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Abstract— Most current solutions to active perception plan-
ning struggle with complex state representations or fast and
efficient sensor parameter selection strategies. The goal is to
find new viewpoints or optimize sensor parameters for further
measurements in order to classify an object and precisely locate
its position.

This paper presents an exclusively parametric approach for
the state estimation and decision making process to achieve
very low computational complexity and short calculation times.
The proposed approach assumes a realistic, high dimensional
and continuous state space for the representation of objects
expressing their rotation, translation and class. Its probability
distribution is described by multivariate mixtures of Gaussians
which allow the representation of arbitrary object hypotheses.

In a statistical framework Bayesian state estimation updates
the current state probability distribution based on a scene
observation which depends on the sensor parameters. These
are selected in a decision process which aims on reducing
the uncertainty in the state distribution. Approximations of
information theoretic measurements are used as evaluation
criteria.

I. INTRODUCTION

Many computer vision systems which interpret single

observations face the problem of having to suggest the

object class and object state from insufficient measurement

data. These uncertainties might result from either inaccurate

sensing devices, weak classifiers, occlusions, poor lighting

or ambiguity of object models. Active perception approaches

aim on incorporating further measurements under different

sensing settings to gain more precise information on the

scene. Their direct application to real world problems such

as object recognition, visual surveillance, inspection, target

tracking, visual search, monitoring systems, 3D object recon-

struction or scene exploration and interpretation underlines

their importance.

The developed work is part of a service robot which

autonomously performs manipulation tasks such as grasping

objects. The demand of suitability for everyday environ-

ments requires the localization of objects under challenging

environmental conditions such as bad lighting, reflections

or occlusions. As a matter of fact the unique classification

and localization of an object is often not possible given a

single sensor measurement. Thus fusing several observations

would lead to better detection results at the costs of sensor

movements and additional computational power. In order

to minimize these expenses a minimal sequence of views

would be desired which provides excellent classification and

localization results.

Section II outlines current state of the art approaches and

deals with the problems of viewpoint selection and state

estimation.

In section III an overview of the perception architecture is

given. The more detailed concept regarding state estimation

for parametric state distributions is explained in section IV.

Section V explicates a fast sensor parameter selection

strategy, which chooses the next best viewpoint from esti-

mated posterior probability distributions.

This paper closes with the evaluation Section VI where

experiments on proposed theories are described.

II. RELATED WORK

Lots of research work on active vision brought up very

sophisticated approaches for dealing with this problem. Since

in this paper we decided to use a basic widely-used statistical

framework [1], we only highlight relevant theories including

Bayesian state estimation and online strategies for sensor

action evaluation. Several state of the art approaches are

presented which examine active perception problems. Their

architectural properties and their capability for continuous

high dimensional state representations are descussed.

In [2] an appearance-based approach to active object

recognition is proposed. The method combinedly handles

the effects of shape, pose, reflections and illumination by

projecting an image into a parametric eigenspace. In an au-

tomatic learning procedure for a large amount of images the

eigenspace is constructed. In order to find a new viewpoint

each possible movement from the current eigenspace entry

which is closest to the one from the input image is evaluated.

Therefore the entropy loss is used as a criterion. Despite

the applicability of this approach to high dimensions, the

fact that only single object scenes can be considered and

the difficulties of continuous pose representation constitute

drawbacks.

Starting from Bayesian state estimation [3] uses entropy

maps as selection criterion for next best view planning, which

have to be build offline at high costs. The framework is

extended in [4] by using a measure which builds up on

Fisher’s linear discriminant analysis for the evaluation of a

viewpoint. The advantage of computational efficiency and



the fast algorithm unfortunately only have been proven for a

one-dimensional discretized state space for the object pose.

A probabilistic Bayesian object recognition technique is

presented in [5] and [6] which bases on the statistical

representation of 3D objects by several multi-dimensional

receptive field histograms. Information theoretic evaluation

approaches such as mutual information or Shannon’s entropy

allow both, the prediction of the performance of the object

recognition process and a measure for the discrimination of

a viewpoint. As well the adaptability of all equations to a

continuous state space is claimed, still experiments mainly

show their purpose for sampled distributions.

Another approach [7], quite similar to the previous one,

systematically reduces the uncertainty in the state estimation

process. Mutual information is used for gaze control and

the selection of an optimal sequence of sensing actions.

Experiments for discrete probabilities endorse the quality

of the Bayesian statistical framework and the information

theoretic evaluation. The authors also consider continuous

probability density representations. Therefore the classifier

is swapped with the more sophisticated eigenspace classifier

[8] [2], and the sensing parameters are chosen after Monte

Carlo evaluation of the differential mutual information. Ex-

periments show the effectiveness in matters of computation

time, detection rate and minimal number of views. Never-

theless the problems of eigenspace classifiers still exist and

the sampling of high dimensional continuous distributions

increases the runtime.

