. This, of course, poses
further problems. The number of recordings made on such devices is very small.



Since such instruments are not normally used in recording studios or in public
performances, the majority of available recordings stem from a scientific envi-
ronment and do not feature world-class artists.

For our experiments we use two unique data collections: The Magaloff Cor-
pus and a collection of Mozart piano sonatas. In Spring 1989, Nikita Magaloff, a
Russian-Georgian pianist famous for his Chopin interpretations, performed the
entire work of Chopin for solo piano that was published during Chopin’s lifetime
(op. 1 - op. 64) in six public appearances at the Vienna Konzerthaus. Although
the technology was fairly new at the time (first prototype in 1983, official re-
lease 1985 [20]), all six concerts were played and recorded on a Bösendorfer
SE, precisely capturing every single keystroke and pedal movement. This was
probably the first time the Bösendorfer SE was used to such an extent. The
collected data is presumably the most comprehensive single-performer corpus
ever recorded. The data set comprises more than 150 pieces with over 320,000
performed notes. We scanned the sheet music of all pieces and transformed it
into machine-readable, symbolic scores in musicXML [27] format using the op-
tical music recognition software SharpEye1. The MIDI data from the recordings
were then matched semi-automatically to the symbolic scores. The result is a
completely annotated corpus containing precisely measured performance data
for almost all notes Chopin has ever written for solo piano2. Flossmann et. al [3]
provided a comprehensive overview of the corpus, its construction, and results
of initial exploratory studies of aspects of Magaloff’s performance style.

The second data collection we use for the evaluation of our models are 13
complete Mozart piano sonatas played by the Viennese pianist R. Batik, likewise
recorded on a Bösendorfer computer piano and matched to symbolic scores. This
data set contains roughly 104,000 performed notes. Table 1 shows an overview
of the two corpora.

Table 1. Overview of the data corpora.

Magaloff Corpus Mozart Corpus

Pieces/Movements 155 39
Score Notes 328,800 100,689
Performed Notes 335,542 104,497
Playing Time 10h 7m 52s 3h 57m 40s

4 Score and Performance Model

As indicated above, our rendering system is based on a score model compris-
ing simple score descriptors (the features) and a musicological model – the

1 see http://www.visiv.co.uk
2 Some of the posthumously published works were played as encores but have not yet

been included in the dataset



Implication-Realization model by Narmour. Performances are characterized in
three dimensions: tempo, loudness, and articulation. The way the performance
characteristics (the targets) are defined has a large impact on the quality of the
rendered pieces.

The prediction is done note by note for the melody voice of the piece only.
In the Mozart sonatas, we manually annotated the melody voice in all pieces.
In the case of the Chopin data, we assume that the highest pitch at any given
time is the melody voice of the piece. Clearly, this very simple heuristic does
not always hold true, but, in the case of Chopin, it is correct often enough to be
justifiable.

4.1 Performance targets

Tempo in musical performances usually refers to a combination of two aspects:
(1) the current tempo of a performance that evolves slowly and changes according
to ritardandi or accelerandi; (2) the tempo of individual notes, often referred to
as local timing, i.e., local deviations from the current tempo, used to emphasize
single notes through delay or anticipation. Tempo is often measured in absolute
beats per minute. We define the tempo relative to inter-onset-intervals (IOI),
i.e., the time between two successive notes. A performed IOI that is longer than
prescribed by the score and the current tempo implies a slowing down, while a
shorter IOI implies a speeding up. Thus, the description is independent of the
absolute tempo and focuses on changes.

Loudness is not measured in absolute terms but relative to the overall loud-
ness of the performance. Articulation describes the amount of legato between
two successive notes: The smaller the audible gap between two successive notes,
the more legato the first one becomes; the larger the gap, the more staccato.

Formally, we define the following performance targets:

Timing: The timing of a performance is measured in inter-onset intervals (IOIs),
i.e., the time between two successive notes. The IOI ratio of a note relates
the nominal score IOI and the performance IOI to the subsequent note. This
indicates whether the next onset occurred earlier or later than prescribed
by the score, and thus also whether the previous note was shortened or
lengthened. Let si and si+1 be two successive score notes, pi and pi+1 the
corresponding notes in the performance, ioisi,i+1 the score IOI, ioipi,i+1 the

performance IOI of the two notes3, ls the duration of the complete piece in
beats, and lp the length of the performance. The IOI ratio ioiRi of si is then
defined as:

ioiRi = log
ioipi,i+1 ∗ ls
ioisi,i+1 ∗ lp

.

Normalising both score and performance IOIs to fractions of the complete
score and performance makes this measure independent of the actual tempo.

3 The unit of the duration does not matter in this case, as it cancels out with the unit
of the complete duration of the performance



The logarithm is used to scale the values to a range symmetrical around zero,
where ioiRi > 0 indicates a prolonged IOI, i.e., a tempo slower than notated,
and ioiRi < 0 indicates a shortened IOI, i.e., a tempo faster than notated.

