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ABSTRACT

Hidden Markov Models (HMM) are compared to Gaussian
Mixture Models (GMM) for describing spectral similarity of
songs. Contrary to previous work we make a direct comparison
based on the log-likelihood of songs given an HMM or GMM.
Whereas the direct comparison of log-likelihoods clearly favors
HMMs, this advantage in terms of modeling power does not allow
for any gain in genre classification accuracy.

1. INTRODUCTION

The general goal of a music information retrieval system can be
broken down into two major objectives: the automatic structuring
and organization of large collections of digital music, and intelli-
gent music retrieval in such structured ”music spaces”. To achieve
this, a concept of central importance is the notion of musical sim-
ilarity. Similarity metrics define the inherent structure of a mu-
sic collection, and the acceptance of a music retrieval system cru-
cially depends on whether the user can recognize some similarity
between the query and the retrieved sound files. There are a num-
ber of different aspects of music similarity which together influ-
ence the perceived similarity between two pieces of music: timbre,
rhythm, harmony, melody, to name the most important.

The following approach to music similarity based on
spectral similarity pioneered by [Logan & Salomon 2001] and
[Aucouturier & Pachet 2002] is now seen as one of the standard
approaches in the field of music information retrieval. For a given
music collection of S songs, each belonging to one of G music
genres, it consists of the following basic steps:

e for each song, divide raw data into overlapping frames of
short duration (around 25ms)

e compute Mel Frequency Cepstrum Coefficients (MFCC)
for each frame (up to 20)

e train a Gaussian Mixture Model (GMM, number of mix-
tures up to 50) for each of the songs

e compute a similarity matrix between all songs using the
likelihood of a song given a GMM

e based on the genre information, do k-nearest neighbor clas-
sification using the similarity matrix

The last step of genre classification can be seen as a form of
evaluation. Since usually no ground truth with respect to music
similarity exists, each song is labeled as belonging to a music genre
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using e.g. music expert advice. High genre classification results
indicate good similarity measures. The winning entry to the IS-
MIR 2004 genre classification contest* by Elias Pampalk followed
basically the above described approach.

This approach based on GMMs disregards the temporal order
of the frames, i.e. to the algorithm it makes no difference whether
the frames in a song are ordered in time or whether this order
is completely reversed or scrambled. Research on perception of
musical timbre of single musical instruments clearly shows that
temporal aspects of the audio signals play a crucial role (see e.g.
[Grey 1977]). Aspects like spectral fluctuation, attack or decay of
an event cannot be modelled without respecting the temporal order
of the audio signals.

A natural way to incorporate temporal context into the above
described framework is the usage of Hidden Markov Models
(HMM) instead of GMMs. HMMs trained on MFCCs have al-
ready been used for music summarization ([Logan & Chu 2000],
[Aucouturier & Sandler 2001], [Peeters et al. 2002]) and genre
classification [Aucouturier & Pachet 2004] but with rather limited
success. This paper describes experiments using HMMs to com-
pute similarity between songs based on spectral information. The
results are compared to GMMs using goodness-of-fit criteria (log-
likelihoods) between songs and models as well as genre classi-
fication for evaluation. Whereas the direct comparison of log-
likelihoods clearly favors HMMs, this advantage in terms of mod-
eling power does not allow for any gain in genre classification
accuracy. Only by directly looking at the goodness-of-fit of the
models the possible benefit of using HMMs for music analysis be-
comes appearant. After introducing the data base used in the study
as well as the employed preprocessing (Sec. 2), we will describe
the methods of GMMs and HMMs (Sec. 3), present our experi-
ments and results (Sec. 4) which is followed by discussion (Sec. 5)
and conclusion (Sec. 6).

2. DATA

For our experiments we used the data set of the ISMIR 2004 genre
classification contest?. The data base consist of S = 729 songs
belonging to G = 6 genres. The different genres plus the numbers

1ISMIR 2004, 5th Internationa Conference on Music In-
formation Retrieval, Audiovisual Institute, Universitat Pom-
peu Fabra Barcelona, Spain, October 10-14, 2004; see
http://ismr2004.ismr.net/1SM RContest. htni.

2To be more precise, we used the training set of the contest.
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of songs belonging to each genre are given in Table 1.

