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Abstract— This paper presents a probabilistic framework
for scene modeling and active perception planning in complex
environments. It tackles the problems of representing detection
and transition uncertainties in multi-object scenes without
knowledge of the total number of objects in the scenario. The
correct association of observation data with scene information
is essential for reasonable incorporation of sequencing mea-
surements into the scene model. This work also deals with the
probabilistic computation of object occlusions for probabilistic
action planning in order to select the most profitable prospective
viewpoint. Concepts from computer graphics and statistics are
combined for the efficient and precise estimation of future
observations.

In an experimental setting this active perception system,
integrated into an autonomous service robot, is evaluated in
a kitchen scenario.

I. INTRODUCTION

In previous works [1][2] we developed an active percep-

tion planning approach for a service robot which convinces

in its applicability to high dimensional state spaces, its quick

computation and its efficient planning strategy. As in most

other approaches in literature we also considered single ob-

ject scenes in the past. As a matter of fact in natural, realistic

scenarios the constraint of considering solitary items only

does not hold. Quite the contrary in household environments

mostly arrangements of different or alike objects, such as

food, furniture, dishes et cetera are found. Consequently

we seek for a service robot which is able to detect and

interpret multi object constellations both for perception and

manipulation.

In this paper we extend previous concepts by applying

them on more complex scenarios. A scene consists of several

items, henceforward called object instances. The number of

instances is unknown. Each item instantiates an object class

and all different, initially known classes establish the object

database. Thus a realistic scenario contains various object

instances of alike or different object classes. In this work we

aim on the probabilistic modeling of multi-object scenes and

correctly associating measurements with their corresponding

object instances.
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Based on this probabilistic model we describe a mea-

surement model which does not estimate object class and

pose from sensing data only but also by incorporating

scene knowledge, such as in particular object occlusions.

From these object relations expected visible (and also in-

visible) features can be predicted and used for improving

measurement results. The proposed concept for occlusion

consideration is applied for both the real measurement and

the observation prediction for perception planning.

In Section II current approaches to multi-object scene

modeling and occlusion estimation are listed.

Section III outlines the probabilistic active perception

framework, Section IV describes the concepts in more detail.

This paper closes with an experiment in Section V which

demonstrates the application of the proposed theoretical

concepts on an active vision system.

II. RELATED WORK

The research in active perception brought up very sophisti-

cated approaches for viewpoint evaluation and next best view

planning [3][4][5][6]. These works vary in their methods

of evaluating sensor positions, in the strategies for action

planning and in their field of application. They mainly aim on

fast and efficient object recognition of similar and ambiguous

objects, but do not cope with multi-object scenarios and

cluttered environments. The occurring problem of object

occlusion is treated by Ercan et all [7] by considering static

and dynamic occluder objects. However the object poses

are not modeled probabilistically, so the problem is solved

by applying common algorithms from computer graphics.

Koostra et all [8] approach the cluttered scene problem

by keypoint clustering of interest points from very robust

feature detectors, which allows feasible detection of strongly

occluded objects. Hence, they avoid to model occlusions

explicitly and rely on the robustness of the detector. In [9]

object recognition is combined with an attention mecha-

nism for occlusion avoidance to efficiently acquire scene

information. This approach targets on rapidly identifying

objects in cluttered environments, but does not model pose

uncertainties.

For multi-object tracking the probabilistic comprehension

of occlusion seems more relevant than in current active

systems. Lanz [10] describes a Bayesian framework for

robust multi-object tracking under the presence of occlusions.

He takes into account the object visibility for computing

the observation likelihood by analyzing each image pixel.

Tamminen [11] presents a similar approach for face recog-

nition. The probabilistic representation by inverse-Wishart



functions induces great computational costs and outweighs

the advantages of the occlusion model. Gupta et all [12]

describe a very fast and resource effective vision system for

people part tracking. They use a heuristic for probabilistically

determining body occlusions which is calculated from the

number of visible voxels. This approach does not convince

due to the discretization of space.
In this paper we present an active perception system which

estimates object occlusions by considering probabilistic ob-

ject poses, object geometries and feature alignments.