Split tempo and timing: It can be beneficial to divide the combined tempo
into current tempo and local timing. The current tempo is defined as the
lower frequency components of the IOI ratio time series. A simple way of
calculating the low-frequency component is to apply a windowed moving
average function to the curve. The residual is considered the local timing.
Let ioiRi be the IOI ratio of note si, and n ∈ N (usually 5 ≤ n ≤ 10), then
the current tempo cti of the note si is calculated by:

cti =
1

n

i+
(n−1)

2∑
j=i− (n−1)

2

ioiRj .

The residual high-frequency content can be considered as the local timing lti
and, in relation to the current tempo, indicates that a note is either played
faster or slower with respect to the current tempo:

lti =
ioiRj − cti

cti
.

Loudness: The loudness, also referred to as velocity4, of a performance is de-
scribed as the ratio between the loudness of a note and the mean loudness of
the performance. Again, the logarithm is used to scale the values to a range
symmetrical around zero, with values above 0 being louder than average and
those below 0 softer than average. Let mveli be the midi velocity of note si.
The loudness veli is then calculated by:

veli = log
mveli∑
jmvelj

.

Articulation: Articulation measures the amount of legato between two notes,
i.e., the ratio of the gap between them in a performance and the gap between
them in the score. Let ioisi,i+1 and ioipi,i+1 be the score and performance IOIs
between the successive notes si and si+1, and dursi and durpi the nominal
score duration and the played duration of si respectively. The articulation
arti of a note si is defined as

arti =
ioisi,i+1 ∗ dur

p
i

dursi ∗ ioi
p
i,i+1

.

4.2 Score features

As briefly mentioned above, there are basically two ways of modelling a musi-
cal score: using (i) sophisticated musicological models, such as implementations

4 Computer-controlled Pianos measure loudness by measuring the velocity at which a
hammer strikes a string.



of the GTTM [15] or Narmour’s Implication-Realization model [22], and (ii)
feature-based descriptors of the musical content. We use a combination of both
approaches.

Features fall into different categories, according to the musical content they
describe, : rhythmic, melodic, and harmonic descriptors.

Rhythmic features describe the relations of score durations of successive notes
and their rhythmic context. In our system, we use:

Duration Ratio: Let duri be the score duration of note si measured in
beats; the duration ratio durRi is then defined by:

durRi =
duri
duri+1

.

Rhythmic Context: The score durations of notes si−1, si, and si+1 are
sorted and assigned 3 different labels: short (s), neutral (n) and long (l).
When a rest immediately before (and/or after) si is longer than half the
duration of si−1 (and/or si+1), the respective labels are replaced with
(-). The rhythmic context rhyCi of si is then one of the 20 possible label
triplets5.

Melodic features describe the melodic content of the score, mainly pitch in-
tervals and contours.

Pitch interval: The interval to the next score note, measured in semi-tones.
The values are cut off at −13 and +13 so that all intervals greater than
one octave are treated identically.

Pitch contour: The series of pitch intervals is smoothed to determine the
distance of a score note to the next maximum or minimum pitch in
the melody. The smoothing is needed to avoid choosing a local mini-
mum/maximum.

IR features: One category of features is based on Narmour’s Implication–
Realization model of melodic expectation [22]. The theory constitutes
an alternative to Schenkerian analysis and is focused more on cognitive
aspects than on musical analysis. A short overview is given in section
4.3. We use the labels assigned to each melody note and the distance of
a melody note to the nearest point of closure as score features.

Harmonic Consonance: Harmonic features describe perceptual aspects re-
lated to melodic consonance. Using Temperley’s key profiles [30], we au-
tomatically determine the most likely local harmony given the pitches at a
particular onset. The consonance of a note within an estimated harmony is
judged using the key-profiles proposed by Krumhansl and Kessler [14].

5 In the case of two equally long durations, we only discriminate between long and
neutral. Hence, there are no situations labelled lsl, sls, ssl, etc., only lnl, nln, nnl,
etc., which reduces the number of combinations used.



Fig. 1. Examples of eight IR-structures

4.3 Narmour’s Implication-Realization (IR) model

The Implication- Realization (I-R) Model proposed by Narmour [22, 23] is a cog-
nitively motivated model of musical structure. It tries to describe explicitly the
patterns of listener expectation with respect to the continuation of the melody.
It applies the principles of Gestalt theory to melody perception, an approach
introduced by Meyer [18]. The model describes both the continuation implied
by particular melodic intervals and the extent to which this (expected) continu-
ation is actually realized by the following interval. Grachten [8] provides a short
introduction to the processes involved.

