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Abstract
We describe an approach to the combination of music sim-
ilarity feature spaces in the context of music classification.
The approach is based on taking the product of posterior
probabilities obtained from separate classifiers for the dif-
ferent feature spaces. This allows for a different influenceof
the classifiers per song and an overall classification accuracy
improving those resulting from individual feature spaces alone.
This is demonstrated by combining spectral and rhythmic
similarity for classification of ballroom dance music.
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1. Introduction
Since the perceived similarity between pieces of music is de-
fined by a whole range of different aspects (timbre, rhythm,
harmony, melody, socio-cultural, etc) it is only logical that
any attempt at music classification should be based on a
combination of these different dimensions of similarity. In
the scientific field of statistical pattern recognition, there
exist clear results as to how to achieve such a combina-
tion (see e.g. [7]). Bayesian theory tells us that all avail-
able information (i.e. features derived from different aspects
of music similarity) should be considered simultaneously
by using one overall classifier. However, this is very often
not practical or even possible (due to exponential growth of
the number of the parameters, different time scales or gen-
eral incomparability of feature spaces, etc). The alternative
then is to combine information from different sources which
leads to the question of how to weigh information from these
sources to reach an overall decision. In a probabilistic set-
ting, the preferred approach is to train separate classifiers
for the different feature spaces and then to combine poste-
rior probabilities to obtain a joint decision. This allows for a
different influence of the classifiers per song based on their
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posterior probabilities. Thereby different aspects of music
similarity achieve different weights in the joint classifica-
tion decision for every song.

Although this combination approach is well known in
statistical pattern recognition, something related has barely
been used within the Music Information Retrieval commu-
nity so far [16, 14]. We therefore think it is beneficial to
further explore this probabilistic approach to the combina-
tion of features for music classification by (i) reviewing the
necessary theory, (ii) presenting experimental results onthe
combination of spectral and rhythmic similarity for classifi-
cation of ballroom dance music.

2. Data
The musical data set used for training and testing contains
excerpts fromS=698 pieces of music, around 30 seconds
long, amounting to around 20940 seconds of data. This data
was originally downloaded from a web site1 providing di-
verse resources related to ballroom dancing (online lessons,
videos, books, etc.). Some characteristic excerpts of many
dance styles are provided in the low quality Real Audio
sound format (with a compression factor of almost 22 with
respect to the common 44.1 kHz 16 bits mono WAV for-
mat), labelled with a specific dance style (G=8 music gen-
res: Cha Cha Cha (111 pieces), Jive (60), Quickstep (82),
Rumba (98), Samba (86), Tango (86), Viennese Waltz (65),
Slow Waltz (110)). The data was subsequently converted to
WAV format for experiments.

This data was first used in [6, 4]. It was also used in
theTempo inductionandRhythm classificationcontests or-
ganised during ISMIR 2004. The audio data and style and
tempo annotations are publicly available.2

3. Music similarity
One concept of central importance in music information re-
trieval is the notion of musical similarity. Similarity metrics
define the inherent structure of a music collection, and the
acceptance of a music retrieval system crucially depends on

1 http://www.ballroomdancers.com/
2 http://ismir2004.ismir.net/



whether the user can recognise some similarity between the
query and the retrieved sound files. Since usually no ground
truth with respect to music similarity exists, genre classifica-
tion is widely used for evaluation of music similarity. Each
song is labelled as belonging to a music genre using e.g. mu-
sic expert advice. High genre classification results indicate
good similarity measures. Genre classification is also a goal
in its own right: it allows labelling of a user’s collection of
music based on a subset of training songs with user defined
genre labels.

Some of the most successful approaches to genre clas-
sification are based on the use of spectral features (see e.g.
[10, 1, 15] and many more), rhythm [15, 6, 13] or cultural
features [12, 16, 8]. It seems clear that combination of dif-
ferent aspects of music similarity is able to improve the per-
formance achieved so far. Our experiments are on the com-
bination of spectral and rhythmic similarity.

3.1. Spectral similarity

The following approach to music similarity based on spec-
tral similarity (see [10, 1] for early references) is now seen
as one of the standard approaches in the field of music infor-
mation retrieval. For a given music collection ofS songs,
each belonging to one ofG music genres, it consists of
the following steps: (i) for each song, compute Mel Fre-
quency Cepstrum Coefficients (MFCCs) for short overlap-
ping frames; (ii) train a Gaussian Mixture Model (GMM)
for each of the songs; (iii) compute anS × S distance ma-
trix between all songs using the likelihood of a song given a
GMM.

We divide the raw audio data into overlapping frames
of short duration and use Mel Frequency Cepstrum Coeffi-
cients (MFCC) to represent the spectrum of each frame (see
e.g. [9]). The frame size for computation of MFCCs for our
experiments was23.3ms (1024 samples), with a hop-size of
11.6ms (512 samples) for the overlap of frames. We used
the first 8 MFCCs for all our experiments.

