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Abstract

This thesis gives a comprehensive overview of the Basis Function Models (BMs), a family of
computational models of expressive music performance. These models have been developed over
the past years, and have been steadily growing in complexity. The motivation for this work is
to model the complex relationship between properties and structure of a given composition, and
musically plausible ways of playing the piece expressively and in this way also to learn more
about this complex art. The focus is on Western classical music – mostly on the piano, but also
with recent extensions towards complex orchestral pieces.

The basic idea in the BM framework is that structural properties of a musical piece (given as a
score), which are believed to be relevant for performance decisions, can be modeled in a simple
and uniform way, via so-called basis functions: numeric features that capture specific aspects
of a musical note and its surroundings. A predictive model of performance can then predict
appropriate patterns for expressive performance dimensions such as tempo, timing, dynamics,
and articulation from these basis functions. A central methodological principle in this work
is to take a data-driven approach: the model is not constructed manually, based on musical
knowledge or hypotheses, but is learned from a large collection of real human performances,
via state-of-the-art linear and non-linear machine learning algorithms. In this way, it is the
empirical data that dictates what the model will look like, and an analysis of the learned models
can provide interesting insights into the complex relation between score and performance.

A series of BMs of growing complexity will be described. The models are evaluated on corpora
of classical piano and symphonic music recordings, in terms of their ability to accurately predict
a performer’s actual choices. In addition, some qualitative insights gained from an analysis of
the models will be presented. Furthermore, recent developments towards integrating the basis
function model into a reactive, real-time accompaniment system will be described. This work
concludes with a critical and comprehensive survey of the current state-of-the-art in computa-
tional models of expressive performance.
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Kurzfassung

Diese Dissertation präsentiert einen umfangreichen Überblick über die sogenannten Basis Func-
tion Models of Expressive Music Performance (BM), eine Familie von Computermodellen zur
Beschreibung und Vorhersage von verschiedenen Dimensionen ausdrucksvoller musikalischer
Interpretationen. Ausdrucksvolle oder expressive Interpretation bezeichnet hier das Gestal-
ten von Parameterdimensionen wie Tempo, Timing, Dynamik und Artikulation durch Inter-
pretInnen (z.B. PianistInnen) über die im Notentext vorgegebenen Vorschriften hinaus, um
einem Musikstück einen bestimmten musikalischen und affektiven Ausdruck zu verleihen. Ziel
dieser Basis Function Models ist es, die komplexen Beziehungen zwischen strukturellen Eigen-
schaften einer Komposition und musikalisch plausiblen Interpretationen des Stücks zu beschreiben.

Die Grundidee der Modelle besteht darin, die für die Gestaltung einer expressiven Interpretation
relevanten strukturellen Eigenschaften eines Notentextes in Form sogenannter Basisfunktionen
zu repräsentieren. Diese Basisfunktionen sind numerische Repräsentationen (Feature Functions),
die jeweils spezifische Aspekte von Noten und deren Kontext codieren. Auf der Basis solcher Fea-
tures soll ein Modell dann aussagekräftige bzw. musikalisch ‘adäquate’ Muster in Dimensionen
wie Dynamik, Tempo und Artikulation vorhersagen.

Die Parameter der Modelle werden nicht mittels händisch erzeugter musiktheoretisch-basierter
Regeln definiert, sondern aus einer großen Sammlung echter Interpretationen gelernt. Dies
geschieht durch maschinelles Lernen (Machine Learning), welches sich moderner linearer und
nicht-linearer mathematischer Modelle und dazu passender Optimierungsalgorithmen bedient.
Auf diese Weise soll sichergestellt werden, dass die erlernten Modelle eine gute Approxima-
tion der echten Interpretationen sind; dadurch sollen interessante Einblicke in die komplexen
Beziehungen zwischen Musikstücken und deren Interpretationen ermöglicht werden.

Die vorliegende Dissertation beschreibt eine Reihe von Basisfunktions-Modellen steigender Kom-
plexität – von einfachen linearen Modellen bis hin zu hochgradig nichtlinearen und kontextsen-
sitiven Modellen, zB. in Form von rekurrenten neuronalen Netzwerken mit vielen Ebenen (Deep
Neural Networks). Die Fähigkeit der Modelle, die interpretativen Entscheidungen eines Musikers
präzise vorherzusagen, wird anhand echter Aufnahmen von professionellen Interpreten evaluiert.
Der Fokus liegt dabei auf westlicher klassischer Musik – vor allem Klaviermusik –, es wird aber
auch eine Erweiterung für Orchestermusik eingeführt. Des weiteren wird ein prototypisches Sys-
tem beschrieben, welches in der Lage ist, einen Solisten in Echtzeit zu begleiten und dabei sowohl
seine eigenen Interpretationsstrategien einzubringen als auch sich an bestimmte Spielmuster des
Solisten anzupassen. Abschließend wird ein systematischer und kritischer Literaturüberblick
über die aktuelle Forschung zur maschinellen Musikinterpretation gegeben, wie sie sich zum
heutigen Zeitpunkt darstellt.
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interesting discussions about pop culture and a lot of fun, including the weekly (and infinitely
enjoyable) baking nights, the yearly quests to get the most comics during Free Comic Book
Day and Canadian Thanksgiving celebrations. A special thanks goes to my Mexican friends
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1 Introduction

1.1 Motivation

This thesis focuses on the study of expressive music performance through (data-driven) compu-
tational methods.

Expressive performance of music constitutes a fundamental part of the enjoyment of several
kinds of music, yet musical expression is a complex phenomenon that is not fully understood.
Performances of written music by humans are hardly ever exact acoustical renderings of the
notes in the score, as a computer would produce. Nor are they expected to be: a natural
human performance involves an interpretation of the music, in terms of structure, but also
in terms of affective content (Clarke, 1988; Palmer, 1996; Gabrielsson and Lindström, 2010),
which is conveyed to the listener by local variations in dimensions such as tempo, loudness, and,
depending on the expressive possibilities of the instrument, the timing, articulation, and timbre
of individual notes.

Becoming an expert musician takes many years of training and practice, usually in a master-
apprentice scenario, and rather than adhering to explicit rules, achieved performance skills are to
a large degree the effect of implicit, procedural knowledge (McPherson and Welch, 2011). This
is not to say that regularities cannot be found in the way musicians perform music. Decades of
empirical research have identified a number of factors that jointly determine the way a musical
piece is rendered (Palmer, 1997; Gabrielsson, 2003).

At this point, it is important to note that music performance is a sociocultural construct that has
different meanings for different cultures. For example, in Western cultures, a music performer is
assumed to have some level of expertise (i.e. not everybody can participate) and audiences often
have a more passive role of listening to the performance. On the other hand, in other cultures,
like the Venda traditional music from South Africa, the performance of music is a social activity
in which everybody participates and the experience of the performance is not only the acoustic
rendition of the music, but includes the social experience as well (Hill, 2012).

While in many traditions music can be considered an oral-aural activity, i.e. performing tradi-
tions are passed on orally (Fabian, 2017), the focus is this thesis is on notated Western art music
of the common practice period1 – mostly on the piano, but also with recent extensions towards
orchestral music.

1.1.1 A Brief Historical Overview of the Study of Performance

Music performance has been around since the early days of mankind, with archaeological evi-
dence suggesting that musical instruments were made as far back as 35 000 years ago (Conard,
2009). During most of the history of music in the modern era2, both musicians and music

1 The common practice period is usually associated with the second half of the 17th century to the early 20th
century, including the late Baroque, Classical, Romantic and Impressionist periods.

2According to the traditional linear historiographical approach, the modern era corresponds to the period starting
after the middle ages, from the early 16th century onwards (Vovelle, 1986).
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scholars have theorized on the way music is (or should be) performed, most importantly for
pedagogical reasons (Robertson and Stevens, 1966). Important efforts in this regard include
F. Couperin’s The Art of Playing Harpsichord (published in 1716), L. Mozart’s Treatise on
Fundamentals of Violin Playing (published in 1756) and C. P. E. Bach’s Essay on True Art of
Playing Keyboard Instruments (published in 1787). These treatises focus not only on developing
the technical proficiency of the students, but also attempt to describe of how to perform the
music expressively according to the conventions of their time.

It was not until the late 19th century and early 20th century, with the advent of recording
technology, that the scientific study of performance started (Binet and Courtier, 1896; Seashore,
1938). The second half of the 20th century saw an increased interest in looking at perfor-
mance from the perspective of music psychology and cognition (Clynes, 1969; Gabrielsson, 1974;
Longuet-Higgins and Lee, 1982, 1984; Clynes, 1986, 1987; Palmer, 1996). The field gained more
attraction in the late 1980’s, with advances in computers and electronic instruments, which fa-
cilitated more precise data capturing (Kirke and Miranda, 2013). These advances have allowed
for empirical research that has focused on identifying factors that determine the way a musical
piece is rendered. For example, aspects such as phrasing (Todd, 1992), meter (Sloboda, 1983),
and intended emotions (Juslin, 2001), have been shown to have an effect on expressive variations
in music performances.

Music performance science is a highly inter-disciplinary field, and a thorough review of the state
of the art of the full field is outside the scope of this thesis. We refer the interested reader to
the very comprehensive review articles by Palmer (1997) and Gabrielsson (1999, 2003). For a
review of performance research from a musicological point of view see the edited volumes by
Rink (1995, 2002).

1.1.2 Computational Methods of Expressive Performance

As stated above (or as the reader can guess from the title of this thesis), this work studies the use
of (a family of data-driven) computational approaches to model expressive music performance.
Computational models allow us to make experiments and test hypotheses related to certain
cognitive aspects (Pylyshyn, 1984; Honing, 2006; Wiggins et al., 2012; Forth et al., 2016). An
advantage of computational modeling over other modeling approaches is that computational
models are “open to direct and immediate test” (Honing, 2006), and thus, are easier to evaluate
and falsify.

Computational models can be used to study the way humans perform music. In this case,
these models can be used to study characteristics of expressive performances by highlighting the
relationships between properties of a musical piece and the way it is performed through changes
in relevant dimensions such as dynamics (Kosta et al., 2016; Grachten et al., 2017; Cancino-
Chacón et al., 2017d) and tempo (Friberg and Sundberg, 1999; Chew and Callender, 2013;
Grachten and Cancino-Chacón, 2017). The study of music performance through computational
approaches presents an opportunity to formalize certain aspects of what constitutes an expressive
performance, such as expressive dynamics, tempo or articulation. While these aspects may seem
very intuitive at first glance3, research in computational models of performance has shown the
challenges of translating these perceptual concepts into measurable properties that reflect the
characteristics of a performance (Dixon et al., 2006; Chew and Callender, 2013; Elowsson and
Friberg, 2017).

On the other hand, computational models of expressive performance can be used as tools for

3in particular to experienced musicians.
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generating performances in their own right. These models can be used as standalone tools
for automatically rendering expressive performances (Friberg et al., 2000; Kim et al., 2011;
Cancino Chacón and Grachten, 2016), as interactive tools for allowing humans to shape a per-
formance (Friberg, 2006; Baba et al., 2010; Canazza et al., 2015), or as accompaniment systems
designed to perform music with humans and adapt to their performance styles (Raphael, 2001a;
Xia et al., 2015; Cancino-Chacón et al., 2017a). In recent years, there has been an increased
interest in developing systems that automatically generate (i.e. compose) music. Herremans
et al. (2017) points out that automatic performance systems might be an important component
in making automatic music generation usable by the general public.

But, is it possible to make an artificial system, a machine, that performs music like humans?
In Stanislaw Lem’s short story “Trurl’s Electronic Bard”, Trurl, the eponymous great machine
constructor, attempts to create a machine capable of writing poetry. In order to build the
machine, he “collected eight hundred and twenty tons of books on cybernetics and twelve thousand
tons of the finest poetry, then sat down to read it all. Whenever he felt he just couldn’t take
another chart or equation, he would switch over to verse, and vice versa. After a while it became
clear to him that the construction of the machine itself was child’s play in comparison with the
writing of the program. The program found in the head of an average poet, after all, was written
by the poet’s civilization, and that civilization was in turn programmed by the civilization that
preceded it, and so on to the very Dawn of Time, when those bits of information that concerned
the poet-to-be were still swirling about in the primordial chaos of the cosmic deep. Hence in
order to program a poetry machine, one would first have to repeat the entire Universe from the
beginning—or at least a good piece of it.” (Lem, 2002, pp. 43–44). Do we really need to repeat (or
simulate) the entire universe from the very beginning to program machine capable of generating
expressive music performances? If we extend Lem’s analogy to performing music expressively,
this would imply that the “program” found in the head of the average musician is a product not
only of human physiology, but also of the conventions and values of the society of the musician’s
era, which is in turn the product of the previous era (and society) and so on. Although described
in a rather humorous way, Lem’s quotations warns us of the incredible complexity of modeling
an inherently (capital C) Creative activity such as music performance through a (necessarily)
reductionistic approach.

As Widmer (2017) points out as two of the main theses of the Con Espressione Manifesto, music
is perceived by human listeners and music perception and appreciation are learned. Therefore,
it is important to note that, ultimately, music occurs in the human mind (Wiggins et al., 2010),
i.e. the way we experience music is a product of active perception, and therefore, it would be
näıve to think that any simplified (i.e. reductionistic) computational model can approach true
levels of artistic merit or (more controversially) creativity, without considering a plethora of
other factors, perhaps more importantly, (embodied) human cognition (Leman, 2008).

Whether building an artificial system capable of performing music like humans (i.e. creatively)
is even possible is a philosophical question that, sadly, lies outside of the scope of this work.
Nevertheless, it is important to point out that the efforts in the development of computational
models of expressive performance are not without merit: a better understanding of musical
expression is desirable in its own right, as fundamental scientific knowledge.

1.1.3 This Work

This thesis presents a comprehensive overview of the basis function models (BMs), a family of
data-driven computational models of expressive music performance that have been developed
over the past years, and that have been steadily growing in complexity. This model was originally
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invented by Maarten Grachten and introduced in (Grachten and Widmer, 2012). Together
with Maarten, I have been extending and improving this framework, and these extensions and
improvements are what this thesis will be about.

The main motivation for this work is to study the complex relationship between the structural
characteristics of a musical piece and the musically plausible ways that such a piece can be
performed expressively.

1.2 Contributions

In the following chapters, I prefer to use the more neutral (and scientific) we, instead of the more
selfish I (unless necessary by the limitations of my writing abilities), but since this chapter refers
to the contributions presented in this work, it is easier to refer to them in first person singular.
Still, it feels somehow awkward to refer to these contributions as mine without acknowledging
the close collaboration and supervision of Maarten Grachten.

1. A formalization of the BM framework for expressive performance. Early publi-
cations on the BM framework lacked a rigorous formalization. In this thesis, I introduce a
mathematical formalization of the components of the BM framework that highlights both
their function, as well as their relation to each other.

2. Non-linear and sequential BMs. I expand upon the original linear formulation of the
BM framework by using non-linear and sequential approaches, as well as for extending the
framework from deterministic to probabilistic. Additionally, I introduce approaches for
studying what the models are learning using variance-based sensitivity analysis, as well as
differential sensitivity analysis.

3. BM framework for ensemble performance. This thesis presents an extension of the
BM framework to model ensemble performances. This work was a collaboration with Thas-
silo Gadermaier and Maarten Grachten between the EU funded Lrn2Cre84 and PHENICX5

projects. Thassilo and Maarten defined methods for aggregating the score information
from different instruments. I designed and carried out the experiments, and contributed
solutions to implementation issues such as the normalization of the features representing
score information, as well as methods for analyzing the contributions of score features to
the output of the model and comparing performances by different performers.

4. The Basis Mixer. In this work I present a detailed description of the Basis Mixer,
an implementation of the BM framework for rendering expressive performances given an
input score in MusicXML format. During the course of my doctoral degree, I collaborated
with Maarten Grachten on this implementation, which builds on his previous work on
musical expression. My contributions to the Basis Mixer include the implementation
of the different computational models described in this work, including Bayesian linear
models and artificial neural networks, the definition and implementation of some groups
of descriptors of information in the score (i.e. basis functions) as well as optimizing the
architectures of the models (including training them) for generating the performances.

5. A prototype of an expressive accompaniment system. As an application of models
of expressive performance, I present a prototype of an accompaniment system that adapts
to the expression of the (human) soloist. This work is part of an inter-institutional and

4http://lrn2cre8.eu.
5http://phenicx.com.
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inter-project collaboration involving the Austrian Research Institute for Artificial Intel-
ligence (OFAI), the Institute of Computational Perception (CP) at the Johannes Kepler
University Linz (JKU) and the Department of Musical Acoustics (IWK) at the University
of Music and Performing Arts Vienna (MDW) and the Con Espressione6 and CoCreate7

projects. The main components of the system were designed by Amaury Durand and my-
self, while the bulk of the implementation was done by Amaury, Martin Bonev and myself.
Amaury designed and implemented the probabilistic score following under the supervision
of Andreas Arzt. Martin and I adapted the first version of the prototype to work in real
time for a MIDI input. I adapted the Basis Mixer for a real-time accompaniment scenario
with occasional help from Maarten Grachten. Martin implemented the visualization under
the supervision of Werner Goebl, Laura Bishop and myself.

6. A review of the current state-of-the-art in computational models of expressive
performance. Finally, this works includes a critical and fairly comprehensive literature
review of the current state of computational models of expressive performance that com-
pares and positions the rest of the work presented in this thesis with current trends on the
topic. This review also focuses on the missing elements and shortcomings of the current
state of research, as well as presents some potential aspects to be focused on in future
work.

1.3 Publications

The main content of this works builds on the following publications8:

1. Grachten, M., Cancino Chacón, C. E., and Widmer, G. (2014). Analysis and Prediction of
Expressive Dynamics Using Bayesian Linear Models. In Proceedings of the 1st International
Workshop on Computer and Robotic Systems for Automatic Music Performance (SAMP
14), pages 545–552, Venice, Italy

2. Cancino Chacón, C. E. and Grachten, M. (2015). An Evaluation of Score Descriptors
Combined with Non-linear Models of Expressive Dynamics in Music. In Proceedings of the
18th International Conference on Discovery Science (DS 2015), pages 48–62, Banff, AB,
Canada

3. Gadermaier, T., Grachten, M., and Cancino-Chacón, C. E. (2016). Basis-Function Model-
ing of Loudness Variations in Ensemble Performance. In Proceedings of the 2nd Interna-
tional Conference on New Music Concepts (ICNMC 2016), Treviso, Italy

4. Cancino Chacón, C. E. and Grachten, M. (2016). The Basis Mixer: A Computational Ro-
mantic Pianist. In Late Breaking/ Demo, 17th International Society for Music Information
Retrieval Conference (ISMIR 2016), New York, NY, USA

5. Grachten, M. and Cancino-Chacón, C. E. (2017). Temporal dependencies in the expressive
timing of classical piano performances. In Lessafre, M., Maes, P.-J., and Leman, M., editors,
The Routledge Companion to Embodied Music Interaction, pages 360–369. Routledge

6http://www.cp.jku.at/research/projects/ConEspressione/.
7http://www.ofai.at/research/impml/projects/cocreate.html.
8The reader may notice that my surname appears sometimes as Cancino Chacón and sometimes as Cancino-

Chacón in this list of publications. Unfamiliarity with Hispanic naming conventions has caused some of
my publications to be incorrectly cited as Chacón et al. instead of Cancino Chacón et al. Therefore, in
my publications from 2017 onwards, I decided to hyphen my surname, following a similar practice by other
researchers of Hispanic ancestry.
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6. Grachten, M., Cancino-Chacón, C. E., Gadermaier, T., and Widmer, G. (2017). Towards
computer-assisted understanding of dynamics in symphonic music. IEEE Multimedia,
24(1):36–46

7. Cancino-Chacón, C. E., Gadermaier, T., Widmer, G., and Grachten, M. (2017d). An
Evaluation of Linear and Non-linear Models of Expressive Dynamics in Classical Piano
and Symphonic Music. Machine Learning, 106(6):887–909

8. Cancino-Chacón, C., Grachten, M., Sears, D. R. W., and Widmer, G. (2017c). What
Were You Expecting? Using Expectancy Features to Predict Expressive Performances of
Classical Piano Music. In Proceedings of the 10th International Workshop on Machine
Learning and Music (MML 2017), Barcelona, Spain

9. Cancino-Chacón, C., Bonev, M., Durand, A., Grachten, M., Arzt, A., Bishop, L., Goebl,
W., and Widmer, G. (2017a). The ACCompanion v0.1: An Expressive Accompaniment
System. In Late Breaking/ Demo, 18th International Society for Music Information Re-
trieval Conference (ISMIR 2017), Suzhou, China

10. Cancino-Chacón, C. and Grachten, M. (2018). A Computational Study of the Role of
Tonal Tension in Expressive Piano Performance. In Proceedings of the 15th International
Conference on Music Perception and Cognition (ICMPC15 ESCOM10), Graz, Austria

11. Cancino-Chacón, C., Grachten, M., Goebl, W., and Widmer, G. (2018). Computational
Models of Expressive Music Performance: A Comprehensive and Critical Review. To
appear in Frontiers in Digital Humanities

In addition to the before mentioned publications, I contributed to the following peer-reviewed
publications as first author or as a co-author:

1. Cancino Chacón, C., Lattner, S., and Grachten, M. (2014a). Developing Tonal Perception
Through Unsupervised Learning. In Proceedings of the 15th International Society for
Music Information Retrieval Conference (ISMIR 2014), pages 195–200

2. Lattner, S., Grachten, M., Agres, K., and Cancino Chacón, C. E. (2015b). Probabilistic
Segmentation of Musical Sequences using Restricted Boltzmann Machines. In Fifth Inter-
national Conference on Mathematics and Computation in Music (MCM 2015), London,
UK

3. Lattner, S., Cancino Chacón, C. E., and Grachten, M. (2015a). Pseudo-Supervised Training
Improves Unsupervised Melody Segmentation. In In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI 2015), pages 2459–2465,
Buenos Aires, Argentina

4. Agres, K., Cancino, C., Grachten, M., and Lattner, S. (2015). Harmonics co-occurrences
bootstrap pitch and tonality perception in music: Evidence from a statistical unsupervised
learning model. In Proceedings of the Annual Meeting of the Cognitive Science Society
(CogSci 2015), Pasadena, CA, USA

5. Velarde, Gissel and Weyde, Tillman and Cancino Chacón, Carlos and Meredith, David and
Grachten, Maarten (2016). Composer Recognition Based On 2D-Filtered Piano Rolls. In
Proceedings of the 17th International Society for Music Information Retrieval Conference
(ISMIR 2016), pages 116–121, New York, NY, USA

6. Cancino-Chacón, C., Grachten, M., and Agres, K. (2017b). From Bach to The Beatles: The
Simulation of Human Tonal Expectation Using Ecologically-Trained Predictive Models. In
Proceedings of the 18th International Society for Music Information Retrieval Conference
(ISMIR 2017), Suzhou, China
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1.4 Thesis Outline

This section outlines the content of this thesis, and relates each chapter with its corresponding
publications.

Chapter 2 presents an overview of computational models of expressive performance, includ-
ing a brief description of computational strategies for modeling musical expression, as well as
presenting a generic framework describing three main components of a computational model
for expressive performance of notated music: the way the information in a musical score is
represented by the model, the way the information in a musical performance is represented
and a computational model relating these representations. Finally, this chapter also includes a
description of the performance datasets used in the experiments presented in this thesis.

The main theoretical contributions of this thesis are contained in Chapters 3 and 4, which
present a formalization and quantitative evaluation of the basis function models for musical
expression. At this point I would like to point out that this thesis documents the historical
development of the BM framework, so instead of simply describing the current state of the
system, this work presents the evolution of the system starting from its original formulation
introduced in (Grachten and Widmer, 2012). In this way, a significant part of this thesis is
dedicated to describe the evolution of the score and performance representations, as well as
the different computational models used to relate them. The purpose of these chapters is not
mainly the historical overview of the BM framework in itself, but also that it is necessary for
an adequate interpretation of experimental results throughout the years, since the experiments
were realized using different variants of the BM framework.

Chapter 3 presents a mathematical formalization of the BM framework, and describes the linear
version of the model both in its original deterministic formulation first proposed by Grachten
and Widmer (2012) and a probabilistic version using Bayesian linear regression first proposed
in (Grachten et al., 2014).

Chapter 4 continues with the formalization of the BM framework and describes two non-linear
extensions of the framework, one non-sequential and another sequential, using artificial neural
networks. This chapter introduces techniques for analyzing the contribution of the features
representing score information by means of variance-based and differential sensitivity analy-
sis. Parts of this chapter were previously published in (Cancino Chacón and Grachten, 2015),
(Cancino-Chacón et al., 2017d) and (Grachten and Cancino-Chacón, 2017).

Chapter 5 presents an extension of the BM framework to allow for modeling ensemble per-
formances. This chapter also describes the use of the BM framework as a tool for comparing
expressive performances of symphonic music. This chapter is the only one that focuses on audio
instead of MIDI performances. The content of this chapter consists mostly of material published
in (Gadermaier et al., 2016) and (Grachten et al., 2017).

Chapter 6 explores the two kinds of cognitively inspired musical features: a set of features
describing musical expectation, and a set of features describing harmonic tension, and the role
that these features play in predicting expressive tempo and dynamics. This chapter consists
of material published in (Cancino-Chacón et al., 2017c) and (Cancino-Chacón and Grachten,
2018).

Chapter 7 presents the Basis Mixer, an implementation of the BM framework to generate
expressive performances given a musical score. This chapter consists of an extended version of
Cancino Chacón and Grachten (2016).

Chapter 8 introduces an early prototype of the ACCompanion, an expressive accompaniment
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system that uses a monophonic probabilistic score follower and an adapted version of the Basis
Mixer to generate an accompaniment that adapts to the expression of the soloist. This chapter
consists of an extended version of (Cancino-Chacón et al., 2017a).

Chapter 9 presents a comprehensive review of the state-of-the-art in computational models
of expressive performances that takes into account the work presented in this thesis. This
chapter serves as the conclusion of the thesis, and presents possible directions for future work.
This chapter consists of a slightly edited version of (Cancino-Chacón et al., 2018), including
its original introduction and motivation sections, so that it can be read as a self-contained
document. Some parts of this introduction and Chapter 2 are recapitulated in this chapter for
the sake of making it a standalone document.

After the main content of the thesis, I provide several appendices containing extra information
relevant for building the models described in the main text, as well as unpublished preliminary
experiments.

Appendix A contains a mathematical description of the full list of the score features (the
so-called basis functions) described in the main text of this thesis.

Appendix B describes an method for computing expressive tempo that aims to be more per-
ceptually plausible than the method described in the main text (in Chapters 3 and 4).

Appendix C describes preliminary work on joint estimation of expressive parameters. In
this appendix we present an empirical analysis of the correlations of dimensions describing
aspects of performance such as tempo, timing, dynamics and articulation in performances of
Beethoven sonatas and Chopin piano music. We present preliminary results trying to determine
whether there is an advantage if these dimensions describing expression are modeled jointly or
independently.

Appendix D presents a probabilistic extension to the neural network models described in
Chapter 4 using Gaussian mixture density networks (Bishop, 1994).

Appendices E and F contain details and derivations of methods for building and training the
linear and non-linear models described in Chapters 3 and 4, respectively.

Appendix G presents an overview of methods for sampling expressive performances from prob-
abilistic models.

Finally, Appendix H includes a list of mathematical formulae and identities used in this the-
sis.

As mentioned above, the main content of this work documents the historical development of
the BM framework. The decision to take this approach instead of simply presenting the latest
version of the framework allows for better storytelling, since it lets the reader understand the
way that both experimental results and theoretical limitations of the models (e.g. the inability
of earlier versions of the BM to capture the intrinsically sequential nature of music) motivated
certain aspects of the development of the BM. Nevertheless, it is important to note that the
empirical (quantitative) evaluation of this framework might not seem consistent across chapters:
in some versions of the BM, I report experiments focused on expressive dynamics, in others
versions I report experiments on expressive tempo, and so on. The reason for this (apparent)
lack of consistency in the evaluation is two-fold:

1. The research conducted throughout my doctoral degree had a strong focus on understand-
ing the way humans perform music (i.e. analyzing the way certain structural properties of
the music contribute to aspects of expressive performance). In this case, it is more relevant
(and methodologically easier) to test specific hypotheses on how certain structural aspects
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of the score contribute to a specific aspect of performance. For example, an objective of
an experiment described in Section 3.59 was testing whether describing gradual dynamics
markings in a contextual fashion (i.e. considering combinations such as p → crescendo →
f ) was more beneficial for modeling expressive dynamics than considering the individual
markings without context.

