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ABSTRACT

This work addresses the problem of matching short ex-
cerpts of audio with their respective counterparts in sheet
music images. We show how to employ neural network-
based cross-modality embedding spaces for solving the
following two sheet music-related tasks: retrieving the cor-
rect piece of sheet music from a database when given a mu-
sic audio as a search query; and aligning an audio record-
ing of a piece with the corresponding images of sheet mu-
sic. We demonstrate the feasibility of this in experiments
on classical piano music by five different composers (Bach,
Haydn, Mozart, Beethoven and Chopin), and additionally
provide a discussion on why we expect multi-modal neural
networks to be a fruitful paradigm for dealing with sheet
music and audio at the same time.

1. INTRODUCTION

Traditionally, automatic methods for linking audio and
sheet music data are based on a common mid-level rep-
resentation that allows for comparison (i.e., computation
of distances or similarities) of time points in the audio
and positions in the sheet music. Examples of mid-level
representations are symbolic descriptions, which involve
the error-prone steps of automatic music transcription on
the audio side [2, 4, 12, 20] and optical music recognition
(OMR) on the sheet music side [3, 9, 19, 24], or spectral
features like pitch class profiles (chroma features), which
avoid the explicit audio transcription step but still depend
on variants of OMR. For examples of the latter approach
see, e.g., [8, 11, 15].

In this paper we present a methodology to directly learn
correspondences between complex audio data and images
of the sheet music, circumventing the problematic defi-
nition of a mid-level representation. Given short snip-
pets of audio and their respective sheet music images, a
cross-modal neural network is trained to learn an embed-
ding space in which both modalities are represented as 32-
dimensional vectors. which can then be compared, e.g., via
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their cosine distance. Essentially, the neural network re-
places the complete feature computation process (on both
sides) by learning a transformation of data from the audio
and from the sheet music to a common vector space.

The idea of matching sheet music and audio with neu-
ral networks was recently proposed in [6]. The approach
presented here goes beyond that in several respects. First,
the network in [6] requires both sheet music and audio
as input at the same time to predict which location in the
sheet image best matches the current audio excerpt. We ad-
dress a more general scenario where both input modalities
are required only at training time, for learning the relation
between score and audio. This requires a different net-
work architecture that can learn two separate projections,
one for embedding the sheet music and one for embedding
the audio. These can then be used independently of each
other. For example, we can first embed a reference col-
lection of sheet music images using the image embedding
part of the network, then embed a query audio and search
for its nearest sheet music neighbours in the joint embed-
ding space. This general scenario is referred to as cross-
modality retrieval and supports different applications (two
of which are demonstrated in this paper). The second as-
pect in which we go beyond [6] is the sheer complexity
of the musical material: while [6] was restricted to simple
monophonic melodies, we will demonstrate the power of
our method on real, complex pieces of classical music.

We demonstrate the utility of our approach via prelim-
inary results on two real-world tasks. The first is piece
identification: given an audio rendering of a piece, the cor-
responding sheet music is identified via cross-modal re-
trieval. (We should note here that for practical reasons, in
our experiments the audio data is synthesized from MIDI –
see below). The second task is audio-to-sheet-music align-
ment. Here, the trained network acts as a complex distance
function for given pairs of audio and sheet music snippets,
which in turn is used by a dynamic time warping algorithm
to compute an optimal sequence alignment.

Our main contributions, then, are (1) a methodology for
learning cross-modal embedding spaces for relating audio
data and sheet music data; (2) data augmentation strate-
gies which allow for training the neural network for this
complex task even with a limited amount of data; and (3)
first results on two important MIR tasks, using this new
approach.
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Figure 1. Work flow for preparing the training data (correspondences between sheet music images and the respective music
audio). Given the relation between the note heads in the sheet music image and their corresponding onset times in the audio
signal we sample audio-sheet-music pairs for training our networks. Figure 2 shows four examples of such training pairs.

2. DESCRIPTION OF DATA

Our approach is built around a neural network designed for
learning the relationship between two different data modal-
ities. The network learns its behaviour solely from the ex-
amples shown for training. As the presented data is crucial
to make this class of models work, we dedicate this section
to describing the underlying data as well as the necessary
preparation steps needed to generate training examples for
optimizing our networks.