In [9] the Condensation algorithm is applied for creating

sample sets from the continuous probability distributions.

After updating the particle distribution its density is evaluated

by a kernel density estimator such as a Parzen estimation. For

solving the problem of choosing optimal views the authors

use reinforcement learning for viewpoint training, which al-

lows selecting a sensing action from a continuous viewpoint

space based on the learned action-value function. Advantages

of this approach definitely lie in the independence of the

classifier for the fusion process, its continuous viewpoint

space and the automated training procedure. Still the offline

training process takes already very long for a single degree of

freedom camera. Also the alternation of sampling and fitting

again parametric probability distributions is laborious.

III. PERCEPTION ARCHITECTURE

This work focuses on model-based applications which

means that object properties and appearances are initially

well-known and unknown objects are not taken into account.

It addresses the problems of object classification and pose

determination for manipulation tasks. Figure 1 illustrates

the scheme of the statistical framework which is applied to

this active perception problem. The active system follows

a sequential, iterative two-step process, including next best

view planning and state estimation.

1) Optimal sensor parameter selection: During the first

step the current state q is updated with an estimated ob-

servation Ô(a). The parameter a denotes a sensing action

which can either be a new viewpoint or a change in the

Fig. 1. Active object detection architecture: the bricks connected by the
solid line depict the sensor parameter selection sequence, the dashed line
concatenates the perception action stages and closes the perception cycle

sensor settings such as zoom. The evaluation process targets

on finding the sensor action which minimizes the uncertainty

in the state estimate at most. The actuator accomplished the

requested action.

2) Perception action: Step two executes the sensing task

by performing the real observation O(a) given the previously

determined sensor settings a. This leads to a state update

which will be used as input for the next parameter estimation

step.

IV. PARAMETRIC PROBABILISTIC FRAMEWORK

This section explicates the state estimation process and

constitutes the concepts of the state space and its probabilistic

representation.

A. State space representation

A set of object models (Ω1, ...,Ωk) establishes an object

database Ω, containing all k different object classes, we

finally want to detect. Besides the classification of an object

type, the object’s location and the object’s pose are of

great importance. The object position is expressed in the

m + n-dimensional, continuous state space ρ = R
m × S

n,

where n translational components span the real infinite state

space R. As for periodic variables this infinte state space

is inappropriate the periodic m-dimensional state space S is

introduced which ranges from 0 to 2π and is very suitable

for angular variables. Consequently the world state q ∈ Q
with Q = Ω × ρ can be described as a set of tuples

q = (Ωi, φ
T )T with φ = (φ1, ..., φm, φm+1, ..., φm+n)T

where (φ1, ..., φm) ∈ R
m and (φm+1, ..., φm+n) ∈ S

n. In

other words the entirety of all object-tuples builds up the

world state. Since Q represents both discrete and continuous

dimensions it will be further considered as a mixed state.

B. State estimation

Most approaches listed in Section II base on the widely-

used Bayesian statistical framwork for state estimation. As

well this approach updates the probabilistic posterior state

distribution by taking into account prior knowledge and the

observation likelihood. The goal is to conclude a state proba-

bility estimation for incorporating a new observation Ot(at)
at time t. Defining p(qt|Ot−1(at−1), ..., O0(a0)) as the a



priori probability distribution for previous sensor measure-

ments Ot−1(at−1), ..., O0(at), the updated state distribution

p(qt+1) can be conducted using Bayes’ rule:

p(qt+1) : = p(q|Ot(at), ..., O0(a0)) (1)

=
P (Ot(at)|q)p(q|Ot−1(at−1), ..., O0(a0))

P (Ot(at), ..., O0(a0))

The evidence term P (Ot(at), ..., O0(a0)) is determined by

integrating over the state distribution applying the theorem

of total probability

P (Ot(at), ..., O0(a0)) = (2)
∫

q

P (Ot(at)|q)p(q|Ot−1(at−1), ..., O0(a0))dq.