III. ACTIVE PERCEPTION ARCHITECTURE FOR

MULTI-OBJECT SCENE RECOGNITION

In active perception we aim on choosing control actions

a ∈ A to reach a specific goal g. There is a wide range

of different actions, largely depending on the application. In

this paper we only consider sensor positioning at different

viewpoints as sensing actions and neglect sensor parameter

adjustments. The framework for selecting the best prospec-

tive action policy π is schematically illustrated in Figure 1.

Fig. 1. Active perception framework

In order to find an optimal action policy a sequence of

prospective actions and observations has to be evaluated.

Decision making bases on the costs of the executed action

and the reward from the expected belief b(q′), which denotes

the conditional probability distribution over the state q′, given

a sequence of measurements. State estimation determines

this belief distribution by updating the initial distribution

by incorporating an observation O. The observation model

provides the measurement data for state estimation. The

expected observation is predicted from the chosen sensing

action and the state distribution after the transition update.

For more accurate observation prediction, object occlusions

in the multi-object scenarios are estimated.
The following sections depict the probabilistic modeling

of multi-object scenes and the Bayesian statistical framework

including observation association for state estimation. Also

the observation model under consideration of occlusion es-

timation and probabilistic action planning are explained in

detail.

A. Multi-object scene modeling

We consider the single object instance ι with 0 ≤ ι ≤
I , where I denotes the temporary total number of object

instances. Let bι(q) be the belief distribution of item ι over

the object state q = (Ci, φ
T )T , which is a tupel containing

the discrete class representation Ci and its continuous m-

dimensional pose φ = (φ1, ..., φm)T with φ ∈ R
m. Ci is

element of the set of object models (C0, C1, ..., Cc), which

establish the object database C, containing all c different and

initially known object classes and the rejection class C0.

Hence we model the uncertainty of each object instance

by individual probability distributions. As each belief dis-

tribution integrates to one all items would be equal in

its probability mass. To allow assigning different weights

to object instance distributions to express the certainty of

which this distribution in fact corresponds to an item or not

we introduce the rejection class C0. Assigning weights to

this class reduces the probability mass of the other object

classes and decreases the occurrence probability of this

object instance.

In order to consider the total probabilistic scene we

introduce b(q) as the set of all instance distributions bι(q).
Note that b(q) is no probability distribution after all, but a

conjunction of distributions.

B. State estimation and data association

This work uses the Bayesian state estimator introduced in

[2] and considers uncertainties in the state transition and in

the measurement for state estimation. We state the probability

distribution over the state

bι
t−1(q) = pι(q|Ot−1(at−1), ..., O0(a0)) (1)

as the a priori belief of the object instance ι for previous

sensor measurements Ot−1(at−1), ..., O0(at). Applying an

action with its state transition probability pa(q′|q), which

contains the inaccuracies resulting from robot actions, leads

to the probabilistic model for the prediction update

pι
a(q′|Ot−1(at−1), ..., O0(a0)) =

∫
q

bι
t−1(q)pa(q′|q)dq.

(2)

The posterior distribution bι
t(q
′) is calculated according to

Bayes’ rule by updating the prediction update with the new

observation Ot(at) for each object instance.

bι
t(q
′) = pι(q′|Ot(at), ..., O0(a0)) (3)

=
P ι(Ot(at)|q′)pι

a(q′|Ot−1(at−1), ..., O0(a0))
P ι(Ot(at), ..., O0(a0))

The evidence term P ι(Ot(at), ..., O0(a0)) is determined by

integrating over the state distribution applying the theorem

of total probability

P ι(Ot(at), ..., O0(a0)) = (4)∫
q′

P ι(Ot(at)|q′)pι
a(q′|Ot−1(at−1), ..., O0(a0))dq′.