Two main principles of the theory concern the direction and size of melodic
intervals. (1) Small intervals imply an interval in the same registral direction, and
large intervals imply a change in registral direction. (2) A small interval implies
a following similarly-sized interval, and a large interval implies a smaller interval.
Based on these two principles, melodic patterns, or structures, can be identified
that either satisfy or violate the implications predicted by the principles. Figure 1
shows eight such structures: Process (P), Duplication(D), Intervallic Duplication
(ID), Intervallic Process (IP), Registral Process (VP), Reversal (R), Intervallic
Reversal (VR), and Registral Reversal (VR). The Process structure, for instance,
sastisfies both registral and intervallic implications. Intervallic Process satisfies
the intervallic difference principle, but violates the registral implication.

Another notion derived from the concept of implied expectations is closure,
which refers to situations in which listeners might expect a caesura. In the IR
model, closure can be evoked in several dimensions of the music: intervallic pro-
gression, metrical position, rhythm, and harmony. The accumulated degrees of
closure in each dimension constitute the perceived overall closure at any point
in the score. Occurrences of strong closure may coincide with a more commonly
used concept of closure in music theory that refers to the completion of a musical
entity, for example a phrase. Hence, calculating the distance of each note to the
nearest point of closure can provide a segmentation of a piece similar to phrasal
analysis.

5 YQX - The simple model

Our performance rendering system, called YQX, models the dependencies be-
tween score features and performance targets by means of a probabilistic net-
work. The network consists of several interacting nodes representing different
features and targets. Each node is associated with a probability distribution
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Fig. 2. The probabilistic network forming the YQX system

over the values of the corresponding feature or target. A connection between
two nodes in the graph implies a conditioning of one feature or target distri-
bution on the other. Discrete score features (the set of which we call Q) are
associated with discrete probability tables, while continuous score features (X)
are modelled by Gaussian distributions. The predicted performance character-
istics, the targets (Y), are continuously valued and conditioned on the set of
discrete and continuous features. Figure 2 shows the general layout. The se-
mantics is that of a linear Gaussian model [21]. This implies that the case of a
continuous distribution parenting a continuous distribution is implemented by
making the mean of the child distribution linearly dependant on the value of the
condition. Sets are hereafter denoted by bold letters, and vectors are indicated
by variables with superscribed arrows.

Mathematically speaking, a target y is modelled as a conditional distribution
P (y|Q,X). Following the linear Gaussian model, this is a Gaussian distribution
N (y;µ, σ2) with the mean µ varying linearly with X. Given specific values Q = q
and X = −→x (treating the real-valued set of continuous score features as a vector):

µ = dq +
−→
k q · −→x ,

where dq and
−→
k q are estimated from the data by least squares linear regression.

The average residual error of the regression is the variance σ2 of the distribution.
Thus, we collect all instances in the data that share the same combination of
discrete feature values and build a joint probability distribution of the continuous
features and targets of these instances. This implements the conditioning on the
discrete features Q. The linear dependency of the mean of the target distribution
on the values of the continuous features introduces the conditioning on X. This
constitutes the training phase of the model.

Performance prediction is done note by note. The score features of a note are
entered into the network as evidence −→x and q. The instantiation of the discrete
features determines the appropriate probability table and the parameterisation

dq and
−→
k q, and the continuous features are used to calculate the mean of the

target distribution µ. This value is used as the prediction for the specific note.



As the targets are independent, we create models and predictions for each target
separately.

5.1 Quantitative Evaluation of YQX

We evaluated the model using the datasets described in section 3: the com-
plete Chopin piano works played by N. Magaloff and 13 complete Mozart pi-
ano Sonatas played by R. Batik. The Mozart data were split into two different
datasets – fast movements and slow movements – as they might reflect different
interpretational concepts that would also be reproduced in the predictions. Thus,
we also show the results for the Chopin data for different categories (ballades,
nocturnes, etc.6). The quality of a predicted performance is measured by Pear-
son’s correlation coefficient between the predicted curve and the curve calculated
from the training data.

Table 2 shows the averaged results of threefold cross-validations over the
datasets. For each result we chose the combination of score features with the
best generalization on the test set. On the basis of predictions of local timing
and current tempo, the complete IOI curve can be reassembled by reversing the
splitting process described in 4.1. The column marked ioi (r) shows the best
combined predictions for the each dataset.

The first observation is that the Chopin data generally show lower predic-
tion quality, which implies that these data are much harder to predict than
the Mozart pieces. This is probably due to the much higher variation in the
performance characteristics for which the score features must account. Second,
the loudness curves seem harder to predict than the tempo curves, a problem
also observed in previous experiments with the model (see [5]) and [34]). Third,
articulation seems to be easier to predict than tempo (with the exception of
the slow Mozart movements and the Chopin scherzi, mazurkas, and waltzes, for
which articulation was harder to predict than tempo). The Chopin categories
show huge differences in the prediction quality for tempo (the scherzi being the
hardest to predict and the waltzes the easiest), suggesting that there are indeed
common interpretational characteristics within each category.