2.1 Sheet-Music-Audio Annotation

As already mentioned, we want to address two tasks: (1)
sheet music (piece) identification from audio queries and
(2) offline alignment of a given audio with its correspond-
ing sheet music image. Both are multi-modal problems in-
volving sheet music images and audio. We therefore start
by describing the process of producing the ground truth
for learning correspondences between a given score and its
respective audio. Figure 1 summarizes the process.

Step one is the localization of staff systems in the sheet
music images. In particular, we annotate bounding boxes
around the individual systems. Given the bounding boxes
we detect the positions of the note heads within each of the
systems 1 . The next step is then to relate the note heads to
their corresponding onset times in the audio.

Once these relations are established, we know for each
note head its location (in pixel coordinates) in the image,
and its onset time in the audio. Based on this relationship
we cut out corresponding snippets of sheet music images
(in our case 180 × 200 pixels) and short excerpts of au-
dio represented by log-frequency spectrograms (92 bins ×
42 frames). Figure 2 shows four examples of such sheet-
music-audio correspondences; these are the pairs presented
to our multi-modal networks for training.

1 We of course do not annotate all of the systems and note heads by
hand but use a note head and staff detector to support this tasks (again a
neural network trained for this purpose).

Figure 2. Sheet-music audio correspondences presented to
the network for retrieval embedding space learning.

2.2 Composers, Sheet Music and Audio

For our experiments we use classical piano music by
five different composers: Mozart (14 pieces), Bach (16),
Beethoven (5), Haydn (4) and Chopin (1). To give an
impression of the complexity of the music, we have, for
instance, Mozart piano sonatas (K.545 1st mvt., K.331
3rd) and symphony transcriptions for piano (Symphony
40 K.550 1st), preludes and fugues from Bach’s WTC,
Beethoven piano sonata movements and Chopin’s Noc-
turne Op.9 No.1. In terms of experimental setup we will
use only the 13 pieces of Mozart for training, Mozart’s
K.545 mvt.1 for validation, and all remaining pieces for
testing. This results in 18,432 correspondences for train-
ing, 989 for validating, and 11,821 for testing. Our sheet
music is collected from Musescore 2 where we selected
only scores having a ‘realistic’ layout close to the type-
setting of professional publishers 3 . The reason for using
Musescore for initial experiments is that along with the
sheet music (as pdf or image files) Musescore also pro-
vides the corresponding midi files. This allows us to syn-
thesize the music for each piece of sheet music and to com-

2 https://musescore.com
3 This is an example of a typical score we used for the experi-

ment (Beethoven Sonata Op.2 No.1): https://musescore.com/
classicman/scores/55331
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pute the exact note onset times from the midis, and thus to
establish the required sheet-music audio correspondences.

In terms of audio preparation we compute log-
frequency spectrograms of the audios, with a sample rate
of 22.05kHz, a FFT window size of 2048 samples, and
a computation rate of 20 frames per second. For dimen-
sionality reduction we apply a normalized 16-band loga-
rithmic filterbank allowing only frequencies from 30Hz to
16kHz, which results in 92 frequency bins.

2.3 Data Augmentation

To improve the generalization ability of the resulting net-
works, we propose several data augmentation strategies
specialized to score images and audio. In machine learn-
ing, data augmentation refers to the application of (realis-
tic) data transformations in order to synthetically increase
the effective size of the training set. We already emphasize
at this point that data augmentation is a crucial component
for learning cross-modality representations that generalize
to unseen music, especially when little data is available.
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Figure 3. Overview of image augmentation strategies.
The size of the sliding image window remains constant
(180 × 200 pixels) but its content changes depending on
the augmentations applied. The spectrogram remains the
same for the augmented image versions.

For sheet image augmentation we apply three differ-
ent transformations, summarized in Figure 3. The first is
image scaling where we resize the image between 95 and
105% of its original size. This should make the model ro-
bust to changes in the overall dimension of the scores. Sec-
ondly, in ∆y system translation we slightly shift the system
in the vertical direction by ∆y ∈ [−5, 5] pixels. We do this
as the system detector will not detect each system in ex-
actly the same way and we want our model to be invariant
to such translations. In particular, it should not be the abso-
lute location of a note head in the image that determines its
meaning (pitch) but its relative position with respect to the
staff. Finally, we apply ∆x note translation, meaning that
we slightly shift the corresponding sheet image window by
∆x ∈ [−5, 5] pixels in the horizontal direction.