2. Finally, for practical reasons: In some cases we focused on modeling a specific aspect of
performance because we wanted to compare new improvements of the model with previ-
ous work focused on that aspect. For example, the experimental evaluation described in
(Cancino Chacón and Grachten, 2015) (which is the basis for the experiments described
in Section 4.2.3) focuses on expressive dynamics since it compares directly with the model
of dynamics presented in (Grachten et al., 2014) (described in Section 3.5), which in turn
compares directly with the experimental evaluation of the original linear BM introduced in
(Grachten and Widmer, 2012). In another case, we received an invitation by the Lessafre
et al. (2017), to contribute a chapter on expressive tempo for the Routledge Companion
to Embodied Music Interaction, which resulted in (Grachten and Cancino-Chacón, 2017),
which is the basis for the experiments is described in Section 4.3.5.

A companion website10 contains an electronic version of this document, as well as links to code
and examples of rendered performances and videos illustrating the models described in this
thesis.

9Throughout this thesis, references to sections, equations and figures include the number of the chapter to which
they belong. In the particular case of sections, Section i.j.k will denote Chapter i, Section j, Subsection k.

10http://www.carloscancinochacon.com/documents/online_extras/phd_thesis/basis_function_models.

html.
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2 Computational Models of Expressive
Performance

2.1 Introduction

In 1946 both Metro-Goldwyn-Mayer (MGM) and Warner Bros. (WB) released suspiciously sim-
ilar short animated films starring anthropomorphized cartoon animals performing Franz Liszt’s
Hungarian Rhapsody No. 2 in C] minor, S. 244/2. Directed by William Hanna and Joseph Bar-
bera, MGM’s The Cat Concerto depicts Tom Cat performing the famous rhapsody, in front of
a large and captivated audience, in spite of the mischievous Jerry Mouse, who (unsurprisingly)
ends up stealing the spotlight. On the other hand, in Rhapsody Rabbit, WB’s film directed
by Fritz Freleng, Bugs Bunny performs the rhapsody only to be outsmarted by a small (and
nameless) mouse. The similarity of the films sparked some controversy among the studios, af-
ter Technicolor, the company that developed the films for both studios, accidentally delivered
footage from Rhapsody Rabbit to the MGM cartoon unit (Adamson, 1990, pp. 140–141). The
Cat Concerto was awarded the 1947 Academy Award in the category of short subject (car-
toon) (Academy of Motion Picture Arts and Sciences, 2015).

Although equally captivating, both performances of Liszt’s rhapsody are very different from each
other. Bugs Bunny’s version, performed in real life by Polish-American pianist Jakob Gimpel,
opens the piece with a lot of energy and bravura. On the other hand Tom Cat’s version is more
conservative, almost nostalgic. While the pianist “playing” Tom Cat is unknown, Gimpel’s son
speculates that it could have been the renowned Romantic virtuoso Shura Cherkassky (Gimpel,
2005). Furthermore, he states that “Bugs’s Rhapsody begins with a galvanizing burst of dramatic
energy, whereas Tom’s opening chords are somber and slow – very slow – an eccentric tempo my
father would never have chosen” (Gimpel, 2005).

We can use a computational approach to “visualize” the difference between these two per-
formances, by comparing aspects relevant to expression, such as tempo and dynamics. We
can represent these aspects using numerical parameters, which we will refer to in this work
as expressive parameters, which encode characteristics of the performance. For example, we
can represent expressive tempo by measuring the time between consecutive beats in beats per
minute (bpm); and expressive dynamics by measuring the loudness of the performance, as the
normalized energy of the audio signal. Figure 2.1 showcases the difference in these expressive
parameters between both performances during the initial bars of the rhapsody1. The figure on
the left shows the tempo curve in bpm, where we can see that Bugs’s performance is overall
faster, with a larger range (i.e. the “galvanizing burst of dramatic energy” described by Gimpel
(2005)), whereas Tom’s tempo is substantially slower and more restrained. The plot on the right
shows the loudness curve for both performances. In this plot we can see that Tom’s version is
more restrained (i.e. the spread is smaller), whereas Bug’s performance has a larger dynamic
range and feels, therefore, more dramatic.

1 The arrangement performed by Bugs Bunny makes several cuts to the original score, in particular bars 5-6
and 15-22. Figure 2.1 corresponds to the first 16 bars in Bugs Bunny’s rhapsody, which correspond to the
first 25 bars of the original score. In order to compare both versions, a manually edited version of Tom Cat’s
performance with the same cuts as Bugs Bunny’s was generated.
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Figure 2.1: Tom Cat (top left) vs. Bugs Bunny (top right) performing Liszt’s Hungarian Rhap-
sody No. 2. The plot in the bottom left compares the local tempo (in bpm) of both
performances. The plot in the bottom right compares the performed dynamics (mea-
sured as the RMS energy of the signal normalized to lie in the interval [0, 1]). The
images of Bugs Bunny and Tom Cat are property of Warner Bros. Entertainment
Inc.

Comparing the curves to the score reveals that the moments of change in the expressive param-
eters tend to correspond to structural elements of the score. Figure 2.2 shows the excerpt of
Liszt’s rhapsody performed by Bugs Bunny aligned with his performed tempo (as a 1D heatmap).
This comparison reveals that changes in expression tend to correspond to structural elements
of the score such as the change in tempo in the Lento a capriccio section (bars 1-6), where
the hue is mostly blue and violet and the Andante, mesto section (bars 7-16) where the hue
is more green and yellow. Furthermore, we can see that local changes in tempo can be partially
attributed to certain marks in the score like the decrease in tempo specified by rubato in bar 2,
poco rit. in bar 4 and the piu ritenuto and fermatas in bar 6.

This example illustrates how computational methods can be used to analyze the way humans (or
anthropomorphized cartoon characters) perform music. Computational models allow us to make
experiments and test hypotheses related to certain cognitive aspects (Forth et al., 2016). These
computational models can be then used to relate properties of the score (i.e. the composer) to
the performer and the listener (Gingras et al., 2016).

In this chapter we focus on general aspects of computational models of expressive performance.
The rest of this Chapter is structured as follows. Section 2.2 discusses some of the most used
computational strategies for modeling musical expression. Section 2.3 describes the components
of a computational model of performance. Finally, Section 2.4 describes the datasets used in
this work.
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2 Computational Models of Expressive Performance

200 bpm

5 bpm

Figure 2.2: First 16 bars of the arrangement of Liszt’s Rhapsody No. 2 as performed by Bugs
Bunny (my transcription based on Edition Peters (Liszt, 1913)). The heatmap shows
the tempo curve of Bug’s performance (in red in the lower left plot in Figure 2.1).

2.2 Strategies for Modeling Musical Expression

While Chapter 9 presents an in-depth review of the current state-of-the-art in computational
models of expressive performance (including the work presented in this thesis), the purpose of
this Section is to present a very brief overview of some important concepts used throughout this
work. For a more thorough review of strategies for modeling expressive performance, we refer
the reader to the review papers by Widmer and Goebl (2004), De Poli (2004) and Kirke and
Miranda (2013).

2.2.1 Rule-Based vs. Data-Driven Modeling

Very broadly speaking, we can identify two main approaches to modeling expressive performance
through computational models, namely rule-based and data-driven approaches. Rule-based ap-
proaches attempt to define performance rules that relate aspects such as structural elements
of the score, or expressive intentions of the user, to specific expressive performance actions.
Examples of these rules include the increase in sound level proportional to pitch height (Sund-
berg et al., 1982) (e.g. perform higher notes louder), and the gradual slowing down at the end
of a piece (Friberg and Sundberg, 1999). One of the most important examples of rule-based
approaches is the KTH model (Sundberg et al., 1983; Friberg et al., 2000, 2006), which can be
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2.2 Strategies for Modeling Musical Expression

thought of as a “musician’s toolbox” (Friberg et al., 2006), i.e., a collection of methods that a
musician might use to shape an expressive performance.

Rule-based models are useful because they can define robust models, since it is easy to control
the influence of a particular rule in the performance. This kind of model can be used to test
musically plausible hypotheses using an analysis-by-synthesis approach. On the other hand, it is
unlikely that this approach produces models that can cover all possible performances (although
they might cover a good part of the musically correct performances) (Friberg et al., 2006).
Furthermore, it has been shown that rule based systems have some difficulty applying the rules
in reverse, i.e. finding the rule set which would correspond to a given performance (Sundberg
et al., 2003).

Data-driven approaches, on the other hand, attempt to infer performance rules directly from
analyzing data from expressive performances. Therefore, this modeling approach is better suited
for ecological analysis of performances (i.e. live concerts or commercial recordings, as opposed
to performances conducted in laboratory conditions) than rule-based models. Early data-driven
approaches (Widmer, 1995, 1996, 2000; Widmer and Tobudic, 2002; Widmer, 2003) aimed at
learning explicit performance rules at various structural levels (from individual notes to higher
phrasing levels), using methods like instance-based learning and inductive logic programming.
Modern approaches (Widmer et al., 2009; Kim et al., 2011; Moulieras and Pachet, 2016; Cancino-
Chacón et al., 2017d) tend to focus on machine learning techniques such as probabilistic graphical
models and artificial neural networks, due to the development of more efficient learning algo-
rithms and the increase of computational capacity. Still, a significant disadvantage of data-driven
methods, in particular recent machine learning techniques, is that they require large amounts
of data. Furthermore, while many data-driven models could theoretically describe all possible
performances, in practice their capacity for explaining/predicting aspects of expressive perfor-
mance is limited by assumptions encoded in their formulation. An example of these limitations
might be the use of linear models that do not allow for interaction between different features
(Cancino Chacón and Grachten, 2015), or models that only consider a small context to make
predictions instead of the large scale temporal structures that are relevant in music (Widmer,
2017).

2.2.2 Analysis vs. Synthesis

Computational models of performance can be used for a wide variety of purposes, which can be
broadly categorized into two groups: on one hand, these models can be used as an analytical
tool for understanding the way humans perform music; on the other hand, we can use these
models to synthesize (i.e. generate) new performances of musical pieces.

As analysis tools, computational models permit us to study the way humans perform music by
investigating the relationship between certain aspects of the music, like the phrase structure, and
aspects of expressive performance, such as expressive timing and dynamics. Furthermore, they
allow us to investigate the close relationship between the roles of the composer, the performer and
the listener (Kendall and Carterette, 1990; Gingras et al., 2016). Expressive performance and
music perception form a feedback loop in which expressive performance actions (like a slowing
down at the end of a phrase) are informed by perceptual expectations, and the perception
of certain musical constructs (like grouping structure) is informed by the way the music is
performed (Chew, 2016). In this way, computational models could also be used to enhance our
understanding of the way humans listen to music.

On the other hand, computational performance models can be interesting in their own right,
as tools for generating automatic or semi-automatic performances. In this case, a generative
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2 Computational Models of Expressive Performance

Note pitch beat p f crescendo

n0 60 1 1 0 0.0 0
n1 64 1 1 0 0.0 0
n2 67 1 1 0 0.0 0
n3 64 2 1 0 0.0 0
n4 62 2 1 0 0.0 0
n5 64 3 1 0 0.0 0
n6 67 4 1 0 0.0 0
n7 71 4 1 0 0.3 0
n8 72 1 1 0 0.7 1
n9 67 2 1 0 1.0 0
n10 71 2 1 0 1.0 0
n11 67 2 1 0 1.0 0
n12 65 3 0 1 0.0 0
n13 69 3 0 1 0.0 0
n14 69 4 0 1 0.0 0
n15 72 4 0 1 0.0 0
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Figure 2.3: Framework for computational models of expressive performance.

system might attempt to produce a convincing or human-like performance of a piece of music
given its score (Friberg et al., 2006; Grachten and Widmer, 2012; Okumura et al., 2014) or
try to play alongside human musicians, not only tracking their expressive performance but also
introducing its own expressive nuances (Xia et al., 2015; Cancino-Chacón et al., 2017a). Such
systems might have many applications, including realistic playback in music typesetting tools
(such as Finale or MuseScore) and automatic expressive accompaniment for rehearsing. Also,
there is now a renewed interest in systems that automatically generate (i.e. compose) music. As
pointed out by Herremans et al. (2017), automatic performance systems might be an important
component in making automatic music generation usable by the general public.

2.3 Components of a Computational Model of Expressive
Performance for Notated Music

In this Section we present a generic framework for describing research in expressive performance
of notated music, which is shown in Figure 2.3. This framework consists of three elements,
namely score features, which capture some of the information contained in the score, expressive
parameters, which are numerical encodings of aspects of an expressive performance, and compu-
tational models, which relate them together. This framework can be understood as a simplified
version of the framework proposed by Kirke and Miranda (2013).

It is important to note that until now, in this thesis we have used informal notions of a musical
score and performance. While a comprehensive definition of what constitutes a musical score, or
more importantly, what constitutes an expressive performance are philosophical questions that
lie beyond the scope of the current work, in the following we present working definitions of these
concepts:

Definition 2.1 (Musical Score). A musical score (or simply score), denoted by S, is a symbolic
representation of a musical composition. In this work, we consider a score to be a collection of
elements that hold information about the music to be interpreted by a performer2. Given our

2 Note that we intentionally do not define a score to be a mathematical set in the strictest sense, and indeed, a
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2.3 Components of a Computational Model of Expressive Performance for Notated Music

focus on Western art music, it is relevant to distinguish between two kind of elements:

1. note elements (also referred to as musical notes or simply notes), i.e. elements that convey
information about the note to be played, e.g. pitch (pitch class and octave), onset (the
starting time of the note) and duration; and

2. non-note elements, which refer to elements such as rests, time and key signatures, or per-
formance directives such as dynamics (e.g. p and f ), tempo (e.g. Allegro and Andante)
or articulation markings (e.g. staccato, legato slurs).

The set of all possible scores is denoted as S.

For computational purposes, in the rest of this work we will consider a musical score to be
encoded in a machine-readable format such as MusicXML. While it could be argued that a
deadpan MIDI counts as a score, such a format does not include other information that might
be useful for the performer, such as enharmonic spelling, the time signature (and division in
bars), dynamics and articulation markings, etc.

Definition 2.2 (Expressive Performance Recording). A recording of an expressive performance,
denoted as P, is a document that stores information in a physical or digital medium that
encodes measurable properties of an expressive performance. These properties might include
measurements of the sound waves generated by an instrument or loudspeaker (recorded as audio),
the visual/motion information (recorded as video), abstract descriptions of parameters driving
a digital instrument (such as the MIDI protocol), etc. Pfmt denotes the set of all expressive
performances that can be captured using a format fmt (e.g. the set of all performances recorded
in MIDI format is denoted as PMIDI).

While it is important to note that the recording is just a document that allows for storage (and
possible reproduction) of the performance, not the performance itself, in the following we will
refer to P as the performance. For the purposes of this work, we will focus on performance
recordings containing only MIDI or audio information (i.e. we are not considering the case of
audio-visual information). If not otherwise stated, we assume that performances are in MIDI
format, and thus, to unclutter notation we will simply write the set of all MIDI performances
as P.

2.3.1 Score Features

By score features – which are the inputs to the computational model – we denote descriptors
used to represent a piece of notated music. Some of these features may be given directly by the
score (such as notated pitches and durations), while others may be computed from the score in
more or less elaborate ways, by some well-defined procedure.

We can roughly classify these features into three groups:

1. low-level features, i.e. features that can be readily extracted from the score without music
theory (e.g. pitch, onset and duration of notes);

2. mid-level features, features that denote local level music theoretic concepts, such as encod-
ings of the metrical stress patterns implied by a time signature, the scale degree of a note
or the harmonic function of a chord (e.g. tonic, dominant); and

better way to describe a score would be as a data structure or an abstract data type. Nevertheless, we will
abuse notation and write x ∈ S to denote that x is an element of the score.
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2 Computational Models of Expressive Performance

3. high-level features, features that denote advanced music theoretic concepts and abstract
properties of the music, like intended emotion or aspects of the higher order structure of
the piece (i.e. the relationship between different sections of the piece).

The process of extracting score features corresponds to the Music/Analysis module in Kirke and
Miranda (2013)’s framework.

It is important to note that this definition does not necessarily require score features to be
represented in a numerical form, and indeed many systems use features that are categorical. Still,
recent advancements in machine learning have led to the use of numerical encodings of categorical
information. Although there is a conceptual difference between these abstract non-numerical
features and their numerical encodings, for the purpose of our discussion, this difference is not
important. Therefore, in the rest of this work, we will assume that features can be encoded in
a numerical fashion, and refer to these encodings as the features themselves.

2.3.2 Expressive Parameters

An expressive parameter – the output of a model – is a numerical encoding of an aspect of expres-
sive performance. Here we would like to make a distinction between expressive parameters and
the measurable properties of the performance from Definition 2.2. Although a computational
model of performance might attempt to model expressive performances by directly generating
audio signals (e.g. Raphael (2009)), most systems decompose the information of the performance
into several aspects, most of which are motivated by different facets of our perception of music
(which Raphael (2009) refers to as “consequences of the performance”, rather than the perfor-
mance itself). The description of an expressive performance by a set of parameters is necessarily
a theory-laden activity3, since the choice of parameters relies on knowledge, or assumptions on
the nature of musical performance as a process.

In the case of (solo) piano music, the range of possible degrees of freedom for musical expression
is limited by the mechanics of the instrument, compared to other acoustical instruments. Since
most systems deal with piano music, the most common descriptors relate to loudness, expressive
tempo and timing, and articulation (Kirke and Miranda, 2013; Widmer and Goebl, 2004), but
of course they can also include other parameters like timbral features (Raphael, 2009; Ohishi
et al., 2014).

The expressive parameters correspond to the outputs of the Performance Knowledge module in
Kirke and Miranda (2013)’s framework. Section 9.4.1 presents a critical review of the choices
involved in selecting and encoding these parameters.

2.3.3 Computational Models

A computational model then, in our context, is any computable function that maps score features
to expressive parameters or, to be more precise, can make a prediction of the values of expres-
sive parameters, given a score (represented via score features) as input. In music performance
modeling, this is typically done by means of mathematical functions (probabilistic models, ar-
tificial neural networks, etc.) (Teramura et al., 2008; Kim et al., 2010; Grachten and Widmer,
2012) or by means of rules (Friberg et al., 2006; Canazza et al., 2015). Some of these models
can be trained using a dataset of expressive performances. The model/function corresponds
to the Performance Knowledge and the Performance Context in Kirke and Miranda (2013)’s

3According to philosophy of science, an observation is said to be theory-laden if it is affected by theoretical
assumptions held by the researcher (Bogen, 2017).
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2.4 Datasets Used in this Thesis

Piece Movements

Piano Sonata No. 1 in C Major, KV 279 1, 2, 3
Piano Sonata No. 2 in F Major, KV 280 1, 2, 3
Piano Sonata No. 3 in B[ Major, KV 281 1, 2, 3
Piano Sonata No. 4 in E[ Major, KV 282 1, 2, 3
Piano Sonata No. 5 in G Major, KV 283 1, 2, 3
Piano Sonata No. 6 in D Major, KV 284 1, 2, 3
Piano Sonata No. 10 in C Major, KV 330 1, 2, 3
Piano Sonata No. 11 in A Major, KV 331 1, 2, 3
Piano Sonata No. 12 in F Major, KV 332 1, 2, 3
Piano Sonata No. 13 in B[ Major, KV 333 1, 2, 3
Piano Sonata No. 14 in C Minor, KV 457 1, 2, 3
Fantasia in C Minor, KV 475 1
Piano Sonata No. 15 in F Major, KV 53 1, 2, 3

Table 2.1: Musical material contained in the Batik/Mozart corpus

Piece Movements

Piano Sonata No. 2 Op. 2 No. 2 in A Major 1, 2, 3, 4
Piano Sonata No. 8 Op. 13 in C Minor 1, 2, 3
Piano Sonata No. 9 Op. 14 No. 1 in E Major 1, 2, 3
Piano Sonata No. 12 Op. 26 in A[ Major 1, 2, 3, 4
Piano Sonata No. 14 Op. 27 No. 2 in C] Major 1, 2, 3
Piano Sonata No. 17 Op. 31 No. 2 in D minor 1, 2, 3
Piano Sonata No. 21 Op. 53 in C Major 1, 2, 3
Piano Sonata No. 30 Op. 109 in E Major 1, 2, 3
Piano Sonata No. 32 Op. 110 in A[ Major 1, 2, 3

Table 2.2: Musical material contained in the Zeilinger/Beethoven corpus

framework; the training of the model corresponds to the Adaptation Process, and the datasets
are the Performance Examples.

2.4 Datasets Used in this Thesis

In order to study expressive performance of notated music using data-driven computational
methods, it is necessary to use performance data that has been aligned to their scores. We can
formalize this notion as follows:

Definition 2.3 (Matched Performance). A matched performance is a triple PS = (P,S,match)
consisting of an expressive performance P, its corresponding score S and match: P 7→ S, a map
that assigns events in the performance (e.g. a performed MIDI note or a position in time in an
audio recording) to their corresponding elements in the score. A performance is said to be

1. matched note-wise if there is a mapping assigning performed notes (as the case of MIDI
recordings) to the corresponding score notes; or

2. matched onset-wise if there is a mapping between performed onset times and their cor-
responding temporal positions in the score, without matching a performance event to
individual notes at each position.

The set of all matched performances of score S is denoted as PS.

In this section we describe 4 datasets of expressive performances aligned to their scores used
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2 Computational Models of Expressive Performance

Composer Piece Movements Conductor

Beethoven Symphony No. 5 Op. 67 in C Minor 1, 2, 3, 4 Fischer
Beethoven Symphony No. 6 Op. 68 in F Major 1, 2, 3, 4, 5 Fischer
Beethoven Symphony No. 9 Op. 125 in D Minor 1, 2, 3, 4 Fischer

Mahler Symphony No. 4 in G Major 1, 2, 3, 4 Jansons
Bruckner Symphony No.9 WAB 109 in D Minor 1, 2, 3 Jansons

Table 2.3: Musical material contained in the RCO/Symphonic corpus

throughout this work. Each of these datasets corresponds to a single performer/single orches-
tra. The first three datasets consist of solo performances of classical piano music recorded on
computer controlled grand pianos. The musical material contained in these datasets includes
music from the second half of the 18th century to the end of the 19th century, comprising the
Classical and Romantic periods.

2.4.1 Batik/Mozart

The Batik/Mozart corpus is a note-wise matched dataset which consists of recordings by Aus-
trian pianist Roland Batik (b. 1951) of 12 piano sonatas and the Fantasia in C Minor KV 475,
performed on a computer controlled Bösendorfer SE 290 (Widmer and Tobudic, 2002). The
dataset contains 37 pieces (each movement of a sonata is considered an individual piece), which
result in ca. 100 000 performed notes, for nearly 4 hours of music. The pieces in this corpus are
shown in Table 2.1. An important characteristic of this dataset is that the melody was manually
annotated for all of the pieces, allowing us to model characteristics of the melody and harmony
separately.

The performances have been aligned to their corresponding machine-readable scores in an in-
house format (called matchfile), developed by Gerhard Widmer and his colleagues. This dataset
follows the Henle Verlag4 edition of the Mozart sonatas, although information about dynamics
or articulation markings was not included in the dataset.

2.4.2 Magaloff/Chopin

The Magaloff/Chopin corpus (Flossmann et al., 2010) is a note-wise matched dataset which
consists of the complete Chopin piano solo works (excluding a few posthumously published
works) performed by renowned pianist Nikita Magaloff (1912-1992) during a series of concerts
in Vienna, Austria in 1989. These performances were recorded using a Bösendorfer SE computer-
monitored grand piano, and then converted into standard MIDI format.

The performances have been aligned to their corresponding machine-readable musical scores in
MusicXML format, which were obtained from hard-copies of the sheet music using commercial
optical music recognition software5 and subsequent manual correction. We have used the Henle
Urtext Edition wherever possible, which explicitly states its intention to stay faithful to Chopin’s
original manuscripts. The score–performance alignment step has also been performed semi-
automatically, involving manual correction of automatic alignments.

The data set comprises more than 150 pieces and over 300 000 performed notes, adding up to
almost 10 hours of music. The pieces in this dataset are shown in Table 2.4.

4https://www.henle.de
5http://www.visiv.co.uk/
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2.4 Datasets Used in this Thesis

2.4.3 Zeilinger/Beethoven

This is another note-wise matched corpus of classical piano performances, very similar in form
to the Magaloff/Chopin corpus. It consists of the performances of 29 different movements from
9 different Beethoven Sonatas by Austrian concert pianist Clemens Zeilinger, recorded under
studio conditions at the Anton Bruckner University in Linz (Austria), on January 3-5, 2013.
The pieces were performed on a Bösendorfer CEUS 290 computer-monitored grand piano, and
converted to standard MIDI format. Further preparation of the data, such as the production of
machine-readable scores (using the Henle Urtext Edition), and score to performance alignment
were done in the same way as for the Magaloff/Chopin corpus. This data set comprises over
70 000 performed notes, adding up to just over 3 hours of music. The pieces in this dataset are
shown in Table 2.2.

It is important to note that the process of obtaining machine-readable scores through com-
mercial optical music recognition is not a perfect process and there might be some mistakes
in the data. Therefore, the first round of manual corrections for the Magaloff/Chopin and
Zeilinger/Beethoven datasets were performed by Sebastian Flossmann and colleagues. To the
date of this writing, the last round of corrections for dynamics and timing markings for the
Magaloff/Chopin and Zeilinger/Beethoven corpora was performed during November 2016 to
September 2017 by Maarten Grachten and myself.

2.4.4 RCO/Symphonic

The RCO/Symphonic corpus is an onset-wise matched dataset consisting of symphonies from the
Classical and Romantic periods. It contains recorded performances (audio), machine-readable
representations of the musical score (MusicXML) and automatically produced (using the method
described in Grachten et al. (2013)), manually corrected alignments between score and perfor-
mance, for each of the symphonies. The manual corrections were made either at bar or at beat
level (depending on the tempo of the piece), and subsequently, the performance was re-aligned
automatically, using the corrected positions as anchors.

The pieces were performed by the Royal Concertgebouw Orchestra (RCO), conducted by either
Iván Fischer or Mariss Jansons, at the Concertgebouw in Amsterdam, the Netherlands. The
corpus amounts to a total of 20 movements from 5 works, listed in Table 2.3. The corresponding
performances sum up to a total length of over 4.5 hours of music. The 20 scores result in
ca. 54 000 note onsets.

The symbolic scores (in MusicXML format) are provided partly by Bärenreiter Verlag6, and
partly by Donemus Publishing7.

The loudness of the recordings was computed using the EBU R 128 loudness measure (EBU-R-
128, 2011) which is the recommended way of comparing loudness levels of audio content in the
broadcasting industry. This measure takes into account human perception, particularly the fact
that signals of equal power but different frequency content are not perceived as being equally
loud. To obtain instantaneous loudness values, we compute the measure on consecutive blocks
of audio, using a block size and hop size of 1024 samples, using a 44 100 Hz sample rate.

Through the score–performance alignment, the resulting loudness curve is indexed by musical
time (such that we know the instantaneous loudness of the recording at, say, the second beat of
measure 64 in the piece), and is thus associated to the score representation of the piece.