Predicting the IOI ratio by combining the predictions for local timing and
current tempo seems moderately successful. Only in some cases is the best com-
bined prediction better than the best prediction for the separate components.
It must be noted though, that the combined predictions used the same set of
features for both local timing and current tempo. Due to the extremely high
number of possible combinations involved, experiments to find the two feature
sets that lead to the best combined prediction have not yet been conducted.

6 The category Pieces comprises: Rondos (op.1, op.5, op.16), Variations op.12, Bolero
op.19, Impromptus (op.36, op.51), Tarantelle op.43, Allegro de Concert op. 46, Fan-
taisie op.49, Berceuse op.57, and Barcarolle op.61.



Table 2. Correlations between predicted and real performance for YQX. The targets
shown are: IOI Ratio (ioi), loudness (vel), articulation (art), local timing (timing),
current tempo (tempo), and reassembled IOI ratio (ioi (r))

ioi vel art timing tempo ioi (r)

Mozart fast 0.46 0.42 0.49 0.43 0.39 0.46
Mozart slow 0.48 0.41 0.39 0.48 0.35 0.48
Chopin 0.22 0.16 0.33 0.15 0.18 0.22

Ballades 0.33 0.17 0.40 0.12 0.37 0.33
Etudes 0.17 0.15 0.17 0.09 0.20 0.16
Mazurkas 0.23 0.14 0.29 0.20 0.13 0.23
Nocturnes 0.17 0.17 0.33 0.14 0.11 0.17
Pieces 0.20 0.15 0.35 0.17 0.14 0.19
Polonaises 0.20 0.16 0.32 0.13 0.14 0.20
Preludes 0.20 0.15 0.33 0.15 0.16 0.21
Scherzi 0.33 0.23 0.26 0.16 0.30 0.33
Sonatas 0.16 0.14 0.32 0.12 0.20 0.16
Waltzes 0.35 0.16 0.29 0.22 0.35 0.35

5.2 Qualitative Evaluation of YQX

All quantitative evaluations of performances face the same problem: Although
similarities between the predicted and the original curves can be measured to a
certain degree, there is no computational way of judging the aesthetic qualities,
or the degree of naturalness of expression, of a performance. The only adequate
measure of quality is human judgement. The annual rendering contest RENCON
[11] offers a scientific platform on which performance rendering systems can be
compared and rated by the audience.

The system YQX participated in RENCON08, which was hosted alongside
the ICMPC10 in Sapporo. Entrants to the “autonomous section” were required
to render two previously unknown pieces (composed specifically for the compe-
tition) without any audio feedback from the system and within the time frame
of one hour. Four contestants entered the autonomous section and competed for
three awards: The Rencon award was to be given to a winner selected by audi-
ence vote (both through web and on-site voting), the Rencon technical award
was to be given to the entrant judged most interesting from a technical point of
view, and finally the Rencon Murao Award was to be given to the entrant that
most impressed the composer Prof. T. Murao. YQX won all three prizes. While
this is no proof of the absolute quality of the model, it does give some evidence
that the model is able to capture and reproduce certain aesthetic qualities of
music performance. A video of YQX performing at RENCON08 can be seen at
http://www.cp.jku.at/projects/yqx/yqx_cvideo2.flv7.

7 The performed piece ’My Nocturne’, a piano piece in a Chopin-like style, was com-
posed by Prof. Tadahiro Murao specifically for the competition.



6 YQX - The enhanced dynamic model
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Fig. 3. The network unfolded in time

The predictions of the basic YQX system are note-wise; each prediction de-
pends only on the score features at that particular score onset. In a real perfor-
mance this is of course not the case: typically, changes in dynamics or tempo
evolve gradually. Clearly, this necessitates awareness of the surrounding expres-
sive context.

In this section we present two extensions to the system that both introduce a
dynamic component by incorporating the prediction made for the preceding score
note into the prediction of the current score note. Graphically, this corresponds
to first unfolding the network in time and then adding an arc from the target in
time-step t−1 to the target in time-step t. Figure 3 shows the unfolded network.
This should lead to smoother and more consistent performances with less abrupt
changes and, ideally, to an increase in the overall prediction quality.

The context-aware prediction can be done in two different ways: (1) Using
the previous target simply as an additional parent probability distribution to
the current target allows optimisation with respect to one preceding prediction.
Minimal adaptation has to be made to the algorithm (see 6.1). (2) Using an
adaptation of the Viterbi decoding in Hidden Markov Models results in a pre-
dicted series that is optimal with respect to the complete piece (see 6.2).