In terms of audio augmentation we render the train-
ing pieces with three different sound fonts and addition-
ally vary the tempo between 100 and 130 beats per minute
(bpm). The test pieces are all rendered at a rate of 120 bpm
using an additional unseen sound font. The test set is kept
fixed to reveal the impact of the different data augmenta-
tion strategies.

3. AUDIO - SHEET MUSIC CORRESPONDENCE
LEARNING

This section describes the underlying learning methodol-
ogy. As mentioned above, the core of our approach is a
cross-modality retrieval neural network capable of learning
relations between short snippets of audio and sheet music
images. In particular, we aim at learning a joint embedding
space of the two modalities in which to perform nearest-
neighbour search. One method for learning such a space,
which has already proven to be effective in other domains
such as text-to-image retrieval, is based on the optimiza-
tion of a pairwise ranking loss [14, 22]. Before explaining
this optimization target, we first introduce the general ar-
chitecture of our correspondence learning network.

Embedding Layer

Ranking Loss

View 1 View 2

Figure 4. Architecture of correspondence learning net-
work. The network is trained to optimize the similarity (in
embedding space) between corresponding audio and sheet
image snippets by minimizing a pair-wise ranking loss.

As shown in Figure 4 the network consists of two sepa-
rate pathways f and g taking two inputs at the same time.
Input one is a sheet image snippet i and input two is an
audio excerpt a. This means in particular that network f is
responsible for processing the image part of an input pair
and network g is responsible for processing the audio. The
output of both networks (represented by the Embedding
Layer in Figure 4) is a k-dimensional vector representa-
tion encoding the respective inputs. In our case the dimen-
sionality of this representation is 32. We denote these hid-
den representations by x = f(i,Θf ) for the sheet image
and y = g(a,Θg) for the audio spectrogram, respectively,
where Θf and Θg are the parameters of the two networks.

Given this network design, we now explain the pairwise
ranking objective. Following [14] we first introduce a scor-
ing function s(x,y) as the cosine similarity x · y between
the two hidden representations (x and y are scaled to have
unit norm). Based on this scoring function we optimize the
following pairwise ranking objective (‘hinge loss’):

Lrank =
∑
x

∑
k

max{0, α− s(x,y) + s(x,yk)} (1)

In our application x is an embedded sample of a sheet im-
age snippet, y is the embedding of the matching audio ex-
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cerpt and yk are the embeddings of the contrastive (mis-
matching) audio excerpts (in practice all remaining sam-
ples of the current training batch). The intuition behind this
loss function is to encourage an embedding space where
the distance between matching samples is lower than the
distance between mismatching samples. If this condition
is roughly satisfied, we can then perform cross-modality
retrieval by simple nearest neighbour search in the embed-
ding space. This will be explained in detail in Section 4.

The network itself is implemented as a VGG- style con-
volution network [21] consisting of 3×3 convolutions fol-
lowed by 2×2 max-pooling as outlined in detail in Table 1.
The final convolution layer computes 32 feature maps and
is subsequently processed with a global average pooling
layer [16] that produces a 32-dimensional vector for each
input image and spectrogram, respectively. This is exactly
the dimension of our retrieval embedding space. At the top
of the network we put a canonically correlated embedding
layer [7] combined with the ranking loss described above.
In terms of optimization we use the adam update rule [13]
with an initial learning rate of 0.002. We watch the per-
formance of the network on the validation set and halve
the learning rate if there is no improvement for 30 epochs.
This procedure is repeated ten times to finetune the model.

Table 1. Audio-sheet-music model. BN: Batch Normaliza-
tion [10], ELU: Exponential Linear Unit [5], MP: Max Pool-
ing, Conv(3, pad-1)-16: 3 × 3 convolution, 16 feature maps and
padding 1.