As the current observation Ot(at) can be considered as

the detection of a set of N features F = {f1(at), ..., fN} it

can be rewritten as

Ot(at) = {f1(at), ..., fN (at)}. (3)

Substituting Ot(at) in the likelihood distribution

P (Ot(at)|q) with Equation (3) leads to a complex

expression whose calculation becomes computationally

very expensive for a large number of feature. Instead from

assuming all features to be conditionally independent which

states a valid approximation the likelihood distribution can

be computed by applying the naive Bayes assumption:

P (Ot(at)|q) =

N
∏

i

P (fi|q) =
∏

f

P (Of
t (at)|q). (4)

While Equation (1) is used for a state update given the

real observation from Equation (3), the estimated posterior

distribution p(q̂t+1) for a given estimated observation Ô(at)
is calculated analogously finally resulting in the posterior

estimate

p(q̂t+1) =

[
∏

f P (Ôf
t (at)|q)

]

p(qt)
∫

q

[
∏

f P (Ôf
t (at)|q)

]

p(qt)dq
, (5)

where p(qt) denotes the prior distribution.

C. Probabilistic representation

For determining an appropriate probability density distri-

bution for the representation of the world state the scene

properties have to be examinated. Because of the purpose

to model various object hypotheses or even multiple objects

within the same probability distribution, all single peaked

densities are inappropriate. Thus, alternatives like particle

distributions and mixtures of Gaussians are the only feasible

and due to the high dimensional state space we decided

on using the multivariate Gaussian mixture distribution.

Equation (6) depicts it as the weighted sum over normal

distributions, given by their mean vectors µk and covariance

matrices Σk. πk denotes the weight of the kth component.

[10]

p(q) =

K
∑

k=1

πkN (q|µk,Σk) (6)

D. Bayesian framework with Gaussians mixtures

When treating the posterior probability in the Bayes the-

orem as the a priori probability of the sequencing process

of sequential decision making, both distributions must be

of the same type. Referring to conjugate priors [11] for

the parametric probability density multiplication of normal

distributions we show that the multiplication of likelihood

and prior, both of the type of mixtures of Gaussians, can

be done simply by a componentwise parameter update to

receive the posterior Gaussian mixture distribution:

K1K2
∑

k=1

πkN (q|µk,Σk) =

K1
∑

i=1

πiN (q|µi,Σi)

K2
∑

j=1

πjN (q|µj ,Σj)

(7)

The resulting hyperparameters µk, Σk, πk of each component

are computed from the modes of the multiplicands i and j.

Σk = (Σ−1

i + Σ−1

j )−1

µk = Σk(Σ−1

i µi + Σ−1

j µj) (8)

πk =
πiπj

(2π)D/2

√

|Σk|

|Σi||Σj |

exp(1/2(µT
k Σ−1

k µk − µT
i Σ−1

i µi − µT
j Σ−1

j µj))

|| indicates the determinant of a matrix, D denotes the

dimension of the continuous state space. The evidence term

which can be easily computed by calculating the sum of the

weights, as the integral over a Gaussian distribution equals

one, normalizes the distribution.

The number of components increases for each multiplica-

tion as it equals the product of the multiplicand modes. As

there is no need to take along unimportant mixtures and to

keep the number of components small two mixture reduction

strategies are applied:

1) Merging mixtures: Components with similar mean-

vectors can be unified according to following equations [12]:

µc =
K

∑

k=1

πkµk

Σc =

K
∑

k=1

πk(Σk + (µk − µc)(µk − µc)
T ) (9)

πc =

K
∑

k=1

πk

2) Dropping mixtures: Mixtures with insignificantly low

weights can be dropped as they do not distinctly influence

the probability distribution. The weights of the remaining

components have to be readjusted.

V. SENSOR PARAMETER SELECTION

For selecting the best sensing action the estimated poste-

rior probability distributions have to be evaluated regarding

its uncertainty. The more a distribution peaks the more pre-

cise it determines the object’s class and pose. The proposed

sensor parameter selection process bases on information

theoretic rating approaches for probability distributions:



A. Information theoretic posterior evaluation

The information theoretic concept for measuring the un-

certainty for continuous probability distribution is the differ-

ential entropy

h(q) = −

∫

q

p(q) log p(q)dq. (10)

As some properties of Shannon’s entropy do not apply

for the differential entropy in the following its suitability

is discussed. From the parametric entropy equation for a

multivariate normal distribution

h(q) =
1

2
log (2πexp)D|Σ|dq. (11)

it can be easily seen that for the covariance matrix determi-

nant |Σ| < 1/(2πexp)D the entropy can become negative.

This bases on the reason that the probability density is a

probability per unit length and consequently depends on the

measure length. Thus the differential entropy is not invariant

to coordinate transforms such as scaling. For translation and

rotation invariance applies. As not the absolute entropy but

the scale invariant entropy relation among the viewpoint

dependent posterior distribution estimations is significant for

selecting the best viewpoint, the differential entropy qualifies

as a satisfying measure.

