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Abstract— This paper presents an active perception plan-
ning module embedded in a distributed functional cognitive
architecture for complex environments. It discusses the func-
tional module integration over the wish list concept, enabling
distributed planning, reasoning and decision actions. Further
the perception planning approach is depicted along with its
components: the probabilistic framework for scene modeling,
the correct association of observation data into the scene
model, the probabilistic computation of object occlusions and
the probabilistic action planning in order to select the most
profitable prospective viewpoint.

In an experimental setting a complete perception loop is
presented and the achieved results are discussed. Perception
and manipulation tasks in an everyday kitchen environment
are chosen as the evaluation scenario. It can be stated that the
so far developed active perception planning approach convinces
in its applicability to high dimensional state spaces, its quick
computation and its efficient planning strategy.

I. INTRODUCTION

This paper focuses on an active perception system for a

household service robot acting in everyday environments.

Further, the main scope of the perception system is to

sustain the manipulation capabilities of the robot. The overall

scenario we are looking for is on the one hand the perfect

execution of manipulation tasks, and on the other hand

the smooth integration of perception and action tasks. The

scenario we consider is that our service robot is continuously

active, steadily perceiving its surroundings and actively try-

ing to enhance its internal representation of the environment.

By doing this, the system will be able to fulfill manipulation

tasks (e.g. fetch and carry etc.) in a very natural, reliable and

fast way.
The requirements for the perception system are:

• Everyday environment: The system should be able to

cope with realistic environments, which are typically

cluttered due to the great amount of present objects. No

prior assumptions are made about object positions and

also unknown objects are considered for manipulation

and path planning.

• Locally complete model: This requires the use of scene

models which allow a quality assessment of the gener-

ated models enabling an active control of the perception.
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Fig. 2. DESIRE robot performing a sorting Task on the CeBIT technology
fair in Hannover, Germany.

Hence the envisaged active perception must be imple-

mented in a way that information over the local scene

(in terms of space) will be maximized continuously.

• Robust and reliable: The used methods should consider

uncertainties in all abstraction layers. This requires

probabilistic models, which explicitly consider uncer-

tainties and comprehensive noise models.

• Smooth integration in the overall system: The above

requirements imply that the perception system has

to continuously evaluate its knowledge and strive to

maximize it. The required perception actions must be

integrated into the overall system control in order to

avoid local system optimization.

According to the above requirements the developed ac-

tive perception system aims on the probabilistic modeling

of multi-object scenes, where a scene consists of several

items, henceforward called object instances. The number of

instances is unknown. Each item instantiates an object class

and all different, initially known classes establish the object

database. The sensor measurement update comprises the

correctly associated measurements with their corresponding

object instances and the Bayesian update step.

Based on this probabilistic model we describe a mea-

surement model which does not estimate object class and

pose from sensing data only but also by incorporating scene

knowledge, such as in particular object occlusions. The

proposed concept for occlusion consideration is applied for

both the real measurement and the observation prediction
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Fig. 1. Wish list concept. The system control and decision making component communicates with several modules via control requests and wish lists.

for perception planning. The probabilistic planner reasons

by considering both, information theoretic quality criteria for

probability distributions and control action costs.

The outline of the paper is as follows. The next sec-

tion presents a brief overview of current approaches to

multi-object scene modeling, active perception planning and

some service robot systems with similar capabilities. Section

III outlines the architecture integration and the perception

framework, Section IV describes the perception system com-

ponents in more detail. This paper closes with an experiment

in Section V demonstrating a full scene perception loop.

II. RELATED WORK

Many different robotic systems capable of enhanced ma-

nipulation and perception skills have been developed so far.

In the following we exemplarily list only a few in order to

show the large variety. The Mobman [1] is a robot which

uses a single arm with a two-finger gripper for grasping

objects on the table. The ARMAR system [2] is more

sophisticated in its hardware assembly and its perception

and communication skills. In [3] manipulation tasks are

embedded in the interaction loop with humans. Rollin’ Justin

[4] focuses more on the control theory for precise and fast

actuation than on aspects of autonomous behavior. One of

the most popular robots is the humanoid ASIMO [5], which

convinces in its moveability.

All these robotic systems differ greatly due to different

demands and realizations. However concerning the active

perception and smooth integration of perception planning in

the overall system control almost all presented systems are

very limited.