Table 1: ISMIR 2004 contest data base (Genre, number of songs,
percentage).

[ Genre [ No. | % |
Classical 320 43.9
Electronic 115 15.8
Jazz Blues 26 3.6
Metal Punk 45 6.2
Pop Rock 101 13.9
World 122 16.7

[ Sum 729 [ 100.0 |

We divide the raw audio data into overlapping frames of short
duration and use Mel Frequency Cepstrum Coefficients (MFCC)
to represent the spectrum of each frame. MFCCs are a perceptu-
ally meaningful and spectrally smoothed representation of audio
signals. MFCCs are now a standard technique for computation
of spectral similarity in music analysis (see e.g. [Logan 2000]).
The frame size for computation of MFCCs for our experiments
was 23.2ms (512 samples), with a hop-size of 11.6ms (256
samples) for the overlap of frames. Although improved re-
sults have been reported with numbers of MFCCs of up to 20
[Aucouturier & Pachet 2004], we used only the first 8 MFCCs for
all our experiments to limit the computational burden.

In order to allow modeling of a bigger temporal context we
also used so-called texture windows [Tzanetakis & Cook 2002]:
we computed means and variances of MFCCs across the following
numbers of frames and used them as alternative input to the mod-
els: 22 frames, hop-size 11 (510.4ms, 255.2ms), 10 frames, hop-
size 5 (232ms, 116ms), 10 frames, hop-size 2 (232ms, 46.4ms).
This means that if a texture window is being used, after pre-
processing a single data point x! is a 16-dimensional vector (8
mean MFCCs plus 8 variances across MFCCs) instead of a 8-
dimensional vector if no texture window is used.

3. METHODS

A Gaussian Mixture Model (GMM) models the density of the input
data by a mixture model of the form

M
pGMM(w) = Z PmN[ill',p/m, Um] (1)

m=1

where P, is the mixture coefficient for the m-th mixture, A/
is the normal density and p.,, and U,,, are the mean vector and co-
variance matrix of the m-th mixture. The log-likelihood function
is given by

T
LM = 25 log(pPM M (at)) @

t=1

for a data set containing 7" data points. This function is max-
imized both with respect to the mixing coefficients P,, and with
respect to the parameters of the Gaussian basis functions using
Expectation-Maximization (see e.g. [Bishop 1995]).

Hidden Markov Models (HMM) [Rabiner & Juang 1986] al-
low analysis of non-stationary multi-variate time series by mod-
eling both the probability density functions of locally stationary
multi-variate data and the transition probabilities between these
stable states. If the probability density functions are modelled with
mixtures of Gaussians, HMMs can be seen as GMMs plus transi-
tion probabilities. An HMM can be characterized as having a finite
number N of states Q:

Q={q,q,...,an} ©)
A new state g; is entered based upon a transition probability
distribution A which depends on the previous state (the Markovian

property):

A={ai;},aij = P(q;(t) | ai(t — 1)) O]

where t = 1,...,T is a time index with T being the length

of the observation sequence. After each transition an observa-

tion output symbol is produced according to a probability distri-

bution B which depends on the current state. Although the clas-

sical HMM uses a set of discrete symbols as observation output,

[Rabiner & Juang 1986] already discuss the extension to continu-

ous observation symbols. We use a Gaussian Observation Hidden

Markov Model (GOHMM) where the observation symbol proba-
bility distribution for state 5 is given by a mixture of Gaussians:

B = {b;(2)},b;(x) = pi™"" () 5)
where p$MM(z) is the density as defined for a mixture of
Gaussians in Equ. 1.
The Expectation-Maximization (EM) algorithm is used to
train the GOHMM thereby estimating the parameter sets A and
B. The log-likelihood function is given by

T
1
L7V = 23 log(bu, (21) + logag,—)  (©)
t=1

for an observation sequence of length ¢ = 1,...,7T with
q1,-..,qr being the most likely state sequence and go a start
state. The forward algorithm is used to identify most likely state
sequences corresponding to a particular time series and enables the
computation of the log-likelihoods. Full details of the algorithms
can be found in [Rabiner & Juang 1986].

