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ABSTRACT

In audio based music similarity, a well known effect is
the existence of hubs, i.e. songs which appear similar to
many other songs without showing any meaningful per-
ceptual similarity. We verify that this effect also exists in
very large databases (> 250000 songs) and that it even
gets worse with growing size of databases. By combining
different aspects of audio similarity we are able to reduce
the hub problem while at the same time maintaining a high
overall quality of audio similarity.

1. INTRODUCTION

One of the central goals in music information retrieval
is the computation of audio similarity. Proper modeling
of audio similarity enables a whole range of applications:
genre classification, play list generation, music recommen-
dation, etc. The de facto standard approach to computa-
tion of audio similarity is timbre similarity based on para-
meterization of audio using Mel Frequency Cepstrum Co-
efficients (MFCCs) plus Gaussian mixtures as statistical
modeling (see Section 3.1). However, it is also an es-
tablished fact that this approach suffers from the so-called
hub problem [3]: songs which are, according to the audio
similarity function, similar to very many other songs with-
out showing any meaningful perceptual similarity to them.
The hub problem of course interferes with all applications
of audio similarity: hub songs keep appearing unwontedly
often in recommendation lists and play lists, they degrade
genre classification performance, etc.

Although the phenomenon of hubs is not yet fully un-
derstood, a number of results already exist. Aucouturier
and Pachet [1] established that hubs are distributed along
a scale-free distribution, i.e. non-hub songs are extremely
common and large hubs are extremely rare. This is true
for MFCCs modelled with different kinds of Gaussian
mixtures as well as Hidden Markov Models, irrespective
whether parametric Kullback-Leibler divergence or non-
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parametric histograms plus Euclidean distances are used
for computation of similarity. But is also true that hubness
is not the property of a song per se since non-parametric
and parametric approaches produce very different hubs. It
has also been noted that audio recorded from urban sound-
scapes, different from polyphonic music, does not produce
hubs [2] since its spectral content seems to be more ho-
mogeneous and therefore probably easier to model. Di-
rect interference with the Gaussian models during or after
learning has also been tried (e.g. homogenization of model
variances) although with mixed results. Whereas some au-
thors report an increase in hubness [1], others observed the
opposite [5]. Using a Hierarchical Dirichlet Process in-
stead of Gaussians for modeling MFCCs seems to avoid
the hub problem altogether [6].

Our contribution to the understanding of the hub prob-
lem is threefold: (i) since all results on the hub problem so
far were achieved on rather small data sets (from ∼ 100
to ∼ 15000 songs), we first establish that the problem also
exists in very large data sets (> 250000 songs); (ii) we
show that a non-timbre based parameterization is not prone
to hubness; (iii) finally we show how combining timbre
based audio similarity with other aspects of audio similar-
ity is able to reduce the hub problem while maintaining a
high overall quality of audio similarity.

2. DATA

2.1 Web shop data

For our experiments we used a data set D(ALL) of SW =
254398 song excerpts (30 seconds) from a popular web
shop selling music. The freely available preview song ex-
cerpts were obtained with an automated web-crawl. All
meta information (artist name, album title, song title, gen-
res) is parsed automatically from the hmtl-code. The ex-
cerpts are from U = 18386 albums from A = 1700 artists.
From the 280 existing different hierarchical genres, only
the GW = 22 general ones on top of the hierarchy are
being kept for further analysis (e.g. “Pop/General” is kept
but not “Pop/Vocal Pop”). The names of the genres plus
percentages of songs belonging to each of the genres are
given in Table 1. Please note that every song is allowed
to belong to more than one genre, hence the percentages
in Table 1 add up to more than 100%. The genre informa-
tion is identical for all songs on an album. The numbers of



genre labels per albums range from 1 to 8. Our database
was set up so that every artist contributes between 6 to 29
albums.