Sheet-Image 180 × 200 Audio (Spectrogram) 92 × 42
2×Conv(3, pad-1)-12 2× Conv(3, pad-1)-12

BN-ELU + MP(2) BN-ELU + MP(2)
2×Conv(3, pad-1)-24 2× Conv(3, pad-1)-24

BN-ELU + MP(2) BN-ELU + MP(2)
2×Conv(3, pad-1)-48 2× Conv(3, pad-1)-48

BN-ELU + MP(2) BN-ELU + MP(2)
2×Conv(3, pad-1)-48 2× Conv(3, pad-1)-48

BN-ELU + MP(2) BN-ELU + MP(2)
Conv(1, pad-0)-32-BN-LINEAR Conv(1, pad-0)-32-BN-LINEAR

GlobalAveragePooling GlobalAveragePooling
Embedding Layer + Ranking Loss

4. EVALUATION OF AUDIO - SHEET
CORRESPONDENCE LEARNING

In this section we evaluate the ability of our model to re-
trieve the correct counterpart when given an instance of
the other modality as a search query. This first set of ex-
periments is carried out on the lowest possible granularity,
namely, on sheet image snippets and spectrogram excerpts
such as shown in Figure 2. For easier explanation we de-
scribe the retrieval procedure from an audio query point
of view but stress that the opposite direction works in ex-
actly the same fashion. Given a spectrogram excerpt a as
a search query we want to retrieve the corresponding sheet
image snippet i. For retrieval preparation we first embed
all candidate image snippets ij by computing xj = f(ij)
as the output of the image network. In the present case,
these candidate snippets originate from the 26 unseen test
pieces by Bach, Haydn, Beethoven and Chopin. In a sec-
ond step we embed the given query audio as y = g(a) us-
ing the audio pathway g of the network. Finally, we select

Cross-modality retrieval
by cosine distance

AudioSheet

query

result

Figure 5. Sketch of sheet-music-from-audio retrieval. The
blue dots represent the embedded candidate sheet music
snippets. The red dot is the embedding of an audio query.
The larger blue dot highlights the closest sheet music snip-
pet candidate selected as retrieval result.

the audio’s nearest neighbour xj from the set of embedded
image snippets as

xj = arg min
xi

(
1.0− xi · y

||xi|| ||y||

)
(2)

based on their pairwise cosine distance. Figure 5 shows a
sketch of this retrieval procedure.

In terms of experimental setup we use the 13 pieces of
Mozart for training the network, and the pieces of the re-
maining composers for testing. As evaluation measures we
compute the Recall@k (R@k) as well as the Median Rank
(MR). The R@k rate (high is better) is the percentage of
queries which have the correct corresponding counterpart
in the first k retrieval results. The MR (low is better) is the
median position of the target in a cosine-similarity-ordered
list of available candidates.

Table 2 summarizes the results for the different data
augmentation strategies described in Section 2.3. The un-
seen synthesizer and the tempo for the test set remain fixed
for all settings. This allows us to directly investigate the
influence of the different augmentation strategies. The re-
sults are grouped into audio augmentation, sheet augmen-
tation, and applying all or no data augmentation at all.
On first sight the retrieval performance appears to be very
poor. In particular the MR seems hopelessly high in view
of our target applications. However, we must remember
that our query length is only 42 spectrogram frames (≈
2 seconds of audio) per excerpt and we select from a set
of 11, 821 available candidate snippets. And we will see
in the following sections that this retrieval performance is
still sufficient to perform tasks such as piece identification.
Taking the performance of no augmentation as a baseline
we observe that all data augmentation strategies help im-
prove the retrieval performance. In terms of audio aug-
mentation we observe that training the model with differ-
ent synthesizers and varying the tempo works best. From
the set of image augmentations, the ∆y system translation
has the highest impact on retrieval performance. Overall
we get the best retrieval model when applying all augmen-
tation strategies. Note also the large gap between no aug-
mentation and full augmentation. The median rank, for ex-
ample, drops from 1042 in case of no augmentation to 168
for full augmentation, which is a substantial improvement.
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Audio Augmentation R@1 R@10 R@25 MR

1 Synth, 100-130bpm 0.37 3.73 7.05 771
3 Synth, 120bpm 0.75 6.26 11.52 559

3 Synth, 100-130bpm 0.87 8.23 15.29 332

Sheet Augmentation

image scaling 0.75 5.60 10.14 524
∆y system translation 0.91 6.57 12.21 449

∆x note translation 0.44 3.66 7.19 808
full sheet augmentation 0.70 5.72 11.03 496

no augmentation 0.33 2.88 5.71 1042
full augmentation 1.70 11.67 21.17 168

random baseline 0.00 0.03 0.21 5923

Table 2. Influence of data augmentation on audio-to-sheet
retrieval. For the audio augmentation experiments no sheet
augmentation is applied and vice versa. no augmentation
represents 1 Synth, 120bpm without sheet augmentation.