6.1 YQX with local maximisation

The first method is rather straightforward: We use the linear Gaussian model
and treat the additional parent (the target yt−1) to the target yt as an additional
feature that we calculate from the performance data. In the training process, the
joint distribution of the continuous features, the target yt, and the target in the
previous time-step yt−1 given the discrete score features – in mathematical terms
P (yt−1, yt,

−→x t|qt) – is estimated. This alters the conditional distribution of the



target yt to P (yt|Q,X, yt−1) = N (y;µ, σ2) with8

µ = dq,yt−1
+
−→
k q,yt−1

· (−→x , yt−1).

The prediction phase is equally straightforward. As in the simple model,
the mean of P (yt|qt,−→x t, yt−1) is used as the prediction for the score note in
time-step t. This is the value with the highest local probability.

6.2 YQX with global maximisation

The second approach drops the concept of a linear Gaussian model completely.
In the training phase the joint conditional distributions P (yt−1, yt,

−→x t|qt) are
estimated as before, but no linear regression parameters need to be calculated.
The aim is to construct a sequence of predictions that maximises the condi-
tional probability of the performance given the score features with respect to
the complete history of predictions made up to that point.

This is calculated in similarly to the Viterbi-decoding in Hidden Markov
Models, which tries to find the best explanation for the observed data [12]. Aside
from the fact that the roles of evidence nodes and query nodes are switched,
the main conceptual difference is that – unlike the HMM setup, which uses
tabular distributions – our approach must deal with continuous distributions.
This rules out the dynamic programming algorithm usually applied and calls for
an analytical solution, which we present below. As in the Viterbi algorithm, the
calculation is done in two steps: a forward and a backward sweep. In the forward
movement the most probable target is calculated relative to the previous time-
step. In the backward movement, knowing the final point of the optimal path,
the sequence of predictions is found by backtracking through all time-steps.

The forward calculation Let −→x t,qt be the sets of continuous and discrete
features at time t, and N be the number of data points in a piece. Further,
let αt be the probability distribution over the target values yt to conclude the
optimal path from time-steps 1 to t. By means of a recursive formula, α(yt) can
be calculated for all time-steps of the unfolded network9:

α(y1) = p(y1|x1,q1) (1)

α(yt) = max
yt−1∈R

[p(yt, yt−1|−→x t,qt) · α(yt−1)] (2)

This formula can be interpreted as follows: Assume that we know for all the
target values yt−1 in time step t− 1 the probability of being part of the optimal
path. Then we can calculate for each target value yt in time step t the predecessor
that yields the highest probability for each specific yt of being on the optimal
path. In the backward movement we start with the most probable final point

8 The construct (−→x , yt−1) is a concatenation of the vector−→x and the value yt−1 leading
to a new vector of dimension dim(−→x ) + 1.

9 We use α(yt) and p(yt) as abbreviations of α(Yt = yt) and p(Yt = yt), respectively.



of the path (the mean of the last α) and then backtrack to the beginning by
choosing the best predecessors. As we cannot calculate the maximum over all
yt−1 ∈ R directly, we need an analytical way of calculating α(yt) from α(yt−1),
which we derive below. We will also show that α(yt) remains Gaussian through
all time-steps. This is particularly important because we rely on the parametric
representation using mean and variance.

We hereafter use the distribution p(yt−1|yt,−→x t,qt) ∝ N (yt−1;µt−1, σ
2
t−1)

that can be calculated via conditioning from the joint conditional distribution
p(yt−1, yt,

−→x t|qt) that is estimated in the training of the model. For details as
to how this is done see, for instance, [26]. Anticipating our proof that the α(yt)
are Gaussian, we refer to the mean and variance as µα,t and σ2

α,t.
The inductive definition of α (eq. 2) can be rewritten (the conditioning on

qt,
−→x t is omitted for simplicity):

α(yt) = max
yt−1∈R

[p(yt−1|yt) · α(yt−1)] · p(yt) (3)

Assuming that α(yt−1) is Gaussian, the result of the product in brackets is
Gaussian N (yt−1;µ∗, σ

2
∗) with a normalising constant z, that is Gaussian in

both means of the factors:

σ2
∗ =

σ2
t−1 ∗ σ2

α,t−1

σ2
t−1 + σα,t−1

(4)

µ∗ = σ2
∗

(
µt−1
σ2
t−1

+
µα,t−1
σ2
α,t−1

)
(5)

z =
1√

2π|σ2
1−1 + σ2

α,t−1|
e

(
−(µt−1−µα,t−1)2

2(σ2
t−1

+σ2
α,t−1

)

)
(6)

Later, z is be multiplied with a Gaussian distribution over yt. Hence, z must
be transformed into a distribution over the same variable. By finding a yt such
that the exponent in eq. 6 equals 0 we can construct the mean µz and variance
σ2
z of z. Note that the variable µt−1 is dependent on yt due to the conditioning

of p(yt−1|yt) on yt.

z ∝ N (yt;µz, σ
2
z) (7)