In the area of active perception planning and especially

for planning under uncertainty a partially observable Markov

decision process is a very common general model. POMDPs

statistically reason over costs for control actions for finding

an optimal action policy. A very good overview on online

planning algorithms for POMDPs is given in [6]. In [7] a

POMDP is used for cost-sensitive feature acquisition and

classification. The expected reward is calculated from the

classification costs with respect to the current belief state.

Spaan [8] suggests extending the planning strategy by com-

bining costs with payoffs coming from information theoretic

uncertainty measurements.

The research in active perception brought up very sophisti-

cated approaches for viewpoint evaluation and next best view

planning [9][10][11][12]. These works vary in their methods

of evaluating sensor positions, in the strategies for action

planning and in their field of application. They mainly aim on

fast and efficient object recognition of similar and ambiguous

objects, but do not cope with multi-object scenarios and

cluttered environments. These topics are covered in [13].

III. SYSTEM DESIGN AND ARCHITECTURE

This section presents the architecture of the active percep-

tion module and its integration in the overall system.

A. Perception system integration

The global system architecture presented in Figure 1

follows the distributed paradigm of integrated cognitive func-

tional modules. The system is based on several functional

modules like Active Perception, Manipulation, Navigation
etc. All of them perform planning and control actions au-

tonomously according to their local models, knowledge and

functional goals.

In order to enable the whole system to perform optimally

on the one hand the exchange of local data between the

functional modules has to be ensured and on the other hand

the negotiation of partial or local goals for each module

must be performed in an optimal way. This is achieved by

following the wish list concept, presented in the following.



1) The wish list concept: The overall system control coor-

dinates operations and assigns tasks to the specific functional

modules. If a task cannot be completed the modules respond

by sending a wish list, which means, that they suggest

solutions in form of actions to properly accomplish the task.

The global system control evaluates these wish lists in a

reasoning process in order to select the most promising

prospective task, which will be assigned as a new task to

one or more functional modules.

2) Wish list processing: Since for this paper we mainly

focus on the active perception module, the wish list pro-

cessing is presented in this context. When calling the active

perception module a specific request is executed. For instance

a list of objects of the actual scene containing position and

classification is returned. If the uncertainty in the belief of

the actual scene model is unsatisfactorily high the request

can not be completed and the perception planner decides to

actively acquire more data in order to improve the scene

model.

The result of the planning step is a wish list containing

a set of possible control actions including their benefits

and costs, which is sent to the system control. Based on

the evaluation of the overall system state a new request in

form of a single action of the wish list is passed to the

perception module. Afore other tasks like navigation to a

different location in order to change the view point on the

focused scene might be accomplished.

The wish list concept is applied to any other module

too. For instance the manipulation component suggests new

grasping positions if an object cannot be grasped, or the nav-

igation module proposes solution strategies such as removing

obstacles if a target cannot be reached.

B. Active Perception Module

The active perception module aims on choosing control

actions a ∈ A to reach a specific goal g. In this paper we only

consider sensor positioning at different viewpoints as sensing

actions. The framework for selecting the best prospective

action policy π is schematically illustrated in Figure 3.

Fig. 3. Active perception framework

In order to find an optimal action policy a sequence of

prospective actions and observations has to be evaluated.

Decision making bases on the costs of the executed action

and the reward from the expected belief b(q′), which denotes

the conditional probability distribution over the state q′, given

a sequence of measurements. State estimation determines

this belief distribution by updating the initial distribution

by incorporating an observation O. The observation model

provides the measurement data for state estimation. The

expected observation is predicted from the chosen sensing

action and the state distribution after the transition update.

For more accurate observation prediction, object occlusions

in the multi-object scenarios are estimated.

The following sections depict the components of the

perception module in more detail.

IV. ACTIVE PERCEPTION COMPONENTS

At first this section depicts the used probabilistic methods

of object modeling for describing multi-object environments.

Subsequently the active perception components such as state

estimation, the observation model and policy making are

detailed.

State estimation describes the fusion of measurement data

with current scene information and associates observations to

corresponding hypotheses. The visibility influences between

objects are considered in form of occlusions in the estimation

process. Perception planning reasons over estimated belief

distributions for finding the best action policy in order to re-

duce the state uncertainty. For executing actions we consider

state transition uncertainties due to unprecise navigation and

modeling inaccuracies. All these components are explained

in detail in the following sections.

A. Multi-object scene modeling

We consider the single object instance ι with 0 ≤ ι ≤
I , where I denotes the temporary total number of object

instances. Let bι(q) be the belief distribution of item ι over

the object state q = (Ci, φ
T )T , which is a tupel containing

the discrete class representation Ci and its continuous m-

dimensional pose φ = (φ1, ..., φm)T with φ ∈ R
m. Ci is

element of the set of object models (C0, C1, ..., Cc), which

establish the object database C, containing all c different and

initially known object classes and the rejection class C0.