A Gaussian Mixture Model (GMM) models the density
of the input data by a mixture model of the form

p(x) =

M∑

m=1

PmN [x, µm, Um] (1)

wherePm is the mixture coefficient for them-th component,
N is the Normal density andµm andUm are the mean vec-
tor and covariance matrix of them-th mixture. For a data set
X i containingT data points given a GMM trained on song
j, the negative log-likelihood function is given by

L(X i|GMMj) = −
1

T

T∑

t=1

log(pj(x
i
t)) (2)

For learning a GMM for a songi, L(X i|GMMi) is min-
imised both with respect to the mixing coefficientsPm and

with respect to the parameters of the Gaussian basis func-
tions using Expectation-Maximisation (see e.g. [2]). For all
our experiments we usedM = 10 components and diagonal
covariances. Computation ofL(X i|GMMj) for all possi-
ble combinations of songsi and GMMsj gives anS × S
distance matrixDS.

3.2. Rhythmic similarity
There are many ways to compute rhythmic similarity, e.g.
[15, 6, 13]. In this paper, the definition of rhythmic similar-
ity focuses on a single rhythmic dimension: the tempo.

Tempo is a musical attribute of prime importance and re-
cent research showed, on the data used here, the high rele-
vance of tempo for ballroom dance music classification [6,
4]. Common musical knowledge (e.g. instructional books,
dance class websites) suggests that tempo is a fundamen-
tal feature in the definition of musical styles, and on the
other hand, [11] shows on a large amount of data (more than
90000 instances) that different dance music styles (“trance,
afro-american, house and fast”) show clearly different tempo
distributions, centred around different “typical” tempi.

The tempo induction algorithm used is one of the algo-
rithms that entered the MIREX 2005 competition onPer-
ceptual tempo induction. It is referred to asAlgorithm1
in [5] and consists of the following processing steps: (i)
framing of the signal; (ii) computation of the magnitude-
normalised derivative of the energy in 8 frequency bands;
(iii) computation of the autocorrelation in each band; (iv)
parsing of periodicity function peaks and global tempo com-
putation as in [3]. This algorithm yields one single tempo
featureti for each songi. The distancedR(i, j) between
two songsi and j is computed as the Euclidean distance
(ti − tj)

2. Computation of all possible combinations of
songsi andj gives anS × S distance matrixDR.

4. Combination
Following earlier work on combination of classifiers [7], let
us consider a pattern recognition problem where a pattern
Z is to be assigned to one ofG classes(ω1, ..., ωG). Let us
further assume we haveR classifiers each receiving distinct
measurement vectorsxi (e.g. one classifier trained on spec-
tral similarity, another one on rhythmic similarity). In mea-
surement spacexi each classωk is modelled by the proba-
bility density functionp(xi|ωk), with P (ωk) being the cor-
responding prior probability. According to Bayesian theory
a patternZ with measurementsxi, i = 1, ..., R, should be
assigned to classωj provided that the corresponding poste-
rior probability is maximal:

P (ωj |x1, ..., xR) = max
k

P (ωk|x1, ..., xR) (3)

This means that to utilise all available information, all avail-
able measurements should be considered simultaneously.
However, very often this is not practical or even not feasi-
ble. Simultaneous use of all measurements can lead to very



large feature spaces which are hard to model due to the curse
of dimensionality (i.e. exponential growth of the number of
model parameters with number of features, see e.g. [2]). Of-
ten subsets of the measurements are hard to compare due to
their different origin and it is unclear how to weight or nor-
malise them. Sometimes they exist on different time scales
(e.g. one spectral feature vector every11.6ms compared to
one single rhythmic feature for a whole song) and cannot
be concatenated at all. Therefore a promising approach is
to use individual classifiers for subsets of the measurements
and to combine the classifier outcomes instead.

Assuming that the measurementsxi, i = 1, ..., R are con-
ditionally statistically independent, we can rewrite the deci-
sion rule given by Eqn. 3 to:

P (ωj|x1, ..., xR) = max
k

R∏

i=1

P (ωk|xi) (4)

This means we can express the posterior probability given
the joint measurements as the product of the posteriors com-
puted in the individual measurement spaces. This is known
as the product rule [7] and for many applications the above
independence assumption provides an adequate and practi-
cable approximation to a reality that might be more com-
plex. It is important to note that the product rule provides
a different influence of the classifiers per song since the
weight given to each of the classifiers changes with the pos-
teriors obtained for each song. If a classifier is very inse-
cure about its decision all posterior probabilities will beat
the same level and not influence the other classifier poste-
riors at all. If the decision of a classifier is very clear, the
corresponding posterior probability will be very high and
dominate the product of the posteriors.