The actual measurement model provides the total mea-

surement likelihood P (Ot(at)|q′).
In this work all probability distributions, including this

likelihood, are represented as multivariate Gaussian mixtures.

The ability to describe multifaceted, multi-peaked distribu-

tions and their suitability to high dimensional state space due

to its parametric computation are favorable.

The measurement likelihood P (Ot(at)|q′) contains i
Gaussian mixture components describing the observation, but

does not possess the desired information about the object

instance categorization.

Thus, this input data is associated with the corresponding

object instances, which the probability distribution needs

to be fused with. We split up the complex measurement

likelihood distribution to simple, single peaked components

P (Ot(at)|q′) =
∑

i

P i(Ot(at)|q′) (5)

with P i(Ot(at)|q′) = N(wi, μi, Σi). Weight wi, mean μi

and covariance Σi are the parameters of the Gaussian kernel.

We compare each component with each object instance prior

distribution bι
t−1(q) by applying the Mahalanobis-distance

measure

d =
√

(μ1 − μ2)T (Σ1 + Σ2)−1(μ1 − μ2) (6)

on both distributions. The similarity is defined by a specific

threshold dependent on the object class’ geometry. When two

distributions are considered to be similar P ι(Ot(at)|q′) is set

to P i(Ot(at)|q′) (or added to it if already one component

was assigned before). If a component i cannot be associated

with any object instance distribution a new object instance

I + 1 has been found and its distribution is assigned to a

new object instance measurement P I+1(Ot(at)|q′). The cor-

responding prior distribution for the Bayes update is assumed

to be uniformly distributed. The associated object instance

likelihoods are used for the Bayes’ update in Equation (3).

C. Occlusion estimation in the observation model

Generally we want the observation model to estimate the

observation likelihood P (Ot(at)|q′) for the current measure-

ment Ot(at). Under the assumption of using interest point

detectors this observation can be expressed as the detection

of a set of N features

Ot(at) = {f1(at), ..., fN (at)}, (7)

as a subset of all database features. These features are

considered to be the currently visible interest points.

We generate this set of features explicitly when predicting

an observation, where we simulate the measurement. Feature

characteristics and occlusion events are considered. While for

a real measurement the set of features is acquired directly

from the detector, during the simulation of the observation

we estimate the visibility of a feature j from its occurrence

likelihood P (fj(at)). For determining the feature’s visibility

the pose distribution of the object instance, which the feature

belongs to, is of importance. In order to compute the prob-

abilistic visibility we draw S samples from the prior beliefs

bt−1(q) of the object instance distributions. Each sample

describes a set of states qs containing one state qι
s of each

instance. Thus, the sample state qs can be interpreted as one

specific object constellation. For this state Ps(fj(at)|q) is

calculated taking into account the view frustums of the sensor

and the features, features on back faces, and possible object

occlusions. Adding up the likelihoods over all samples leads

to

P (fj(at)) ∼
∑S

s=1 Ps(fj(at)|qk)
S

, (8)

which states an approximation for the probability that feature

fj(at) is visible from viewpoint at.

Now, given the set of expected visible features,

P (Ot(at)|q′) is computed by applying the naive Bayes rule

and assuming the features to be conditionally independent:

P (Ot(at)|q′) =
N∏
j

P (fj(at)|q′). (9)

D. Perception planning

The probabilistic planning concept in form of a partially

observable Markov decision process, as proposed in [2], is

used for finding optimal action policies. Due to realtime con-

straints and the fact that performing an observation usually

greatly influences the beliefs and makes proposed policies

obsolete, this concept is slightly simplified to the 1-horizon

planning strategy:

π(b) = argmax
a

Ra(b) (10)