6http://www.baerenreiter.com
7http://www.donemus.nl
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2 Computational Models of Expressive Performance

Pieces

Rondo Op. 1 Etude Op. 25 No. 7 Nocturne Op. 37 No. 1
Piano Sonata No. 1 Op. 4 (3 mvts.) Etude Op. 25 No. 8 Nocturne Op. 37 No. 2
Rondo Op. 5 Etude Op. 25 No. 9 Ballade Op. 38
Mazurka Op. 6 No. 1 Etude Op. 25 No. 10 Scherzo Op. 39
Mazurka Op. 6 No. 2 Etude Op. 25 No. 11 Polonaises Op. 40 No. 1
Mazurka Op. 6 No. 3 Polonaises Op. 26 No. 1 Polonaises Op. 40 No. 2
Mazurka Op. 6 No. 4 Polonaises Op. 26 No. 2 Mazurka Op. 41 No. 1
Mazurka Op. 7 No. 1 Nocturne Op. 27 No. 1 Mazurka Op. 41 No. 2
Mazurka Op. 7 No. 2 Nocturne Op. 27 No. 2 Mazurka Op. 41 No. 3
Mazurka Op. 7 No. 3 Prelude Op. 28 No. 1 Mazurka Op. 41 No. 4
Mazurka Op. 7 No. 4 Prelude Op. 28 No. 2 Waltz Op. 42
Mazurka Op. 7 No. 5 Prelude Op. 28 No. 3 Tarantelle Op. 43
Nocturne Op. 9 No. 1 Prelude Op. 28 No. 4 Polonaises Op. 44
Nocturne Op. 9 No. 2 Prelude Op. 28 No. 5 Prelude Op. 45
Nocturne Op. 9 No. 3 Prelude Op. 28 No. 6 Allegro de Concert Op. 46
Etude Op. 10 No. 1 Prelude Op. 28 No. 7 Ballade Op. 47
Etude Op. 10 No. 2 Prelude Op. 28 No. 8 Nocturne Op. 48 No. 1
Etude Op. 10 No. 3 Prelude Op. 28 No. 9 Nocturne Op. 48 No. 2
Etude Op. 10 No. 4 Prelude Op. 28 No. 10 Fantaisie Op. 49
Etude Op. 10 No. 5 Prelude Op. 28 No. 11 Mazurka Op. 50 No. 1
Etude Op. 10 No. 6 Prelude Op. 28 No. 12 Mazurka Op. 50 No. 2
Etude Op. 10 No. 7 Prelude Op. 28 No. 13 Mazurka Op. 50 No. 3
Etude Op. 10 No. 8 Prelude Op. 28 No. 14 Impromptu Op. 51
Etude Op. 10 No. 9 Prelude Op. 28 No. 15 Ballade Op. 52
Etude Op. 10 No. 10 Prelude Op. 28 No. 16 Polonaises Op. 53
Etude Op. 10 No. 11 Prelude Op. 28 No. 17 Scherzo Op. 54
Etude Op. 10 No. 12 Prelude Op. 28 No. 18 Nocturne Op. 55 No. 1
Variations brillantes Op. 12 Prelude Op. 28 No. 19 Nocturne Op. 55 No. 2
Nocturne Op. 15 No. 1 Prelude Op. 28 No. 20 Mazurka Op. 56 No. 1
Nocturne Op. 15 No. 2 Prelude Op. 28 No. 21 Mazurka Op. 56 No. 2
Nocturne Op. 15 No. 3 Prelude Op. 28 No. 22 Mazurka Op. 56 No. 3
Rondo Op. 16 Prelude Op. 28 No. 23 Berceuse Op. 57
Mazurka Op. 17 No. 1 Prelude Op. 28 No. 24 Piano Sonata No. 3 Op. 58 (3 mvts.)
Mazurka Op. 17 No. 2 Impromptu Op. 29 Mazurka Op. 59 No. 1
Mazurka Op. 17 No. 3 Mazurka Op. 30 No. 1 Mazurka Op. 59 No. 2
Mazurka Op. 17 No. 4 Mazurka Op. 30 No. 2 Mazurka Op. 59 No. 3
Waltz Op. 18 Mazurka Op. 30 No. 3 Barcarolle Op. 60
Bolero Op. 19 Mazurka Op. 30 No. 4 Polonaises Op. 61
Scherzo Op. 20 Scherzo Op. 31 Nocturne Op. 62 No. 1
Ballade Op. 23 Nocturne Op. 32 No. 1 Nocturne Op. 62 No. 2
Mazurka Op. 24 No. 1 Nocturne Op. 32 No. 2 Mazurka Op. 63 No. 1
Mazurka Op. 24 No. 2 Mazurka Op. 33 No. 1 Mazurka Op. 63 No. 2
Mazurka Op. 24 No. 3 Mazurka Op. 33 No. 2 Mazurka Op. 63 No. 3
Mazurka Op. 24 No. 4 Mazurka Op. 33 No. 3 Waltz Op. 64 No. 1
Etude Op. 25 No. 1 Mazurka Op. 33 No. 4 Waltz Op. 64 No. 2
Etude Op. 25 No. 2 Waltz Op. 34 No. 1 Waltz Op. 64 No. 3
Etude Op. 25 No. 3 Waltz Op. 34 No. 2 Waltz Op. 69 No. 1
Etude Op. 25 No. 4 Waltz Op. 34 No. 3 Nocturne Op. 72 No. 1
Etude Op. 25 No. 5 Piano Sonata No. 2 Op. 35 (3 mvts.)
Etude Op. 25 No. 6 Impromptu Op. 36

Table 2.4: Musical material contained in the Magaloff/Chopin corpus
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3 Basis Function Models I: Linear Models

This chapter contains material published in

• Grachten, M., Cancino Chacón, C. E., and Widmer, G. (2014). Analysis and Prediction of
Expressive Dynamics Using Bayesian Linear Models. In Proceedings of the 1st International
Workshop on Computer and Robotic Systems for Automatic Music Performance (SAMP
14), pages 545–552, Venice, Italy

3.1 Introduction

In Chapter 2 we discussed general strategies for studying musical expression using computational
models. The following two chapters will describe the basis function models (BMs), a data-
driven approach for modeling musical expression that formalizes the components of the generic
framework discussed in Section 2.3 using a machine learning paradigm.

Broadly speaking, the BM framework uses basis functions, i.e. numerical encodings of a va-
riety of descriptors of a musical score (score features), as inputs to a mathematical function
(which we call predictive function) that relates them to the expressive targets, i.e. measurable
characteristics of aspects of an expressive performance.

Work on the BM framework is ongoing, so instead of simply describing the most recent iteration
of the BM, the following two chapters document the development of the BMs since their original
linear versions (this chapter) to the more recent non-linear and sequential versions (Chapter
4). The motivation behind this structure is two-fold: on the one hand, it allows us to present
each variant of the model as a stepping stone, with advantages and disadvantages; on the other
hand, it provides a better storytelling, by allowing us to focus on the goals and the motivations
for each iteration of the model (including the things that did not work), and thus, provides an
insight into the development of complex models starting from simple premises.

It is important to note that the BM approach is a generic framework to model musical expression,
which could be used to describe other machine learning models for expressive performance like
those proposed by Teramura et al. (2008), Kim et al. (2011) and Okumura et al. (2014).

The rest of this chapter is structured as follows: In Section 3.2 we provide a general definition of
the BM framework by formalizing the three components of a model of expressive performance
described in Section 2.3. Section 3.3 presents an overview of the first linear formulation of the
BM. Section 3.4 describes a probabilistic version of the linear model using a Bayesian model.
Finally, Section 3.7 concludes this chapter.

3.2 The Basis Function Models: A Formal Description

This section provides a description of the BM framework that formalizes the concepts of expres-
sive parameters, score features and computational models, using a mathematical description.
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Figure 3.1: A basis function model for modeling expressive performances: Aspects of a score S
are represented numerically by Φ, using a score representation model F . Aspects of
an expressive performance are captured using a performance codec C, consisting of
a performance representation model Y and a performance decoder Y−1. The score
representation Φ serves as input to a predictive function F (·,θ), which outputs Y,
a prediction of a performance representation under representation model Y. Using a
performance decoder Y−1, we can generate a matched performance PS. Φ, Y and
F correspond to the score features, expressive parameters and computational model
described in Section 2.3. See text for a detailed explanation of these concepts.

Figure 3.1 shows a schematic representation of the BM framework and its components, which
will be described in detail in this section.

Following the notation introduced in Section 2.3, PS denotes an expressive performance matched
to score S and PS is the set of all matched performances of score S. In the rest of this
work, X = {n0, . . . , nNx−1} represents the set of |X | = Nx notes in a musical score and
O = {o0, . . . , oNo−1} represents the set of |O| = No unique score positions, i.e. the tempo-
ral position of musical events, commonly measured in beats, which will be referred to as score
onsets1. The set of all notes that occur at the same score position as score note ni will be
denoted as o(ni) = {nj ∈ o | onset(nj) = onset(ni)}, with onset(ni) being the onset time of ni.
An arbitrary element of the score (note or onset) will be denoted as x. See Figure 3.4 for an
example of a musical score and its different elements.

3.2.1 Expressive Parameters

Let us consider the matched performance shown in Figure 3.2. In this figure, the plot on the left
represents the matching between performed MIDI notes, represented as a piano roll, and their
corresponding notes in the musical score. In this piano roll, a darker hue means a louder note.
On the right side of this plot, we have three measurable quantities describing the performance
information in MIDI format, namely, the performed MIDI velocity, onset time and duration
of each note in the score2. The MIDI velocity is an indication of the loudness of a note (a
higher MIDI velocity means a louder note). The performed onset time describes the point in
time at which the note was performed (i.e. the time at which a MIDI device sends a NOTE ON

message). In standard MIDI format, this is reported in multiples of a minimal unit of time
called MIDI tick, but for convenience in the example shown in Figure 3.2 it is shown in seconds.
Note that in a piano performance, defining the duration of a note as simply the time interval
between its NOTE ON and a NOTE OFF messages without considering pedal information might not
be musically meaningful. To estimate the sounding duration of a note in a piano performance

1It is easy to see that Nx ≥ No, with the equality occurring only in the case of monophonic music.
2 The MIDI format allows for other parameters describing a performance such as pitch bending and sustain

pedal.
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n12

n13 n14

n15 Note vel(·) onsetperf (·) durationperf (·)
n0 28 0.24 0.60
n1 44 0.23 0.33
n2 34 0.21 0.75
n3 44 0.73 0.21
n4 28 0.96 0.39
n5 53 1.21 0.30
n6 75 1.69 0.23
n7 88 1.90 0.14
n8 108 2.12 0.16
n9 90 2.36 0.10
n10 86 2.56 0.14
n11 93 2.79 0.09
n12 114 3.03 0.25
n13 116 3.03 0.26
n14 123 3.49 0.67
n15 124 3.49 0.66

Figure 3.2: Piano roll of performance matched onsetwise PS(left) and information describing the
performance for each note (right). The intensity of the hue of the notes on the piano
roll represents their MIDI velocity. Functions vel(·), onsetperf (·) and durationperf (·)
represent the performed MIDI velocity, onset time and duration (in seconds) of each
note in the score S.

it is necessary to include information from the sustain pedal. In the rest of this discussion we
will simply assume that a method for estimating the sounding duration of a note exists, and the
term duration will refer to this sounding duration3.

From the representation of a performance in MIDI format, we can see that a straightforward
way to represent expressive dynamics is to consider directly the MIDI velocity4. We represent
the MIDI velocity of the i-th note in the score as vel(ni). In this case, we can consider vel(·) as
a function which maps notes in the score S to their performed MIDI velocity in the matched
performance PS. Other aspects of a performance like expressive tempo might not be immedi-
ately extracted from the MIDI format, but have to be calculated considering information from
the score. For example, we can define a function bpm(·) that computes the local tempo in bpm
at each score position considering the performed onset times (in seconds) of each note (see the
column onsetperf (·) in Figure 3.2) and the score position of each note in the score (in beats)5. We
can generalize this idea of representing aspects of an expressive performance through functions
that map elements of a score (e.g. notes in the example above) to their corresponding property
in the matched performance (their MIDI velocity in the above example) as follows:

Definition 3.1 (Expressive Encoding Function). An expressive encoding function is a function
y : PS 7→ R that encodes an event in a matched expressive performance (e.g. a performed MIDI
note or a particular position in time in an audio recording) into an expressive parameter, a
numerical encoding of an aspect of an expressive performance. The value of such an expressive
parameter6 corresponding to score element xi ∈ S is denoted as y (xi | PS) = ti with ti ∈ R.

3This working definition of duration of a note is a simplification. A more general concept of sounding duration of
a note should involve the acoustic properties of the instrument and the room in which the note is performed.

4It is important to note that the MIDI velocity is by no means a perfect indicator of loudness or dynamics, since
it depends on the instrument in which it was performed.

5In this case, bpm(·) returns the same value for all notes in the same score position, as would be the case of the
notes in the C major chord at the beginning of the score in Figure 3.2, i.e. bpm(n0) = bpm(n1) = bpm(n2).

6 Borrowing from the terminology of the machine learning literature, we select t to represent the value of
expressive parameters since they are the values that we are ultimately interested in predicting, i.e. the target
values.
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We slightly abuse notation, and denote the values of an expressive parameter for all relevant
elements7 in S as y(S | PS) = t, with t ∈ RN .

In the example above, we can identify yvel(ni | PS) = vel(ni) and ybpm(ni | PS) = bpm(ni) as
expressive encoding functions relating score note ni to its performed MIDI velocity and local
tempo in bpm in performance PS, respectively. In this case, MIDI velocity is an example of an
expressive parameter describing expressive dynamics, while bpm is an example of an expressive
parameter describing expressive tempo. This example shows how in order to describe several
aspects of an expressive performance, such as expressive tempo, dynamics and articulation, we
might need to use different expressive parameters, each represented by different expressive en-
coding functions. We can represent these different aspects of expressive performance describing
elements in the score as points in a multidimensional space, where each dimension represents an
expressive parameter. We can formalize this notion as follows:

Definition 3.2 (Performance Space, Performance Representation).

1. A performance representation model is a set of Ny expressive encoding functions Y =
{y1, . . . , yNy} covering several aspects of an expressive performance. Using a slight abuse

of notation we will also write Y(xi | PS) =
(
y1(xi | PS), . . . , yNy(xi | PS)

)T
= ti, with tt ∈

RNy , as a vector valued function Y : PS 7→ P which maps the aspects of the performance
captured by the expressive parameters into a vector subspace P ⊂ RNy . We refer to P as
the performance space spanned by the expressive parameters. In this case, each expressive
parameter represents a coordinate in the performance space (i.e. a component of vector
function Y(xi,PS)), and we will refer to the j-th expressive parameter as the output
of expressive encoding function yj . Nevertheless, for the sake of clarity, whenever we are
referring to a specific parameter we will write yname of the parameter instead of simply writing
yparameter index, as done in the example above with yvel and ybpm instead of y1 and y2.

2. The performance representation of PS under Y (or simply performance representation of
PS), denoted as Y(S | PS) = T, is the value of the expressive parameters represented by
Y for all relevant elements of S. In most cases T will be a real valued matrix in RN×Ny ,
where N is the number of relevant elements of S and its entry in row i and column j,
denoted by tij , is given by yj(xi | PS), i.e. the value of the j-th expressive parameter for
score element xi. In this work (in particular in Chapter 4), we will explore cases where
some expressive encoding functions are defined note-wise, i.e. at the note level, (e.g. the
MIDI velocity of individual notes) while others are defined onset-wise, i.e. at the onset
level, (e.g. the local tempo at a given score position), where T = {Tonset-wise,Tnote-wise}
is a composite structure, with Tonset-wise ∈ RNNo×Nyow and Tnote-wise ∈ RNNx×Nynw , where
Nyow and Nynw are the number of expressive encoding functions defined onset-wise and
note-wise, respectively.

In the example above, we have Y = {yvel, ybpm}, which results in performance space P being
a 2D space, shown in Figure 3.3. In this plot, each point corresponds to Y(ni | PS), i.e. the
representation of the performance of score note ni in performance PS.

A performance representation model Y indicates the way a computational model of expressive
performance describes (i.e. encodes) characteristics of the expressive performance. However, for
a model to be able to generate a performance rendering of a piece given its score, an additional

7 By relevant elements of S we mean those score elements (e.g. notes or onsets) for which the values of the
expressive parameters are defined. For example, it might not be meaningful to define the value of the local
tempo in bpm for all piano markings, but it makes sense to define it for a specific score position (e.g. the first
beat in the third bar).
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Figure 3.3: Performance space P spanned by performance representation model Y = {yvel, ybpm}
for the matched performance shown in Figure 3.2. Each point in the performance
space correspond to the representation of the performance of a score note n, i.e. a
row in performance representation T.

component is required: a method that, given a performance representation and its corresponding
score, reconstructs an expressive performance in the same format as that which the performance
representation model operates in (for example in MIDI format). This idea can be formalized as
follows:

Definition 3.3 (Performance Decoder, Performance Codec, Lossless Representation).

1. A performance decoder is a function Y−1 : (P,S) 7→ PS that given Y(S | PS) = T ∈ P, a
performance representation under representation model Y and its corresponding score S,
produces a matched performance of the same score Y−1(T | S) = P∗S, with P∗S ∈ PS. In
other words, a performance decoder takes the encoding of an expressive performance PS

in terms of the expressive parameters defined in model Y (and its corresponding score)
to reconstruct the performance in its original format. Note that PS and P∗S are not
necessarily identical, i.e. the reconstructed performance is not guaranteed to be perfect
(see point 3 below).

2. A performance codec is a tuple C = (Y,Y−1) consisting of a performance representation
model Y and a performance decoder Y−1.

3. A performance codec C is said to be lossless if its performance representation model Y and
its performance decoder allow for a perfect reconstruction of a performance i.e. Y−1(Y(S |
PS) | S) = PS, the case where the performance P∗S generated by the decoder is identical
to performance PS.

The performance codec in the example above is not lossless: using only MIDI velocity and bpm is
insufficient to fully reconstruct the original MIDI file. The local tempo information represented
by the bpm is not enough to compute the exact performed onset times and durations of each
note. A performance codec that allows for fully reconstructing a performance would normally
be desirable when modeling musical expression, because it provides a baseline against which
model predictions can be accurately and precisely evaluated.

Note that a lossless performance codec does not guarantee that the expressive parameters chosen
to represent the performance are musically meaningful, nor does it make constructing models
that lead to good predictions easier. For example, the absolute performed onset time of each
note is a parameter that can be directly used to reconstruct a performance, but is less meaningful
than predicting expressive tempo, and is much more complicated to accurately predict.
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Note pitch(·) onset(·) duration(·)
n0 60 0 1
n1 64 0 1
...
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...
n15 72 7 1

Onset Notes onset(·) IOIscore

o0 {n0, n1, n2} 0 1
o1 {n3} 1 0.5
...
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o11 {n14, n15} 7 1

S

Note Elements

Non-note Elements

Element Type start(·) end(·) Effect on

S time signature 0 8 {o1, . . . , o11}
C major key signature 0 8 {o1, . . . , o11}

p dynamics marking 0 6 {o1, . . . , o9}
f dynamics marking 6 8 {o10, o11}

dynamics marking 3 4.5 {o4, . . . , o6}
accent 4 4 {n8}

...
...

...
...

...

Figure 3.4: Elements of Score S. Score notes are X = {n1, . . . , n15} and score onsets O =
{o1, . . . , o11}.

To unclutter notation, in the rest of this discussion we will write y(xi | PS) as y(xi).

3.2.2 Score Features: Score Basis Functions

Capturing the information contained in a musical score (i.e. the score features) and representing
it numerically might be even less straightforward than representing performance information.
After all, a score consists of symbols that hold both syntactic and semantic information, which
has to be interpreted by the performer. Indeed, a good chunk of research in computational mod-
els of expressive performance, as well as music information retrieval (MIR) and computational
musicology is dedicated to finding adequate representations to capture score information8.

Figure 3.4 presents an example of the different elements of a score S. From this figure we can see
that while certain elements of the score might have a straightforward numerical representation
(e.g. certain properties of note elements such as notated duration and MIDI pitch9), other

8For example, see Conklin and Witten (1995), van Kranenburg and Backer (2004) and Velarde et al. (2018)
for three very different approaches to representing score information. For a more in-depth discussion of
representing score features in computational models of expressive performance see Section 9.3.1 and 9.3.3 and
references therein.

9Although MIDI pitch might be the most widespread representation of the chromatic pitch of a note it is not
without its faults. Readers familiar with music theory could point out that by representing enharmonically
equivalent notes with the same MIDI pitch (e.g. both D[4 and C]4 are represented as MIDI pitch 61), important
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elements like metrical information and dynamics do not.

In order to extract and combine information from different elements in the score, we borrow the
concept of basis functions from the machine learning literature (Bishop, 2006). For example, we
can define a function pitch(·) that maps notes in score S to their MIDI pitch, and a function
forte(·) that maps notes in the score to 1 if they belong to the onsets for which f has an effect
(in the example in Figure 3.4, all notes that belong to onsets o10 and o11), and zero otherwise.
We can formalize this idea as follows:

Definition 3.4 (Score Basis Functions). A score basis function is a function ϕ : S 7→ R that
captures a structural aspect of the score and expresses the relation of each element in the score
to that aspect. The value of the score basis function for element xi ∈ S is denoted as ϕ(xi).

Continuing with the example above, ϕpitch(ni) = pitch(ni) and ϕf (ni) = forte(ni) would be score
basis functions encoding pitch information of each note, and information about the dynamics
marking f for score note ni, respectively. It is important to note that the definition of score
basis functions, in particular for those functions encoding mid- and high-level properties of the
score, is a theory-laden activity, since it relies on our knowledge and/or interpretation of the
meaning of the score feature that we want to represent. An important part of this thesis is
dedicated to describing different groups of score basis functions, in particular Sections 3.3.2,
3.4.1, 4.2.1, 4.3.3. Chapters 5 and 6 are dedicated to studying basis functions for describing
orchestral music and cognitively motivated features, respectively. Appendix A.1 contains a list
of all basis functions defined in this work. A related representation to that of the score basis
functions is the multiple viewpoint system (Conklin and Witten, 1995; Conklin, 2013).

Using these score basis functions, we can construct a space similar to the performance space for
numerically representing the information contained in the score as follows:

Definition 3.5 (Score Space, Score Representation).

1. A score representation model is a set of score basis functions, which we denote as F =
{ϕ1, . . . , ϕM}. In a similar fashion to the performance representation model, we will
slightly abuse notation and write F(xi) = (ϕ1(xi), . . . , ϕM (vi))

T = ϕ(xi), with ϕ(xi) ∈
RM , as a vector valued function F : S 7→ S, which maps element xi of the score S into
the score space, a vector subspace S ⊂ RM whose dimensions represent the numerical
encodings of structural aspects of the score captured by the expressive basis functions. In
other words, ϕ(xi) is a vector whose j-th component is given by ϕj(xi), the j-th score basis
function evaluated for score element xi. For the sake of clarity, whenever we are referring
to a specific score basis function we will write ϕname of the function instead of simply writing
ϕparameter index, as done in the example above with ϕpitch and ϕf instead of ϕ1 and ϕ2.

2. The score representation of S under F (or simply score representation of S), denoted
as F(S) = Φ, is the value of the basis functions for all relevant elements of S. In a
similar fashion to the one discussed for performance representations, in most cases Φ is a
real-valued matrix in RN×M , where its i-th row is given by ϕ(xi), the value of all score
basis functions for score element xi. In Chapter 4, we will explore cases where some score
basis functions are defined at the note level (e.g. like the pitch of a note) while others
are defined at the onset level (e.g. the position within the bar of a given score position),
where Φ = {Φonset-wise,Φnote-wise} is a composite structure, with Φonset-wise ∈ RNNo×Mow

and Φnote-wise ∈ RNNx×Mnw , where Mow and Mnw are the number of score basis functions

information regarding the tonal function of the notes gets lost.
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Figure 3.5: Score space S spanned by score representation model F = {ϕpitch, ϕf } for the score
shown in Figure 3.4. Each point in the space correspond to the representation of a
score note n, i.e. a row of Φ. Note that due to the chosen representation model, the
points for some of the notes overlap.

defined onset-wise and note-wise, respectively.

Continuing with the example, Figure 3.5 shows the score space S for score representation model
F = {ϕpitch, ϕf }. In this plot, each point corresponds to F(ni), i.e., the representation of score
note ni.

In the rest of this thesis, we will use basis functions as a shorthand for score basis functions.

3.2.3 Computational Model

Sections 3.2.1 and 3.2.2 describe a formalization of the concepts of expressive parameters and
score features described in Section 2.3. The last piece of the puzzle are the computational
models.

As described in Section 2.3.3, a computational model is a function that, given features represent-
ing score information, makes predictions of the value of the expressive parameters. Continuing
with our running example, we can use a simple linear model (for instance) to relate the score
representation Φ shown in Figure 3.5 to the performance representation T shown in Figure 3.3
as follows: for expressive dynamics, represented by MIDI velocity, we define a linear function
as

f (vel)(ϕ(ni)) = w
(vel)
pitchϕpitch(ni) + w

(vel)

f
ϕf (ni) + w

(vel)
0

= 5.8 · ϕpitch(ni) + 41 · ϕf (ni)− 318.7;

and for expressive tempo, represented by the local bpm, we define a similar linear function
as

f (bpm)(ϕ(ni)) = w
(bpm)
pitch ϕpitch(ni) + w

(bpm)

f
ϕf (ni) + w

(bpm)
0

= 0.3 · ϕpitch(ni)− 18.1 · ϕf (ni) + 108.

We refer to θvel =
{
w

(vel)
pitch, w

(vel)

f
, w

(vel)
0

}
and θbpm =

{
w

(bpm)
pitch , w

(bpm)

f
, w

(bpm)
0

}
as the param-

eters of f (vel) and f (bpm), respectively10. We can then define a vector function F (ϕ(ni)) =

10The values of the parameters in this example were estimated by fitting the performance using the least squares
algorithm, which will be discussed in detail in Section 3.3.3 below.
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Figure 3.6: Comparison between predicted (Y, in blue) and performed (T, in red) expressive
parameters for the performance representation model Y = {yvel, ybpm} described in
Figure 3.3. The predictions were computed using a linear model with the score
representation F = {ϕpitch, ϕf } described in Figure 3.5.

(
f (vel)(ϕ(ni)), f

(bpm)(ϕ(ni))
)T

, whose output, denoted as Y, predicts the values of the perfor-
mance representation T. Figure 3.6 shows a comparison between performance representation T
and the predictions of the model Y.

Using this notion of mathematical functions taking score information encoded numerically (us-
ing basis functions) as input for predicting the value of the expressive parameters, we can finally
formalize a basis function model as follows:

Definition 3.6 (Basis Function Model). A Basis Function model is a triple
BM = (C,F , F (· ; θ)) consisting of:

1. C = (Y,Y−1), a performance codec consisting of

• Y : PS 7→ P, a performance representation model, and

• Y−1, its corresponding decoder;

2. F : S 7→ S, a score representation model; and

3. F (· ; θ) : S 7→ P, a function with parameters Θ, which we call predictive function, that
maps points in the score space S to points in the performance space P. In other words,
F maps a score S represented in terms of basis functions to a performance represented in
terms of expressive parameters (which can then be formed into an expressive performance
PS via the decoder Y−1).

In cases where all basis functions and expressive parameters act on the same level (onset-
wise or note-wise), we can write this function as

F (ϕ(xi) ; Θ) =
(
f (1)(ϕ(1)(xi),θ1), . . . , f (Ny)(ϕ(Ny)(xi) ; θNy)

)T
,

where
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3 Basis Function Models I: Linear Models

• ϕ(j)(xi) is a vector whose components are the values of the subset of all basis functions
in the score representation F that are relevant for predicting the j-th expressive
parameter for score element xi (and ϕ(xi) contains the value of all basis functions in
score representation F for score element xi).

• Each function f (j)(· ; θj) with parameters θj predicts the values of the j-th ex-
pressive parameter, i.e. maps points in the score space S to the j-th coordinate
of the performance space P. The output of these predictive functions is denoted

as f (j)(ϕ(j)(xi) ; θj) = y
(j)
i . For the sake of clarity, whenever we are referring to

a specific expressive parameter we will write f (name of the parameter) instead of simply
writing f (parameter index) (e.g. in the example above we wrote f (vel) and f (bpm) instead
of f (1) and f (2)).

• The full set of parameters is Θ =
⋃Ny
j=1 θj .

We will abuse notation and write F (Φ ; Θ) = Y, where Y is an object with the same
structure as T (i.e., in most cases a real valued matrix in RN×Ny) that represents the
estimated performance of score S. In the rest of this discussion, we refer to Y as the
predicted performance representation under Y (or simply predicted performance).

4. A BM models an expressive performance as a regression problem: We assume that the
value of the j-th expressive parameter for score element xi can be written as

yj(xi) = f (j)(ϕ(j)(xi) ; θj) + ε (3.1)

where ε is a random variable representing an error term. A common choice for ε is a zero
mean Gaussian random variable drawn from N (0, σ2), where σ2 is the variance of the
distribution.

Note that Definition 3.6 allows predictive functions for each expressive parameter to have their
own set of input basis functions. This property is motivated by the fact that, in practice, not all
score features might be relevant to predict all expressive parameters (e.g. pitch related features
might be more relevant to predict dynamics, whereas metrical related features are more useful
for predicting expressive tempo). However, in the following discussion, for the sake of simplicity
and unless otherwise specified, we will assume that ϕ(1)(xi) = · · · = ϕ(Ny)(xi) = ϕ(xi).

Although the general definition of BMs allows for joint modeling of expressive parameters, in
practice it is easier to construct and evaluate independent models for each parameter. Section
9.4.1 presents a brief overview of the state of the art in joint modeling of expressive parame-
ters.

Assuming we get a set of Np pieces for training the model T = {(T1,Φ1), . . . , (TNp ,ΦNp)},
where each element is a tuple consisting of performance and score representations under the same
performance representation model Y and score representation model F , we can use mathematical
optimization techniques to learn the parameters that minimize a loss function L, i.e.

Θ̂ = argmin
Θ

L(T ,Θ). (3.2)

A common choice of loss function for regression problems is the squared error. In this work, we
will discuss specific choices of performance and score representation models, as well as predic-
tive/modeling functions and loss functions.
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3.3 Linear Basis Models

3.2.4 A Note on Evaluation Strategies for Computational Models of Musical
Expression

It is important to emphasize that the squared error (or other derived measures) with respect to
a human performance is not necessarily a reliable indicator of the musical quality of a generated
performance. Firstly, a low error does not always imply that a performance sounds good—at
crucial places, a few small errors may make the performance sound severely awkward, even
if these error hardly affect the overall error measure. Secondly, the very notion of expressive
freedom implies that music can often be performed in a variety of ways that are very different,
but equally convincing in their own right. In that sense, evaluating the models only by their
ability to predict the performance of a single performer is not sufficient in the long run.

In spite of that, there are good reasons in favor of the mean squared error as a guide for eval-
uating performance model. Firstly, music performance is not only about individual expressive
freedom.