Hence we model the uncertainty of each object instance

by individual probability distributions. As each belief dis-

tribution integrates to one all items would be equal in

its probability mass. To allow assigning different weights

to object instance distributions to express the certainty of

which this distribution in fact corresponds to an item or not

we introduce the rejection class C0. Assigning weights to

this class reduces the probability mass of the other object

classes and decreases the occurrence likelihood of this object

instance.

In order to consider the total probabilistic scene we

introduce b(q) as the set of all instance distributions bι(q).
Note that b(q) is no probability distribution after all, but a

conjunction of distributions.



B. State estimation and data association

This work uses the Bayesian state estimator introduced in

[14] and considers uncertainties in the state transition and in

the measurement for state estimation. We state the probability

distribution over the state

bι
t−1(q) = pι(q|Ot−1(at−1), ..., O0(a0)) (1)

as the a priori belief of the object instance ι for previous

sensor measurements Ot−1(at−1), ..., O0(at). Applying an

action with its state transition probability pa(q′|q), which

contains the inaccuracies resulting from robot actions, leads

to the probabilistic model for the prediction update

pι
a(q′|Ot−1(at−1), ..., O0(a0)) =

∫
q

bι
t−1(q)pa(q′|q)dq.

(2)

The posterior distribution bι
t(q
′) is calculated according to

Bayes’ rule by updating the prediction update with the new

observation Ot(at) for each object instance.

bι
t(q
′) = pι(q′|Ot(at), ..., O0(a0)) (3)

=
P ι(Ot(at)|q′)pι

a(q′|Ot−1(at−1), ..., O0(a0))
P ι(Ot(at), ..., O0(a0))

The evidence term P ι(Ot(at), ..., O0(a0)) is determined by

integrating over the state distribution applying the theorem

of total probability

P ι(Ot(at), ..., O0(a0)) = (4)∫
q′

P ι(Ot(at)|q′)pι
a(q′|Ot−1(at−1), ..., O0(a0))dq′.

The actual measurement model provides the total mea-

surement likelihood P (Ot(at)|q′).
In this work all probability distributions, including this

likelihood, are represented as multivariate Gaussian mixtures.

The abilities to describe multifaceted, multi-peaked distribu-

tions and their suitability to high dimensional state space due

to its parametric computation are favorable.

The measurement likelihood P (Ot(at)|q′) contains i
Gaussian mixture components describing the observation, but

does not possess the desired information about the object

instance categorization

Thus, this input data is associated with the corresponding

object instances, which the probability distribution needs

to be fused with. We split up the complex measurement

likelihood distribution to simple, single peaked components

P (Ot(at)|q′) =
∑

i

P i(Ot(at)|q′) (5)

with P i(Ot(at)|q′) = N(wi, μi, Σi). Weight wi, mean μi

and covariance Σi are the parameters of the Gaussian kernel.

We compare each component with each object instance prior

distribution bι
t−1(q) by applying the Mahalanobis-distance

measure

d =
√

(μ1 − μ2)T (Σ1 + Σ2)−1(μ1 − μ2) (6)

on both distributions. The similarity is defined by a specific

threshold dependent on the object class’ geometry. More

precisely, a function of two parameters, the Mahalanobis

distance of the distributions of the object centers and their

geometric dimensions, is used for determining object in-

stance allocations. When two distributions are considered to

be similar P ι(Ot(at)|q′) is set to P i(Ot(at)|q′) (or added

to it if already one component was assigned before). If a

component i cannot be associated with any object instance

distribution a new object instance I+1 has been found and its

distribution is assigned to a new object instance measurement

P I+1(Ot(at)|q′). The corresponding prior distribution for

the Bayes update is assumed to be uniformly distributed.

The associated object instance likelihood are used for the

Bayes’ update in Equation (3).

C. Occlusion estimation in the observation model

Generally we want the observation model to estimate the

observation likelihood P (Ot(at)|q′) for the current measure-

ment Ot(at). Under the assumption of using interest point

detectors this observation can be expressed as the detection

of a set of N features

Ot(at) = {f1(at), ..., fN (at)}, (7)

as a subset of all database features. These features are

considered to be the currently visible interest points.