It is informative to have a closer look at how the transition
probabilities influence the state sequence characteristics. The in-
herent duration probability density p;(d) associated with state g;,
with self transition coefficient a;; is of the form

pi(d) = (ass)* (1 — a) @)

This is the probability of d consecutive observations in state

q;, i.e. the duration probability of staying d times in one of the

locally stationary states modeled with a mixture of Gaussians. As

[Rabiner 1989] noted, this exponential state duration density is not

optimal for a lot of physical signals. The duration of a single data

point in our case is dependent on the window length win of the

frame used for computing the MFCCs or the size of the texture

window as well as the hop size hop. The length [ of staying in the
same state expressed in msec is then:

l=(d—1)hop + win (8)

with hop and win given in msec. Fig. 1 gives duration prob-
ability densities for all different combinations of hop and win
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Figure 1: Duration probability densities p(d) (y-axis) for dura-
tions d (x-axis) in seconds for different combinations of window
and hop sizes: line (1) win 23.2ms, hop 11.6ms, line (2) win
232ms, hop 46.4ms, line (3) win 232ms, hop 116ms, line (4)
win 510.4ms, hop 255.2ms.

used for preprocessing in Sec. 2 with a;; set to .99 (which is a
reasonable choice for audio data). One can see that whereas for
hop = 11.6 and win = 23.2 the duration probability at five
seconds is already almost zero, there still is an albeit small prob-
ability for durations up to 120 seconds for hop = 255.2 and
win = 510.4. Our choice of different frame sizes and texture
windows seems to guarantee a range of different duration proba-
bilities. The shorter the state durations in HMMs are, the more
often the state sequence will switch from state to state and the less
clear the boundaries between the mixture of Gaussians of the in-
dividual states will be. Therefore, with shorter state durations the
HMMs will be more akin to GMMs in their modeling behavior.

An important open issue is the model topology of the HMM.
Looking again at the work by [Rabiner & Juang 1986] on speech
analysis, we can see that the standard model for isolated word
recognition is a left-to-right HMM. No transitions are allowed to
states whose indices are lower than the current state, i.e. as time
increases the state index increases. This has been found to account
well for modeling of words which rarely have repeating vowels
or sounds. For songs, a fully connected so-called ergodic HMM
seems to be more suitable for modeling than the constrained left-
to-right model. After all, repeating patterns seem to be an integral
part of music. Therefore it makes sense to allow states to be en-
tered more than once and hence use ergodic HMMs.

There is a small number of papers describing applications
of HMMs to the modeling of some form of spectral similarity.
[Logan & Chu 2000] compare HMMs and static clustering for mu-
sic summarization. Fully ergodic HMMs with five to twelve states
of single Gaussians are trained on the first 13 MFCCs (computed
from 25.6ms overlapping windows). Key phrases are chosen
based on state frequencies and evaluated in a user study. Clus-
tering performs best and HMMs do not even surpass the perfor-
mance of a random algorithm. [Aucouturier & Sandler 2001] use
fully ergodic three state HMMSs with single Gaussians per state
trained on the first ten MFCCs (computed from 30ms overlapping
windows) for segmentation of songs into chorus, verse, etc. The
authors found little improvement over using static k-means cluster-
ing for the problem. The same approach is used as part of a bigger

system for audio thumb-nailing in [Aucouturier & Sandler 2002].
[Peeters et al. 2002] also compare HMMs and k-means clustering
for music audio summary generation. The authors report about
achieving smoother state jumps using HMMs.

[Aucouturier & Pachet 2004] report about genre classification
experiments using HMMs with numbers of states ranging from 3
to 30 where the states are mixtures of four Gaussians. For their
genre classification task the best HMM is the one with 12 states. Its
performance is slightly worse than that of a GMM with a mixture
of 50. The authors do not give any detail about the topology of
the HMM, i.e. whether it is a fully ergodic one or one with left-to-
right topology. It is also unclear whether they use full covariance
matrices for the mixtures of Gaussians. From the graph in their
paper (Figure 6) it is evident that HMMSs with numbers of states
ranging from 4 to 25 perform at a very comparable level in terms
of genre classification accuracy.

HMMs have also been used successfully for audio fingerprint-
ing (see e.g. [Batlle et al. 2003]). There HMMs with tailor made
topologies trained on MFCCs are used to fully represent each de-
tail of a song in a huge database. The emphasis is on exact identi-
fication of a specific song and not on generalization to songs with
similar characteristics.