The works of Repp (e.g. 1992; 1994) have shown that there are substantial commonalities in
the variations of timing and dynamics across performers. We believe that assessing how well
the model predicts existing human performances numerically does tell us something about the
degree to which it has captured general performance principles.

Secondly, model assessment involving human judgments of the perceptual validity of output is
a time-consuming and costly effort, not practicable as a recurring part of an iterative model
development/evaluation process. For such a process, numerical benchmarking against perfor-
mance corpora is more appropriate. Note however that anecdotal perceptual validation of the
BMs has taken place on several occasions, in the form of concerts/competitions where the BM,
along with competing models was used to perform musical pieces live in front of an audience,
on a computer-controlled grand piano11.

3.3 Linear Basis Models

As previously stated, we start the discussion on modeling choices chronologically. The original
formulation of the BM framework, the linear basis models (LBM) was proposed by Grachten and
Widmer (2012). LBMs are models that map score features (represented by basis functions) into
the expressive parameters as a linear combination of the values of the basis functions. LBMs
are note-wise models, i.e. they make predictions of the expressive parameters for each note in
the score. LBMs were designed for modeling piano music of the common practice period, and
thus, some design choices, in particular choices for expressive parameters and basis functions
are made specifically for this purpose.

The rest of this section is structured as follows: In Section 3.3.1 we discuss the encoding of the
expressive parameters. Section 3.3.2 presents a brief overview of the groups of basis functions
used in the first version of the LBM framework. Finally Section 3.3.3 provides a mathematical
characterization of the LBMs.

11Predecessors of the current BM approach have won awards at the 2008 and 2011 editions of the Music Perfor-
mance Rendering Contest (RenCon) (Katayose et al., 2012), and was evaluated favorably in a Turing test-like
concert organized as part of the 1st International Workshop on Computer and Robotic Systems for Automatic
Music Performance (SAMP14) (Rodà et al., 2015), as well as in a musical Turing test reported in (Schubert
et al., 2017).
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Figure 3.7: Excerpt of a matched MIDI performance PS (as a piano-roll where the x axis de-
scribes performance time and the y axis describes the MIDI velocity) and its cor-
responding score S showcasing elements for computing the expressive parameters
described in performance codec v. 1.0.

3.3.1 Expressive Parameters: Performance Codec v. 1.0

As mentioned in Section 2.3.2, defining the parameters that describe an expressive performance
is a theory-laden activity, since the choice of these parameters is intrinsically dependent on the
assumptions made by the researchers about the performance as a process. In this section we dis-
cuss the first version of the performance codec, which we denote as C1.0 = (Y1.0,Y−1

1.0 ), where Y1.0

is the performance representation model and Y−1
1.0 the performance decoder, which are described

below. As previously stated, LBMs are note-wise models, and thus, they make predictions of the
expressive parameters for each note in the score. Figure 3.7 presents a visual representation of an
excerpt of a matched performance in MIDI format which highlights the elements for computing
the expressive parameters described below. The definition of the following parameters follows
the notation conventions established in Section 3.2 and illustrated in Figures 3.2 and 3.4.

Performance Representation Model

The first version of the performance representation model v. 1.0 (denoted as Y1.0) consists of
four expressive parameters, which are defined as follows:
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3.3 Linear Basis Models

1. MIDI velocity. Dynamics relates to the changes in loudness of the performance. In the
case of piano performances, the loudness is a function of the hammer-velocities of the notes
as they are performed by the pianist. Of course, the relation between loudness, which is a
subjective measure, and the hammer-velocities, represented as MIDI values between 0 and
127, may not be linear (see (Goebl and Bresin, 2003) for a discussion of the mechanical
aspects involved in this relation). For simplicity, however, we treat the MIDI velocity of
the performed notes as a proxy for dynamics, so that the values can be extracted per note
directly from the corpus. In this way, we can estimate the loudness of a performed note
as

yvel(ni) =
vel(ni)

127
, (3.3)

where vel(ni) is the performed MIDI velocity of score note ni (e.g. see vel(n2) in blue in
Figure 3.7).

2. log BPR. Musical tempo is defined as the rate at which musical beats occur. Fluctuations
in the beat rate over short time-spans (corresponding roughly to the time-spans of musical
groupings such as phrases and sub-phrases) are referred to as changes in local tempo. Note
that local tempo is a virtual quantity that can not be measured directly, but is implied by
the temporal position of note events in the performance.

Rather than the beat rate, we take its reciprocal, the beat period (BP), also referred to as
inter-beat interval (IBI), as a representation of local tempo, which can be computed as

BP(ni) =
IOIperfo(ni)

IOIscoreo(ni)

, (3.4)

where IOIperfo(ni)
and IOIscoreo(ni)

are the performed and notated inter-onset intervals (IOIs)

corresponding to the score onset o(ni) to which score note ni belongs, respectively (see
column “Notes” in the table in the right in Figure 3.4). In this formulation we choose to
assign the value of the IOI between score positions ok and ok+1 to ok, i.e. the “beginning”
of the IOI, as showed in Figure 3.4 in column IOIscore and illustrated in Figure 3.7, with
IOIscore0 and IOIscore1 (in pink) representing the score IOIs, and IOIperf0 and IOIperf1 (in red)
representing the performed IOIs corresponding to score onsets o0 and o1, respectively.

We compute the notated IOI between score onsets ok and ok+1 as

IOIscoreok
= onset(ok+1)− onset(ok). (3.5)

The performed IOI corresponding to the above defined IOIscoreok
is computed as

IOIperfok
= ôperfk+1 − ô

perf
k (3.6)

where ôperfk is the equivalent performed onset time (or simply equivalent onset) in seconds
corresponding to score onset oi. For the first version of the expressive parameters, this
equivalent performed onset time was simply defined as the average onset of all notes
belonging to score onset ok, i.e.,

ôperfk =
1

|ok|
∑

nl∈ok

onsetperf (nl). (3.7)

This formulation of the equivalent performed onset is illustrated for ôperf0 , ôperf1 and ôperf2

in indigo in Figure 3.7. Since we define the BP in a note-wise fashion, all notes in score
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3 Basis Function Models I: Linear Models

onset ok have the same BP (e.g. BP(n0) = BP(n1) = BP(n2) in the example in Figure
3.7).

We are interested in the relative local tempo values within a piece, rather than absolute
tempo values. For this reason, we normalize the computed BP values by dividing them by
the average BP over the performance of a piece (BPave). We refer to this normalized BP
as the beat period ratio (BPR). This results in a representation of local tempo where a
BPR value of 1 corresponds to the average tempo, a BPR value of 1

2 to double the average
tempo, and a BPR value of 2 to half the average tempo. To make equal increments in
BPR values correspond to the same proportional decrease in tempo, irrespective of the
average tempo, we take the 2-logarithm of the BPR values, such that an increment of 1
always corresponds to a decrease in tempo by a factor of 2, i.e.,

ylog bpr(ni) = log2

BP(ni)

BPave
. (3.8)

It is important to mention that there are several factors that might complicate the com-
putation of meaningful local tempo values from the note events in the performance as
described above. First, the computation of BP described above can lead to erratic jumps
of subsequent BP values, especially when the score IOIs are relatively small. Second, there
is evidence that perceived beat times do not always coincide with the onset time of a note
event at that beat: listeners prefer a beat grid that is slightly smoother than implied by
the literal note onsets (Dixon et al., 2006). The search for a more cognitively plausible
representation of musical tempo is one of the main motivations behind the definition of
the expressive parameters described in Section 6.3.1 and Appendix B. For a statistical
perspective on the problem of finding equivalent onsets see (Fu et al., 2015).

3. Timing. The above definition of local tempo implies that note onset times in a perfor-
mance can be shifted with respect to the implied beat grid. We refer to this temporal
shifting of events as timing (following (Honing, 2001)). Timing encompasses different
expressive phenomena, such as chord spread (Fu et al., 2015), and melody lead (Goebl,
2001).

The timing of a note ni can be computed by first estimating the equivalent onset of that
event, calculated as average onset time of all notes in that score onset, denoted as ôperf (ni),
and taking the difference between that onset and the actual onset in the performance,
denoted as onsetperf (ni), such that the anticipation of an event leads to a positive timing
value, and the delay of an event leads to a negative timing value, i.e.,

ytim(ni) = ∆t(ni)

= ôperf (ni)− onsetperf (ni) (3.9)

Figure 3.7 illustrates the above idea of temporal shifting for notes n0, n1 and n2 (∆t(n0),
∆t(n1) and ∆t(n2) in violet). Note that the above definition of BPR implies that the
timing for score onsets consisting of a single note (as is the case of o1 and o2 in our

running example) is exactly zero, as illustrated in Figure 3.7 for n3 and n4 (ôperf1 and ôperf2

in indigo).

4. log-Articulation. Articulation refers to the lengthening or shortening of note durations
in a performance relative to the notated duration and the current local tempo, producing
playing styles such as legato and staccato. We compute the articulation of a note by
dividing the actual duration of a performed note durationperf (ni) (illustrated in Figure 3.7
in burgundy for n0) by its reference duration duration(ni). As with the computation of
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Figure 3.8: Performance representation T under representation model Y1.0 for matched perfor-
mance PS (with score S) introduced in the running example in Section 3.2 (see
Figure 3.2).

log-BPR values, we take the base 2 logarithm of this ratio, such that a doubling of the
duration always corresponds to an articulation increase of 1. This parameter is computed
as

ylog art(ni) = log2

durationperf (ni)

duration(ni)BP(ni)
. (3.10)

The performance representation of PS under the representation model Y1.0 = {yvel, ylog bpr, ytim, ylog art}
defined by the above is an Nx × 4 matrix given as

Y1.0(S | PS) = T =




yvel(n0) ylog bpr(n0) ytim(n0) ylog art(n0)
...

...
...

...
yvel(nNx−1) ylog bpr(nNx−1) ytim(nNx−1) ylog art(nNx−1)


 . (3.11)

Figure 3.8 shows the full performance representation T under representation model Y1.0 defined
above for the running example introduced in Section 3.2.

Performance Decoder

It is straightforward to show that representation model Y1.0 discussed above is lossless up to the
average beat period BPave .

Given a performance representation T, its score S, and the average beat period of the per-
formance BPave , we can reconstruct a performance PS (in MIDI format) using performance
decoder v. 1.0 (denoted as Y−1

1.0 ). This performance decoder estimates the measurable quantities
describing the performance information of each note in the MIDI file discussed in Section 3.2.1,
namely, MIDI pitch of each note, performed MIDI velocity, performed onset time in seconds and
duration12.

A detailed description of performance decoder Y−1
1.0 , including the steps to compute the perfor-

mance information in MIDI format given a performance representation, its score and the average

12As discussed in Section 3.2.1, we refer to the sounding duration of a note that includes pedal information, and
not to time interval between NOTE ON and NOTE OFF messages.
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Figure 3.9: Left: Schematic view of basis functions representing score information for score S.
Right: Φ, the score representation of S under score representation model F =
{ϕp , ϕf , ϕcresc , ϕaccent}.

beat period of the performance is shown in Algorithm 3.1. A description of a method to write
this performance information into an actual MIDI file lies beyond the scope of this discussion
and is, thus, not included here.

3.3.2 Basis Functions

In the following, we describe various groups of basis functions, where each group represents a
different aspect of the musical score. The information conveyed by the basis functions is either
explicitly available in the score (such as dynamics markings, and pitch), or can be inferred from
it in a straight-forward manner (such as metrical position and IOIs). This list should by no
means be taken as an exhaustive (or accurate) set of features for modeling musical expression.
Figure 3.9 shows a schematic view of some basis functions representing score information.

As previously mentioned, instead of simply describing the latest state of the BM framework, we
describe its development in chronological order. Therefore, the following list of basis functions
comprises features defined by Grachten and Widmer (2012), and thus, does not represent the
complete list of basis functions. A formal description of all basis functions described in this work
is available in Appendix A.1.

1. Polynomial pitch model. Grachten and Widmer (2012) proposed a third order polyno-
mial model to describe the dependency of expressive parameters on pitch. This model can
be integrated in the BM approach by defining each term in the polynomial as a separate
basis function, i.e. “pitch“, “pitch2”, and “pitch3”. This polynomial model originates
from a statistical analysis of the dependence of the MIDI velocity on note pitch in the
Magaloff/Chopin dataset. In Figure 3.10, a polynomial fitting of the notes for the Maga-
loff/Chopin dataset is shown.

2. Dynamics markings. Bases that encode dynamics markings, such as shown in Figure 3.9
for p, f and crescendo. These basis functions include performance directives that describe
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3.3 Linear Basis Models

Algorithm 3.1: Performance Decoder v. 1.0
Input:

• S: Score

– X : Set of notes in score S with cardinality Nx

– O: Set of onsets in score S with cardinality No (we assume that the onsets are ordered by score
position)

• T: Performance representation

• BPave : Average beat period

Output: Information to reconstruct MIDI file:

• Pitch: MIDI pitch of each note in the score

• Velocity: Performed MIDI velocity of each note in the score

• Onset: Performed onset time in seconds of each note in the score

• Duration: Performed duration in seconds of each note in the score

1 for 0 ≤ i ≤ No − 1 do
2 Compute the beat period for score onset oi as

BP(oi) =
BPave

|oi|
∑
k∈oi

2tk;log bpr , (3.12)

where tk;log bpr is the component in the k-th row of T corresponding to the log BPR defined in Equation
(3.8). We slightly abuse notation and denote k ∈ oi as the indices corresponding to the notes belonging to
score onset oi.

3 if i = 0 then
4 Initialize the first equivalent onset

ôperf0 = 0 (3.13)

5 else
6 Compute the equivalent onset

ôperfi = ôperfi−1 + BP(oi)× IOIscorei , (3.14)

where IOIscorei is the score onset corresponding to onset oi, as defined in Equation (3.5) (see Section
3.3.1).

7 Initialize vectors for storing information of the MIDI performance

Pitch = 0 ∈ ZNx Velocity = 0 ∈ ZNx Onset = 0 ∈ RNx Duration = 0 ∈ RNx

for 0 ≤ i ≤ Nx − 1 do
8 Get MIDI pitch of score note ni

Pitchi = pitch(ni) (3.15)

9 Compute MIDI velocity of score note ni

Velocityi = 127× ti;vel, (3.16)

where ti;vel is the component in the i-th row of T corresponding to the expressive parameter encoding
MIDI velocity defined in Equation (3.3).

10 Compute the onset time for score note ni

Onseti = ôperf (ni)− ti;tim (3.17)

where ti;tim is the component in the i-th row of T corresponding to the timing parameter defined in
Equation (3.9), and ôperf (ni) is the equivalent performed onset corresponding to the score onset to which
ni belongs.

11 Compute duration for score note ni

Durationi = 2ti;log art × duration(ni)× BP(o(ni)), (3.18)

where ti;log art is the component in the i-th row of T corresponding to the log articulation ratio defined in
Equation (3.10) and BP(o(ni)) is the beat period corresponding to the score onset to which ni belongs.

37



3 Basis Function Models I: Linear Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

Pitch (normalized)

M
id
i
V
e
lo
c
it
y
(n

o
rm

a
li
z
e
d
)

 

 

Fi rst order polynomial

Second orde r polynomial

Thi rd orde r polynomial

Figure 3.10: Motivation for the polynomial pitch model: polynomial fitting of the Maga-
loff/Chopin dataset.

loudness levels. We distinguish between three types of dynamics markings: indicator (e.g.
sf ), represented by impulse functions, incremental (e.g. crescendo, illustrated in Figure
3.9), represented by a ramp function and constant (e.g. p and f , illustrated in Figure 3.9),
described by step functions.

3. Vertical neighbors. Two basis functions that evaluate the number of simultaneous notes
with lower, and higher pitches, respectively, and a third basis function that evaluates the
total number of simultaneous notes at that position.

4. IOI. For all notes in score onset oi, a total of six basis functions represent the score
IOIs between the three previous onsets and the next three onsets, i.e., the onsets between
(i− 2, i− 3), (i− 1, i− 2), (i, i− 1), (i, i+ 1), (i+ 1, i+ 2), and (i+ 2, i+ 3). These basis
functions provide some context of the (local) rhythmical structure of the music.

5. Ritardando. Encoding of markings that indicate gradual changes in the tempo of the
music; includes functions for rallentando, ritardando, accelerando.

6. Slur. A representation of legato articulations indicating that musical notes are performed
smoothly and connected, i.e. without silence between each note. The beginning and ending
of a slur are represented by decreasing and increasing ramp functions, respectively. The
first (denoted slur decr) ranges from one to zero, while the second (denoted slur incr)
ranges from zero to one over the course of the slur.

7. Duration. A basis function that encodes the notated duration of a note.

8. Rest. Indicates whether notes precede a rest.

9. Repeat. Takes into account repeat and ending barlines, i.e. explicit markings that indi-
cate the structure of a piece by indicating the end of a particular section (which can be
repeated), or the ending of a piece. The barlines are represented by an anticipating ramp
function leading up to the repeat/ending barline over the course of a measure.
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3.3 Linear Basis Models

10. Accent. Accents of individual notes or chords, such as the marcato in the example in
Figure 3.9.

11. Staccato. Encodes staccato markings on a note, an articulation indicating that a note
should be temporally isolated from its successor, by shortening its duration.

12. Grace notes. Encoding of musical ornaments that are melodically and/or harmonically
nonessential, but have an embellishment purpose.

13. Fermata. A basis function that encodes markings that indicate that a note should be
prolonged beyond its normal duration.

The right side Figure 3.9 shows the score representation Φ of our running example for a perfor-
mance representation model consisting of basis functions describing pitch, dynamics markings
p, f and crescendo; and a basis function encoding an accent (a marcato).

3.3.3 Model Description

We can model the value of an expressive parameter for score note ni as a linear combination of
the input basis functions, i.e.

flbm(ni ; w) = wTϕ(ni), (3.19)

where w ∈ RM is a vector of weights. The complete predictive function for all expressive
parameters defined in Section 3.3.1 can be written as

Flbm(ni) =




f
(vel)
lbm (ϕ(ni) ; wvel)

f
(log bpr)
lbm (ϕ(ni) ; wlog bpr)

f
(tim)
lbm (ϕ(ni) ; wtim)

f
(log art)
lbm (ϕ(ni) ; wlog art)




=




wT
velϕ(xi)

wT
log bprϕ(ni)

wT
timϕ(ni)

wT
log artϕ(ni)




, (3.20)

where the set of parameters is Θ = {wvel,wlog bpr,wtim,wlog art}.
It is easy to see that the above definition of the LBM models expressive parameters indepen-
dently: the prediction of the parameter encoding MIDI velocity for score note ni does not depend
on the prediction of the log BPR for that note. Furthermore, the above formulation of the LBM
implicitly assumes that the prediction of the values of an expressive parameter for different score
notes are also independent of each other13: the prediction of MIDI velocity for score note ni only
depends on the score information for that note (i.e. ϕ(ni)). While these independence assump-
tions simplify the mathematical description of the model, they are not necessarily musically
plausible.

In the following discussion, we will refer to a model as sequential if its predictions consider the
temporal context of the music (i.e. if it considers the sequential nature of music), and non-
sequential its predictions are independent of each other. In this case, the LBM described above
is an example of a non-sequential model.

13It can be shown that the deterministic linear model described in this section is equivalent to a probabilistic
model, which assumes that the conditional distribution of the value of an expressive parameter for score note
ni, given the score information represented by ϕ(ni), is a Gaussian distribution centered around flbm(ni ; w),
and that the values of the expressive parameters for each note are independent and identically distributed
(i.i.d). See Appendix E.1 for a detailed derivation of this result.
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3 Basis Function Models I: Linear Models

Training

Since the LBM models expressive parameters independently, we optimize each set of weights
separately. To unclutter notation, in the following we will simply use w to refer to the param-
eters of f , the predictive function modeling an expressive parameter (i.e. the component of the
full predictive function Flbm defined in Equation (3.20) that models the expressive parameter
we are optimizing the model for), since the following procedure is identical for each w ∈ θ.
Given a training set T the parameters of the predictive function corresponding to an expressive
parameter (MIDI velocity, log BPR, timing or log articulation) can be learned by minimizing
the squared error, given by

Lse(w) = ‖tT −ΦT w‖2 (3.21)

where tT is a vector concatenating the values of the expressive parameter for all pieces in the test
set (i.e. the columns of each performance representation Ti ∈ T corresponding to the expressive
parameter that we are optimizing the parameters of the predictive function for); and ΦT is a
matrix concatenating the score features of each score in the training set. These quantities are
given by

tT =




t1
...

tNp


 ∈ RNT ΦT =




Φ1
...

ΦNp


 ∈ RNT×M (3.22)

where NT is the total number of notes in all scores in T . In the machine learning literature, this
problem is known as least squares (LS). The least squares solution can be computed analytically
as

wls = argmin
w

Lse(w) = Φ†T tT , (3.23)

where Φ†T =
(
ΦT

T ΦT
)−1

ΦT
T is the Moore-Penrose pseudo-inverse of ΦT . A detailed derivation

of this result is provided in Appendix E.1. The computation of Φ†T might result in numerical
instabilities for ill conditioned problems14, which means that the estimation of the parameters
wls might be extremely sensitive to small changes in tT . In other words, the parameters of the
predictive function might be very different for two very similar (but not identical) training sets.
Furthermore, for large training datasets, the exact solution to an LS problem can be compu-
tationally expensive (Bishop, 2006). More efficient alternatives for computing the parameters
include the LSQR and LSMR algorithms for large sparse systems (Paige and Saunders, 1982;
Fong and Saunders, 2011).

3.4 Bayesian Linear Basis Models

Although the formulation of the LBM using least squares described in Section 3.3.3 is determin-
istic, it can be shown to be equivalent to a probabilistic approach assuming that the expressive
parameters are normally distributed15, and that we are only interested in the most likely solu-
tion (i.e. the expected value). In this section we describe a fully probabilistic extension of the

14From a more technical perspective, the problem of computing the pseudo-inverse of a matrix is said to be ill
conditioned, if the ratio of the largest to the smallest singular value of the matrix is much larger than 1. This
can be an issue for large sparse matrices, like the ones generated by the score representation models described
in this work.

15See Appendix E.1.

40



3.4 Bayesian Linear Basis Models

LBM which allows for incorporating prior knowledge in the form of prior distributions over the
model parameters using a Bayesian approach, which we will refer to as Bayesian LBM (BLBM).
Such a probabilistic approach is an important step in order to account for the fact that there
may be multiple distinct ways to perform music. This formulation of the BM approach was first
introduced by Grachten et al. (2014).

3.4.1 Basis Functions

As previously mentioned, this thesis documents the historical development of the BM framework.
In addition to the basis functions described in Section 3.3.2, for this version of the BM framework,
we define a new group of basis functions that incorporate contextual information about dynamics
markings:

1. Context Dynamics Markings. This set of basis functions intends to differentiate be-
tween gradual loudness annotations in different loudness contexts. We do this by combining
each gradual annotation with its preceding and succeeding loudness level, for example p
→ crescendo → mf , or f → diminuendo → mf .

Note that these context dynamics markings can define a very large number of basis functions,
which might lead to very sparse score representations. For a formal description of these basis
functions see Appendix A.1.

3.4.2 Model

Using the chain rule of probability, the joint probability distribution of an expressive parameter
yj(ni) = tij , the value of the j-th expressive parameter (MIDI velocity, log BPR, timing or log
articulation) for score note ni, and the parameters θj of the predictive function for the j-th
expressive parameter can be written as

p(tij ,θj) = p(tij | θj)p(θj), (3.24)

where p(tij | θj) is the conditional probability distribution of expressive parameter tij given
parameters θj and p(θj) is the conjugate prior distribution of parameters θj . Using this prob-
abilistic perspective, we can rethink the approach proposed in Equation (3.1) as modeling the
conditional distribution of tij given θj , which, assuming a Gaussian error term, can be written
as

p(tij | θj) = N (tij | f (j)(ϕ(ni) ; wj), β
−1
j ), (3.25)

where βj is the precision (i.e. the inverse variance) of the distribution16 and wj are the weights
of the j-th predictive function. Using Equation (3.19), we can rewrite the above equation as

p(tij | wj) = N (tij | wT
j ϕ(ni), β

−1
j ). (3.26)

Since a similar distribution can be defined for each of the expressive parameters, in the rest of
this discussion, to unclutter notation we will drop the subscript j (e.g. we will write tij as ti).

16 The discussion on Bayesian linear models provided in this section follows the notation conventions from Section
3.3 in (Bishop, 2006). Following these conventions, we write the conditional distribution in terms of precision
since in practice it is more numerically stable to estimate the precision than the variance.
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3 Basis Function Models I: Linear Models

Assuming that the values of the expressive parameter for the whole score y(S) = t are i.i.d17,
their conditional probability distribution is given as

p(t | w) =

Nx−1∏

i=0

N (ti | wTϕ(ni), β
−1). (3.27)

Using a Bayesian interpretation, we assume that the weights of the predictive function have
a prior distribution p(w) = N (w | m0,S0), where m0 and S0 are the mean and covariance
respectively. Using this prior distribution and the conditional distribution of t given the weights
w from Equation (3.27), it follows from Bayes’ theorem that the posterior probability of the
weights w given the expressive parameters t is also a Gaussian distribution, i.e.

p(w | t) = N (w |mN ,SN ), (3.28)

where the mean and covariance are given respectively by

mN = SN (S−1
0 m0 + βΦTt) and S−1

N = S−1
0 + βΦTΦ, (3.29)

where F(S) = Φ is the score representation using basis functions.

A common simplification is to assume that the posterior distribution is a zero mean and isotropic
Gaussian, i.e.,

m0 = 0 and S0 = α−1I, (3.30)

where 0 is a vector of zeros, α is the precision of the posterior distribution, and I is the identity
matrix.

As mentioned previously, an advantage of a probabilistic formulation of the BM is that it allows
for generating multiple “valid” performances of a piece, i.e. given a trained model, there might be
several different performances that can be rendered using the model. The most straightforward
way to do so is to define the predictive function of the BLBM as the expected value of the
expressive parameter ti under p(ti | w), i.e.

f(blbm)(ni) = E {ti}
= wTϕ(ni), (3.31)

which has the same form as the LBM and thus, the complete predictive function has the same
form as Equation (3.20). Alternatively, we could generate performances by sampling from the
predictive conditional distribution. Some techniques for generating performances in this way
are reviewed in Appendix G.

Training Similar to the case of the LBM, the BLBM models expressive parameters indepen-
dently, and thus, training the model involves training each set of parameters separately. Given
a training set T , the model parameters can be learned using the maximum a posteriori (MAP)
principle, which minimizes the negative of the posterior log-likelihood of the weights of the pre-
dictive function w given the expressive parameters in the training set tT , defined in Equation
(3.22), given by

Lmap(w) = − log p(w | tT ). (3.32)

17As discussed in Section 3.3.3, this independence assumption is musically unlikely.
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3.5 Evaluation

In the simplified case for the zero mean isotropic covariance, it is possible to compute a closed
form analytical solution, given by

wmap = argmin
w

Lmap(w) =

(
α

β
I + ΦT

T ΦT

)−1

ΦT
T tT . (3.33)

For a full derivation of this result, see Appendix E.3. The hyper-parameters α and β can be
computed using the evidence approximation algorithm (Bishop, 2006).

From the above equation is easy to see that, if we assume that the prior distribution of parameters
w of the predictive function to be a zero mean isotropic Gaussian distribution, the Bayesian
linear regression is equivalent to a regularized LS regression18, with a regularization coefficient
of α

β . Therefore, the Bayesian linear regression is less prone to overfitting. Furthermore, this
similarity with regularized LS provides us with an efficient way to estimate the parameters wmap:
first estimate the precisions α and β, and then compute the regularized LS solution using an
iterative method for large sparse systems, such as LSQR (Paige and Saunders, 1982).

In the case of ‖S−1
0 ‖ → 0 (or α→ 0), the weights wmap converge to the LS weights wls. In such

a scenario, the prior probability distribution is said to be non informative (Bishop, 2006).

Algorithm E.1 in Appendix E.4 presents an iterative procedure for computing the MAP solution
in the general case for arbitrary mean and covariance using the expectation–maximization (EM)
algorithm (Dempster et al., 1977).

3.5 Evaluation

In this section, we present three quantitative experiments for evaluating the LBM and BLBM
models discussed above.

The first and second experiments compare how well the two versions of the linear BMs discussed
in this chapter (the LBM and the BLBM) account for aspects of expressive dynamics (encoded
by the MIDI velocity, as defined in the performance representation model described in Section
3.3.1). In the first experiment, we assess how accurately expressive dynamics can be represented
by the BMs (in a goodness of fit scenario). The second experiment compares the flexibility of the
LBM and BLBM to obtain good predictions for new pieces (i.e. pieces not included in the training
set) by means of a leave-one-out cross validation. The third experiment explores the predictive
accuracy of the BLBM for all expressive parameters defined in performance codec v. 1.0 defined
in Section 3.3.1. These experiments were an important means of determining which variant
of the predictive model (LS linear model vs. Bayesian linear model) produces more accurate
reconstructions of human performances. They were also important for identifying which groups
of basis functions contribute to more accurate performance predictions.