The computation of the entropy both numerically or by

sampling from the probability density distribution is costly

in matters of processing time for multivariate Gaussian

mixtures. Therefore the upper and lower bounds of the

differential entropy are determined according to [12]. The

relevance of the upperbound approximation

h(q̂t+1) =
∑

c

1

2
log[(2π exp)D|Σc|] (12)

for sensor parameter selection, where Σc signifies the merged

covariances of all components for the object class c (Equation

(9)), will be explained in the following section.

B. Sequential decision making

The prospective sensor action at+1 is chosen from the

lowest upper bound entropy estimate

at+1 = argmin
a

h(q̂t+1(a)). (13)

Due to the minima function the state estimation will be

improvement in every step, but the optimality of the found

sequence of actions cannot be guaranteed.

As already mentioned in Section I, the planning and

sensing action steps are iterated until a stop criterion is

reached. Ideally the detection precision fulfills the recogni-

tion requirements, when the sum of the variances over all

object classes falls below a threshold. Setting this threshold

greater than 1/(2πexp)D guarantees positive entropies as the

algorithm will terminate before. Due to the effect that equal

measurements sharpen the posterior distribution, previously

selected viewpoint are being penalized to avoid several

sequencing observation with the same parameter set.

VI. EXPERIMENTAL RESULTS

In two experiments the state estimation and sensor action

selection process will be explained in detail. While the first

one is based on a synthetic object in order to clearly show

the functionality of the approach the second experiment was

performed with real sensors and objects.

A. Experiment with generated sensor model

The first experimental setting aims on detecting the artifi-

cial octagon shown in Figure 2a). The object is positioned in

the three-dimensional state space R
3, where two dimensions

describe the location in the xy-plane, the third provides

information about the object’s rotation. The periodicity of

the angular component is taken care of by choosing an

appropriate working point for correct processing. In addition

to the state q in the world coordinate frame the types of

sensing actions have to be defined. In this experiment a
stands for a change of the sensor’s viewpoint, where the state

space of the sensor action equals R
3. Figure 2b) illustrates

the object’s real world pose at φ = (0, 0, 180◦) and an

arrangement of 10 viewpoints which can be chosen from

to quickly and accurately determine the correct object pose.

(a) Octagon object (b) Viewpoints and object arrangement; the lat-
eral features are drawn on the top of the object
for better comprehension

Fig. 2. Experimental setting

The generated database and sensor model allow very

precise control, monitoring and verification of the active

recognition process. We introduce two different types of

sensors. A color detector distinguishes between red (dark)

and green (light) and a shape detector which is able to

recognize point and cross features. Both sensors work as

binary feature detectors meaning they can either see the

feature or not. Seeing a feature signifies that the feature

occurs within the sensor’s vision range which is modeled

by a geometric cone with an aperture angle of 90 degrees.

The actual detection also depends on the feature properties,

resulting in a likelihood of detecting the feature. Each feature

is attached to the object’s geometric mantle implying an

areal pose. Its area of visibility is described in ways of

the viewing perspective and distance. Additionally to this

physical properties we assume noise effects on the sensor

activity inferring that the feature might not be seen despite

its presence. Based on these assumptions for each sensing



viewpoint the likelihood P (f(a)|q) of a positive detection

of an object at a certain pose has to be determined from true

and false positive feature incidences. At this point we assume

the likelihood distribution over all states q to be equivalent

to the distribution of the field of view of the feature. Latter

can be computed by sampling the state space, quantifying

all object poses from where the feature is visible and fitting

a multivariate mixture of Gaussians into this uniform space.

For this purpose expectation-maximization approaches [13]

[14] provide feasible results. In order to find the feature

likelihood this normalized mixture distribution has to be

raised accordingly by adjusting the component’s weights. As

the database and all features are initially known all feature

distributions can be assigned in an offline training process.

Figure 3 displays the covariance ellipsoid of the likelihood

distribution of a point feature, modeled by a single Gaussian

mixture, which covers 97 per cent of the probability mass.

Fig. 3. Covariance ellipsoid of the normalized probability density distri-
bution of P (f(a)|q)

To compute the posterior probability as described in Sec-

tion IV the set of expected features for an observation from

a certain viewpoint is estimated from the prior probability

distribution. Initially the prior is assumed to be equally

distributed and is modeled as a single Gaussian mixture

component with large variances. The top plot of Figure

4 a) shows the contours of the probability distribution of

the xy-dimensions integrated over the angular dimension.

The bottom polar plot represents the angular probability

distribution integrated over the other dimensions. Starting

from this initial prior a sequence of observations is accom-

plished, each from a viewpoint which was selected in order

to reduce the uncertainty in the state distribution at most.