The prospective action policy π is determined by maximizing

the expected reward

Ra(b) =
{ ∫

ra(b)b(q)dq if t < T

αhb(q′|Ot(at)) if t = T

(11)

by applying a Greedy-technique to propose the control action

to execute. b is an abbreviation of b(q). The factor α relates

the value of information and the sensing costs. The reward

Ra(b) for executing action a in state q′ is calculated by

comparing the sensing costs ra(b) for consecutively moving

the sensing device with the quality of the belief distribution

after incorporating an observation, which is performed at

time T . In order to determine this quality the information

theoretic measure of the differential entropy hb(q′|Ot(at))
of the estimated belief distribution is used. Equation (3)

describes the calculation of the belief distribution for each

object instance. For evaluating the entire scenario the entropy

over all objects instances is acquired by summing up the

individual entropies

hb(q′|Ot(at)) =
∑

ι

hbι(q′|Ot(at)) (12)

As the number of object instances remains constant for all

sensing actions during planning, this summation is justified.



IV. REALIZATION OF THE PROBABILISTIC

FRAMEWORK

This section details the basic concepts of state and occlu-

sion estimation and describes how uncertainties are modeled

and used in the robotic scenario.

A. Transition uncertainty in state estimation

The transition uncertainty is defined as the linear Gaussian

pι
a(q′|q) =

K∑
k=1

wkN (q|μk + Δ(a), Σk(a)), (13)

with Gaussian kernels equal in the number of components

and mean values to the belief distribution. Δ(a) indicates

the change in the state dependent on the action with the

covariance Σk(a).

B. Uncertainties in the observation model

In this work we use a stereo camera system and the

SIFT-detection algorithm [13] for object recognition. In an

offline process the object database is build by acquiring 396
images of each object from different viewing angles. All

interest points are calculated from this data. In contrast to

our previous works [1][2] we do not consider each interest

point separately, but use a more abstract representation. We

cluster all features from one view to a single, more abstract

feature. Thus we get a far less number of total features at the

drawback of a loss of geometric information and restrictions

in the ability of differentiating between ambiguous objects.

This simplification helps for comprehensibility but does not

restrict the occlusion estimation process.

The measurement model provides P (Ot(at)|q′) as a mix-

ture distribution for the state update. The mean values of

the measurement distribution are determined from the stereo

matching algorithm on the basis of feature correspondences

[14]. The uncertainties result from relations between seen

and expected interest points, matching errors and sensor and

feature characteristics.

C. Probabilistic occlusion estimation

The proposed analysis of feature visibility follows the 5-

step algorithm illustrated in Figure 2. It is demonstrated on

the example of the two-object constellation pictured in Figure

3a.
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Fig. 2. Occlusion estimation algorithm

1) Initially when drawing a sample from all object in-

stance distributions bt−1(q) we get a state qι
s for each

object instance. From the object instance class Cι the

object geometry, such as the bounding box, and the set

of surface features are acquired from the corresponding

data base object. All geometric data is given with

respect to the object instance’s origin.

2) In order to represent all instances within one coordinate

reference frame the position transform TP is applied

to transfer all items into world coordinates. The pose

φι specifies the sample location. Figure 3b shows

the drawn sample from the probability distributions,

Figure 3c pictures the bounding boxes of the two-

object scene.

3) The viewing transformation TV transforms features

and bounding boxes into camera coordinates. In the

first stage of visibility analysis back feature culling is

accomplished by determining the feature visibility due

to the object instance’s pose. It aims on identifying all

invisible features by executing following methods:

• Feature at the back side of the object, which point

away from the sensor, are identified by checking

the direction vector of the feature. These are

considered to be undetectable.

• Features with a z-location of their center behind

the camera are eliminated due to their invisibility.

• To find out if a feature, although pointing towards

the sensor, is outside its visibility volume, the

conic view frustums of the sensor and the feature

are checked. Both have to lie within the others

visibility cone.