A final note: for space reasons we only present results
on audio-to-sheet music retrieval, but that the opposite di-
rection using image snippets as search query works analo-
gously and shows similar performance.

5. PIECE IDENTIFICATION

Given the above model that learns to express similarities
between sheet music snippets and audio excerpts, we now
describe how to use this to solve our first targeted task:
identifying the respective piece of sheet music when given
an entire audio recording as a query (despite the relatively
poor recall and MR for individual queries).

5.1 Description of Approach

We start by preparing a sheet music retrieval database as
follows. Given a set of sheet music images along with their
annotated systems we cut each piece of sheet music j into
a set of image snippets {iji} analogously to the snippets
presented to our network for training. For each snippet
we store its originating piece j. We then embed all can-
didate image snippets into the retrieval embedding space
by passing them through the image part f of the multi-
modal network. This yields, for each image snippet, a 32-
dimensional embedding coordinate vector xji = f(iji).

Sheet snippet retrieval from audio: Given a whole
audio recording as a search query we aim at identifying
the corresponding piece of sheet music in our database. As
with the sheet image we start by cutting the audio (spectro-
gram) into a set of excerpts {a1, ...,aK} again exhibiting
the same dimensions as the spectrograms used for training,
and embed all query spectrogram excerpts ak with the au-
dio network g. Then we proceed as described in Section 4
and select for each audio its nearest neighbour from the set
of all embedded image snippets.

Augmentation R1 R2 R3 >R3

no augmentation 4 7 1 14
full augmentation 24 2 0 0

Table 3. Influence of data augmentation on piece retrieval.

Piece selection: Since we know for each of the image
snippets its originating piece j, we can now have the re-
trieval image snippets xji vote for the piece. The piece
achieving the highest count of votes is our final retrieval
result. In our experiments we consider for each query ex-
cerpt its top 25 retrieval results for piece voting.

5.2 Evaluation of Approach

Table 3 summarizes the piece identification results on
our test set of Bach, Haydn, Beethoven and Chopin (26
pieces). Again, we investigate the influence of data aug-
mentation and observe that the trend of the experiments in
Section 4 is directly reflected in the piece retrieval results.
As evaluation measure we compute Rk as the number of
pieces ranked at position k when sorting the result list by
the number of votes. Without data augmentation only four
of the 26 pieces are ranked first in the retrieval lists of
the respective full audio recording queries. When making
use of data augmentation during training, this number in-
creases substantially and we are able to recognize 24 pieces
at position one; the remaining two are ranked at position
two. Although this is not the most sophisticated way of
employing our network for piece retrieval, it clearly shows
the usefulness of our model and its learned audio and sheet
music representations for such tasks.

6. AUDIO-TO-SHEET-MUSIC ALIGNMENT

As a second usage scenario for our approach we present the
task of audio-to-sheet-music alignment. Here, the goal is
to align a performance (given as an audio file) to its respec-
tive score (as images of the sheet music), i.e., computing
the corresponding location in the sheet music for each time
point in the performance, and vice versa.

6.1 Description of Approach

For computing the actual alignments we rely on Dynamic
Time Warping (DTW), which is a standard method for se-
quence alignment [18], and is routinely used in the con-
text of music processing [17]. Generally, DTW takes two
sequences as input and computes an optimal non-linear
alignment between them, with the help of a local cost mea-
sure that relates points of the two sequences to each other.