A simple way to directly estimate posterior probabilities
is to use K-nearest neighbour classification [2]. The num-
bers of songs belonging to genres(ω1, ..., ωG) in the set of
theK nearest neighbours are an approximation of the true
posterior probabilities. To avoid zero probabilities we added
a pseudo-count to all numbers of songs belonging to genres.

A related approach to combination of music similarity
features has been reported in [16]. Contrary to the above
described approach no proper posterior probabilities were
used and therefore, following a suggestion by [7], the aver-
age instead of the product was computed for combinations
of estimated posteriors. The data set in this study was rather
small (25 artists) and the goal was classification of artists,
not songs, into five genres. Combination of audio and com-
munity meta-data improved the results achieved on the in-
dividual feature spaces. Not directly related is an approach
at the symbolic level on combining predictive models of se-
quential pitch structure in melodic music [14].

Our own previous efforts on combination [13] relied on
a linear combination of distance matrices which were com-
puted for the individual feature spaces. This new combined

distance matrix was then used as input for one overall classi-
fier. Contrary to our new approach this requires one overall
weighting for all songs in a training set. It is also not clear
how to obtain the specific weighting which is optimal for
a specific data set. This would require a meta-search strat-
egy evaluating all different possible weights for the linear
combination and a final evaluation of the winner using pre-
viously unseen test data to allow for fair performance evalu-
ation. Nevertheless, linear combination of distance matrices
is also applicable to problems outside of music classification
since no class labels are needed to compute the combination
weights.

5. Results
We computed distance matricesDS andDR for all S = 698
pieces of music in our data base as described in Secs 3.1 and
3.2. We also computed a combined distance matrixDC us-
ing a linear combination:DC = (DS + DR)/2. Since we
have no information as to which weighting to prefer we de-
cided to use this simple average. All distances inDS and
DR were normalised to zero mean and unit standard devia-
tion before this combination to guarantee comparability as
suggested in [13].

In a 10-fold cross validation we did the following exper-
iments:

1. doK=10-nearest neighbour classification for all songs
in the test fold using distance matricesDS , DR and
DC to compute respective posterior probabilities; as-
sign each song to the class with maximal posterior
probability

2. use the product rule to combine posterior probabilities
obtained fromK=10-nearest neighbour classification
usingDS andDR separately; assign each song to the
class with maximal posterior probability

Average classification accuracies plus standard deviations
for the four different methods are given in Table 1. As can
be clearly seen, the combination based on the product rule
is able to enhance the performance considerably when com-
pared with classification based on spectral or rhythmic sim-
ilarity alone. Both results are statistically significant when
using paired t-tests: spectral vs. productt = | − 16.10|,
rhythm vs. productt = | − 4.61| > t(99,df=9) = 3.25.
The product rule also outperforms the linear combination
(t = |−5.55|> t(99,df=9) = 3.25), which even falls behind
the classification based on rhythmic similarity alone.

spectral rhythm linear product

33.39 ± 6.16 58.59 ± 5.34 48.67 ± 7.77 66.89 ± 5.26

Table 1. Mean accuracies and standard deviations for the four
methods.
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Figure 1. Mean percentages of correctly classified songs per
Genre given for the four methods: (1) spectral, (2) rhythm, (3)
linear combination, (4) posterior product combination.

The mean percentages of correctly classified songs per
genre are given in Fig. 1. Whereas combination based on the
product rule improves performance for every genre except
’Viennese Waltz’ and ’Jive’, linear combination increases
performance for only two genres (’ChaChaCha’, ’Jive’) but
decreases it for five of the remaining six.

We also tried different weights for the linear combina-
tion of DS andDR. Changing the weights in steps of0.1
gave best performance of59.97 ± 9.63 for the combination
DC = (0.1∗DS +0.9∗DR). Although this post-hoc choice
of an optimal classifier is not statistically sound and should
lead to over-optimistic performance estimates, the resultis
still just at the level of classification based on rhythmic sim-
ilarity alone. Combination of posterior probabilities using
the average instead of the product as done by [16] yielded
an average accuracy of63.17± 5.77. This is better than the
results based on spectral or rhythmic similarity alone as well
as based on the linear combination. But it does not reach the
product rule’s performance (product vs. averaget = |5.01|
> t(99,df=9) = 3.25).

6. Conclusion

We presented a general framework for combination of music
similarity feature spaces in the context of music classifica-
tion. Combination of separate classifiers trained on the indi-
vidual feature spaces allows for a different weighting of the
separate classifiers per song which results in a considerable
increase in genre classification accuracy. This probabilis-
tic approach to combination of classifiers is well known in
statistical pattern recognition and our results obtained for a
combination of spectral and rhythmic similarity applied to
ballroom dance music confirm its applicability in the field
of Music Information Retrieval.
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