µz = −
σ2
t · (µt−1 + µα,t−1) + µt · σ2

t,t−1

σ2
t,t−1

(8)

σ2
z = σ2

t−1 + σ2
α,t−1 (9)

As z is independent of yt−1, it is not affected by the calculation of the max-
imum:

α(yt) ∝ max
yt−1∈R

[N (yt−1;µ∗, σ
2
∗)] · (10)

N (yt;µz, σ
2
z) · p(yt)

=
1√

2πσ2
· N (yt;µz, σ

2
z) · p(yt) (11)



The factor 1√
2πσ2

can be neglected, as it does not affect the parameters of

the final distribution of α(yt). The distribution P (yt) is Gaussian by design,
and hence the remaining product again results in a Gaussian and a normalising
constant. As the means of both factors are fixed, the normalising constant in
this case is a single factor. The mean µα,t and variance σ2

α,t of α(yt) follow:

α(yt) ∝ N (yt;µα,t, σ
2
α,t) (12)

σα,t =
σ2
t · σ2

z

σ2
t + σ2

z

(13)

µα,t = σα,t

(
µz
σ2
z

+
µt
σ2
t

)
. (14)

Thus, α(yt) is Gaussian in yt, assuming that α(yt−1) is Gaussian. Since α(y1)
is Gaussian, it follows that α(yt) is Gaussian for 1 ≤ t ≤ N . This equation shows
that the mean and variance of α(yt) can be computed recursively using the mean
µα,t−1 and variance σ2

α,t−1 of α(yt−1). The parameters of αy1 equal µy1 and σ2
y1 ,

which are the mean and the variance of the distribution p(y1|−→x 1,q1), and are
estimated from the data.

The backward calculation Once the mean and variance µt, σ
2
t of α(yt) are

known for 1 ≤ t ≤ N , the optimal sequence y1, ..., yN can be calculated:

yN = µα,N (15)

yt−1 = argmax
yt−1

[
N (yt−1;µ∗, σ

2
∗
]

(16)

= µ∗ (17)

6.3 Quantitative Evaluation

We evaluated the enhanced algorithms using the same datasets as for the origi-
nal YQX model. As before, the correlation between predicted and human perfor-
mance serves as a measure of quality. Table 3 shows the results. For comparison
we also included the results for the original YQX model as presented in section
5.1.

For the Chopin data (both complete set and individual categories) the pre-
diction quality for tempo increases in all cases and, for loudness in some cases.
Prediction quality for articulation decreases compared to the original model for
both local and global optimisation. This is not surprising, because articulation
is a local phenomenon that does not benefit from long-term modelling. This
also holds for the timing, i.e., the local tempo component: in most cases local
or global optimisation does not improve the prediction quality. However, the
current tempo – the low frequency component of the IOI ratio – on the other
hand, does benefit from optimising the prediction globally with respect to the
performance context: the prediction quality is increased in all cases (the biggest
gain, almost 80%, is registered in the mazurkas).
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Fig. 4. IOI Ratios predicted for bars 31 - 54 of K. 280, Mv.3

Surprisingly, the Mozart data paint a different picture: None of the perfor-
mance targets (with the exception of the current tempo prediction for the fast
movements) benefits from including the performance context into the predic-
tions. Previous experiments [5] showed that, given a specific, fixed set of features,
local or global optimisation improves the prediction quality. However, given the
freedom of choosing the best set of features for each particular target (which is
the evaluation setup we chose here), feature sets exist with which the original,
simple model outperforms the enhanced versions in terms of average correlation.

6.4 Qualitative Evaluation

Figure 4 shows the IOI ratio predictions for bars 31 to 54 in the third movement
of Mozart Sonata K. 280. The original YQX algorithm exhibits small fluctuations
that are largely uncorrelated with the human performance. This results in small
but noticeable irregularities in the rendered performance. In contrast to the
human performance, which is far from yielding a flat curve, these make the
result sound inconsistent instead of lively and natural. The globally optimized
YQX eliminates them at the expense of flattening out some of the (musically
meaningful) spikes. The correlation for the movement was improved by 57.2%
from 0.29 (YQX) to 0.456 (YQX global).