For the experiments reported in this chapter, we use the Magaloff/Chopin dataset described in
Section 2.4. As previously stated, this dataset consists of performances of the complete piano
solo works by F. Chopin performed by Nikita Magaloff.

We use two metrics to quantitatively evaluate the predictions of the model: the sample Pear-
son correlation coefficient and R2, the coefficient of determination. The correlation coefficient
denotes how strongly the observed expressive parameters and the values of the expressive pa-
rameters predicted by the model correlate. For a piece with observed parameters y(S) = t and

18See Appendix E.2 for a detailed derivation of the solution of regularized LS.
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model predictions f(Φ ; w) = y, the Pearson correlation coefficient is computed as

r =

∑N
i=1(ti − t̄)(yi − ȳ)√∑N

i (ti − t̄)2

√∑N
i (yi − ȳ)2

, (3.34)

where t̄ and ȳ are the sample mean (i.e. the average values) of the observed parameters t and
the predicted parameters y, respectively.

The coefficient of determination R2 expresses the proportion of variance explained by the model.
This quantity is defined as

R2 = 1− SSerr
SSt

, (3.35)

where SSerr is the sum of squared errors between the predictions and the expressive parameters,
and SSt is the total sum of squares of the expressive parameter. The R2 measure has an
upper bound of 1, and has no lower bound (predictions can be arbitrarily far away from the
target values). Positive R2 values indicate that the models perform better than the baseline
R2 = 0, which can be achieved by predicting the average value of the observed expressive
parameter.

The rest of this section is structured as follows: Section 3.5.1 describes the first experiment
evaluating the goodness of fit of the model for expressive dynamics. Section 3.5.2 describes
the leave-one-out cross validation experiment evaluating the predictive accuracy for expressive
dynamics. Section 3.5.3 describes the leave-one-out cross validation experiment evaluating the
predictive accuracy of all expressive parameters.

In all of the experiments described above, we use the zero mean isotropic Gaussian version of the
BLBM (see Equation (3.30)). The predictions of the BLBM are generated taking the expected
value of the conditional distribution, using Equation (3.31).

3.5.1 Goodness of fit: Expressive Dynamics

The main objective of the first experiment was to compare how accurately an expressive param-
eter, in particular, expressive dynamics encoded by the MIDI velocity (as described in Section
3.3.1), could be represented and predicted using both versions of the linear BMs discussed in
this chapter.

For this experiment, we used a selection of four pieces from the Magaloff/Chopin corpus. As
mentioned in Section 2.4, the scores in this dataset were compiled using optical music recognition.
Since this process is not perfect, manual corrections were required to ensure that the score
information was properly represented. The scores of the four pieces selected for this experiment
were manually corrected, in particular the dynamics markings. This corrected subset consisted
of Nocturnes Op. 15 No. 1 and Op. 27 No. 2, Prelude Op. 28 No. 17, and Ballade Op. 52.

In this experiment we were also interested in investigating which groups of basis functions
contribute to more accurate model predictions. We tested the following feature sets: PIT, which
consisted of the three basis functions in the polynomial pitch model; DYN, which consisted of
the basis functions described in Section 3.3.2, without the polynomial pitch model; and DYNc,
which consisted of the same basis functions as DYN, but substituted the basis functions for
dynamics markings described in Section 3.3.2 by the context dynamics basis functions described
in Section 3.4.1. DYN + PIT refers to the combined features included in DYN and PIT, and
DYNc + PIT refers to the combined features included in DYNc and PIT.
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LBM BLBM
Feature Set r R2 r R2

DYN 0.516 0.275 0.516 0.276
DYNc 0.576 0.339 0.576 0.339
PIT 0.416 0.174 0.416 0.174
DYN+PIT 0.622 0.393 0.621 0.393
DYNc + PIT 0.675 0.462 0.675 0.461

Table 3.1: Goodness-of-fit of the model over performances of four Chopin piano pieces. See
Section 3.5 for abbreviations.

This experiment was conducted as follows: Each model (LBM and BLBM) was trained using
each of the feature sets described above on all four (manually corrected) pieces, for a total of 10
evaluations.

After the models were trained, they were used to make predictions of the performed dynamics
for the same four pieces. We evaluated the predictions for each piece using r and R2 and average
across pieces for each features set/model combination. Table 3.1 shows these averaged r and R2

values.

Table 3.1 shows the average correlation coefficient r and coefficient of determination R2 over the
four pieces for the LS approximation, as well as for the Bayesian approach.

3.5.2 Predictive Accuracy: Expressive Dynamics

For the second experiment we were interested in evaluating the predictive accuracy of the LBM
and BLBM models for expressive dynamics. We tested how accurately the models predicted dy-
namics for new pieces that were not included in the training set. Furthermore, in this experiment
we also aimed to identify the subset of basis functions that led to better predictions.

We tested the predictive accuracy by means of 10 leave-one-out cross validation experiments,
using 151 pieces from the Magaloff/Chopin dataset.

Each model was trained using one of the feature sets described in the previous section (DYN,
PIT, etc.). This training used all pieces but one, and predictions were subsequently made for
that excluded piece. The same procedure was performed for all pieces in the 151-piece dataset,
such that each piece in the dataset was predicted once.

Table 3.2 shows the accuracy of the model in this scenario. As in the case of goodness of fit, we
used r and R2 to evaluate the predictive accuracy of the models. These values were averaged
across pieces for each feature set/model combination.

3.5.3 Predictive Accuracy: All Expressive Parameters

The third experiment used the BLBM and DYN+PIT feature set to predict all of the expressive
parameters defined in performance codec v. 1.0 (see Section 3.3.1), including MIDI velocity, log
BPR, timing, and log articulation. The aim was to test whether this model/feature set combi-
nation, which proved most successful for predicting expressive dynamics, would also accurately
predict other expressive parameters.
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LBM BLBM
Feature Set r R2 r R2

DYN 0.181 0.073 0.181 0.073
DYNc 0.185 0.072 0.185 0.072
PIT 0.381 0.166 0.381 0.166
DYN+PIT 0.431 0.207 0.431 0.207
DYNc + PIT 0.420 0.198 0.419 0.198

Table 3.2: Predictive accuracy in a leave-one-out scenario over performances of 151 Chopin piano
pieces. See Section 3.5 for abbreviations.

Expressive Parameter r R2

MIDI velocity 0.431 0.207
log BPR 0.200 0.035
Timing 0.178 -0.107
log Articulation 0.313 0.096

Table 3.3: Predictive accuracy of the Bayesian linear regression using feature set DYN + PIT
for the expressive parameters defined in performance representation model v. 1.0,
described in Section 3.3.1.

This experiment tested predictive accuracy using 4 leave-one-out cross validations, each corre-
sponding to an expressive parameter, and used the same 151 pieces from the Magaloff/Chopin
dataset as the second experiment.

Table 3.3 shows r and R2, averaged across pieces for each expressive parameter.

As an illustration of predictive accuracy, Figure 3.11 shows a comparison of the predictions and
the expressive parameters for Chopin’s Prelude Op. 28 No. 11 in B Major.

3.6 Discussion

The results for both goodness of fit and predictive accuracy of expressive dynamics show that
the Bayesian approach (BLBM) performs on par with the standard LS regression (LBM). For
the goodness of fit experiment (Table 3.1), an independent-samples two-tailed t-test was con-
ducted to compare differences in R2 between LBM and BLBM models. There was no signif-
icant difference at the p = 0.01 level between LBMs (mean = 1.64, std = 0.22) and BLBMs
(mean = 1.64, std = 0.22); t(38) = 0.00, p = 1.0.

A similar test was performed for the results of the predictive accuracy experiment (Table 3.2).
For these results there was no significant difference at the p = 0.01 level between LBMs
(mean = 0.72, std = 0.74) and BLBMs (mean = 0.72, std = 0.22); t(1508) = 0.00, p = 1.0.
During the realization of the experiments, we noted that the hyper-parameter α (the precision
of the prior distribution of the weights of the predictive function p(w)) tends to be very small,
which suggests that the prior probability is non-informative. Therefore the assumption that
the priors have a centered unimodal distribution, as discussed in Section 3.4.2, could be an
oversimplification.

We can also see that the use of more sophisticated basis functions for encoding dynamics
markings (the DYNc feature set described above) does not increase the predictive accuracy.
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3 Basis Function Models I: Linear Models

For the goodness of fit experiment, an independent-samples two-tailed t-test was conducted to
compare models trained on DYN and DYNc. This test showed a significant difference at the
p = 0.01 level between DYN (mean = 1.34, std = 0.22) and DYNc (mean = 1.60, std = 0.23);
t(30) = −3.36, p = 0.002. Nevertheless, the analogous test conducted for the predictive accu-
racy experiment did not show a significant difference between DYN (mean = 0.56, std = 0.46)
and DYNc (mean = 0.54, std = 0.48); t(1206) = 0.74, p = 0.460. A possible explanation for
this non-significant finding could be a lack of sufficient training data to represent all possible
basis functions. Alternatively, the significant effect shown for goodness of fit might be due to
overfitting: the over-modeling provided by the basis functions DYNc, presents an increase of ca.
12% in the correlation coefficient, and almost 22% more explained variance when compared to
the more general basis DYN.

The results in Table 3.3 show that the BLBM may work better for predicting expressive dynamics
than other expressive parameters. These results suggest that a linear approach that does not
consider the performance context (i.e., disregards the sequential nature of music) might not be
appropriate for modeling expressive tempo and timing. This contrast in predictive accuracy is
illustrated in Figure 3.11: for example, the predictions for log BPR and timing do not capture
the variance present in the human performance. Another factor to consider is that pitch-related
features seem to be particularly relevant for predicting dynamics (as suggested by the results of
PIT in Tables 3.1 and 3.2), implying that different expressive parameters may require different
types of basis functions.

3.7 Conclusions

This chapter is the first of a two-part comprehensive and formal description of the BM frame-
work for expressive performance. The BM framework was presented as a formalization of the
components of the general computational model of expressive performance described in Section
2.3. We presented a formalization of the components of a BM: basis functions representing
score information, expressive parameters representing performance information, and predictive
functions relating score and performance information. We then introduced two versions of the
linear BM: the original deterministic approach, introduced by Grachten and Widmer (2012),
and a probabilistic approach that uses a Bayesian framework introduced by Grachten et al.
(2014).

We found the Bayesian model to perform on par with the LS regression. As discussed above,
the lack of improvement shown by the Bayesian model suggests that the Gaussian assumptions
on the prior distribution of the parameters might be an oversimplification. The use of the set of
basis functions that encodes dynamics markings in a context-aware fashion, although musically
justifiable, failed to improve predictive accuracy. An explanation for this is that the context-
aware representation of the annotations creates a higher-dimensional, and thus less densely
populated data space, in which it is harder to generalize to unseen data.

The predictions of the linear models work best for expressive dynamics, suggesting that other
expressive parameters might require more sophisticated regression models and different types of
basis functions.

The linear BM also has some important shortcomings. Firstly, the model can only learn linear
relationships between the basis functions and the expressive parameters. A second shortcoming
in linear models is that basis functions are assumed to influence expressive parameters indepen-
dently of all other basis functions. In reality, it is conceivable that, for example, the effect of
one particular basis function on expressive timing is different depending on which other basis
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3.7 Conclusions

functions are active at the same time. Third, linear models do not consider the sequential nature
of music.

The following chapters will address each of these shortcomings. Chapter 4 begins with an
exploration of whether the same basis function framework benefits from a more powerful, non-
linear model. The second part of the chapter focuses on sequential modeling. Chapter 5 expands
the model to the case of ensemble performance, and Chapter 6 tests whether cognitively plausible
features improve predictions of expressive dynamics and tempo.
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This chapter contains material published in

• Cancino Chacón, C. E. and Grachten, M. (2015). An Evaluation of Score Descriptors
Combined with Non-linear Models of Expressive Dynamics in Music. In Proceedings of the
18th International Conference on Discovery Science (DS 2015), pages 48–62, Banff, AB,
Canada

• Cancino-Chacón, C. E., Gadermaier, T., Widmer, G., and Grachten, M. (2017d). An
Evaluation of Linear and Non-linear Models of Expressive Dynamics in Classical Piano
and Symphonic Music. Machine Learning, 106(6):887–909

• Grachten, M. and Cancino-Chacón, C. E. (2017). Temporal dependencies in the expressive
timing of classical piano performances. In Lessafre, M., Maes, P.-J., and Leman, M., editors,
The Routledge Companion to Embodied Music Interaction, pages 360–369. Routledge

4.1 Introduction

In Chapter 3 we introduced the basis function modeling (BM) framework for musical expression.
In its simplest form, a linear BM just expresses the value of an expressive parameter at a
particular position as a linear combination of the basis functions that are non-zero at that
position. In this setup, each basis function has a positive or negative weight parameter that
determines how strongly (and in what direction) that basis function influences the expressive
parameter.

As discussed in Chapter 3, the advantages of such linear models are firstly that it is easy to find
optimal weight parameters given a set of performances (using the standard least squares (LS)
regression or the Bayesian linear regression described in Sections 3.3.3 and 3.4.2, respectively),
and secondly that it is straightforward to tell what the model has learned from the data by
looking at the weight parameters. For example, a positive weight for the fermata basis function
(which indicates the presence of a fermata in the score) shows that the model has learned
that a fermata sign causes an increase in duration (that is, a lengthening of the note at the
fermata).

Although the linear BMs produce surprisingly good results given their simplicity, as discussed
in Section 3.7, they also have some important shortcomings. Firstly, they can only learn linear
relationships between the basis function and the expressive parameter. For instance, in the
case of modeling the intensity of notes in a performance, it has been observed that the higher
the note, the louder it is played (Friberg et al., 2006; Grachten and Widmer, 2012). However,
this relationship is not strictly linear, but roughly follows an S-shaped curve. In that case a
basis function that returns the pitch of a note will help to predict the intensity of the note,
but it will tend to overestimate the effect of the higher–louder/lower–softer effect for the lowest
and highest pitches. A second shortcoming in linear models is that they assume that each of
the basis functions influences expressive parameters independently of all other basis functions.
In reality, it is conceivable that the effect of one particular basis function on an expressive
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4.2 Non-Linear Basis Models

parameter is different depending on which other basis functions are active at the same time. A
third shortcoming is that linear models are non-sequential1: by assuming that the performance
of each note is independent from the other notes (assumed both by the LS formulation of the
original LBM discussed in Section 3.3 and the Bayesian LBM discussed in Section 3.4), linear
models do not consider the sequential nature of music.

In the first part of this chapter we explore whether the same basis function framework can benefit
from more powerful, non-linear models: feed forward neural networks (FFNNs). In the second
part of the chapter we extend this non-linear model to allow modeling the music sequentially
by using recurrent neural networks (RNNs). In the rest of this thesis, we will refer to these
models as the non-linear basis function model (NBM) and the recurrent non-linear basis function
model (RNBM), respectively. Although there are many ways to model non-linear relationships,
artificial neural networks (ANNs) offer a flexible and conceptually simple approach, that has
proven its merits over the past decades (Bishop, 1995; Goodfellow et al., 2016).

The rest of this chapter is structured as follows: Section 4.2 describes NBMs, non-linear extension
of the LBMs using FFNNs, including a quantitative evaluation of the predictive accuracy of these
models for expressive dynamics. Section 4.3 describes RNBMs, sequential extension of the NBMs
model using RNNs, including an evaluation of their predictive accuracy of for expressive tempo.
Finally, Section 4.4 concludes the chapter.

4.2 Non-Linear Basis Models

The first model discussed in this chapter, the NBM, is an extension of the LBM that replaces the
linear model with a more powerful non-linear (but also non-sequential) model. In this case, the
influence of the basis functions in the expressive parameter can be modeled in a non-linear way
using FFNNs. NBMs are note-wise models that predict a value of the expressive parameters for
each note in the score, and thus, their expressive parameters are the same as the ones defined in
the performance codec C1.0 described in Section 3.3.1: MIDI velocity, log BPR, timing and log
articulation. The NBM was introduced in (Cancino Chacón and Grachten, 2015).

Following the notation conventions from Chapters 2 and 3, PS denotes an expressive perfor-
mance matched to score S; X = {n1, . . . , nNx} represents the set of |X | = Nx notes in a musical
score and O = {o1, . . . , oNo} represents the set of |O| = No unique score positions (score onsets).
The set of all notes that occur at the same score position as score note ni will be denoted as
o(ni) = {nj ∈ o | onset(nj) = onset(ni)}, with onset(ni) being the onset time of ni. An arbitrary
element of the score (note or onset) is denoted as x.

4.2.1 Basis Functions

At this point, we remind the reader that this thesis documents the historical development of the
BM framework. The experience gained conducting the experiments described in Section 3.5 led
to the definition of new basis functions capturing aspects of the metrical structure, as well as to
dropping the use of basis functions describing contextual dynamics markings, which are defined
in Section 3.4.1. Furthermore, we simplify the polynomial pitch model to only a linear term,
since the non-linear models described in this chapter are more powerful. In addition to the basis
functions described in Chapter 3, we introduce two new groups of basis functions capturing more
aspects of the score:

1See Section 3.3.3.

51



4 Basis Function Models II: Non-linear Models

1. Metrical. Representation of the time signature of a piece, and the (metrical) position of
each note in the bar. For each time signature a

b, there are a + 1 basis functions: a basis
functions indicate notes starting at each beat, respectively, and a single basis function
indicates notes starting on a weak metrical position (off-beat). For example, the basis
function labeled 4

4 beat 1 evaluates to 1 for all notes that start on the first beat in a 4
4 time

signature, and to 0 otherwise. Although in (Western) music, most time signatures have
common accentuation patterns, we choose not to hard-code these accentuation patterns
in the form of basis functions. Instead, by defining the metrical basis functions as sets
of indicator functions associated to metrical positions, we leave it to the basis models to
learn the accentuation patterns as they occur in the data.

2. Harmonic. Two sets of indicator basis functions that encode a computer–generated
harmonic analysis of the score based on the probabilistic polyphonic key identification
algorithm proposed in (Temperley, 2007). This harmonic analysis produces an estimate
of the key and scale degree, i.e. the roman numeral functional analysis of the harmony of
the piece, for each bar of the score. A set of basis functions encode all major and minor
keys while another set of basis functions encodes scale degrees.

It should be noted that some of the above mentioned groups of basis functions can comprise
a large number of individual basis functions. For example, the traditional binary and ternary
time signatures (encoded in the group of Metrical basis functions) generate more than 50 basis
functions with the 12

8 time signature alone generating 13 basis functions, namely 12
8 beat 1, 12

8

beat 2, 12
8 beat 3, ..., 12

8 beat 11, 12
8 beat 12, and 12

8 beat weak. For a mathematical description of
these basis functions see Appendix A.1.

4.2.2 Model Description

As described above, NBMs substitute the predictive functions of LBMs, linear models, with
FFNNs. These neural networks can be described as a series of (non-linear) transformations of
the input data (Bishop, 2006). Using this formalism, we can model the value of each expressive
parameter corresponding to score note ni as the output of a fully-connected FFNN with L layers
as

fnbm(ni ; θ) = σ(L)
(
w(L)Th(L−1) + w

(L)
0

)
, (4.1)

where h
(L−1)
i ∈ RDL−1 is the activation of the (L− 1)-th hidden layer (with DL−1 units) corre-

sponding to the score note ni; σ
(L)(·) is an element-wise activation function and w(L) ∈ RDL−1

and w
(L)
0 ∈ R are the vector of weights and a scalar bias of the L-th layer, respectively. The

activation for the l-th hidden layer corresponding to the i-th note h
(l)
i ∈ RDl , where Dl is the

number of units in the layer, is given by

h
(l)
i = σ(l)

(
w(l)h

(l−1)
i + w

(l)
0

)
, (4.2)

where w(l) ∈ RDl×Dl−1 and w
(l)
0 ∈ RDl are the matrix of weights2 and the bias vector of the

l-th layer; and h
(l−1)
i ∈ RDl−1 is the activation of the (l − 1)-th hidden layer. The element-

wise activation function of the l-th layer is represented by σ(l). As a convention, the 0-th

layer represents the input itself, i.e. h
(0)
i = ϕ(ni). The set of all parameters of the network is

2Although in this work we follow the convention of denoting vectors with boldface lowercase letters and matrices
with boldface uppercase letters, we use w to denote both the vectors and matrices of weights of the layer of a
neural network to highlight that their function is similar to that of the vectors of weights of the linear models
described in Chapter 3.
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Figure 4.1: Schematic representation of the prediction of an expressive parameter using an NBM
consisting of an FFNN with two layers. From bottom to top, the circles represent the
input layer, two successive hidden layers and the output layer, respectively; ϕ(ni)

represents the input basis functions for score note ni, h
(1)
i and h

(2)
i are the activations

of the first and second hidden layers for score note ni, respectively; and yni is the
output of the network for score note ni. The arrows connecting circles represent
the flow of information in the FFNN. Note that there are no connections between
neighboring notes – the performance of each note is predicted independently of the
others, by the same trained FFNN. See Section 4.2.2 for a more detailed explanation.

θ = {w(1)
0 ,w(1), . . . , w

(L)
0 ,w(L)}. Common activation functions for the hidden layers are sigmoid,

hyperbolic tangent, softmax and rectifier3. Since we are using the FFNN in a regression scenario,
the activation function of the last layer is set to the identity function (σ(L)(ξ) = ξ) (Bishop,
2006).

We can then write the complete predictive function for all expressive parameters defined in
Section 3.3.1 as

Fnbm(ni) =




f
(vel)
nbm (ϕ(ni) ; θvel)

f
(log bpr)
nbm (ϕ(ni) ; θlog bpr)

f
(tim)
nbm (ϕ(ni) ; θtim)

f
(log art)
nbm (ϕ(ni) ; θlog art)




(4.3)

The complete set of parameters of this predictive function is Θnbm = {θvel,θlog bpr,θtim,θlog art}.

Figure 4.1 shows a schematic representation of the prediction of an expressive parameter using
an FFNN with two layers.

3See Appendix H.3.
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Training

As in the case of the LBM, the NBM models expressive parameters independently. Therefore,
we can optimize each set of parameters separately. Given a training set T the parameters of
the predictive function can be learned by minimizing the squared error, given by

Lse(θ) =

NT∑

i=1

(ti − fnbm(ϕ(ni) ; θ))2 (4.4)

where ti is the i-th component of tT , the vector that concatenates the values of the expres-
sive parameter for all pieces in the training set, and ϕ(ni) is the i-th row of ΦT , the matrix
concatenating the representation of the scores in the training sets (see Equation (3.22)). Given
the nonlinearity of the model, it is not generally possible to compute a closed form analytical
solution to θ̂j = argminθj Lse(θj). Therefore, it is necessary to use numerical methods, such
as variants of the stochastic gradient descent (SGD) algorithm (Boyd and Vandenberghe, 2004;
Nocedal and Wright, 2006; Goodfellow et al., 2016).

In a nutshell, SGD methods update the model parameters iteratively, starting with an initializa-
tion value (usually random) and then proceeding to update the value iteratively in the following
form:

θq+1 ← θq − λ
∂

∂θ
Lse(θ)

∣∣∣∣
θ=θq

(4.5)

i.e., the value of the parameters at the q + 1-th step is given by the value of the parameters
at step q with an update proportional to the gradient of the loss function with respect to the
parameters, and λ is a scalar value controlling the size of the step, usually referred to as the
learning rate. The gradient of the loss function with respect to the model parameters can be
efficiently computed using the back-propagation algorithm (Rumelhart et al., 1986). SGD is
a first order optimization method, and higher order methods such as Newton’s method and
Hessian-free optimization might be used (Martens, 2010). In practice, however, variants of SGD
that adaptively change the value of the learning rate, such as RMSProp (Tieleman and Hinton,
2012) and Adam (Kingma and Ba, 2014), have proven to be effective, since computing second
order updates involves large Hessian matrices, and thus, is computationally expensive.

For most of the experiments reported in this work, we have used RMSProp, a mini-batch variant
of SGD where the step size is adaptively updated by a running average of the magnitude of the
gradient. RMSProp is controlled by three parameters: the learning rate, a gradient moving
average decay factor that controls the decay in the moving average estimation of the magnitude
of the gradient, and a small value (i.e. a machine epsilon) for numerical stability. A description
of the computation of the parameter updates using RMSProp is provided in Appendix F.1. In
order to avoid overfitting, dropout, l2-norm weight regularization and early stopping are used.
Dropout prevents overfitting and provides an efficient way of combining different neural net-
works by randomly removing units in the network, along with all their incoming and outgoing
connections (Srivastava et al., 2014). Regularization of the l2-norm encourages parameter values
to shrink towards zero, unless supported by the data (Bishop, 2006). This regularization is con-
trolled by a scalar value referred to as a regularization coefficient4. Early stopping (Morgan and
Bourlard, 1990) is performed by monitoring the loss function on a validation set, and stopping
the training when there are no more improvements on the loss function on this validation set. In
most of our experiments, this validation set comes from splitting the training set into a set for

4See Section 3.4.2 and Appendix E.2 for a Bayesian interpretation of regularization of the l2-norm of the param-
eters of the model.
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computing the parameter updates with 80% of the data, and a validation set with 20% of the
data. For FFNNs, weights are randomly initialized as proposed by Glorot and Bengio (2010),
and biases are initialized to zero.

The parameters controlling aspects of the training (e.g. learning rate, regularization coefficient
and probability of dropout) are referred to as hyper-parameters.

4.2.3 Evaluation: Expressive Dynamics

In this section we present a quantitative evaluation of NBMs by comparing the predictive accu-
racy of LBMs and NBMs predicting expressive dynamics, using the MIDI velocity of performed
notes as a proxy for dynamics, as described in Section 3.3.1, by means of 5-fold cross-validation
experiments5.

The main objective of this evaluation is to compare how well the NBM and LBM account for
aspects of expressive dynamics. In particular, the cross-validation experiments aim to compare
the flexibility of NBMs and LBMs to generalize to new pieces not included in the training set.
The second objective of this evaluation is to investigate the effects of the different basis functions
describing score information on expressive dynamics predicted by NBMs and LBMs.

For these experiments we used the Magaloff/Chopin and the Zeilinger/Beethoven datasets. The
basis function extraction using the groups of basis functions described in Sections 3.3.2 and 4.2.1
on these datasets produced 167 and 163 basis functions, respectively.

Four 5-fold cross-validations were conducted for each model type (LBM and NBM) and dataset
(Magaloff/Chopin and Zeilinger/Beethoven) combination. The cross-validations were conducted
as follows: We defined training and test sets randomly for each of the 5 partitions (folds) for
each dataset, such that each piece in a dataset occurred exactly once per test set. The training
set for each partition contained 80% of the pieces in the dataset, and the test set contained
the remaining 20%. For each of these partitions, we trained an NBM and LBM on the training
set (as described below) and then used the trained models to predict expressive dynamics for
each piece in the test set. We evaluated the predictive accuracy of the models by computing
the Pearson correlation coefficient r and the coefficient of determination R2 between the model
predictions and the observed dynamics for each piece. We report the average r and R2 for each
model type/dataset combination across all pieces in the dataset.

In the rest of this section, we first provide technical details for training of the LBM and NBM
models, followed by the results of the 5-fold cross-validation experiments. Finally, we present a
qualitative analysis of the results, in which we use sensitivity analysis methods to reveal what
relations between the basis functions and the expressive dynamics the LBM and NBM models
have learned.

Model Architectures and Training

The LBM models were trained using LSMR, an iterative algorithm for solving sparse LS prob-
lems (Fong and Saunders, 2011).

5 In contrast to the first experiment described in Section 3.5, in this chapter we do not evaluate NBMs in terms
of goodness of fit, since FFNNs are known to be universal approximators (Hornik, 1991). This property means
that given a large enough architecture, NBMs can potentially reconstruct the training set to an arbitrary level
of precision.

55



4 Basis Function Models II: Non-linear Models

Magaloff/Chopin Zeilinger/Beethoven
Model R2 r R2 r

LBM 0.171 0.470 0.197 0.562
NBM (100, 20) 0.195 0.478 0.266 0.568

Table 4.1: Predictive accuracy for expressive dynamics in terms of the coefficient of determi-
nation (R2) and Pearson correlation coefficient (r), averaged across pieces on each
corpora.

The NBMs consist of FFNNs with 2 hidden layers with 100 and 20 rectified linear units, re-
spectively, which we will refer to as NBM (100, 20). The number of layers and units in the
NBM (100, 20) architecture were empirically selected from a non-exhaustive search conducted
while performing preliminary experiments on joint modeling of expressive dynamics, timing and
articulation. This search was performed using 5-fold cross-validations on smaller subsets of the
Magaloff/Chopin and Zeilinger/Beethoven datasets (around two thirds of the pieces for each
dataset) and a larger subset of basis functions6.

All NBM models were trained using RMSProp for a maximum of 2000 epochs using a learning
rate of 10−5, a gradient moving average decay factor of 0.9 and an epsilon for numerical stability
of 10−6, the probability of dropout set to 0.5 and the regularization coefficient equal to 10−3.
These hyper-parameters were selected empirically.