4) In the sequencing projection transformation step the

object bounding boxes are transformed into a 2-

dimensional projection plane, which is clipped accord-

ing to the sensor properties. This process is called

view frustum culling. The transformation matrix of a

perspective projection Tpersp = (nT V )T−(nV )I4 can

be easily derived from the normal of the projection

plane n and the current homogeneous viewpoint V
with I4 as the 4 × 4 identity matrix [15]. In [16]

this matrix is expanded for clipping the scene by

a pyramidal view volume in order to consider only

bounding box vertices which are within the sensor

range. The convex hull of the projected bounding box’s

vertices specifies the resulting, visible 2D bounding

polygon. Figure 3d shows the perspective projection

of the sample object instances, Figure 3e illustrates

the bounding polygons in the projection plane.

5) In previous steps the feature visibility due to its ob-

ject’s geometry was depicted. Now we deal with object

occlusion in multi-object scenes which are caused

by other object instances. First the object instances

are spatially sorted with reference to the distance of

their origin from the sensor following methods such

as depth-sort-algorithm and binary space partitioning.

From this sorted object list all possible occluder objects

are selected for each object instance. Each object’s

bounding polygon is compared with each occluder’s

polygon for an intersection by using boolean set oper-

ations. An intersection means that the objects occlude

each other. In this case the features of the hindmost



(a) Sample constellation containing
the soup box (green) and the salt box
(blue).

(b) Each flag represents an object
instance pose qι

s. The covariance
ellipsoids depicts the uncertainty in
the belief distribution.

(c) Bounding boxes of the sample
constellation in world coordinates.

(d) Perspective projection of the
bounding boxes into the projection
plane.

(e) 2D bounding polygons in pro-
jection plane for occlusion check.

(f) Occlusion event with two inter-
secting bounding polygons. One fea-
ture (red) is occluded.

Fig. 3. Occlusion estimation algorithm for a sample object constellation

object are projected onto the projection plane. If a

feature lies within the polygon intersection area it

is considered to be occluded. The probability of the

feature visibility is acquired from the percentage of

the occluded feature area. Performing all occlusion

checks leads to the probability distribution p(f) which

describes the estimated likelihood of seeing a feature.

Figure 3e pictures an occlusion event.

After performing the matrix multiplication chain T =
TperspTV TP occlusion estimation considers relations be-

tween objects in order to probabilistically determine the

feature visibility. The number of samples required for de-

termining occlusions is closely related to the shape of the

respective probability distribution, the sample is drawn from.

V. EXPERIMENTAL RESULTS

In this experiment the proposed approach is demonstrated

with the environmental setup shown in Figure 4a. The sce-

nario consists of three different types of objects, a salt box, a

soup box and a sauerkraut tin. The object database contains

the object geometries and the SIFT interest points per view.

We assume the measurement model to be identical, both for

the state update and the state prediction. The calculation of

the measurement probability bases on simulated data in order

to run through a great variety of observation sequences with

varying outcomes for one scenario. The characteristics of

the measurements are derived from real observation data.

(a) Multi-object scenario (b) Viewpoint arrangement

Fig. 4. Experimental setup

In real measurements in the illustrated scenario we acquired

the object poses and their average spreading. Additionally we

formulated the function gv(ftotal) = kvftotal+δv for the co-

herence between the total number of interest points in a view

ftotal and the number of consistent stereo matches gv(ftotal)
in this view for a detection. The factor kv denotes the

percentage of interest points which are detected on average.

δv describes additive Gaussian noise. This descriptions and

the results of the occlusion estimation process are used for

determining the object class probability and pose covariance

in the simulated measurement model.

A sensing action is defined as a change in the robot’s

viewpoint. Figure 4b illustrates 8 different, circularly aligned

control actions, which are evaluated in this experiment. We

derive the costs of the robot’s movement to another viewpoint

from the movement angle. The costs for accomplishing a new

observation without moving are set to 0.5 for the current

viewpoint to avoid remaining at the same location at all

times. The measurement reward is calculated according to

Equation (12) from the entropy of the estimated distribution.

The problem is assumed to be planar, so we only consider

locations in the xy-plane and rotations around the z-axis for

the sake of clarity.