Table 3. Correlations between predicted and real performance for the basic YQX and
the locally and globally optimized models. The targets shown are: IOI Ratio (ioi),
loudness (vel), articulation (art), local timing (timing), current tempo (tempo), and
reassembled IOI ratio (ioi (r)).

ioi vel art timing tempo ioi (r)

Mozart fast
yqx 0.46 0.42 0.49 0.43 0.39 0.46
local 0.44 0.41 0.48 0.42 0.43 0.44
global 0.39 0.37 0.37 0.32 0.43 0.39

Mozart slow
yqx 0.48 0.41 0.39 0.48 0.35 0.48
local 0.46 0.39 0.38 0.48 0.42 0.47
global 0.46 0.35 0.23 0.44 0.34 0.46

Chopin
yqx 0.22 0.16 0.33 0.15 0.18 0.22
local 0.21 0.14 0.14 0.15 0.16 0.20
global 0.23 0.15 0.14 0.16 0.22 0.23

Ballades
yqx 0.33 0.17 0.40 0.12 0.37 0.33
local 0.36 0.17 0.39 0.12 0.30 0.25
global 0.38 0.19 0.36 0.12 0.46 0.38

Etudes
yqx 0.17 0.15 0.17 0.09 0.20 0.16
local 0.14 0.14 0.16 0.09 0.17 0.14
global 0.22 0.15 0.15 0.13 0.26 0.23

Mazurkas
yqx 0.23 0.14 0.29 0.20 0.13 0.23
local 0.22 0.14 0.28 0.22 0.13 0.21
global 0.23 0.13 0.27 0.20 0.19 0.24

Nocturnes
yqx 0.17 0.17 0.33 0.14 0.11 0.17
local 0.17 0.11 0.32 0.14 0.17 0.16
global 0.20 0.18 0.31 0.15 0.14 0.18

Pieces
yqx 0.20 0.15 0.35 0.17 0.14 0.19
local 0.22 0.12 0.33 0.12 0.16 0.18
global 0.23 0.14 0.33 0.17 0.25 0.26

Polonaises
yqx 0.20 0.16 0.32 0.13 0.14 0.20
local 0.18 0.19 0.32 0.13 0.15 0.16
global 0.22 0.19 0.31 0.14 0.20 0.23

Preludes
yqx 0.20 0.15 0.33 0.15 0.16 0.21
local 0.19 0.11 0.31 0.15 0.22 0.18
global 0.22 0.14 0.28 0.14 0.23 0.22

Scherzi
yqx 0.33 0.23 0.26 0.16 0.30 0.33
local 0.34 0.18 0.26 0.15 0.32 0.31
global 0.34 0.18 0.25 0.13 0.36 0.34

Sonatas
yqx 0.16 0.14 0.32 0.12 0.20 0.16
local 0.17 0.12 0.32 0.12 0.18 0.15
global 0.21 0.15 0.32 0.09 0.28 0.22

Waltzes
yqx 0.35 0.16 0.29 0.22 0.35 0.35
local 0.37 0.18 0.28 0.23 0.31 0.14
global 0.38 0.24 0.29 0.22 0.44 0.38



7 Further extensions

7.1 Note-level Rules

In 2003, Widmer developed a rule extraction algorithm for musical expression
[36]. Applied to the Mozart sonatas, this resulted in a number of simple rules
suggesting expressive change under certain melodic or rhythmic circumstances.
Some of them were used with surprising consistency [35]. We use two of the rules
to further enhance the aesthetic qualities of the rendered preformances:

Staccato Rule: If two successive notes (not exceeding a certain duration) have
the same pitch, and the second of the two is longer, then the first note is
played staccato. In our implementation the predicted articulation is substi-
tuted with a fixed small value, usually around 0.15, which amounts to 15%
of the duration in the score in terms of the current performance tempo.

Delay Next Rule: If two notes of the same length are followed by a longer
note, the last note is played with a slight delay. The IOI ratio of the middle
note of a triplet satisfying the condition is calculated by taken the average
of the two preceding notes and adding a fixed amount.

Figure 5 shows the effect of the Delay Next rule on the IOI ratios predicted
for Chopin Prelude op.28 No.18, bars 12 - 17. Instances of the Delay Next rule
occur at beats 24, 24.5, 26.5, 28.5, and 29.5, all of which coincide with local delays
in Magaloff’s performance.

7.2 Combined Tempo and Timing Model

As discussed briefly in section 5.1, it seems reasonable to split the tempo curve
into a high- and a low-frequency component (the local and global tempo) predict
the two separately, and reassemble a tempo prediction from the two curves.
Considering the effect of global optimisation, as discussed in section 6.3, it also
seems appropriate to use the basic model for the local timing predictions and
the global optimisation algorithm for the current tempo predictions.

An obvious extension to the experiments already presented would be to use
different feature sets for the two components. In previous studies [4] we have
discovered a relation between the size of the context a feature describes and
its prediction quality for global and local tempo changes. The low-frequency
components of certain features that are calculated, for instance, via a windowed
moving average, are more suitable for global tempo prediction than are the
high-frequency components, and vice versa for local tempo changes. Preliminary
experiments that integrate this concept in the YQX algorithms show a slight
quality increase (around 5%) for the current tempo and, consequently, for the
combined IOI ratio target.