We generate this set of features explicitly when predicting

an observation, where we simulate the measurement. Feature

characteristics and occlusion events are considered. While for

a real measurement the set of features is acquired directly

from the detector, during the simulation of the observation

we estimate the visibility of a feature j from its occurrence

likelihood P (fj(at)). For determining a feature’s visibility

the pose distribution of the object instance, which the feature

belongs to, is of importance. In order to compute the prob-

abilistic visibility we draw S samples from the prior beliefs

bt−1(q) of the object instance distributions. Each sample

describes a set of states qs containing one state qι
s of each

instance. Thus, the sample state qs can be interpreted as one

specific object constellation. For this state Ps(fj(at)|q) is

calculated taking into account the view frustums of the sensor

and the features, features on back faces, and possible object

occlusions. Adding up the likelihoods over all samples leads

to

P (fj(at)) ∼
∑S

s=1 Ps(fj(at)|qk)
S

, (8)

which states an approximation for the probability that the

feature fj(at) is visible from viewpoint at.

Now, given the set of expected visible features,

P (Ot(at)|q′) is computed by applying the naive Bayes rule

and assuming the features to be conditionally independent:

P (Ot(at)|q′) =
N∏
j

P (fj(at)|q′). (9)



D. Perception planning

The probabilistic planning concept in form of a partially

observable Markov decision process, as proposed in [14], is

used for finding optimal action policies. Due to realtime con-

straints and the fact that performing an observation usually

greatly influences the beliefs and makes proposed policies

obsolete, this concept is slightly simplified to the 1-horizon

planning strategy:

π(b) = argmax
a

Ra(b) (10)

The prospective action policy π is determined by maximizing

the expected reward

Ra(b) =
{ ∫

ra(b)b(q)dq if t < T

αhb(q′|Ot(at)) if t = T

(11)

by applying a Greedy-technique to propose the control action

to execute. b is an abbreviation of b(q). The factor α relates

the value of information and the sensing costs. The reward

Ra(b) for executing action a in state q′ is calculated by

comparing the sensing costs ra(b) for consecutively moving

the sensing device with the quality of the belief distribution

after incorporating an observation, which is performed at

time T . In order to determine this quality the information

theoretic measure of the differential entropy hb(q′|Ot(at))
of the estimated belief distribution is used. Equation (3)

describes the calculation of the belief distribution for each

object instance. For evaluating the entire scenario the entropy

over all objects instances is acquired by summing up the

individual entropies

hb(q′|Ot(at)) =
∑

ι

hbι(q′|Ot(at)) (12)

As the number of object instances remains constant for all

sensing action during planning, this summation is justified.

E. Transition uncertainty in state estimation

The transition uncertainty is defined as the linear Gaussian

pι
a(q′|q) =

K∑
k=1

wkN (q|μk + Δ(a), Σk(a)), (13)

with Gaussian kernels equal in the number of components

and mean values to the belief distribution. Δ(a) indicates the

change in state dependent on the action with a covariance

Σk(a).

V. EXPERIMENTAL RESULTS

In this experiments section the detection algorithms, which

are used in the observation model, and the modeling of de-

tection uncertainties are described. The experimental setup,

including object settings and viewpoint arrangement, is spec-

ified and a perception loop is performed. This means that a

sequence of measurements is performed which are selected

by the proposed action planning algorithm.

A. Uncertainties in the observation model

In this work we use a stereo camera system and the

SIFT-detection algorithm [15] for object recognition. In an

offline process the object database is build by acquiring 396
images of each object from different viewing angles. All

interest points are calculated from this data. In contrast to

our previous works [16][14] we do not consider each interest

point separately, but use a more abstract representation. We

cluster all features from one view to a single, more abstract

feature. Thus we get a far less number of total features at the

drawback of a loss of geometric information and restrictions

in the ability of differentiating between ambiguous objects.

This simplification helps for comprehensibility but does not

restrict the occlusion estimation process.

The measurement model provides P (Ot(at)|q′) as a mix-

ture distribution for the state update. The mean values of

the measurement distribution are determined from the stereo

matching algorithm on the basis of feature correspondences

[17]. The uncertainties result from relations between seen

and expected interest points, matching errors, sensor and

feature characteristics.

B. Experimental setup

The proposed approach is demonstrated with the envi-

ronmental setup shown in Figure 4. The scenario consists

of four different types of grocery objects, a tee box, a

rusk box, a sauerkraut tin and a ham tin. In an initial

acquisition process the object geometry and the SIFT interest

points per view are stored in the object database. The SIFT

algorithm finds interest points in each camera image. By

comparing these features with the object database we get

object hypotheses. From stereo matching of these features

based on both camera images we estimate the 6D locations

of the object hypotheses. In order to express the uncertainty

of a measurement the number of consistent stereo matches

and the scale of the interest points are taken into account. The

uncertainties of the SIFT detector in the distance estimation

are usually higher than in their orientation, what results in

higher variances in viewing direction.