To study the influence of the size of the database on re-
sults, we created random non-overlapping splits of the en-
tire data set: D(1/2) - two data sets with mean number of
song excerpts = 127199, D(1/20) - twenty data sets with
mean number of songs excerpts = 12719.9, D(1/100) -
one hundred data sets with mean number of songs excerpts
= 2543.98. An artist with all their albums is always a
member of a single data set.

Pop Classical Broadway
49.79 12.89 7.45

Soundtracks Christian/Gospel New Age
1.00 10.20 2.48

Miscellaneous Opera/Vocal Alternative Rock
6.11 3.24 27.13
Rock Rap/Hip-Hop R&B
51.78 0.98 4.26

Hard Rock/Metal Classic Rock Country
15.85 15.95 4.07
Jazz Children’s Music International
6.98 7.78 9.69

Latin Music Folk Dance & DJ
0.54 11.18 5.24

Blues
11.24

Table 1. Percentages of songs belonging to the 22 genres
with multiple membership allowed for the web shop data.

2.2 Music portal data

We also used a smaller data base comprised of the mu-
sic of an Austrian music portal. The FM4 Soundpark is
an internet platform 1 of the Austrian public radio station
FM4. This internet platform allows artists to present their
music free of any cost in the WWW. All interested par-
ties can download this music free of any charge. This mu-
sic collection contains about 10000 songs and is organized
in a rather coarse genre taxonomy. The artists themselves
choose which of the GM = 6 genre labels “Hip Hop, Reg-
gae, Funk, Electronic, Pop and Rock” best describe their
music. The artists are allowed to choose one or two of the
genre labels. We use a data base of SM = 7665 songs for
our experiments. Number of songs and percentages across
genres are given in Table 2. Please note that every song is
allowed to belong to more than one genre, hence the per-
centages in Table 2 add up to more than 100%.

1 http://fm4.orf.at/soundpark

HiHo Regg Funk Elec Pop Rock
15.34 4.64 21.87 46.25 34.39 44.03

Table 2. Percentages of songs belonging to genres with
multiple membership allowed for the music portal data.
Genres are Hip Hop, Reggae, Funk, Electronic, Pop and
Rock.

3. METHODS

We compare two approaches based on different parame-
terizations of the data. Whereas Mel Frequency Cepstrum
Coefficients (MFCCs) are a quite direct representation of
the spectral information of a signal and therefore of the
specific “sound” or “timbre” of a song, Fluctuation Pat-
terns (FPs) are a more abstract kind of feature describing
the amplitude modulation of the loudness per frequency
band.

3.1 Mel Frequency Cepstrum Coefficients and Single
Gaussians (G1)

We use the following approach to compute music similar-
ity based on spectral similarity. For a given music collec-
tion of songs, it consists of the following steps:

1. for each song, compute MFCCs for short overlap-
ping frames

2. train a single Gaussian (G1) to model each of the
songs

3. compute a distance matrix MG1 between all songs
using the symmetrized Kullback-Leibler divergence
between respective G1 models

For the web shop data the 30 seconds song excerpts in
mp3-format are recomputed to 22050Hz mono audio sig-
nals. For the music portal data, the two minutes from the
center of each song are recomputed to 22050Hz mono au-
dio signals. We divide the raw audio data into overlapping
frames of short duration and use Mel Frequency Cepstrum
Coefficients (MFCC) to represent the spectrum of each
frame. MFCCs are a perceptually meaningful and spec-
trally smoothed representation of audio signals. MFCCs
are now a standard technique for computation of spec-
tral similarity in music analysis (see e.g. [7]). The frame
size for computation of MFCCs for our experiments was
46.4ms (1024 samples), the hop size 23.2ms (512 sam-
ples). We used the first d = 25 MFCCs for all experiments
with the web shop data and the first d = 20 MFCCs for all
experiments with the music portal data.