Predictive Accuracy

Table 4.1 shows the predictive accuracy of the LBM and the NBM Models in the 5-fold cross-
validation scenario on the Magaloff/Chopin and the Zeilinger/Beethoven datasets.

Both measures show a consistent improvement of the NBM model over the LBM model, in
particular R2. This shows that the theoretical benefits of non-linear modeling (non-linear trans-
formations of the input, and interactions between inputs) have practical value in the context of
modeling expressive dynamics.

Prior work based on the Magaloff/Chopin data has revealed that a major part of the variance
explained by the LBM (captured by R2) is accounted for by the basis functions that represent
dynamic markings and pitch, respectively, whereas other basis functions had very little effect
on the predictive accuracy of the model (Grachten and Widmer, 2012). To gain a better insight
into the role that different basis functions play in each of the models, the learned models must
be studied in more detail. For the LBM this is straightforward: Each of the basis functions is
linearly related to the target using a single weight. Therefore, the magnitude of each weight is
a direct measure of the impact of its corresponding basis function on the target. In a non-linear
model such as the NBM, the weights of the model cannot be interpreted in such a straightforward
way. To accommodate for this, we use more generic sensitivity analysis methods to investigate
the behavior of computational models.

Variance-Based Sensitivity Analysis

In order to investigate the effects of the different basis functions, a variance based sensitivity
analysis (Saltelli et al., 2010) was performed on the trained LBM and NBM models. In this

6The NBM (100, 20) architecture was neither the best for the Magaloff/Chopin dataset nor for the
Zeilinger/Beethoven dataset, but performed relatively well given its simplicity.
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sensitivity analysis, the model output y is treated as a function of the input basis functions ϕ
given the model parameters. The sensitivity of f(ϕ(ni)) = yi with respect to the components
of the input is explained through a decomposition of its variance into terms depending on the
input basis functions and their interactions with each other. The first order sensitivity coefficient
S1q measures the individual linear (additive) effect of the q-th basis function ϕq on the model
output7. On the other hand, the total effect index STq accounts for the additive effect plus all
higher order effects of ϕi, including its interactions with the rest of the basis functions. These
sensitivity measures are given respectively by

S1q =
varϕi(Eϕ\ϕq (y | ϕq))

var(y)
and STq =

Eϕ\ϕq
(
varϕq(y | ϕi)

)

var(y)
, (4.6)

where varϕq is the variance with respect to the q-th basis function, Eϕ\ϕq is the expected value
with respect to all basis functions but ϕq, and var(y) is the total variance of y. From these
definitions it is possible to show that

∑
q S1q = 1 and

∑
q STq ≥ 1. Furthermore, it can be shown

that for a model whose output depends linearly on its inputs, as is the case with LBMs, both
S1q and STq are equal.

Both S1q and STq are estimated using a quasi-Monte Carlo method proposed by Saltelli et al.
(2010). This method generates a pseudo random (low-discrepancy) sequence of samples to
estimate the expected values and variances in the above equations.

Table 4.2 lists the basis functions that contribute the most to the variance of the model, ordered
according to S1 for the LBM models trained on Magaloff/Chopin and Zeilinger/Beethoven,
respectively. The columns labeled active specify the percentage of instances where a basis
function is non-zero. This is relevant, since a high sensitivity to basis functions that are only
very rarely active is a sign of overfitting. For this reason, we have grayed out basis functions
that are active in less than 5% of the instances.

Based on the linear model evaluated on the Magaloff/Chopin dataset, it was concluded that pitch
and dynamics markings are important factors for predicting expressive dynamics (Grachten and
Widmer, 2012). The results reported here, with a more diverse set of basis functions, and
evaluated on a second corpus that is independent in terms of both performer and composer,
roughly support this conclusion, since both pitch and a few of the most prominent dynamics
markings appear as (non-grayed-out) items in the lists. The finding that pitch is (positively)
correlated with expressive dynamics is in accordance both with the High Loud phrasing rule of
the KTH model (Friberg et al., 2006, see Table 1, pp. 148), and with the unsupervised feature
learning approach described in (Grachten and Krebs, 2014).

Furthermore, the presence of the slur incr and slur decr basis functions (see Section 3.3.2)
suggests that although the slur marks are only an indication of the legato articulation, they
may act as a proxy for musical grouping, which has been shown to be related to expressive
dynamics (Todd, 1992).

Table 4.3 lists the bases to which the NBM model is most sensitive. Roughly speaking, the set of
most important bases for the NBM model conveys dynamics markings, pitch, slurs, and duration,
as is the case with the LBM model. A notable difference is the high sensitivity of the NBM
model to both crescendo and diminuendo markings, in both corpora. A plausible explanation
for this difference is that although crescendo/diminuendo information is relevant for predicting
expressive dynamics, the target cannot be well-approximated as a linear combination of the two
basis functions. Comparing the total effect index ST and the first order sensitivity coefficient
S1 shows that the NBM model has learned interactions involving diminuendo and crescendo.

7To unclutter notation, in this section we write ϕq as a scalar value that can take any possible value in the set
of all possible values of ϕq(n) for all possible notes n.
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Magaloff/Chopin Zeilinger/Beethoven
basis function active S1 basis function active S1

pitch 100.00 % 0.168 sf 2.98 % 0.209
slur decr 63.06 % 0.067 smorzando 0.01 % 0.078
crescendo 42.71 % 0.067 calando 0.08 % 0.062
ff 39.12 % 0.059 crescendo 26.76 % 0.042
duration 100.00 % 0.035 ff 37.48 % 0.036
2
8 beat 1 0.01 % 0.034 f 26.07 % 0.036
slur incr 62.13 % 0.033 fp 0.19 % 0.027
f 35.49 % 0.031 5

4 weak 0.01 % 0.026
smorzando 0.01 % 0.025 pitch 100.00 % 0.024
fff 12.86 % 0.023 5

4 beat 4 0.00 % 0.020
5
4 weak 0.12 % 0.022 sfp 0.06 % 0.018
fp 0.01 % 0.021 slur incr 35.92 % 0.018
fz 0.30 % 0.020 duration 100.00 % 0.017
3
8 beat 1 0.07 % 0.020 slur decr 37.66 % 0.017
12
8 beat 1 0.34 % 0.016 diminuendo 18.08 % 0.017

Table 4.2: Basis functions with the largest sensitivity coefficients for the LBM models. Averages
are reported over the 5 folds of the cross-validation. Dynamics markings are in bold
italic. Basis functions that are non-zero for less than 5% of the instances have been
grayed out.

Although these values only indicate that diminuendo and crescendo interact with some other
bases, not necessarily with each other, in the following we show that the latter is indeed the
case.

Figure 4.2 shows how both the LBM and the NBM behave in two different scenarios concerning
the occurrence of a crescendo. For each scenario, a score fragment is shown (taken from the
Magaloff/Chopin corpus), that exemplifies the corresponding scenario. The left half of the figure
shows the scenario where a crescendo occurs (indicated by the ramp function in the crescendo
input) without the interference of a diminuendo (the diminuendo input is zero). The two graphs
below the inputs depict the output of the LBM and NBM, respectively, as a response to these
inputs. Apart from a slight non-linearity in the response of the NBM, note that the magnitudes
of the responses of both models are virtually equal8.

In the same way, the right half of the figure shows the response of the models to a crescendo
when preceded by a diminuendo. Note that the basis function encodes the diminuendo by
a ramp from 0 to 1 over the range of the wedge sign, and stays at 1 until the next constant
loudness annotation9, such that over the range of the crescendo ramp shown in the plot, the
diminuendo basis function is constant at 1.

This is a common situation, as depicted in the musical score fragment, where the musical flow
requires a brief (but not sudden) decrease in loudness. Note how the response of the NBM to
the crescendo in this case is much reduced, and also smoother. The response of the LBM, which
cannot respond to interactions between inputs, is equal to its response in the first scenario.

8The scale of the output is arbitrary, but has been kept constant when plotting the outputs of both the LBM
and NBM, to enable visual comparison

9This behavior is illustrated for the crescendo sign in Figure 3.9, and described in detail in Appendix A.1 (see
Equation (A.20)).
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Magaloff/Chopin Zeilinger/Beethoven
basis function active S1 ST basis function active S1 ST

pitch 100.00 % 0.200 0.207 sf 2.98 % 0.289 0.300
crescendo 42.71 % 0.037 0.124 diminuendo 18.08 % 0.071 0.135
diminuendo 41.56 % 0.036 0.100 duration 100.00 % 0.056 0.126
slur decr 63.06 % 0.044 0.084 crescendo 26.76 % 0.046 0.096
ff 39.12 % 0.059 0.083 f 26.07 % 0.083 0.095
f 35.49 % 0.051 0.073 slur incr 35.92 % 0.046 0.080
slur incr 62.13 % 0.062 0.073 ff 37.48 % 0.052 0.068
duration 100.00 % 0.040 0.072 p 64.41 % 0.025 0.034
fff 12.86 % 0.016 0.028 slur decr 37.66 % 0.020 0.033
pp 23.18 % 0.006 0.020 pp 40.07 % 0.029 0.032
accent 1.37 % 0.020 0.020 pitch 100.00 % 0.032 0.032
fz 0.30 % 0.018 0.018 fp 0.19 % 0.013 0.014
mp 5.46 % 0.007 0.012 ritardando 31.09 % 0.005 0.010
p 41.94 % 0.007 0.012 fermata 0.08 % 0.001 0.004
tot neighbors 2.50 % 0.009 0.011 staccato 8.41 % 0.005 0.005
ppp 5.79 % 0.001 0.011 sfp 0.06 % 0.002 0.004

Table 4.3: Basis functions with the largest sensitivity coefficients for the NBM models; Averages
are reported over the 5 folds of the cross-validation. Dynamics markings are in bold
italic. Basis functions that are non-zero for less than 5% of the instances have been
grayed out.

4.2.4 Discussion

The experiments show that the BM models can be used to model expressive dynamics both for
different combinations of composers and performers in piano music. A question that has not
been explicitly addressed in the experiments is to what degree a model trained on one combina-
tion of composer/performer is an accurate model of expressive dynamics in another combination
of composer/performer. Although this question is hard to answer in general, it is possible to
make some general observations. First of all, along with musical style, performance practice
has also evolved over the centuries. For example, a keyboard piece from the Baroque period is
typically performed very differently than piano music from the Romantic period. Models trained
on one musical style should therefore not be expected to generalize to other styles. Within a
specific musical style, expressive styles can still vary substantially from one performer to the
other. However, there are substantial commonalities in the expressive dynamics across perform-
ers (Repp, 1992, 1994), taking the form of general performance principles. As the sensitivity
analysis shows (Section 4.2.3), some of these principles are captured by the model, even if it is
trained on the performances of a single performer. This suggests that at least to some extent
within a musical style, the models may generalize from one performer to another10. However,
beyond the search for general performance principles, the BM approach may be used to charac-
terize the individuality of celebrated performers. In Chapter 5 we present preliminary work in
this direction.

10 To test this hypothesis directly, we would need to collect performances of the same pieces/composer by different
performers and align them to their scores, which is a very laborious and time-consuming task.
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Figure 4.2: Example of the effect of the interaction of crescendo after a diminuendo for both
LBM and NBM.

4.3 Recurrent Non-linear Basis Models

In this section, we introduce the RNBM, an extension of the NBM presented above that uses
RNNs to model expressive parameters sequentially. The RNBM was introduced in (Grachten
and Cancino-Chacón, 2017).

The rest of this section is structured as follows: Section 4.3.1 discusses the motivation of using
sequential models. Section 4.3.2 discusses how to adapt the expressive parameters for sequential
models, and introduces a new set of onset-wise and note-wise parameters. Section 4.3.3 presents
how to adapt the basis functions for the case of onset-wise and note-wise parameters. Section
4.3.4 presents a mathematical formalization of the RNNs used to model onset-wise parameters.
Section 4.3.5 presents a quantitative evaluation of the predictive accuracy for expressive tempo.
Finally, Section 4.3.6 discusses these results.

4.3.1 Motivation for Sequential Models

In the FFNN-based NBMs presented in Section 4.2, the relation between the values of the basis
functions at note ni and the value of the expressive target for that note is modeled through
intermediate (hidden) layers. These hidden layers are determined only by the current input
(i.e. only by the current note), and although FFNNs allow for interactions between current
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4.3 Recurrent Non-linear Basis Models

inputs, they do not allow for interactions between the states of the model at different temporal
positions in the piece, or even between other notes occurring at the same temporal position
(i.e. other notes in a chord). This behavior is illustrated in Figure 4.1, where there are no arrows
indicating the flow of information in the FFNN from a note to another. As such, the FFNN-based
NBM is non-sequential: there is no notion of the music as a sequence, or a process.

RNNs are a family of neural networks for modeling sequential data, and have been used suc-
cessfully for generating text sequences, handwriting synthesis and modeling motion capture
data (Graves, 2013). In an RNN, the state of the hidden layer is not only determined by the
input at time step i, but also by the hidden state at time step i− 1 (which in turn is affected by
the hidden state at i− 2, and so forth). As such, the hidden state of an RNN can be regarded
as a representation of the prior context of the input – the musical score – up to the current time
step. The preparatory function of musical expression (Istók et al., 2013) suggests that when
modeling musical expression, not only the prior score context is relevant, but also the upcoming
context. In such cases, it can be beneficial to use bidirectional RNNs. In this model, one part
of the hidden state depends on the prior context, and another part depends on the upcoming
context, such that the joint parts form a representation of the temporal context of the current
time step in both directions.

4.3.2 Expressive Parameters for Sequential Models: Performance Codec v. 2.0

In this section we define performance codec C2.0, which consists of performance representation
model Y2.0 and performance decoder Y−1

2.0 , which allow for modeling aspects of a performance
sequentially.

The expressive parameters defined in performance codec C1.0 in Section 3.3.1 describe the per-
formance of a piano piece in a note-wise fashion: there is a value of the expressive parameters for
each note in the score. Nevertheless, adapting these parameters for the case of sequential mod-
eling of polyphonic music is not immediately straightforward. As described above, sequential
models such as RNNs process information in a step-wise fashion, and thus, the order in which
information is processed by these models is important. On the other hand, the order in which
we process information in non-sequential models, such linear models and FFNNs, does not affect
the outputs of the model: the predictions will be the same if we present such models with the
sequence of score notes (n0, n1, n3) or (n1, n3, n0). The problem of processing information
sequentially gets particularly complicated for polyphonic music, since each successive temporal
position could have more than one note (i.e. a chord), and thus, there is not a unique answer to
which note comes “next”.

A solution to this problem could be establishing an ordering of the notes that makes the selection
of the next note unambiguous. An example of such ordering would be to take the notes in a
chord from lowest to highest (as done in the running example introduced in Section 3.2). While
using such an ordering may serve a practical purpose11, it might not be a good representation
of the way humans experience music12.

In performance representation model Y2.0, we modify the definition of the expressive parameters
capturing aspects of expressive dynamics and tempo to have a value for each score onset (i.e. in an
onset-wise fashion), and thus, the order of each of these parameters corresponds to the temporal
order of the music. Additionally, we define note-wise parameters describing deviations of the
individual notes from the local dynamics and tempo. Figure 4.3 presents a visual representation

11See for example the model for generating polyphonic music described in (Simon et al., 2017).
12From a philosophical standpoint, the experience of music is a very complicated subject. For two contrasting

perspectives on this topic see (Kivy, 1991) and (Levinson, 1998).
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Figure 4.3: Excerpt of a matched MIDI performance PS (as a piano-roll where the x axis de-
scribes time and the y axis describes the MIDI velocity) and its corresponding score
S showcasing elements for computing the expressive parameters described in perfor-
mance codec v. 2.0.

of an excerpt of a matched performance in MIDI format which highlights the elements for
computing these onset-wise and note-wise parameters.

In the rest of this section, we first define the expressive parameters in performance representation
model Y2.0, and then describe the performance decoder Y−1

2.0 . The definition of the parameters in
this performance codec follows the notation conventions established in Section 3.2 and illustrated
in Figures 3.2 and 3.4.

Performance Representation Model

The performance representation model Y2.0 defines five expressive parameters divided into two
groups: two onset-wise parameters describing temporal aspects of expressive dynamics and
tempo, and three note-wise parameters describing deviations in loudness and timing, as well as
the articulation of the notes.

These parameters are defined as follows:
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4.3 Recurrent Non-linear Basis Models

Onset-wise Parameters

1. MIDI velocity trend. We treat the performed MIDI velocity as a proxy for loudness.
This parameter is computed as

yveltrend (oi) =
1

127
max vel(oi), (4.7)

where vel(oi) = {vel(nj) | nj ∈ oi} represents the performed MIDI velocity of all notes
belonging to score onset oi. See max vel(o0) in the example in Figure 4.3 (in blue). In
this example, max vel(o0) is the performed MIDI velocity of score note n2, which is the
maximal performed MIDI velocity of all notes belonging to score onset o0 (i.e. n0, n1 and
n2).

2. log BPR. We can naturally adapt the beat period ratio (BPR) defined in Section 3.3.1
to the onset-wise setup by simply computing a value for each score position, rather than
a value for each note. This parameter is given by

ylog bpr(oi) = log2

BP(oi)

BPave
, (4.8)

where BP(oi) =
IOIperfoi
IOIscoreoi

is the beat period corresponding to score onset oi and BPave is

the average beat period of the piece (see Equation (3.4)). We associate the values to the
start of the IOI, such that the value of BPR at the score onset oi in the score describes
the local tempo between onsets oi and oi+1 (rather than between oi−1 and oi, see column
IOIscore in Figure 3.4). This is illustrated in Figure 4.3, with IOIscore0 and IOIscore1 (in pink)

representing the score IOIs, and IOIperf0 and IOIperf1 (in red) representing the performed
IOIs corresponding to score onsets o0 and o1, respectively.

Note-wise Parameters

3. MIDI velocity deviations. We can compute the deviations in loudness for individual
notes as the arithmetic difference between the maximal MIDI velocity at a score position,
specified by yveltrend and the MIDI velocity of the individual note, i.e.

yveldev (ni) =
∆v(ni)

127

= yveltrend (o(ni))−
vel(nj)

127
(4.9)

These deviations in MIDI velocity are illustrated in Figure 4.3 by ∆v(n0) and ∆v(n1) (in
bright red) for score notes n0 and n1, respectively.

4. Timing. As described in Section 3.3.1, timing refers to the temporal shifting of the
performed onset times of each note from the beat grid implied by the local beat period.
We compute these timing deviations in the same way as defined in Section 3.3.1, i.e.,

ytim(ni) = ∆t(ni)

= ôperfi − operf (ni) (4.10)

Figure 4.3 illustrates this concept of timing for notes n0, n1 and n2 (∆t(n0), ∆t(n1) and
∆t(n2) in violet). The above definition of beat period implies that the timing for score
onsets consisting of a single note (as is the case of o1 and o2 in our running example) is

exactly zero, as illustrated in Figure 4.3 for n3 and n4 (ôperf1 and ôperf2 in indigo).
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5. log Articulation. As discussed in Section 3.3.1, the articulation of a note refers to
the ratio of its performed duration (illustrated in Figure 4.3 in burgundy for n0) to its
notated duration and the current local tempo. We compute articulation in the same way
as specified in Section 3.3.1, i.e.,

ylog art(ni) = log2

durationperf (ni)

duration(ni)BP(o(ni))
. (4.11)

Note that a performance representation under the representation model defined by the above
expressive parameters is not simply a matrix, since typically the number of score positions is
not equal to the number of notes. In this case, we can write the performance representation as

Y2.0(S | PS) = {Tonset-wise,Tnote-wise} (4.12)

where Tonset-wise ∈ RNNo×2 represents the value of the onset-wise parameters for all score onsets
in O, i.e.

Tonset-wise =




yveltrend (o0) ylog bpr(o0)
...

...
yveltrend (oNo) ylog bpr(oNo)


 (4.13)

and Tnote-wise ∈ RNNo×3 represents the value of the note-wise parameters for all score notes in
X , i.e.

Tonset-wise =




yveldev (n0) ytim(n0) ylog art(n0)
...

...
...

yveldev (nNx) ytim(nNx) ylog art(nNx)


 (4.14)

Figure 4.4 shows the full performance representation Y2.0(S | PS) = {Tnote-wise,Tonset-wise}
under representation model Y2.0 defined above for the running example introduced in Section
3.2.

Alternatively, we can build a joint performance representation into a single matrix as

T =




yveltrend (o(n0)) ylog bpr(o(n0)) yveldev (n0) ytim(n0) ylog art(n0)
...

...
...

...
...

yveltrend (o(nNx)) ylog bpr(o(nNx)) yveldev (nNx) ytim(nNx) ylog art(nNx)


 , (4.15)

i.e. by duplicating the value of the onset-wise parameters for all notes that belong to the same
onset, represented as o(ni) using the notation conventions from Section 3.2.

Performance Decoder

As in the case of the performance codec defined in Section 3.3.1, this codec is lossless up to the
average beat period.

Given a performance representation T defined in terms of the expressive parameters described
above, its score S, and the average beat period of the performance BPave , a performance PS

can be reconstructed in MIDI format using performance decoder Y−1
2.0 .
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score pos. Note yveldev (·) ytim(·) ylog art(·)

0.0 n0 0.126 -0.014 0.230

0.0 n1 0.000 0.000 -0.624

0.0 n2 0.079 0.014 0.551

1.0 n3 0.000 0.000 -0.152

1.5 n4 0.000 0.000 0.697

2.0 n5 0.000 0.000 -0.690

3.0 n6 0.000 0.000 0.113

3.5 n7 0.000 0.000 -0.619

4.0 n8 0.000 0.000 -0.534

4.5 n9 0.000 0.000 -1.037

5.0 n10 0.000 0.000 -0.675

5.5 n11 0.000 0.000 -1.379

6.0 n12 0.016 -0.002 -0.889

6.0 n13 0.000 0.002 -0.841

7.0 n14 0.008 -0.002 0.023

7.0 n15 0.000 0.002 0.000

score pos. Onset yveltrend
(·) ylog bpr(·)

0.0 o0 0.346 0.091

1.0 o1 0.346 -0.061

1.5 o2 0.220 0.016

2.0 o3 0.417 0.013

3.0 o4 0.591 -0.142

3.5 o5 0.693 -0.114

4.0 o6 0.850 -0.041

4.5 o7 0.709 -0.206

5.0 o8 0.677 -0.101

5.5 o9 0.732 0.028

6.0 o10 0.913 -0.053

7.0 o11 0.976 0.455
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Figure 4.4: Performance representation Y2.0(S | PS) = {Tnote-wise,Tonset-wise} for matched per-
formance PS (with score S) for the running example introduced in Section 3.2 (see
Figure 3.2). Colored rectangles highlighting regions of Tnote-wise and Tonset-wise cor-
respond to the score position highlighted with the same color.

Algorithm 4.1 presents the performance decoder Y−1
2.0 . The main difference between performance

decoders Y−1
1.0 and Y−1

2.0 is that in the latter, a performance representation consists of two matrices
describing the onset- and note-wise parameters, respectively. In order to compute the MIDI
velocity of each note, we have to first compute the maximal velocity per onset, and then we
compute the deviations of MIDI velocity for the individual notes.

4.3.3 Adapting Basis Functions for Onset-wise and Note-wise Parameters

Although the basis functions defined in Sections 3.3.2, 3.4.1 and 4.2.1 described score information
at the note level (i.e. note-wise), it is easy to see that some of the groups of basis functions are
more naturally defined at the score onset level. Examples of these functions include the groups
of basis functions describing dynamics, as seen in Figure 3.9 for p, f and crescendo. On the
other hand, some basis functions like those in the polynomial pitch model, or those encoding
accents, are inherently defined for each note, as seen in Figure 3.9 for marcato and pitch.
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Algorithm 4.1: Performance Decoder v. 2.0
Input:

• S: Score

– X : Set of notes in score S with cardinality Nx

– O: Set of onsets in score S with cardinality No (we assume that the onsets are ordered by score
position)

• T = {Tonset-wise,Tnote-wise}: Performance representation (see Equation (4.12))

• BPave : Average beat period

Output: Information to reconstruct MIDI file:

• Pitch: MIDI pitch of each note in the score. Initialized as Pitch = 0 ∈ ZNx .

• Velocity: Performed MIDI velocity of each note in the score. Initialized as Velocity = 0 ∈ ZNx .

• Onset: Performed onset time in seconds of each note in the score. Initialized as Onset = 0 ∈ RNx .

• Duration: Performed duration in seconds of each note in the score. Initialized as Duration = 0 ∈ RNx .

1 for 0 ≤ i ≤ No − 1 do
2 Compute the maximal MIDI velocity for score onset oi as

velmax (oi) = 127× ti;veltrend (4.16)

where ti;veltrend is the component in the i-th row of Tonset-wise corresponding to the MIDI velocity trend
parameter defined in Equation (4.7).

3 Compute the beat period for score onset oi as

BP(oi) = BPave × 2ti;log bpr (4.17)

where ti;log bpr is the component in the i-th row of Tonset-wise corresponding to the log BPR defined in
Equation (4.8).

4 if i = 0 then
5 Initialize the first equivalent onset

ôperf0 = 0 (4.18)

6 else
7 Compute the equivalent onset

ôperfi = ôperfi−1 + BP(oi)× IOIscorei , (4.19)

where IOIscorei is the score onset corresponding to onset oi, as defined in Equation (3.5) (see Section
3.3.1).

8 for 0 ≤ i ≤ Nx − 1 do
9 Get MIDI pitch of score note ni

Pitchi = pitch(ni) (4.20)

10 Compute MIDI velocity of score note ni

Velocityi = velmax (o(ni))− 127× ti;veldev , (4.21)

where ti;veldev is the component in the i-th row of Tnote-wise corresponding to the MIDI velocity deviations
parameter defined in Equation (4.9), and velmax (o(ni)) is the maximal MIDI velocity corresponding to the
score onset to which ni belongs.

11 Compute the onset time for score note ni

Onseti = ôperf (ni)− ti;tim (4.22)

where ti;tim is the component in the i-th row of Tnote-wise corresponding to the timing parameter defined
in Equation (4.10), and ôperf (ni) is the equivalent performed onset corresponding to the score onset to
which ni belongs.

12 Compute duration for score note ni

Durationi = 2ti;log art × duration(ni)× BP(o(ni)), (4.23)

where ti;log art is the component in the i-th row of Tnote-wise corresponding to the log articulation ratio
defined in Equation (4.11) and BP(o(ni)) is the beat period corresponding to the score onset to which ni
belongs.
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For models defined for onset-wise parameters, the value of the j-th basis function at score
position oi is given as the average of the value of the basis functions corresponding to the notes
at that score position, i.e.

ϕj(oi) =
1

|oi|
∑

nq∈oi

ϕj(nq). (4.24)

In the case of models defined for onset-wise and note-wise parameters, the representation of a
score S can be written as

F(S) = {Φonset-wise,Φnote-wise} (4.25)

where Φonset-wise ∈ RNNo×Mow and Φnote-wise ∈ RNNx×Mnw can be written as

Φonset-wise =




ϕ1(o0) . . . ϕMow(o0)
...

. . .
...

ϕ1(oNo−1) . . . ϕMow(oNo−1)


 (4.26)

Φnote-wise =




ϕ1(n0) . . . ϕMnw(n0)
...

. . .
...

ϕ1(nNx−1) . . . ϕMnw(nNx−1).


 . (4.27)

Figure 4.5 shows the score representation F(S) = {Φonset-wise,Φnote-wise} of the running example
introduced in Section 3.2 for a performance representation model consisting of basis functions
describing pitch, dynamics markings p, f and crescendo; and a basis function encoding an
accent (a marcato).

It is important to note that the averaging of basis functions per onset is an implementation
necessity, and could result in unmusical representations of the score. For example, in some
contexts the average pitch of an onset might not be musically meaningful. Therefore, in certain
cases it might be better to only use the subset of meaningful basis functions to model an
expressive parameter. More basis functions that better capture the sequential nature of music
will be discussed in Chapters 6.

4.3.4 Model Description

In contrast to the LBMs and NBMs described in Chapter 3 and Section 4.2, respectively, the
complete predictive function of an RNBM model consists of two components: a group of sequen-
tial functions for predicting the onset-wise parameters (MIDI velocity deviations, timing and log
articulation), and a group of non-sequential functions for predicting the note-wise parameters
(MIDI velocity trend and log BPR).

We use FFNNs as predictive functions for the note-wise parameters, and RNNs as predictive
functions for the onset-wise parameters. Since a detailed description of FFNNs was already
presented in Section 4.2.2, in this section, we discuss how RNNs are used to model expressive
parameters.