Also, global tempo trends in classical music are highly correlated with the
phrase structure of a piece. This fact is often discussed in research on models of
expressivity, such as the kinematic models introduced by Friberg and Sundberg
[7] and by Todd [33]. Instead of training a model on the tempo curve of a complete
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piece, a promising approach would thus be to train and predict phrases or phrase-
like segments of the score. A possible, albeit simplistic, implementation would
assume that tempo and loudness follow a n approximately parabolic trend –
soft and slow at the beginning and end of a phrase, faster and louder in the
middle. A performance would then be created by combining the local tempo
predictions made by a probabilistic model with a segment-wise parabolic global
tempo. To refine the segment-wise predictions of global tempo, any kind of more
sophisticated model could be used – a probabilistic system, a parametric model
or a case-based one (as in [34]).

7.3 Dynamic Bayesian Networks

Both models presented above, the Bayesian reasoning of YQX and the context-
aware dynamic YQX, are subclasses of the general complex of Bayesian networks.
The obvious generalization of the models is towards a Dynamic Bayesian Net-
work (DBN). The main differences lie in (1) the network layout and (2) the way
the model is trained.
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Fig. 6. Possible extension of YQX to a Dynamic Bayesian Network

We restricted our system to connections from score features to the perfor-
mance targets within one timestep. For the training of the model, all features
and targets had to be known in advance. Figure 6 shows what a DBN could
look like for expressive performance rendering. The basic idea is the same: the
performance targets are statistically dependent on the score features and the pre-
viously predicted target value. In addition, an intermediate layer (the discrete
node M in figure 6) can be added that does not represent any particular score
characteristic but instead functions as a clustering element for the discrete score
features Q1, . . . , Qn. This mitigates the sparsity problem caused by the huge
number of possible combinations of values for the discrete features. The values
of M are not known in advance, only the number of discrete states that the node
can be in is fixed. The conditional probability distribution of M given the par-
enting nodes Q1, . . . , Qn is estimated in the training process of the model. The
training itself is done by maximising the log-likelihood of the predicted values
with an expectation-maximisation algorithm [21].

However, the most significant difference is that, instead of feeding the com-
plete piece into the model at once, DBNs work on short segments. In theory, any
trend common to all or most of the segments should also be recognizable in the
predicted curves. Given a segmentation of musical works into musically mean-
ingful fragments – ideally phrases – the network should be able to reproduce
patterns of tempo or loudness that are common across phrases.

8 Conclusion

Automatic synthesis of expressive music is a very challenging task. Of particular
difficulty is the evaluation of a system, as one cannot judge the aesthetic quality
of a performance by numbers. The only adequate measure of quality is human
judgement. The rendering system presented, passed this test in the RENCON08
and therefore constitutes a baseline for our current research. The two extensions
we devised incorporate the current performance context into predictions. This
proved useful for reproducing longer term trends in the data at the expense of
local expressivity.



We consider this a work in progress. There is still a long way to go to a
machine-generated performance that sounds profoundly musical. The main goal
in the near future will be to further develop the idea of a multilevel system com-
prising several sub-models, each specialised on a different aspect of performance
– global trends and local events. Segmentation of the input pieces will also play
a significant role, as this reflects the inherently hierarchical structure of music
performance.
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10 Questions

1. Aside from the central problem of mapping the score to the performance,
what are the other main challenges in the process of generating a computer
performance?

2. Why is evaluating automatically by measuring the similarity between ren-
dered and real performances of a piece problematic?

3. What are the two methods on which score models (i.e., representations of
the music and its structure) may be based?

4. What three different categories can be distinguished regarding the learning
and prediction models used in CSEMPs?

5. In probabilistic approaches how is the performance model regarded?

6. For data used in developing an expressive performance statistical model, the
data must provide information on what two elements?

7. What musicological model was selected for the YQX system?

8. In what three dimensions are performances characterized in YQX?

9. What is the difference in implementation between the local and the global
maximization approaches in YQX?

10. What is the difference in results between the local and the global maximiza-
tion approaches in YQX?
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20. Moog, R.A., Rhea, T.L.: Evolution of the keyboard interface: The Boe-
sendorfer 290 SE recording piano and the moog multiply-touch-sensitive
keyboards. Computer Music Journal 14(2), 52–60 (1990)

21. Murphy, K.: Dynamic Bayesian Networks: Presentation, Inference and
Learning. Ph.D. thesis, University of California, Berkeley (2002)

22. Narmour, E.: The Analysis and Cognition of Basic Melodic Structures: The
Implication-Realization Model. University of Chicago Press, Chicago (1990)

23. Narmour, E.: The Analysis and Cognition of Melodic Complexity: The
Implication-Realization Model. University of Chicago Press, Chicago (1992)

24. Perez, A., Maestre, E., Ramirez, R., Kersten, S.: Expressive irish fiddle per-
formance model informed with bowing. In: Proceedings of the International
Computer Music Conference 2008 (ICMC ’08). Belfast, Northern Ireland
(2008)
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