A single Gaussian (G1) with full covariance represents
the MFCCs of each song [8]. For two single Gaussians,
p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), the
closed form of the Kullback-Leibler divergence is defined
as [14]:
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where Tr(M) denotes the trace of the matrix M ,
Tr(M) = Σi=1..nmi,i. The divergence is symmetrized
by computing:

KLsym =
KLN (p‖q) +KLN (q‖p)

2
(2)

3.2 Fluctuation Patterns and Euclidean Distance (FP)

Fluctuation Patterns (FP) [9] [12] describe the amplitude
modulation of the loudness per frequency band and are
based on ideas developed in [4]. For a given music
collection of songs, computation of music similarity based
on FPs consists of the following steps:

1. for each song, compute a Fluctuation Pattern (FP)
2. compute a distance matrix MFP between all songs

using the Euclidean distance of the FP patterns

Closely following the implementation outlined in [10],
an FP is computed by: (i) cutting an MFCC spectrogram
into three second segments, (ii) using an FFT to com-
pute amplitude modulation frequencies of loudness (range
0 − 10Hz) for each segment and frequency band, (iii)
weighting the modulation frequencies based on a model of
perceived fluctuation strength, (iv) applying filters to em-
phasize certain patterns and smooth the result. The result-
ing FP is a 12 (frequency bands according to 12 critical
bands of the Bark scale [15]) times 30 (modulation fre-
quencies, ranging from 0 to 10Hz) matrix for each song.
The distance between two FPs i and j is computed as the
squared Euclidean distance:

D(FP i, FP j) =
12∑

k=1

30∑
l=1

(FP i
k,l − FP

j
k,l)

2 (3)

For the web shop data an FP pattern is computed from
the full 30 second song excerpts. For the music portal data
an FP pattern is computed from the central minute of each
song.

4. RESULTS

4.1 Hubs in very large data bases

As a measure of the hubness of a given song we use the
so-called n-occurrence [1], i.e. the number of times the
songs occurs in the first n nearest neighbors of all the
other songs in the data base. Please note that the mean
n-occurrence across all songs in a data base is equal to
n. Any n-occurrence significantly bigger than n therefore
indicates existence of a hub. For every song in the data

data set n maxhub maxhub% hub3%
D(ALL) 500 29588 11.63 7.75
D(1/2) 250 12094 9.52 7.56
D(1/20) 25 590 4.68 6.13

D(1/100) 5 62 2.49 4.62

Table 3. Hub analysis results for web shop data using
method G1. See Section 4.1 for details.

data set n maxhub maxhub% hub3%
D(ALL) 500 3386 1.33 1.18
D(1/2) 250 1639 1.29 1.18
D(1/20) 25 137 1.08 1.12

D(1/100) 5 25 1.02 1.22

Table 4. Hub analysis results for web shop data using
method FP. See Section 4.1 for details.

bases D(ALL), D(1/2), D(1/20) and D(1/100) (see
Section 2.1) we computed the first n nearest neighbors for
both methods G1 and FP. For method G1, the first n nearest
neighbors are the n songs with minimum Kullback Leibler
divergence (Equation 2) to the query song. For method
FP, the first n nearest neighbors are the songs with mini-
mum Euclidean distance of the FP pattern (Equation 3) to
the query song. To compare results for data bases of dif-
ferent sizes SW , we keep the relation n/SW constant at
0.001965: e.g. for D(ALL) SW = 254398 and n = 500,
for D(1/100) SW = 2543.98 and therefore n = 5.

The results given in Tables 3 and 4 show mean values
over 100 (D(1/100)), 20 (D(1/20)), 2 (D(1/2)) data sets
or the respective single result for the full data setD(ALL).
We give the number of nearest neighbors n, the absolute
number of the maximum n-occurrence maxhub (i.e. the
biggest hub), the percentage of songs in whose nearest
neighbor lists this biggest hub can be found maxhub% =
maxhub/SW and the percentage of hubs hub3% (i.e. the
percentage of songs of which the n-occurrence is more
than three times n).