Figure 5 illustrates the consecutive sensing actions, Figures

4 b) to f) represent the related posterior distributions. From

seeing the green (light) feature from viewpoint 1 not that

much information can be gathered as this feature emerges

quite often on the object’s surface. When incorporating a

measurement from viewpoint 5 seeing the cross and the

green (light) feature reduces the uncertainty especially for

the angular prediction a lot. Further observations from the

viewpoints 8, 3 and 4 sharpen the object’s location and

also contribute a little to determine the orientation more

precisely. The algorithm terminates with the peak probability

distribution of the object pose at φ = (0.21,−0.01, 181.15◦).

Relative to the coarse likelihood functions for each feature,

this result is very satisfying. To get meaningful information
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(f) Observation (VP 4)

Fig. 4. Sequence of posterior distributions based on the chosen sensing
actions; the top plot shows the contours of the probability distribution in
xy-dimensions, the polar plot highlights the angular distribution.

Fig. 5. Sample viewpoint sequence

of the performance of the algorithm several scenarios using

different initial object poses (within an area of 1m2 and

randomly oriented) and starting viewpoints have been tested

repeatedly. Table I compares the results of this approach

with a random viewpoint selection strategy. As termination

criterion angular variances of the merged mixtures (Equation

(9)) of less than 17.5◦ and 27.5◦ was chosen. While the

average errors for the pose which was calculated from the

difference of the maximum of the posterior distribution and

the real pose are similar, the proposed approach requires less

numbers of steps to reach the target accuracy than the random

strategy. The estimation accuracies of on average 0.45m and

5.81◦ are very satisfying regarding the average likelihood

variances of around 4.5m and 125◦ for one feature. It can

be clearly seen, that the later perception actions only reduce

the uncertainty in the state estimation. The processing time

on a 1.6GHz AMD Dual-Core processor is less than 20ms.

B. Experiment with real data

The goal of this experiment is to locate the jam tin

illustrated in figure 6a) in a setting as before, using a three-

dimensional state space for the object pose and 10 circularly



TABLE I

COMPARISON OF THE PROPOSED APPROACH WITH A RANDOM

VIEWPOINT SELECTION STRATEGY FOR 1000 TRIALS AND TERMINATION

CRITERIA FOR THE ANGULAR VARIANCES OF σ3,3 = 17.5◦ AND

σ3,3 = 27.5◦

mean no. average translational average angular
strategy of views error (in m) error (in ◦)

random 8.03 0.44 5.48

planned 6.92 0.47 5.93

random 6.08 0.45 5.96

planned 4.88 0.44 6.01

aligned viewpoints. The artificial sensor model is replaced

(a) (b) (c)

Fig. 6. (a) shows the jam tin object, (b) the feature locations on the
object geometry of the object model and (c) illustrates observed features
and similar ones.

by real assembly. A RGB camera with a resolution of

1388 × 1038 pixels is mounted on a robot.

The detection is based on SIFT features [15]. From 36
images which are taken in 10 degree longitudinal steps

from all around the jam tin 31500 features are acquired. A

comparison of the feature descriptor vectors by taking the

Euclidean distance shows that several features are similar

in their characteristics. The histogram in Figure 7 shows

the correlation of these feature types with the numbers of

features belonging to them.

Fig. 7. Histogram showing how many feature types of a certain size are
stored in the database

To examine the strength of our approach using SIFT

features we assume for this experiment that the object is

occluded by other objects and the viewing conditions are bad.

To simulate this effect the least discriminant features, which

are seen in a single view only, are suppressed in our database.

For the remaining features the likelihood distributions are

calculated from the views they are seen in and the scale

descriptors.

In the running experiment real measurements, containing

very few features due to bad viewing conditions, are per-

formed. Figure 6c) displays the observed features and all

database features similar to those. From the corresponding

feature likelihoods the posterior distribution is updated and

the prospected sensing action is estimated.

The encountered result in terms of numbers of views

supports the result of the synthetic experiment. So does the

computational time, which mainly depends on the amount

of viewpoints, the number of features and the number of

mixtures.

VII. CONCLUSION

This paper describes a fast method for state estimation and

viewpoint selection, which is suited for high dimensional

state spaces and entirely computes the probability distri-

butions and uncertainty measures via hyperparameters. The

method uses Gaussian mixtures as parametric representations

of the density function. As shown, the Bayesian update can

be done parametric and the entropy based decision is made

by applying a upper bound Gaussian mixture approximation.

Since, the computational time is very short, the algorithm can

be applied to real, everyday environments.
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