4. RESULTS

For our experiments with GMMs and HMMs we used the follow-
ing parameters (abbreviations correspond to those used in Table 2):

e preprocessing: we used combinations of window (win)
and hop sizes (hop) and texture windows (texsetto yes ('y')
or no ('n")) as described in Sec. 2

e topology: 3, 6 and 10 state ergodic (fully connected)
HMMs with mixtures of 1, 3 or 5 Gaussians per state,
GMMs with mixtures of 9, 10 or 30 Gaussians (see states
and mix in Table 2 for combinations used); Gaussians use
diagonal covariance matrices for HMMs and GMMs

e computation of similarity: similarity is computed using
Equ. 6 fpor HMMs and Equ. 2 for GMMs

The combinations of parameters states, mix, win, hop and tex
used for this study yielded twelve different model classes: six
types of HMMs and six types of GMMs. We made sure to em-
ploy comparable types of GMMs and HMMs by having compara-
ble degrees of freedom for pairs of model classes: HMM (states
10, mix 1) vs. GMM (mix 10), HMM (states 3, mix 3) vs. GMM
(mix 9), HMM (states 6, mix 5) vs. GMM (mix 30). The degrees of
freedom (number of free parameters) for HMMs and GMM s are

df MM = miz x dim(z) 9

dffMM = states x miz x dim(z) + states®  (10)

with dim(x) being the dimensionality of the input vectors (see
Sec. 2). Column df in Table 2 gives the degrees of freedom for
all types of models. With the first column nr indexing the dif-
ferent models, odd numbered models are always HMMs and the
next even numbered model is always the associated GMM. The
difference in degrees of freedom between two associated types of
GMMs and HMM s is always the number of transition probabilities
(states?).
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Table 2: Overview of all types of models used and results achieved: index of model nr, model type model, number of states states, size of
mixture mix, window size win, hop size hop, texture window tex, degrees of freedom df, mean log-likelihood likeli, number of HMM based
log-likelihoods bigger than GMM based log-likelihoods H > G, z-statistic z, mean accuracy acc, standard deviation stddev, t-statistic t.

| nr | model | states [ mix [ win [ hop [tex [ df [ likeli [ H>G ][ z [ acc [stddev | t ]
1| HMM 10 1 23.2 11.6 n | 180 | -31.10 22 -24.43 | 74.20 543 | -0.26
2 | GMM - 10 23.2 11.6 n 80 | -29.89 76.54 3.64
3 | HMM 3 3 23.2 11.6 n 81 | -29.26 698 2476 | 77.08 473 | 0.36
4 | GMM - 9 23.2 11.6 n 72 | -29.91 73.38 5.00
5 | HMM 6 5 23.2 11.6 n | 276 | -28.95 706 25.46 | 78.18 459 | 0.00
6 | GMM - 30 23.2 11.6 n | 240 | -29.93 78.19 3.32
7 | HMM 3 3 | 5104 | 255.2 y | 153 | -29.31 692 24.26 | 74.20 4.85 | -0.05
8 | GMM - 9 | 5104 | 255.2 y | 144 | -29.92 74.62 3.67
9 | HMM 3 3 | 232.0 | 116.0 y | 153 | -29.30 690 24.11 | 76.67 2.22 | 0.08
10 | GMM - 9 | 232.0 | 116.0 y | 144 | -29.90 76.26 3.13
11 | HMM 3 3| 232.0 46.4 y | 153 | -29.34 677 23.13 | 73.79 481 | -0.04
12 | GMM - 9 | 2320 46.4 y | 144 | -29.89 74.20 3.27

4.1. Comparing log-likelihoods directly

The first line of experiments compares goodness-of-fit criteria
(log-likelihoods) between songs and models in order to explore
which type of model best describes the data. Out-of-sample log-
likelihoods were computed in the following way:

e train HMMs and GMMs for each of the twelve model types
for each of the songs in the training set, using only the first
half of each song

e use the second half of each song to compute log-likelihoods

This yielded S = 729 log-likelihoods for each of the twelve
model types. Average log-likelihoods per model type are given
in column likeli in Table 2. Since the absolute values of log-
likelihoods very much depend on the type of songs used, it is
much more informative to compare log-likelihoods on a song-hy-
song basis. In Fig. 2 histogram plots of the differences of log-
likelihoods L; — L;+1 between associated model types are shown:

Li— Liy1 = LHMM(i) _ LGMM(i+1) (11)

with HM M (z) being an HMM of model type index nr = 4
and GM M (i + 1) being the associated GMM of model type index
nr=t¢+1land: =1,3,5,7,9,11. The differences L; — L;4+1
are computed for all the S = 729 songs before doing the his-
togram plots. As can be seen in Fig. 2, except for one histogram
plot the majority of HMM models show a better goodness-of-fit of
the data than their associated GMMs (i.e. their log-likelihoods are
higher for most of the songs). The only exception is the compar-
ison of model types 1 and 2 (HMM (states 10, mix 1) vs. GMM
(mix 10)) which is interesting because in this case the HMMs have
the biggest advantage in terms of degrees of freedom (180 vs. 80)
over the GMMs of all the comparisons. This is due to the fact
that this type of HMM models has the highest number of states
with states = 10. But it also has only a single Gaussian per
state to model probability density functions. Experiments on iso-
lated word recognition in speech analysis [Rabiner & Juang 1986]
have shown that small sizes of the mixtures of Gaussians used in
HMMs do not catch the full detail of the emission probabilities

which often are not Gaussian at all. Mixtures of five Gaussians
with diagonal covariances per state have been found to be a good
choice.

Finding a correct statistical test for comparing likelihoods
of so-called non-nested models is far from trivial (see e.g.
[McAleer 1995] or [Golden 2000]). HMMs and GMMs are non-
nested models because one is not just a subset of the other as would
e.g. be the case with a mixture of five Gaussians compared to a
mixture of six Gaussians. What makes the models non-nested is
the fact that it is not clear how to weigh the parameter of a transi-
tion probability a;; against, say, a mean u,, of a Gaussian. Nev-
ertheless, it is correct to compare the log-likelihoods since we use
out-of-sample estimates, which automatically punishes over-fitting
due to excessive free parameters. It is just the distribution charac-
teristics of the log-likelihoods which are hard to describe. There-
fore we resorted to the distribution free sign test which relies only
on the rank of results (see e.g. [Siegel 1956]). Let C; be the score
under condition I and C;r the score under condition 17 then the
null hypothesis tested by the sign test is

1
Hy :p(Cr > Cr1) =p(Cr < Cr1) = 3 (12)

In our case the two scores C; and Cy; are the matched pairs
of log-likelihoods for a song given associated models H M M and
GMMjp;y. If ¢ is the number of times that C; > Cir and the
number of matched pairs N is greater than 25 then the sampling
distribution is the normal distribution with

c— %N
VN

Column H > G in Table 2 gives the count ¢ of HMM based
log-likelihoods being bigger than GMM based log-likelihoods for
all pairs of associated model types. Column z gives the corre-
sponding z-values obtained using Equ. 13. All z-values are highly
significant at the 99% error level since all |z| > 299 = 2.58.
Therefore HMMs always better describe the data compared to their
associated GMMs with the exception of the comparison of model
types 1 and 2 (HMM (states 10, mix 1) vs. GMM (mix 10)).

To counter the argument that the superior performance of the
HMMs is due to their extra number of degrees of freedom (i.e.

z= (13)
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Figure 2: Histogram plots of differences in log-likelihood between associated models.

number of transition probabilities, see column df in Table 2) we
also compared the smallest type of HMMs (model nr 3: HMM
(states 3, mix 3), df = 81) with the biggest type of GMMs (model
nr 6: GMM (mix 30), df = 240). This comparison yielded a count
¢ (H > G) of 635, and a z-value of z = 20.14 > z99 = 2.58
again being highly significant. We conclude that it is not the sheer
number of degrees of freedom in the models but the quality of the
free parameters which decides which type of model better fits the
data. After all, the degrees of freedom of the HMMs in our last
comparison are outnumbered three times by those of the GMMs.