When looking at the results for method G1 (Table 3) it is
clear that hubs do exist even for very large data bases. As a
matter of fact, the hub problem increases significantly with
the size of the data base. Whereas for the small data sets
D(1/100) on average the biggest hub is in the neighbor
lists of 2.49% of all songs, the biggest hub for D(ALL)
is a neighbor to 11.63% of all songs. The number of hubs
increases from an average 4.62% of all songs in D(1/100)
to 7.75% in D(ALL). To sum up, there are more and big-
ger hubs in larger data bases when using method G1 for
computation of audio similarity.

The results for method FP in Table 4 show a quite dif-
ferent picture. The size of the biggest hub is much smaller
and the number of hubs is also much reduced. There is
also very little influence of the size of the data bases on the
results. We like to conclude that method FP is not as prone
to hubness as method G1.



wG1 wFP maxhub maxhub% hub3% hub10% hub15% hub20% acc
1.0 0.0 879 11.47 8.05 0.94 0.40 0.22 48.47
0.9 0.1 598 7.80 8.15 0.86 0.35 0.09 49.84
0.8 0.2 445 5.81 8.23 0.80 0.23 0.08 49.47
0.7 0.3 342 4.46 8.11 0.72 0.16 0.05 48.44
0.6 0.4 352 4.59 8.06 0.57 0.09 0.01 47.80
0.5 0.5 344 4.49 8.04 0.51 0.07 0.01 46.58
0.4 0.6 334 4.36 7.91 0.31 0.04 0.01 45.73
0.3 0.7 315 4.11 7.80 0.21 0.01 0.01 44.93
0.3 0.8 247 3.22 7.21 0.17 0.01 0.0 43.94
0.1 0.9 215 2.81 6.72 0.04 0.0 0.0 42.82
0.0 1.0 145 1.89 5.38 0.0 0.0 0.0 38.45

Table 5. Hub analysis result for music portal data using combinations of G1 and FP. Results for using G1 or FP alone as
well as for a moderate combination are in bold face. See Section 4.2 for details.

4.2 Reducing hubs by combining G1 and FP

Recent advances in computing audio similarity rely on
combining timbre-based approaches (MFCCs plus Gaus-
sian models) with a range of other features derived from
audio. In particular, combinations of timbre and, among
other features, fluctuation patterns or variants thereof have
proven sucessfull [11, 13]. Such a combination approach
was able to rank first at the 2009 MIREX “Audio Mu-
sic Similarity and Retrieval”-contest 2 . Since our method
based on fluctuation patterns is less prone to hubness than
the timbre based approach, we tried to combine distances
obtained with methods G1 and FP. It is our hypothesis that
such a combination could reduce hubness and at the same
time preserve the good quality of timbre based methods in
terms of audio similarity.

Following previous approaches towards combination of
features [10, 11] we first normalize the distance matrices
MG1 andMFP by subtracting the respective overall means
and dividing by the standard deviations:

M̄G1 =
MG1 − µG1

sG1
M̄FP =

MFP − µFP

sFP
(4)

We combine the normalized distance matrices linearly
using weights wG1 and wFP :

M̄C = wG1M̄G1 + wFP M̄FP (5)

To evaluate the quality of audio similarity achieved by
combining methods G1 and FP we computed the genre
classification performance. We used nearest neighbor clas-
sification as a classifier. For every song in the data base
we computed the first nearest neighbor using the distance
matrix M̄C . The first nearest neighbor to a query song is
the song with minimum distance according to M̄C . To es-
timate genre classification accuracy, the genre label of a
query song squery and its first nearest neighbor snn were
compared. The accuracy is defined as:

acc(squery, snn) =
|gquery ∩ gnn|
|gquery ∪ gnn|

× 100 (6)

2 http://www.music-ir.org/mirex/2009/

with gquery (gnn) being a set of all genre labels for the
query song (nearest neighbor song) and |.| counting the
number of members in a set. Therefore accuracy is defined
as the number of shared genre labels divided by the set size
of the union of sets gquery and gnn times 100. The latter is
done to acount for nearest neighbor songs with two genre
labels as compared to only one genre label. The range of
values for accuracy is between 0 and 100. All genre classi-
fication results are averaged over ten fold cross validations.