We can model the value of an expressive parameter corresponding to the score onset oi as the
output of an RNN with L hidden layers as

frnbm(ni ; θ) = σ(L)
(
w(L)Th

(L−1)
i + w

(L)
0

)
, (4.28)
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score pos. Note 'pitch 'p 'f 'cresc 'accent

0.0 n0
60
127 1.0 0.0 0.0 0.0

0.0 n1
64
127 1.0 0.0 0.0 0.0

0.0 n2
67
127 1.0 0.0 0.0 0.0

1.0 n3
64
127 1.0 0.0 0.0 0.0

1.5 n4
62
127 1.0 0.0 0.0 0.0

2.0 n5
64
127 1.0 0.0 0.0 0.0

3.0 n6
67
127 1.0 0.0 0.3 0.0

3.5 n7
71
127 1.0 0.0 0.7 0.0

4.0 n8
72
127 1.0 0.0 1.0 1.0

4.5 n9
67
127 1.0 0.0 1.0 0.0

5.0 n10
71
127 1.0 0.0 1.0 0.0

5.5 n11
67
127 1.0 0.0 1.0 0.0

6.0 n12
65
127 0.0 1.0 0.0 0.0

6.0 n13
69
127 0.0 1.0 0.0 0.0

7.0 n14
69
127 0.0 1.0 0.0 0.0

7.0 n15
72
127 0.0 1.0 0.0 0.0

score pos. Onset 'pitch 'p 'f 'cresc 'accent

0.0 o0
63.7
127 1.0 0.0 0.0 0.0

1.0 o1
64.0
127 1.0 0.0 0.0 0.0

1.5 o2
62.0
127 1.0 0.0 0.0 0.0

2.0 o3
64.0
127 1.0 0.0 0.0 0.0

3.0 o4
67.0
127 1.0 0.0 0.3 0.0

3.5 o5
71.0
127 1.0 0.0 0.7 0.0

4.0 o6
72.0
127 1.0 0.0 1.0 1.0

4.5 o7
67.0
127 1.0 0.0 1.0 0.0

5.0 o8
71.0
127 1.0 0.0 1.0 0.0

5.5 o9
67.0
127 1.0 0.0 1.0 0.0

6.0 o10
67.0
127 0.0 1.0 0.0 0.0

7.0 o11
70.5
127 0.0 1.0 0.0 0.0

�onset-wise�note-wise
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Figure 4.5: Note-wise (Φnote-wise) and onset-wise (Φonset-wise) components of the score represen-
tation of S under score representation model F = {ϕp , ϕf , ϕcresc , ϕaccent}. Colored
rectangles highlighting regions of Φnote-wise and Φonset-wise correspond to the score
position highlighted with the same color.

where the size of the hidden layers, element-wise activation functions, weights and biases are
equivalent to those described in Section 4.2.2. The main difference between fully-connected
FFNNs and RNNs is that the latter allow for using both recurrent and fully connected hidden
layers. The output of a recurrent layer for score onset oi can be written as

h
(l)
i = σ(l)

(
g(l)
ϕ (ϕ(oi)) + g

(l)
h (hi∗)

)
, (4.29)

where gϕ (ϕ(oi)) represents the contribution of the input of the network at time i (i.e. score
onset oi), gh (hi∗) is the contribution of other time steps (past or future, or a combination of
both) of the state of the recurrent layer. As in the case of NBMs, σ(l)(·) is an element-wise
activation function. A vanilla recurrent layer is given as

h
(l)
i = σ(l)

(
w(l)
x h

(l−1)
i + w

(l)
h h

(l)
i−1 + w

(l)
0

)
. (4.30)

where w
(l)
x ∈ RDl×Dl−1 is a matrix of weights connecting the (l−1)-th layer h

(l)
i , w

(l)
h ∈ RDl×Dl−1

is a matrix of weights connecting the (i − 1)-th activation of h(l); and w
(l)
0 ∈ RDl are the

matrix of weights and the bias vector of the l-th layer. While it is theoretically possible for
large enough vanilla RNNs to predict sequences of arbitrary complexity, it has been shown
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Figure 4.6: Schematic representation of the prediction of an expressive parameter using an
RNBM consisting of an RNN with a single bidirectional layer. From bottom to
top, the circles represent the input layer, the forward and backward components of
the bidirectional layer, and the output layer, respectively (ϕ(oi) represents the input
basis functions for score onset oi, hi;fw and hi;bw are the activations of the forward
and backward components of the recurrent hidden layer for score onset oi, respec-
tively; and yoi is the output of the network for score note oi). From left to right,
advancing time steps are shown. The arrows connecting circles represent the flow of
information in the RNN. See Section 4.3.4 for a more detailed explanation.

that numerical limitations of training algorithms do not allow them to properly model long
temporal dependencies (Pascanu et al., 2013). To address these problems, the Long Short Term
Memory (LSTM) architecture was proposed in (Hochreiter and Schmidhuber, 1997). LSTMs
include special purpose recurrent layers with memory cells that allow for exploiting long range
dependencies in the data. Appendix F.2 provides a more mathematical description of recurrent
layers used in this work.

As discussed in Section 4.3.1, we use bidirectional RNNs (Schuster and Paliwal, 1997) for mod-
eling expressive parameters. In this way, we combine score information from the past and future
to make a prediction of the expressive performance of the current score position. The main
components of such a network are bidirectional layers, which are composite layers consisting

of two recurrent layers, a forward recurrent layer h
(l)
i;fw, which processes information from the

beginning to the end of an input sequence; and a backward recurrent layer h
(l)
i;bw, which processes

information from the end to the start of a sequence. Common ways to build these composite
layers are by concatenating the forward and backward layers into a single vector, or making a
linear combination of the output of the layers, i.e.,

h
(l)
i;bd =

(
h

(l)
i;fw

h
(l)
i;bw

)
, or h

(l)
i;bd = αfh

(l)
i;fw + αbh

(l)
i;bw, (4.31)

where αf , αb ∈ R are weighting coefficients. The structure of a bidirectional RNN for modeling
an expressive parameter is illustrated in Figure 4.6. Note that bidirectional RNNs are not causal
models.

We can write the complete predictive function for all expressive parameters defined in Section
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3.3.1 for score S as

Frnbm(Φ,θ) = {Yonset-wise,Ynote-wise}, (4.32)

where Yonset-wise ∈ RNNo×2 represents the predictions of the onset-wise parameters for all score
onsets in O using RNNs, i.e.

Yonset-wise =




f
(veltrend )
rnbm (ϕ(o0) ; θveltrend ) f

(bpr)
rnbm (ϕ(o0) ; θbpr)

...
...

f
(veltrend )
rnbm (ϕ(oNo−1) ; θveltrend ) f

(bpr)
rnbm (ϕ(oNo−1) ; θbpr)


 , (4.33)

where the subscript rnbm denotes that the predictive function is an RNN; and Ynote-wise ∈
RNNo×3 represents the predictions of note-wise parameters for all score notes in X computed
using FFNNs, i.e.

Yonset-wise =




f
(veldev )
nbm (ϕ(n0) ; θveldev ) f

(tim)
nbm (ϕ(n0) ; θtim) f

(art)
nbm (ϕ(n0) ; θart)

...
...

...

f
(veldev )
nbm (ϕ(nNx−1) ; θveldev ) f

(tim)
nbm (ϕ(nNx−1) ; θtim) f

(art)
nbm (ϕ(nNx−1) ; θart),


 ,

(4.34)

where the subscript nbm denotes that the predictive function is an FFNN.

In a similar fashion as the performance representation described in Equation (4.15), we can write
the output of the predictive function for score S as a single matrix where each row represents
the predictions of the expressive parameters for each note in the score as

Y =




f
(veltrend )
rnbm (ϕ(o(n0)) ; θveltrend ) . . . f

(veltrend )
rnbm (ϕ(o(nNx−1)) ; θveltrend )

f
(bpr)
rnbm (ϕ(o(n0)) ; θbpr) . . . f

(bpr)
rnbm (ϕ(o(nNx−1)) ; θbpr)

f
(veldev )
nbm (ϕ(n0) ; θveldev ) . . . f

(veldev )
nbm (ϕ(nNx−1) ; θveldev )

f
(tim)
nbm (ϕ(n0) ; θtim) . . . f

(tim)
nbm (ϕ(nNx−1) ; θtim)

f
(art)
nbm (ϕ(n0) ; θart) . . . f

(art)
nbm (ϕ(nNx−1) ; θart)




T

, (4.35)

where the values of the predicted parameters for the notes belonging to the same onset are
duplicated for onset-wise models13.

Training

As in the case of LBMs and NBMs, RNBMs model expressive parameters independently, and
thus we can optimize each set of parameters separately. The training of the FFNNs modeling
note-wise parameters is performed in the same fashion as described in Section 4.2.2. RNNs
modeling onset-wise parameters can be trained very similarly by minimizing the squared error
using (a variant of) SGD, where the gradient of the loss function with respect to the model
parameters can be efficiently computed using the back-propagation through time (BPTT) algo-
rithm (Rumelhart et al., 1986).

As with FFNNs, we used RMSProp for training RNNs. We found it more effective to initialize
the weights of the recurrent layers drawing from uniform distributions. The biases and initial
states of the network are initialized to zero. Since the value of the gradients can sometimes
become excessively large, to avoid numerical problems the value of the gradients is clipped to
lie within a predefined range, and the number of time steps considered in the back-propagated
gradient is truncated (Graves, 2013).

For a more elaborate review of RNNs see (Graves, 2013) and (Goodfellow et al., 2016).

13This matrix is transposed for space constraints.
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4.3.5 Experiments: Expressive Tempo

In this section we present a quantitative evaluation of the sequential components of RNBMs by
comparing the predictive accuracy of linear models, FFNNs, and RNNs for expressive tempo,
using the log BPR parameter described in Section 4.3.2, by means of 10-fold cross-validation
experiments. As mentioned for the case of the FFNNs, RNNs are also known to be universal
approximators (Schäfer and Zimmermann, 2006). Therefore, in this chapter we do not evaluate
RNNs in terms of goodness of fit, since given a large enough neural architecture, RNNs are able
to fit the training data to an arbitrary level of precision.

The objective of this evaluation is to compare how well the RNBMs, NBMs and LBMs account
for aspects of expressive tempo. In particular, the cross-validation experiments aim to compare
the flexibility of these models to generalize to new pieces not included in the training set.
A second objective of this evaluation is to analyze the contribution of past and future score
information on the performance of a note.

Three 10-fold cross-validations were conducted for each model type (LBM, NBM and RNBM)
using the Magaloff/Chopin dataset. The basis function extraction using the groups of basis
functions described in Sections 3.3.2 and 4.2.1, adapted for the sequential setup as described in
Section 4.3.3, generated 220 basis functions. The cross-validations were conducted as follows:
We defined training and test sets randomly for each of the 10 folds, such that each piece in the
dataset occurred exactly once per test set. The training set for each fold contained 80% of the
pieces (on average 139.5) in the dataset, and the test set contained the remaining 20% (15.5 on
average). For each of these folds, we trained an RNBM, NBM and LBM on the training set (as
described below) and then used the trained models to predict expressive tempo for each piece
in the test set. The predictive accuracy of the models was evaluated by computing the Pearson
correlation coefficient r and the coefficient of determination R2 between the model predictions
and the performed tempo for each piece. We report the average r and R2 for each model across
all pieces in the dataset.

Model Architectures and Training

All LBMs were trained using LSMR (Fong and Saunders, 2011).

The FFNN architecture used in this evaluation consists of a single hidden layer with 20 rectified
linear units, and a linear output layer with a single unit. We will refer to this architecture as
NBM (20). The architecture of the RNNs consists of a single bidirectional vanilla recurrent
layer with 20 rectified linear units and a linear output layer with a single unit. The bidirectional
recurrent layer of this architecture uses a linear combination of the outputs of the forward and
backward layers, as described in Equation (4.31), with αf = αb = 1. We refer to this architecture
as RNBM (20).

Further hyper-parameters were set as follows. The weight parameters of the FFNNs were initial-
ized using the method proposed by Glorot and Bengio (2010). For the RNN models, initializing
the weights of recurrent layers simply by drawing from the uniform distribution U(−0.01, 0.01)
was found to be more effective. In both types of models, the biases were initialized to zero. Both
FFNN and RNN models were trained using a learning rate of 10−5, a gradient moving average
decay factor of 0.9 and a machine epsilon of 10−6. For both FFNN and RNN models, dropout is
used after the hidden layer to further prevent overfitting, with pdropout = 0.5. The gradients of
the RNNs were clipped to lie between −100 and 100. For RNN models, the batch size is set to
one piece (the maximal sequence length is 3808, the number of onsets in the longest piece in the
dataset). For FFNNs, the batch size was set to 1000. All networks were trained for a maximum
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Model R2 r

LBM 0.026 0.232
NBM (20) 0.060 0.249
RNBM (20) 0.136 0.374

Table 4.4: Predictive results for IOI, averaged over a 10-fold cross-validation on the Maga-
loff/Chopin corpus. Larger r and R2 means better performance.

of 1000 epochs, stopping the training after 50 epochs without improvement in the loss function
on the validation set.

4.3.6 Results and Discussion

The average of values of r and R2 across all pieces in the Magaloff/Chopin dataset for each model
type is presented in Table 4.4. Both measures suggest that the RNBM (20) gives a consistent
improvement over both FFNN and linear models. Analysis of variance using linear mixed-effects
revealed both a main effect of model on the squared error, and a significant interaction between
model and fold on squared error. Because of this interaction, a post-hoc comparison (Tukey’s
HSD test) was performed per fold, rather than over all folds together. These tests show that the
RNBM (20) models are significantly better than both NBM (20) and linear models on all folds
(p < 0.0001). In seven folds, NBM (20) performed significantly better than LBM (p < 0.0001).
In one fold, the linear model performed better than NBM (20) (p < 0.0001), and in two folds
NBM (20) and LBM were not significantly different.

These results seem to confirm the respective benefits of non-linearity and temporal dependencies
for modeling expressive timing in classical piano performances, as described in Sections 4.3.1
and 4.3.4. In the following, we focus on the latter aspect, highlighting learned interactions
between the hidden states at different times, a capability that sets apart RNN-based RNBMs
from FFNN-based NBMs and LBMs.

Sensitivity analysis

In order to analyze the effects of past and future score information on the performance of a
score onset, we use a method called differential sensitivity analysis (Hamby, 1995). This method
quantifies how strongly the output of the model changes in response to changes in each of the
basis functions at each time step. The differential sensitivity of the output of the predictive
function for an expressive parameter f(· ; θ) to the i-th basis function ϕi at the j-th score
position oj can be computed as

Si,j = E
{

∂

∂ϕi(oj)
f(ϕ(oj) ; θ)

}
. (4.36)

Plotting the sensitivity values of a particular basis function at different time steps relative to
the current time step yields a kind of temporal profile of the basis function, showing how that
basis function affects an expressive parameter in its prior and posterior context. This is done in
Figure 4.7 for log BPR, which shows the model sensitivity with respect to three basis functions,
for the models trained in each of the ten folds of the cross-validation. The curves show how an
activation of the basis function in the present (time step 0) affects the values of log BPR in the
past (negative time steps), and in the future (positive time steps).
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The different curves within each of the three plots correspond to the models trained on the 10
different folds of the cross-validation. Although there are differences, the overall shapes of the
curves within a plot are very similar, showing that the temporal sensitivity profiles are not due
to random factors (such as model initialization) that are irrelevant to the data.

A ranking of all 220 basis functions according to model sensitivity showed that the models are
most sensitive to the fermata basis. Unsurprisingly, the models have learned from the data that
the fermata sign indicates a lengthening of the note. However, the part of the plot before time
step 0 shows that the fermata sign also affects the values of log BPR preceding it, provoking
an incremental lengthening of the preceding values of log BPR up to the fermata sign itself.
This result demonstrates the anticipatory function of expressive timing described by Istók et al.
(2013).

A different pattern is exhibited for duration. Here there is a negative sensitivity of performed
log BPR to the notated duration, implying that long notes are systematically shortened. Inter-
estingly, the surrounding values of log BPR are lengthened slightly. This suggests that durational
contrasts in the score are softened, a phenomenon also reported by Gabrielsson et al. (1983).
Although both sharpening and softening of contrasts have been found to be a means of express-
ing emotions in music (Lindström, 1992), the models have not learned sharpening effects from
the data. This may be due to the character of the music in the Magaloff/Chopin dataset.

Musical accents have a less marked, and more diffuse effect on log BPR. Models from different
folds appear to have learned different regularities, although there is a weak tendency to slow
down towards an accent, followed by a slight speed up following the accent.

4.4 Conclusions

Expressive performance of music is a complex phenomenon, of which our understanding is far
from complete. In this chapter we have extended the simple LBMs discussed in Chapter 3 in two
ways: Firstly, we introduced the NBM, which uses more powerful non-linear models (FFNNs),
and second, we extended this non-linear model to be able to capture the sequential nature of
music (using RNNs). For this purpose, we extended the way expressive parameters and score
representations are computed.

We have carried out an extensive comparative evaluation of linear, non-linear and recurrent
non-linear models on different corpora of classical piano performance. The results of these
evaluations show that both NBMs discussed in Section 4.2 and RNBMs 4.3 allow for more
accurate modeling of expressive parameters than the LBM models described in Chapter 3.
Furthermore, RNBMs have been shown to lead to more accurate predictions for expressive
tempo than NBMs (suggested by experiments in Section 4.3.5).

The results of the evaluation of the NBMs discussed in Section 4.2 show that non-linear methods
allow for substantially more accurate modeling of expressive dynamics. A qualitative analysis of
the trained NBMs reveals that FFNNs effectively learn interaction-effects between aspects of the
musical score that linear models cannot capture. Through this analysis we also found that the
models reproduce several regularities in expressive dynamics that have been individually found
or hypothesized in other literature, such as that high notes should be played louder, or that
musical grouping (as expressed by slur marks) is a determining factor for expressive dynamics.
Thus, a contribution of the study documented in Section 4.2.3 is that it provides evidence for
these findings, which are sometimes no more than a musical intuition or conjecture, based on
two independent data sets.
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Figure 4.7: Sensitivity of log BPR predictions to Fermata, Duration and Accent basis functions,
for the ten models obtained from 10-fold cross-validation. Positive values on the
vertical axis denote a lengthening of BPR (tempo decrease), negative values a short-
ening (tempo increase). The curves show the effect of the activation of the basis
function at time step j = 0 on log BPR values (see Equation (4.36)) in the past
(negative time steps), and future (positive time steps).

The experiments reported in Section 4.3.5 show that the recurrent model predicts expressive
timing much better than non-sequential versions of the model using the same score representa-
tions and performance representation. This is evidence that temporal dependencies do play an
important role in expressive timing.

Further prospective work includes combining the current basis function modeling approach with
(deep) unsupervised feature learning of musical score representations, following the work by
Grachten and Krebs (2014) and van Herwaarden et al. (2014). The benefit of this hybrid
approach is that it combines information about annotations in the musical score, that are not
part of the representation learning process but are definitely relevant for modeling expression,
with the adaptiveness and malleability of representations learned from musical data.

As previously stated in Section 3.2.4, a model with high predictive accuracy might not necessarily
render a good musical performance of a piece. Therefore, in addition to numerical evaluation
of the model outputs, future evaluation might also require listening tests. Nevertheless, we
believe that the effort of systematically testing the perceptual validity of model outputs is
best spent after the quantitative and data-oriented development of the model has stabilized.
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4.4 Conclusions

An interesting intermediate form between numerical evaluation and perceptual validation of
model outputs is to define perceptually inspired objective functions. In the computer vision
and image processing communities there have been several efforts in this direction, including
the definition of the structural similarity index (Wang et al., 2004), a perception-based metric
that considers perceptual phenomena like luminance masking, as well as perceived change in
structural information. For musical expression, a starting point is the perceptual model described
in (Honing, 2006).

One of the limitations of the variants of the BMs presented in this chapter is that they do not
account for different expressive interpretations of the same score. Future work might involve ex-
ploring probabilistic BMs that can explicitly learn multi-modal predictive distributions over the
target values. Such models might be better suited to train on corpora consisting of multiple per-
formances of the same piece (possibly by many different performers). In Appendix D we present
preliminary results in this direction using Mixture Density Networks (Bishop, 2006; Graves,
2013), which use the output of neural networks to parametrize a probability distribution.

In most of this work we focus on analyzing and predicting expressive piano performances. Chap-
ter 5 expands the model to the case of ensemble performance. Chapter 6 tests whether cognitively
plausible features improve predictions of expressive dynamics and tempo. Chapter 7 presents
an implementation of the BM framework discussed in this chapter for rendering expressive per-
formances of musical pieces given their scores.
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5 From Solo Piano to Orchestral Ensembles

The content of this chapter consists of work done in close collaboration with Thassilo Gadermaier
and Maarten Grachten, in the frame of the Lrn2Cre8 and PHENICX projects. This chapter
contains material published in:

• Gadermaier, T., Grachten, M., and Cancino-Chacón, C. E. (2016). Basis-Function Model-
ing of Loudness Variations in Ensemble Performance. In Proceedings of the 2nd Interna-
tional Conference on New Music Concepts (ICNMC 2016), Treviso, Italy

For this article, I designed and carried out the experimental evaluation.

• Grachten, M., Cancino-Chacón, C. E., Gadermaier, T., and Widmer, G. (2017). Towards
computer-assisted understanding of dynamics in symphonic music. IEEE Multimedia,
24(1):36–46

For this article, I designed and carried out the experimental evaluation, as well as devising
and carrying out the differential sensitivity analysis method, which studied the contribution
of score features to the output of the model and compared performances by different
performers (the sensitivity difference graphs discussed in Section 5.4 below).

5.1 Introduction

The basis function modeling (BM) approach described in Chapters 3 and 4 has been developed
for the purpose of modeling expression in solo piano performances, based on measurements
obtained from a computer-controlled grand piano. In this chapter, we present an extension to
the BM framework to make it suitable for modeling expression in orchestral music.

The contributions of this chapter are twofold. First, we extend the BM framework to accom-
modate ensembles of instruments, possibly including multiple instances of the same instrument,
as is common in orchestral scores. We discuss the difficulties and complications that arise when
dealing with recordings of large ensembles, rather than a single piano. Secondly, we propose the
use of the model as a tool for explanatory purposes. The model can attribute variations in the
expressive quality of a performance to factors like performance directives that were written in
the score by the composer (like crescendo, diminuendo, and fermata), and other aspects of the
written score, and could therefore be used to highlight differences between performances of the
same piece. Explanatory visualizations of expressive performances based on this information
could be used for didactic purposes, to introduce an audience to the phenomenon of expres-
sive music interpretation. Such a tool may be part of an active music listening interface (Goto,
2007) for classical music such as the integrated prototype1 of the PHENICX project (Liem et al.,
2015).

The rest of this chapter is structured as follows. Section 5.2 discusses how to adapt the com-
putation of the basis functions in an ensemble scenario. Section 5.3 presents an evaluation of

1http://beta.phenicx.com/
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the proposed model for modeling expressive dynamics using the RCO/Symphonic dataset. Sec-
tion 5.4 presents preliminary work using the extended BM framework as a tool for comparing
expressive dynamics in symphonic music. Finally, conclusions are presented in Section 5.5.

5.2 Basis Functions for Orchestral Music

There are several issues to be dealt with in order apply the BM approach to orchestral perfor-
mances. In the rest of this section, we will discuss these issues, and provide solutions.

5.2.1 Measured vs. Computed Expressive Parameters

In a piano, the degrees of freedom for sound production (and therefore expressive performance)
are limited to only a few, well-defined dimensions: the piano key, the hammer velocity of the
key mechanism, the timing of key press and key release and the pedals2. These dimensions
can be measured relatively easily. As a result, it is possible to obtain precise measurements of
piano performances in the dimensions mentioned above, through the use of computer-controlled
pianos (e.g. see (Moog and Rhea, 1990) for a description of the mechanism and capabilities of
the Bösendofer SE, a high quality computer controlled piano, and (Goebl and Bresin, 2003) for
an evaluation of recording and reproducing precision of the Bösendorfer SE and the Yamaha
Disklavier).

Similar measurements are typically not readily accessible for other classes of instruments, such
as bowed string instruments or wind instruments, which have more complex sound production
mechanisms. For example, although rich descriptions of performances of other instruments may
be obtained with appropriate sensors (for instance designed to measure the bending of the reed
in wind instruments (Hofmann et al., 2013) or bow movements in violin playing (Schoonder-
waldt and Demoucron, 2009)), the usage of such sensors is often intrusive, and thus limited to
experimental setups. Moreover, data recorded in this way is prone to noise, and bulky in the
case of large ensembles.

An alternative to measuring aspects of the sound production of an instrument is to compute
expressive information from audio recordings of professional music performances. Loudness
and tempo can be obtained this way. Such audio-based measures yield a single value for each
expressive parameter at each time instant, which is in contrast to measures obtained from
computer-controlled pianos, which allow expressive parameters to be defined for individual notes,
even if they occur at the same time instant. With audio-based measures, it is not possible to
define onsets or loudness values for individual voices or instruments with sufficient precision –
again, in contrast to MIDI-based measures3.

Performance-score matching, which, for piano music, has been discussed in previous chapters,
remains a challenging and laborious task for orchestral music. This is due in part to the complex-
ities of onset detection for non-percussive instruments and the difficulties involved in obtaining
high-quality digital versions of orchestral scores. The RCO/Symphonic dataset used in this
chapter was prepared as part of the PHENICX project.

2For performances in MIDI format these dimensions correspond to the MIDI note number, the MIDI velocity,
the onset and offset times of the note and the pedal information.

3Separation of audio into individual tracks by instrument is an active field of research in MIR, but at present
remains an unsolved task.
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5.2.2 Indexing Basis Functions

The BM approach is designed to generate a set of basis functions (see basis functions defined
in Sections 3.3.2, 3.4.1 and 4.2.1), given a score S for a single instrument. When training an
expression model on a dataset containing performances of multiple pieces, the basis functions
produced for each piece must be mapped to each other. For example, if we have two pieces,
A and B, and the scores for both pieces contain dynamics markings p and f , we assume that
there is a single basis function ϕp and a single basis function ϕf , instead of defining basis
functions ϕp;A and ϕf ;A that encode the markings p and f for piece A and another group of
basis functions ϕp;B and ϕf ;B for piece B. In this case, we say that both ϕp;A and ϕp;B are
mapped to ϕp ; while ϕf ;A and ϕf ;B are mapped to ϕf .

In the solo instrument setting, this mapping is done on the basis of labels that are uniquely
assigned to each basis function (in the example above, the labels are p for basis function ϕp and
f for basis function basis function ϕf , since these basis functions encode dynamics markings

p and f , respectively). In orchestral scores, however, the labels are not unique any longer,
since the same basis functions are produced for each instrument (coding the same type of score
information, but for different instruments). For example, in an orchestral score we could have
different dynamics markings for each instrument, for example there could be an mf in the flute
while at the same time an f in the cello section. To deal with this, it is necessary to index
the basis functions by the tuple (instrument name, basis function label), i.e. ϕinstrument; label.
Continuing with the previous example, this indexing would result in basis functions ϕFlute; mf
and ϕVioloncello; f .

A further issue is that the notated instrument names in the score do not follow any strict
standard. Instrument names may be written in different languages (e.g. “Fagott”, “bassoon”),
and may be abbreviated (e.g. “Vln.” for violin, “Cl.” for clarinet). To overcome this issue,
the instrument names and abbreviations extracted from the score are matched to one of a
set of canonical instrument names (the unabbreviated English names), using string matching
techniques. This name matching is illustrated in Figure 5.1, where the names of the instruments
in the score in the left are in Italian, and the names of the instruments of the score in the right
are in German, which are matched to the names of the instruments in English.

5.2.3 Merging and Fusion of Basis Functions within Instrument Classes

In orchestral scores, there may be several instances (voices) of an instrument, usually designated
by numbers (e.g. “Violin 1”, “Violin 2”). Furthermore, multiple instances of an instrument may
share a single staff. This is shown in Figure 5.1.

The occurrence of multiple instruments of the same type poses a problem for training the model,
since it is not clear how the mapping of basis functions across pieces should be defined in order
to create a consistent dataset consisting of multiple pieces. For instance, when one piece involves
a single horn, and another piece involves two horns, the question which of the two horns in the
latter piece should be mapped to the horn in the first piece is arbitrary, and moreover, it is
unclear how to deal with the remaining, unmapped horn.

For this reason, we choose to combine all instances of the same instrument class into a single
set of basis functions, using a fusion operation that can be specified per basis function type. In
this way, for each piece there is a single set of basis functions conveying the activity of a given
instrument class, rather than one set for each instance of that class.

In Figure 5.2, we give an example: two staves are shown where the first staff holds a score part
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5.2 Basis Functions for Orchestral Music

Figure 5.1: Motivation for merging and fusion. Different pieces’ scores will in general have
different number of instances of the same instrument class (e.g. 4 vs. 8 Horns).
Carefully note the different possibilities to distribute voices across staves: in the right
hand score excerpt, the lower staff of the trumpet carries two instances, whereas the
upper staff only one. Similar for the trombone. The instances of one instrument
class (e.g. 8 horns, right) will be merged to one representative to be matched to the
representative from the other score (subsuming 4 horns, left).

consisting of a single instance (Oboe I). The second staff is a score part with two instances of
the same instrument (Oboe II, III). For each score note ni a set of basis functions is extracted
from the score.