In the following an action sequence resulting from the

proposed planning approach is presented. Figure 5 shows

the detection result in each step, Table I lists costs, values

and rewards in each detection step of all actions.

As initially no scene knowledge is available, each action

promises identical benefits. We acquire the first measurement

from the current robot position, namely viewpoint 6. The

measurement results with varying characteristics are associ-

ated and merged to three newly detected object instances.

In Figure 5 the translational components of the uncertainty

ellipsoids covering 97 percent of the probability mass are

plotted. Based on the belief distributions viewpoint 5 is

suggested for the prospective measurement. Some single

measurements of this sensing actions are associated with the

already detected salt and soup box, leading to a significantly

more certain pose. The sauerkraut can is not visible as

being occluded by another, first-time found soup box. Hence

the sauerkraut’s uncertainty even grows due to the state

transition inaccuracies. Two further new object instances are

found in the background. The next planning step aims on

optimizing all 6 belief distributions and makes the robot

move to viewpoint 3. While most object instance poses

are determined quite accurate, the uncertainty of the closest

object instance’s pose is hardly reduced. This is because only



Fig. 5. Covariance distributions of xy components for the selected sequence of control actions

TABLE I

CORRELATING COSTS AND VALUE FOR CALCULATING THE REWARD Ra FROM EQUATION (11) FOR SELECTED VIEWPOINTS GIVEN α = 0.75

View- VP6 VP6 VP5 VP3 VP8
points Ra costs value Ra costs value Ra costs value Ra costs value Ra

VP1 -0.92 -0.92 -0.82 -1.51 -1.00 -0.26 -1.01 -0.70 -0.64 - 1.17 -0.38 -0.43 -0.71
VP2 -1.00 -1.00 -0.49 -1.23 -0.92 -0.40 -1.10 -0.38 -0.64 -0.93 -0.70 -1.00 -1.53
VP3 -0.92 -0.92 -0.00 -0.69 -0.70 -0.00 -0.53 -0.50 -0.61 -0.98 -0.92 -0.04 -0.74
VP4 -0.70 -0.70 -0.68 -1.21 -0.38 -0.27 -0.56 -0.38 -0.61 -0.90 -1.00 -0.43 -1.18
VP5 -0.38 -0.38 -0.22 -0.50 -0.50 -0.33 -0.70 -0.70 -0.38 -0.91 -0.92 -0.44 -1.13
VP6 -0.00 -0.50 -0.61 -0.99 -0.38 -1.00 -1.28 -0.92 -1.00 -1.69 -0.70 -0.19 -0.72
VP7 -0.38 -0.38 -1.00 -1.28 -0.70 -0.09 -0.62 -1.00 -0.86 -1.61 -0.38 -0.00 -0.29
VP8 -0.70 -0.70 -0.37 -0.90 -0.92 -0.11 -0.80 -0.92 -0.00 -0.69 -0.50 -0.38 -0.76

the small side of soup box is visible, which contains few

interest points Viewpoints close to the current do have similar

expected rewards, viewpoint 8 outperforms these due its

great value despite the costly movement. The resulting belief

contains 6 well located object instances. As the specified

accuracy is reached, the algorithm terminates.

This example shows only one possible action sequence

for starting from viewpoint 6. Due to the modeled noise,

measurements and predictions vary and lead to different

strategies. It is not guaranteed that all object instances

are found at all times, as the algorithm tries to reduce

uncertainties of knows beliefs.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an active perception module for plan-

ning next best viewpoints in multi-object environments based

on contrasting perception benefits and action costs. This

approach is embedded in a fully probabilistic framework and

works in continuous high-dimensional domains. It considers

object relations by a probabilistic representation of object

occlusions for efficient decision making. Currently the rea-

soning process bases on present scene knowledge. In future

works it could be of interest to also model occluded and

invisible space to give the robot more profound knowledge

for action selection and enable it to explore the environment.
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