We ran a series of experiments using the music por-
tal data base (see Section 2.2) and a number of different
weight combinations wG1 and wFP . To measure the hub-
ness of a given song we use n-occurrence with n equal 15.
The results given in Table 5 show: the weights wG1 and
wFP , the absolute number of the maximum n-occurrence
maxhub (i.e. the biggest hub), the percentage of songs in
whose nearest neighbor lists this biggest hub can be found
maxhub%, the percentage of hubs hub3|10|15|20% (i.e.
the percentage of songs of which the n-occurrence is more
than 3|10|15|20 times n) and the genre classification accu-
racy acc.

It is evident that with the weight wFP for method FP
growing, the hubs become smaller and less in number but
the genre classification accuracy also degrades. Whereas
using method G1 alone (i.e. wG1 = 1.0 and wFP = 0.0)
yields a maximum hub of size 879 that is in the nearest
neighbor lists of 11.47% of all songs, a moderate combi-
nation using weights wG1 = 0.6 and wFP = 0.4 dimin-
ishes the biggest hub to a size of 352. This reduced hub is
now a member of only 4.59% of the nearest neighbor lists.
Also the number of especially large hubs decreases: e.g.
the percentage of songs of which the n-occurrence is more
than 20 times n (hub20%) drops from 0.22% to 0.01%
(in absolute numbers from 17 to 1); the number of more
moderate sized hubs (hub10%) is still about halfed (from
0.94% to 0.57%, or from 72 to 44 in absolute numbers).
Such a moderate combination does not impair the overall
quality of audio similarity as measured with genre clas-
sification accuracy: it is at 47.80% which is at the level
of using method G1 alone yielding 48.47%. The baseline
accuracy achieved by always guessing the most probable



0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

n−occurences for 1.0 G1 and 0.0 FP

n−
oc

cu
re

nc
es

 fo
r 

0.
6 

G
1 

an
d 

0.
4 

F
P

Figure 1. n-occurrences of using method G1 alone (x-
axis) vs. n-occurrences using a moderate combination of
G1 and FP (y-axis, wG1 = 0.6 and wFP = 0.4) for music
portal data. The diagonal line indicates songs for which
the n-occurence does not change.

genre “Electronic” (see Table 2) is 29.11%. Always guess-
ing the two most probable genres “Electronic” and “Rock”
yields 36.46%.

In Figure 1 we have plotted the n-occurrences of using
method G1 alone (i.e. wG1 = 1.0 and wFP = 0.0) ver-
sus the n-occurrences of the moderate combination using
weights wG1 = 0.6 and wFP = 0.4. This is done for all
songs in the music portal data base. The n-occurrence of
every song beneath the diagonal line is reduced by using
the combination. All large hubs with an n-occurrence big-
ger than 300 are clearly reduced. The same is true for the
majority of hubs with n-occurrences between 200 and 300.

5. CONCLUSION

We were able to show that the so-called hub problem in au-
dio based music similarity indeed does exist in very large
data bases and therefore is not an artefact of using lim-
ited amounts of data. As a matter of fact, the relative
amount and size of hubs is even growing with the size of
the data base. On the same very large web shop data base
we were able to show that a non-timbre based parameteri-
zation of audio similarity (fluctuation patterns) is by far not
as prone to hubness as the standard approach of using Mel
Frequency Cepstrum Coefficients (MFCCs) plus Gaussian
modeling. Extending recent successful work on combin-
ing different features to compute overall audio similarity,
we were able to show that this not only maintains a high
quality of audio similarity but also decisively reduces the
hub problem.

The combination result has so far only been shown on
the smaller music portal data base, but there is no reason
why this should not hold for the larger web shop data. Only
limitations in computer run time led us to first evaluate the
combination approach on the smaller data set. We are not
claiming that our specific combination of features is the
best general route towards audio similarity. But we are
convinced that going beyond pure timbre-based similarity

is able to achieve two goals simultaneously: high quality
audio similarity and avoiding the hub problem.
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