The measurement model for the state prediction slightly

differs from the model from the state update as the ob-

servation needs to be simulated. Hence the measurements

are simulated by estimating the mean object pose and their

average spreading. Therefore we formulate the function

gv(ftotal) = kvftotal+δv for the coherence between the total

number of interest points in a view ftotal and the number

of consistent stereo matches gv(ftotal) in this view for a

detection. The factor kv denotes the percentage of interest

points which are detected on average. δv describes additive

Gaussian noise. These descriptions and the results of the

occlusion estimation process are used for determining the

object class likelihood and pose covariance in the simulated

measurement model.

A sensing action is defined as a change in the robot’s

viewpoint. The viewpoint arrangement of 9 different control

actions is illustrated in Figure 4, where each blue cone

represents a viewpoint pointing in the direction of the tip



Fig. 4. Experimental scenario with viewpoint arrangement. The blue cones,
whose tips point into sensing directions, represent the viewpoints.

of the cone. These actions are evaluated in this experiment.

We derive the costs of the robot’s movement to another

viewpoint from the movement angle and distance. The costs

for accomplishing a new observation without moving are set

to a value greater than 0 for the current viewpoint to avoid

remaining at the same location at all times. The measurement

reward is calculated according to Equation (12) from the

entropy of the estimated distribution.

C. Performing a perception loop

In the following an action sequence resulting from the

proposed planning approach is presented. Figure 5 shows

the detection result in each step.

Initially we do not have any scene knowledge, so each ac-

tion promises identical benefits. Thus the first measurement

could be acquired from any viewpoint. In this experiment

we start from the current robot position, namely viewpoint

6. A total of 5 new object instances are detected. The first

column in Figure 5 illustrates the result for this measurement.

The top image shows the acquired image by the left camera.

The middle plot illustrates the projections onto the ground

plane of the translational covariance ellipsoids, which cover

97 percent of the probability mass. The bottom plot depicts

a 3-dimensional side view, almost from the same viewpoint

as the image in Figure 4 was taken. Again the translational

covariance ellipsoids are shown together with the table board

which the objects are positioned on. While four objects

are detected very well, the uncertainty of the ham tin is

significantly higher. This results from the bad viewing angle

and the shadow on a significant object surface. The tea box in

the back was not detected at all. In the sequencing planning

phase the uncertainty needs to be reduced. Viewpoint 4 is

suggested as the best prospective action to accomplish. This

is because it is quite close to the current viewpoint and allows

seeing all objects, as none would be occluded. Viewpoint 5
is declined due to possible occlusion by either the tea or the

rusk box. Moving counterclockwise around the table seems

promising only for reducing the uncertainty of the ham tin,

but not for the other objects such as the sauerkraut and ham

tin on the left.

The desired effect of a more precise location of the right

ham tin is achieved after performing an observation from

viewpoint 4. As all other object instances are detected too,

their distributions are sharpened. However a new tea box

object instance is found. The tea box distribution consists

of a two component mixture distribution, both of about the

same weight, but one with a far larger covariance. The next

planning step aims at increasing the position knowledge of

this tea box and on optimizing all other belief distributions

and makes the robot move to viewpoint 5. The resulting

belief contains six well located object instances. As the

specified accuracy is reached, the algorithm terminates.

This example shows only one possible action sequence for

starting from viewpoint 6. Due to the noise effects, coming

either from the real world influences or being modeled in

prediction phase, measurements and predictions vary and

lead to different strategies. It is not guaranteed that all object

instances are found at all times, as the algorithm tries to

reduce uncertainties of knows beliefs, but does not explore

space up to now.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an active perception module and its

embedding in an overall system control of a service robot,

which operates in household environments. The wish list

concept is introduced as a main part of the proposed dis-

tributed architecture of cognitive functional modules. Further

the implementation of the active perception module based

on estimating and selecting best prospective viewpoints in

multi-object environments by considering perception ben-

efits and action costs is discussed. Some aspects of the

fully probabilistic framework, which works in continuous

high-dimensional domains, are described at the example

of components of the perception module. Since the actual

implementation lacks the capability of the detection of white

spots in the actual scene model further research will tackle

this issue.
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