4.2. Genre Classification

The second line of experiments compares genre classification re-
sults. In a 10-fold cross validation we did the following:

e train HMMs and GMMs for each of the twelve model types
for each of the songs in the training set (the nine training
folds), this time using the complete songs

for each of the model types, compute a similarity matrix
between all songs using the log-likelihood of a song given
aHMM or a GMM (L MM gnd LEMM)

based on the genre information, do one-nearest neighbor
classification for all songs in the test fold using the similar-
ity matrices

Average accuracies and standard deviations across the ten
folds of the cross validation are given in columns acc and stddev
in Table 2. Looking at the results one can see that the achieved
accuracies range from around 73% to around 78% with standard
deviations of up to 5%. We compared accuracy results of asso-
ciated model types in a series of paired t-tests (model nr 1 vs.
nr2, ... nrllvs. nr12). The resulting t-values are given in
column t in Table 2. All t-values are not significant at the 99%
error level since all |t| < t(99,4r=9) = 3.25 (the same holds

true at the 95% error level). Even the biggest difference in ac-
curacy (between model type nr 4, GMM (mix 9), acc = 73.38,
and model type nr 6, GMM (mix 30), acc = 78.19) is not signifi-
cant: |t = | — 0.43| < t(g9,4r=0) = 3.25 (the same holds true at
the 95% error level). We therefore conclude that there is no signif-
icant difference in genre classification performance between any
of the twelve model types. They all perform at the same level of
accuracy.

5. DISCUSSION

There are two main results of our work:

(i) HMMs better describe spectral similarity of songs than
the standard technique of GMMs. Comparison of log-likelihoods
clearly shows that HMMs allow for a better fit of the data. This
holds not only if looking at competing models with comparable
numbers of degrees of freedom but also for GMMs with numbers
of parameters that are much larger than of those of the HMMs.
The only outlier in this respect is model type 1 (HMM (states 10,
mix 1)). But as discussed in Sec. 4 this is probably due to the poor
choice of single Gaussians for modeling the emission probabilities.

(i) HMMs perform at the same level as GMMs when used for
spectral similarity based genre classification. There is no signifi-
cant gain in terms of classification accuracy. Genre classification
is of course a rather indirect way of measuring differences between
alternative similarity models. The human error in classifying some
of the songs gives rise to a certain percentage of misclassification
already. Inter-rater reliability between a number of music experts
is far from perfect for genre classification.

Although we believe this work is the most comprehensive
study on using HMMs for spectral similarity of songs so far, there
is of course a lot still to be done. Two possible routes for further
improvements come to mind: the topology of the HMMs and the
handling of the state duration. Choosing a topology for an HMM
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still is more of an art than a science (see e.g. [Durbin et al. 1998]
for a discussion). Our limited set of examined combinations of
numbers of states and sizes of mixtures could be extended. One
should however notice that too large numbers for these parame-
ters quickly lead to numerical problems due to insufficient training
data. We also have not yet tried out left-to-right models.

With our choice of different frame sizes and texture windows
we tried to explore a range of different state duration densities.
There are of course a number of alternative and possibly more
principled ways of doing this. The usage of so-called explicit state
duration modeling could be explored. A duration parameter d per
HMM state is added. Upon entering a state g; a duration d; is
chosen according to a state duration density p(d;). Formulas are
given in [Rabiner & Juang 1986]. Another idea is to use an ar-
ray of n states with identical self transition probabilities where
it is enforced to pass each state at least once. This gives rise to
more flexible so-called Erlang duration density distributions (see
[Durbin et al. 1998]).

An altogether different approach of representing the dynam-
ical nature of audio signals is the computation of dynamic fea-
tures by substituting the MFCCs with features that already code
some temporal information (e.g. autocorrelation or reflection co-
efficients). Examples can be found in [Rabiner & Juang 1986].

Some of these ideas might be able to further improve the mod-
eling of songs by HMMs but it is not clear whether this will also
help the genre classification performance.

6. CONCLUSION

We were able to show by comparison of log-likelihoods that
HMMs better describe the spectral similarity of songs than the
standard technique of GMMs. This advantage in terms of model-
ing power does not buy any gain in accuracy when HMMs instead
of GMMs are used for genre classification. These two results to-
gether seem to explain why so far in the literature little success in
using HMMs for music analysis based on spectral similarity has
been reported. Evaluation criteria reported before were rather in-
direct means of measurement.
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