For our task the two sequences to be aligned are the
sequence of snippets from the sheet music image and the
sequence of audio (spectrogram) excerpts, as described in
Section 2.2. The neural network presented in Section 3
is then used to derive a local cost measure by computing
the pairwise cosine distances between the embedded sheet
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Figure 6. Sketch of audio-to-sheet-music alignment by
DTW on a similarity matrix computed on the embedding
representation learned by the multi-modal matching net-
work. The white line highlights the path of minimum costs
through the sheet music given the audio.

snippets and audio excerpts (see Equation 2). The result-
ing cost matrix that relates all points of both sequences to
each other is shown in Figure 6, for a short excerpt from
a simple Bach minuet. Then, the standard DTW algorithm
is used to obtain the optimal alignment path.

6.2 Evaluation of Approach

For the evaluation we rely on the same dataset and setup as
described above: learning the embedding only on Mozart,
then aligning test pieces by Bach, Haydn, Beethoven,
Chopin. As evaluation measure we compute the absolute
alignment error (distance in pixels) of the estimated align-
ment to its ground truth alignment for each of the sliding
window positions. We further normalize the errors by di-
viding them by the sheet image width to be independent of
image resolution. As a naive baseline we compute a lin-
ear interpolation alignment which would correspond to a
straight line diagonal in the distance matrix in Figure 6.
We consider this as a valid reference as we do not consider
repetitions for our experiments, yet (in which case things
would become somewhat more complicated). We further
emphasize that the purpose of this experiment is to provide
a proof of concept for this class of models in the context of
sheet music alignment tasks, not to compete with existing
specialized algorithms for music alignment.

The results are summarized by the boxplots in Figure 7.
The median alignment error for the linear baseline is 0.213
normalized image widths (≈ 45 mm in a printed page of
sheet music). When computing a DTW path through the
distance matrix inferred by our mutimodal audio-sheet-
music network this error decreases to 0.041 (≈ 9 mm).
Note that values above 1.0 normalized page widths are pos-
sible as we handle a piece of sheet music as one single un-
rolled (concatenated) staff.
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Figure 7. Absolute alignment errors normalized by the
sheet image width. We compare the linear baseline with a
DTW on the cross-modality distance matrix computed on
the embedded audio snippets and spectrogram excerpts.

7. DISCUSSION AND CONCLUSION

We have presented a method for matching short excerpts
of audio to their respective counterparts in sheet music im-
ages, via a multi-modal neural network that learns relation-
ships between the two modalities, and have shown how
to utilize it for two MIR tasks: score identification from
audio queries and offline audio-to-sheet-music alignment.
Our results provide a proof of concept for the proposed
learning-retrieval paradigm and lead to the following con-
clusions: First, even though little training data is available,
it is still possible to use powerful state of the art image and
audio models by designing appropriate (task specific) data
augmentation strategies. Second, as the best regularizer in
machine learning is still a large amount of training data,
our results strongly suggest that annotating a truly large
dataset will allow us to train general audio-sheet-music-
matching models. Recall that for this study we trained on
only 13 Mozart pieces, and our model already started to
generalize to unseen scores by other composers.

Another aspect of our method is that it works by project-
ing observations from different modalities into a very low-
dimensional joint embedding space. This compact repre-
sentation is of particular relevance for the task of piece
identification as our scoring function – the cosine distance
– is a metric that permits efficient search in large reference
databases [23]. This identification-by-retrieval approach
permits us to circumvent solving a large number of local
DTW problems for piece identification as done, e.g., in [8].

For now, we have demonstrated the approach on sheet
music of realistic complexity, but with synthesized audio
(this was necessary to establish the ground truth). The
next challenge will be to deal with real audio and real per-
formances, with challenges such as asynchronous onsets,
pedal, and varying dynamics.

Finally, we want to stress that our claim is by no means
that our proposal in its current stage is competitive with
engineered approaches [8, 11, 15] or methods relying on
symbolic music or reference performances. These meth-
ods have already proven to be useful in real world scenar-
ios, with real performances [1]. However, considering the
progress that has been made in terms of score complexity
(compared for example to the simple monophonic music
used in [6]) we believe it is a promising line of research.
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rzeniowski, and Gerhard Widmer. End-to-end cross-
modality retrieval with cca projections and pairwise
ranking loss. arXiv preprint (arXiv:1705.06979), 2017.

[8] Christian Fremerey, Michael Clausen, Sebastian Ew-
ert, and Meinard Müller. Sheet music-audio identi-
fication. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR),
2009.
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