Following the extraction, the per score part defined basis functions will be combined to per
instrument class basis functions. This works as follows: The values of the basis functions
associated with each note form a row of a matrix (top left matrix in Fig. 5.2). The basis functions
associated with each score part occupy their own set of columns in this matrix. The rows are
sorted according to the respective associated notes’ onset times. Merging compresses this matrix
to another matrix (shown top right) where the columns already represent per instrument class
basis functions, while still having (possibly) multiple rows per time stamp. Fusion now combines
each subset of rows with the same time stamp into a single row by subsuming each column’s
values (within the row subset) into a single value, as is shown by the bottom right matrix.
This is achieved with a fusion operation fusion(·) that can be specified separately for each basis
function type (i.e. per column). Examples for fusion operations are the max(·) function that
takes the maximum value across the subset of rows, the min(·) (taking the minimum value) and
the avg(·) (taking the average) functions. In the example in Fig. 5.2, the average of the values
was taken for each column.

A disadvantage of the merging and fusion of basis functions within instrument classes described
in this section is that this procedure does not directly take into account genre conventions
regarding certain instruments, for example, the usual complementary roles that the Violin I and
II sections play in symphonic music of the Classical and Romantic Periods.
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score
note

0 n0 72 1 1 − − −
0 n1 − − − 67 1 1
0 n2 − − − 64 1 1
1 n3 64 0.5 1 − − −
1 n4 − − − 71 1 1
1 n5 − − − 59 1 1
1.5 n6 62 0.5 1 − − −

note
0 n0 72 1 1
0 n1 67 1 1
0 n2 64 1 1
1 n3 64 0.5 1
1 n4 71 1 1
1 n5 59 1 1
1.5 n6 62 0.5 1

onset
0 o0 68 1 1
1 o1 65 0.83 1
1.5 o2 62 0.5 1

score position = (0, 1, 1.5, 2, 3, 3.5)

n3

n5

n6

Oboe I Oboe II, III

Oboe I

Oboe
II, III

Oboe

Oboe

merging

fusion

f

f

n4

n0

n2

n1

pos.
score
pos.

score
pos.

o0 o1 o2

ϕpitch ϕdur ϕf ϕpitch ϕdur ϕf ϕpitch ϕdur ϕf

ϕpitch ϕdur ϕf

Figure 5.2: Illustration of merging and fusion of score information of two different parts belong-
ing to the same instrument class “Oboe”. The first matrix (top left) shows three
example basis functions, ϕpitch, ϕduration, and ϕf , for the first few notes of each of the
two score parts. Note the interleaved, consecutive layout of simultaneously occurring
notes, as indicated by the first column of each matrix, giving the notes’ onset times.
The matrix top right illustrates merging, where the data of both score parts were
combined to give one column per basis function. Finally, the third matrix is the
result of fusion operations, applied per basis function to each set of values occurring
at the same time point. The fusion operation used takes the average of the respective
values. See text for further explanation.

5.2.4 Aggregation of Basis Functions of Instrument Classes in a Piece

After collecting per instrument class basis function matrices, we need one final step to conclude
the data extraction for a piece p. All instrument classes’ data are aggregated into a single
per-piece matrix Φp. This is schematically shown in Figure 5.3.

5.3 Experiments: Expressive Dynamics

To assess the predictive accuracy of the model, we conduct a leave-one-out cross validation
experiment to see how well the BMs predict expressive dynamics. We use the RCO/Symphonic
dataset described in Section 2.4.4. As previously mentioned, this dataset consists of recordings
of symphonies from the Classical and Romantic period performed by the Royal Concertgebouw
Orchestra. The process of extracting basis functions generates 1420 basis functions post merging
and fusion, which are listed in Appendix A.2.
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...
...

...

Oboe
score

0 68 1 1 64 1 0 0 0 0
1 65 0.83 1 62 0.83 0 0 0 0
1.5 62 0.5 1 59 0.5 0 0 0 0

Clarinet

. . .

...
...

...
...

...
...

...

. . .

. . .

Bassoon

pos. ϕpitch ϕdur ϕf ϕpitch ϕdur ϕf ϕpitch ϕdur ϕf

Figure 5.3: Aggregating the per instrument class matrices into a per piece matrix. Note how
the Clarinet has different dynamics prescribed (so that the forte basis function is
all zeros). The Bassoon is obviously silent in this part of the piece.

5.3.1 Expressive Parameter

For computing expressive dynamics, we use a perceptual measure of the instantaneous loudness,
i.e.

yloud(oi) =
loudness(oi)− loudnessmean

loudnessstd
, (5.1)

where loudness(oi) returns the EBU R 128 loudness measure (EBU-R-128, 2011), associated
with the i-th onset in score S, and loudnessmean and loudnessstd are the mean and the standard
deviation of the values of the loudness per piece, respectively. The EBU R 128 is a loudness
measure defined by the European Broadcasting Union that takes into account human perception,
(i.e., the fact that signals of equal power but different frequency content are not perceived as
being equally loud) and is the recommended way of comparing loudness levels of audio content
in the broadcasting industry. Because we want to focus on variations in loudness, rather than
the overall loudness level and range, we subtract the mean and divide by the standard deviation
of the loudness values per piece.

5.3.2 Model Architectures and Training

In these experiments we compare the linear, non-linear and sequential versions of the BM frame-
work.

The NBM used in this experiment consists of an FFNN with a single hidden layer with 20
rectified linear units, and a linear output layer with a single unit. The RNN of the RNBM
consists of a single bidirectional vanilla recurrent layer with 20 rectified linear units and a linear
output layer with a single unit. The bidirectional recurrent layer of this architecture uses a linear
combination of the outputs of the forward and backward layers, as described in Equation (4.31),
with αf = αb = 1. Both FFNN and RNN architectures used in this evaluation are identical to
the architectures used for the experiments described in Section 4.3.5.

The LBM models were trained using LSMR (Fong and Saunders, 2011). Both versions of the
non-linear models (NBM and RNBM) were trained using RMSProp (Tieleman and Hinton,
2012) with a learning rate of 10−5, a gradient moving average decay factor of 0.9 and an epsilon
for numerical stability of 10−6. The weights of NBM models were initialized using the method
proposed in Glorot and Bengio (2010), while the weights of RNBM models were randomly
sampled from U(−0.01, 0.01). All biases and initial states were initialized to zero. To avoid
overfitting we used dropout on the hidden layers of neural network models with a probability
of 0.5. For RNN models we truncate the back-propagated gradients after 200 time steps. The
gradients were clipped to lie between -100 and 100 to avoid numerical instabilities. From the
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19 training pieces, four pieces were kept for validation, and the training was stopped if there
was no further improvement in the loss on this validation set after 100 epochs. All models were
trained for a maximum of 2000 epochs.

5.3.3 Predictive Accuracy

For each piece, we report the coefficient of determination (R2), measuring the proportion of
variance in the recorded loudness curve that is explained by the model, and Pearson’s correlation
coefficient (r), measuring the strength of the linear dependence between the recorded and the
predicted loudness curves. The results of the experiments are shown in Table 5.1. We observe
that both the R2 and the r values for LBM are generally lower than those for NBM and RNBM,
demonstrating that the non-linear modeling provides a clear advantage over the linear modeling
approach. We conducted a one-way ANOVA level to test the difference in R2 for LBM, NBM and
RNBM. There was a clear outlier for the R2 for the first movement of Bruckner’s Symphony
No. 9 for the LBM, which we excluded from the analysis. It should be noted that this was
the only model that produced such an outlier, which is in line with our evaluation of LBMs
as less accurate than NBMs and RNBMs. There was a significant difference at the p < 0.01
level as measured by Fisher’s F ratio (F(2, 54) = 5.47, p = 0.007, η2 = 0.17). Furthermore,
we conducted a paired samples one-tailed t-test to compare the difference in R2 for NBM and
RNBM models. There was a significant difference at the p < 0.01 level (mean = 0.05, std = 0.04);
t(18) = 5.69, p < 0.001,Cohen’s d = 0.75). Given the relatively small data set, this result is
not trivial, since the NBM and RNBM have many more parameters than the LBM model, and
are therefore more prone to overfitting. Furthermore, the RNBM model provides more accurate
predictions than the NBM model, although this advantage is less prominent than the advantage
over LBM.

The fact that the results of the linear model are inferior suggests that although the basis functions
used to represent the score capture relevant information, their shapes (such as the ramp function
to represent a crescendo) are too schematic to work well as approximations of measured loudness
curves. The improvement of the results in the NBM and RNBM models suggest that the non-
linear transformation of these shapes alleviates this problem to some extent. The capability
of the non-linear models of modeling interactions between basis functions, as demonstrated in
(Cancino Chacón and Grachten, 2015) (described in Section 4.2.3), may further explain the
improved results of these models.

5.4 The BM as an Analytical Tool for Dynamics in Symphonic Music

In this section, we demonstrate that the BM framework can be used for explanatory purposes,
and thus form the basis for a tool that elucidates differences in expressive interpretations between
performances.

The explanatory power of BM models lies in the fact that they represent dynamics as a function
of the basis functions. As a model learns from training data how the basis functions relate
to dynamics, some basis functions may prove to be very important for an accurate prediction
of dynamics, while others may have little or no influence at all. In other words, the model
learns to be more sensitive to some basis functions than to others. We can impose sensitivities
specific to a particular performance on a model by fitting the model to that performance—
adjusting its parameters such that its prediction error for the dynamics of that performance
is minimized. When fitting models to two different performances of a piece, the differences in
dynamics between the performances tend to lead to different sensitivities in the models. For

82



5.4 The BM as an Analytical Tool for Dynamics in Symphonic Music

Composer / Piece R2 r
LBM NBM RNBM LBM NBM RNBM

Beethoven S5 Mv 1 -0.26 -0.22 -0.18 0.18 0.21 0.26
Mv 2 0.34 0.46 0.56 0.58 0.70 0.76
Mv 3 0.23 0.40 0.44 0.53 0.64 0.66
Mv 4 0.06 0.26 0.25 0.41 0.53 0.52

Beethoven S6 Mv 1 0.36 0.36 0.39 0.61 0.63 0.65
Mv 2 0.07 0.15 0.17 0.36 0.40 0.41
Mv 3 0.51 0.60 0.62 0.72 0.81 0.82
Mv 4 0.11 0.27 0.29 0.38 0.54 0.56
Mv 5 0.36 0.44 0.49 0.60 0.70 0.75

Beethoven S9 Mv 1 0.34 0.36 0.42 0.59 0.61 0.65
Mv 2 0.36 0.40 0.53 0.60 0.64 0.74
Mv 3 -0.30 -0.06 -0.02 0.20 0.17 0.22
Mv 4 0.11 0.37 0.49 0.52 0.64 0.70

Mahler S4 Mv 1 -0.17 0.29 0.37 0.37 0.54 0.61
Mv 2 -0.48 -0.02 -0.02 0.06 0.20 0.23
Mv 3 -1.22 0.25 0.26 0.20 0.51 0.53
Mv 4 -1.99 0.09 0.18 0.15 0.33 0.44

Bruckner S9 Mv 1 -39.06 0.45 0.59 0.26 0.68 0.77
Mv 2 0.24 0.48 0.55 0.58 0.72 0.74
Mv 3 -3.54 0.32 0.40 0.25 0.57 0.65

Table 5.1: Predictive accuracy in a leave-one-out scenario for the different models. For both R2

and r, larger is better. Best value per piece and measure emphasized in bold.

example, a model fitted to a dramatic performance may learn that dynamics annotations such as
piano and forte have a large effect on the dynamics of the performance, whereas a model fitted
to a more restrained performance may be less sensitive to these annotations. Thus, comparing
differences in sensitivities between models fitted to different performances can give us qualitative
explanations of the differences in dynamics, in the style of “Performance A is louder than
performance B at this point in the piece, because the string instruments are more prominent”,
or “Performance B emphasizes the downbeat more strongly than Performance A”.

When fitting two models to two different performances for comparison purposes, it makes sense
to start the fitting process from a common model that was pretrained on a number of other
recordings. Firstly, this speeds up the fitting process since the pretrained model will already
provide a rough approximation of the dynamics curves, and secondly, starting from a com-
mon basis encourages similar explanations for similar trends in the performances, and thereby
parsimonious explanations of the differences between the performances.

We compute the sensitivities of a model to each of the basis functions using a local differential–
based sensitivity analysis technique (Hamby, 1995), which consists of computing the gradient
of the output of the model with respect to each of its inputs. By multiplying the gradients
(sensitivities) with the inputs (basis functions) over the course of a piece, we obtain a sensitivity
graph for a performance. The multiplication is motivated by the fact that even when a model
is sensitive to a particular basis function, this basis function does not affect the output of the
model whenever it is inactive (i.e. zero valued). The sensitivity graph for a performance can be
thought of as a matrix SG ∈ RNo×M , with No the number of onsets in the score S and M the
number of basis functions used to represent such a score. The (i, j)-th element in this matrix,
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SGi,j , is given by

SGi,j =
∂

∂ϕi(o)
f (loud)(ϕ(o))

∣∣∣∣
o=oj

× ϕi(oj), (5.2)

where f (loud)(·) is the output of the neural network predicting loudness, and ϕi(oj) and ϕ(oj)
are the values of the i-th basis function and the values of all basis functions for score onset oj ,
respectively. Moreover, by subtracting the sensitivity graphs of two performances, we obtain
what we call a sensitivity-difference (SD) graph, a visual representation expressing the relative
influence of each basis function in each of the two performances. Such a graph is given by

SD = SGT
perf 1 − SGT

perf 2, (5.3)

where SGT
perf 1 and SGT

perf 2 are the transposed sensitivity graphs of each performance to be

compared4.

As a case study, we compare performances of the 3rd Movement (Lustiges Zusammensein der
Landleute) of Beethoven’s Symphony No. 6 Op. 68 by different conductors and orchestras. This
piece is a scherzo which suggests dances of the country folk. The scherzo is in a 3

4 meter, with
its trio in a 2

4 meter. The two performances we compare here are by the conductors Georg Solti
(with the Chicago Symphony Orchestra, recorded in 1974) and Nikolaus Harnoncourt (with the
Chamber Orchestra of Europe, recorded in 1991), hereafter referred to as Solti and Harnoncourt,
respectively. We compare the performances by using a RNBM model that was pretrained on
the dataset described in Table 2.3, and then fitting the pretrained model to both performances,
respectively.

As an example, consider the small, but marked difference between Solti and Harnoncourt in
bars 87-90 of the SD graph in Figure 5.4 (showing a selection of the most influential basis
functions in the fragment). In bar 87, Beethoven’s score prescribes a four-bar diminuendo of
the violins to transition from an ongoing fortissimo (ff ) passage (starting before and continuing
in the depicted fragment) to a quiet and lyrical pianissimo (pp) passage featuring a singing
oboe, starting with bar 91. The SD graph shows that the increased loudness in Harnoncourt
(compared to Solti) is attributed by the model to a sustained influence of the ff in the violins over
the course of the diminuendo. Note that this attribution is a parsimonious explanation of the
loudness difference, because it involves only a single basis function. A hypothetical, less concise
explanation, for instance, could involve an increased influence of each of the metrical positions
for Harnoncourt. Together, the increased influence of these basis functions would also lead to
a louder performance of the fragment overall, but may not be compatible with Harnoncourt’s
interpretation of the rest of the piece.

Listening to the respective passages, we note indeed a clearly audible difference: Solti takes
the diminuendo very strictly, immediately softening the orchestra and quickly arriving at a
very soft playing level before the actual arrival of the pp. Harnoncourt’s ritardando is more
of a continuation of the preceding fortissimo passage: he only grows slightly softer during the
ritardando, and obeys the pp more abruptly when it arrives (the purple color of the pp starting
with bar 91 indicates that Solti’s pp is actually slightly louder than Harnoncourt’s). It turns
out that these are consistent and obviously deliberate choices, as we find the exact same pattern
later on in the piece, in bars 292–295, where we have an analogous musical passage.

Furthermore, the SD graph shows a slight but systematic pattern in the metrical basis functions.
This pattern suggests the model found slight differences in the metrical accentuation, with Solti

4The reason for the transposition is that, when plotted, it is more intuitive to visualize the temporal dimension
in the x axis and the basis functions in the y axis.
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Figure 5.4: Top: Measured and fitted loudness curves for an excerpt of the performance of
Beethoven’s 6th Symphony, 3rd Movement (bars 87 to 92) by Harnoncourt (orange)
and Solti (purple). Bottom: sensitivity-difference graph for Harnoncourt and Solti.
Orange tones indicate that a basis function has a stronger (positive) contribution to
loudness in Harnoncourt than in Solti; purple tones indicate the opposite.

placing more emphasis than Harnoncourt on the last beat of the bar, and vice versa for the first
to beats. Listening reveals that these differences are too subtle to be heard, however.

Finally, it is important to note that the SD graph pertains to the model fit dynamics curves in
Figure 5.4 (top), not the measured curves. There are some fluctuations in the measured curve
(such as that on beat 3 of measure 89) that are not captured, and therefore cannot be explained
by the SD graph.

5.5 Conclusions

This chapter extends the BM framework for modeling loudness variations in audio recordings
of symphonic pieces. An evaluation of different variants of the model shows that a non-linear
version including temporal dependencies is most effective in a predictive setting, where the
model predicts loudness variations based on the written score, after being trained on a set of
recordings. Examples given in Section 5.4 illustrate how the model can be used as a way to
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explain differences between performances in terms of the written score.

It must be kept in mind however, that the data set used for validating the model, although
comprising works from several composers, is performed by a single orchestra, and two differ-
ent conductors. Preliminary cross-validation suggests the model trained on RCO recordings
generalizes well to recordings by different orchestras, but more elaborate experimentation is
necessary to make stronger claims about the robustness of the model against variance in record-
ing/mixing/mastering conditions across recordings.

Furthermore, the measured overall loudness variation is only a coarse measure of (a single aspect
of) musical expression, and currently, the model approximations (and thus its explanations)
may not be adequate at all positions in the performance. Better model approximations and
predictions will allow for novel explanatory uses, such as using the predictions of a model that
was trained on multiple performances of a piece as a “baseline” performance, based on which
the idiosyncrasies of conductors can be established.

The examples were hand-picked here, since the expression model is currently in a stage where
we are testing its validity, and experimenting with different sets of basis functions. In the future,
the model should be capable of automatically identifying excerpts from a piece where two or
more performance differ substantially from each other, in order to highlight them to the listener,
and show which aspects of the performance are different.

In combination with a web-service for aligned music playback and visualization, such as presented
by Gasser et al. (2015), the model presented here allows listeners with a desire to get a better
grasp on a piece of music, to compare different performances of the piece in terms of their
expressive character, and get a better understanding of what it is that makes the performances
different.
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6 Understanding the Role of Cognitively
Motivated Features in Predictions of
Expressive Performances

This chapter contains material published in

• Cancino-Chacón, C., Grachten, M., Sears, D. R. W., and Widmer, G. (2017c). What
Were You Expecting? Using Expectancy Features to Predict Expressive Performances of
Classical Piano Music. In Proceedings of the 10th International Workshop on Machine
Learning and Music (MML 2017), Barcelona, Spain

• Cancino-Chacón, C. and Grachten, M. (2018). A Computational Study of the Role of
Tonal Tension in Expressive Piano Performance. In Proceedings of the 15th International
Conference on Music Perception and Cognition (ICMPC15 ESCOM10), Graz, Austria

6.1 Introduction

Expressive performance of music constitutes an important part of our enjoyment of several
kinds of music, including Western art music and jazz. In these kinds of music, an expressive
performance is not expected to be an exact mechanical rendition of what is written in the score,
but a performer’s interpretation of both the intentions of the composer and her or his own
intentions that are conveyed to the listener through variations in dimensions such as tempo,
dynamics and timbre. As discussed in Chapter 2, computational models of musical expression
can be used to explain the way certain properties of a musical score relate to an expressive
rendering of the music (Widmer and Goebl, 2004). However, existing models, including the
BM approach discussed in Chapters 3 and 4, tend to use a combination of high- and low-level
hand-crafted features reflecting structural aspects of the score that might not necessarily be
perceptually/cognitively relevant features.

Previous work has shown a relation between such expressive variations and perceptual charac-
teristics derived from the musical score, such as musical expectations, and perceived tension
(Meyer, 1961; Huron, 2006; Farbood, 2012; Chew, 2016; Gingras et al., 2016). According to
the increasingly prominent predictive coding paradigm (Friston and Kiebel, 2009; Clark, 2013),
the brain is essentially a prediction machine, aiming to minimize the discrepancy between an
organism’s expectancies and imminent events. This view also has implications for music listen-
ing: it can be argued that musical structures set by the composer generate expectations in the
listener of how the music will continue, and it is the role of the performer to help the listener
understand the composer’s intentions. For example, a performer might decrease the listener’s
uncertainty about future events by slowing down at unexpected/uncertain moments, or speed-
ing up at expected/certain ones, thereby decreasing the processing burden on listeners during
perception.

In this chapter we study the role of two types of perceptually relevant features, musical ex-
pectations and tonal tension, in the prediction of expressive music performance, in particular
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expressive tempo and dynamics. The rest of this chapter is organized as follows: Section 6.2
presents a brief overview on related work quantifying musical expectation and tonal tension.
Section 6.3 presents a formalization of expressive parameters for expressive tempo and dynam-
ics, describes the expectancy, tension and score features employed in this study, and finally
outlines the predictive model used to estimate the expressive parameters. Section 6.4 describes
the empirical evaluation of the proposed approach, the results of which are discussed in Section
6.5. Finally, conclusions are stated in Section 6.6.

6.2 Related Work

In this section we present a brief description of related work on quantifying musical expectation
and tonal tension in the context of computational models of expressive performance. A more
thorough discussion is presented in Section 9.3.3.

6.2.1 Musical Expectation

To examine the relationship between the formation of expectations during music listening on
the one hand, and the realization of musical performances on the other, Gingras et al. (2016)
employed the Information Dynamics of Music model (or IDyOM) (Pearce, 2005), a probabilis-
tic model of auditory expectation that computes information-theoretic features relating to the
prediction of future events. In their study, these information-theoretic features were shown
to correspond closely with temporal characteristics of the expressive performance, which sug-
gests that the performer attempts to decrease the processing burden on listeners during percep-
tion by slowing down at unexpected/uncertain moments and speeding up at expected/certain
ones.

Here we present preliminary work to support the claim that expectancy measures can inform
predictions of expressive parameters related to tempo and dynamics. We extend the work
in (Gingras et al., 2016) in two ways. First, rather than simply demonstrating that expectancy
measures are related to expressive performances, we show that the use of expectancy features
improves the predictive quality of models using other score descriptors, thus providing a more
comprehensive framework for the modeling of expressive performances in music of the common-
practice period. Second, as opposed to fitting the expectancy features to each performance
(i.e. training and testing the model on the same performance), the models presented in this
paper are evaluated by measuring their prediction error on unseen pieces.

6.2.2 Tonal Tension

The concept of musical tension is highly complex and multidimensional, and thus, difficult to
formalize or quantify (Farbood, 2012; Herremans and Chew, 2016). Informally, “increasing
tension can be described as a feeling of rising intensity or impending climax, while decreasing
tension can be described as a feeling of relaxation or resolution” (Farbood, 2012, pp. 387).
The music cognition literature has shown that aspects related to musical tension include both
psychological factors such as expectation and emotion; and musical factors such as rhythm,
timing and dynamics and tonality. For a more thorough description of aspects that contribute
to musical tension, we refer the reader to (Farbood, 2012) and references therein.

In this work we use a computational approach to study the role of tonal tension features –
as proposed by Herremans and Chew (2016) – in the prediction of expressive performances of
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Classical piano music. Computational models of musical expression can be used to explain the
way certain properties of a musical score relate to an expressive rendering of the music (Widmer
and Goebl, 2004). The KTH model (Friberg et al., 2006), one of the most important rule-based
models of expressive performance includes three rules that take into account tonal tension:

1. melodic charge, which emphasizes notes that are tonally distant from the root of the current
chord (i.e. far away in the circle of fifths);

2. harmonic tension, which emphasizes chords that are tonally distant relatively to the key
of the piece; and

3. chromatic charge, which emphasizes regions in which the melody consists of with relatively
small intervals.

This emphasis is performed through gradual increase in loudness and decrease in tempo towards
the emphasized regions (Friberg et al., 2006). Melodic and harmonic charges are relevant for
traditional harmony, since they relate to the relative consonance/dissonance of a chordal struc-
ture given a tonal context. Chromatic charge, on the other hand, is more relevant for atonal
music (Sundberg et al., 1982; Friberg, 1991).

6.3 Modeling Expressive Performances

In this section we provide a brief description of the proposed framework. First we describe how
expressive dynamics and tempo are encoded. Second, we describe the expectancy and score
features. Finally we describe the recurrent neural network (RNN) models used to connect the
input features to the expressive targets.

6.3.1 Expressive Parameters

In this section we briefly describe the parameters used to represent expressive tempo and dy-
namics. For this study, we introduce parameters that describe changes in tempo and loudness.
These are in addition to parameters that describe absolute tempo and loudness, which were
previously defined in Performance Codec v. 2.0 in Section 4.3.2. Changes in tempo and dy-
namics were expected to be particularly relevant to the current study, which focused on the
role that cognitively-plausible features play in shaping performance. The parameter used to
describe tempo in this study also differs from previous chapters in two regards: 1) it represents
a smoothed version of the tempo curve and 2) it is not logarithmic. These differences served to
make our results more comparable to similar research, in particular (Gingras et al., 2016).

Following the notation from Section 3.2, O = {o1, . . . , oNo} is the set of score onsets (i.e. unique
score positions).

1. Tempo.

a) BPR. We take the local beat period ratio as a proxy for musical tempo. In order to
compute this parameter, we average the performed onset times of all notes occurring
at the same score position and then compute the BPR by taking the slope of the
averaged onset times (in seconds) with respect to the score onsets (in beats) and di-
viding the resulting series by its average beat period. Formally, this can be computed
as follows: We define a linear interpolation function of the onset times as

onsetperf (onset(oi)) = lininterp(onset(oi) | ôperf ,O), (6.1)
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where ôperf = {ôperf1 , . . . , ôperfNo
} is the set of average onset times, which are com-

puted using Equation (3.7). This function has the property of perfect reconstruction,

i.e. onsetperf (onset(oi)) = ôperfi . The beat period is then given by

BP(oi) =
d

do
onsetperf (o)

∣∣∣∣
o=onset(oi)

, (6.2)

where the derivative of onsetperf (o) is computed numerically with the finite differences
method using a central differences formula (Burden and Faires, 2001). The BPR can
be computed as

ybpr(oi) = No
BP(oi)∑

oj∈O BP(oj)
. (6.3)

This procedure generates a smoother version of the tempo curve compared to the
one defined in Section 3.3.1 that is less affected by spurious effects due to very short
performed notes.

b) dBPR. This parameter is computed as the first derivative of BPR with respect to
the score position, i.e.

ydbpr(oi) =
d

do
ybpr(o)

∣∣∣∣
o=onset(oi)

. (6.4)

As in the case of BPR, this quantity is computed using numerical differentiation.
dBPR corresponds to the relative acceleration, i.e. the relative changes in musical
tempo.

2. Dynamics.

a) VEL. We treat the performed MIDI velocity as a proxy for loudness. This parameter
is computed as

yvel(oi) =
1

127
max vel(oi), (6.5)

where vel(oi) = {vel(nj) | nj ∈ oi} represents the performed MIDI velocity of all
notes belonging to on.

b) dVEL. This parameter is computed as the first derivative of VEL with respect to
the score position, and roughly corresponds to the relative changes in loudness. This
parameter is computed as follows: We define a linear interpolation of the values of
the MIDI velocity for each onset as

velperf (onset(oi)) = lininterp(onset(oi) | vel,O), (6.6)

where vel = {yvel(o1), . . . , yvel(oNo)} are the values of the normalized MIDI velocity
for each onset. As in the case of function onsetperf , this function guarantees per-
fect reconstruction of the performed (normalized) MIDI velocities and generates a
smoothed loudness curve.

ydvel(oi) =
d

do
velperf (o)

∣∣∣∣
o=onset(oi)

. (6.7)

This parameter is also computed using numerical differentiation.
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6.3.2 Basis Functions

In this section we describe the proposed expectancy and tonal tension features. Since we are
interested in studying the contribution of these cognitively motivated features to the predictions
of expressive dynamics and tempo, instead of using the full set of basis functions described
in Sections 3.3.2, 3.4.1 and 4.2.1, we use a reduced set of basis functions describing low-level
information in the score, including some new basis functions that more naturally capture the
sequential nature of music, as opposed as the averaging procedure described in Section 4.3.3.
We include a full description of the expectancy and tension features in this section, as opposed
to the shorter description of basis functions provided in previous chapters, since the definition
of these functions is more relevant to the results presented in this chapter.

Expectancy Features (E)

IDyOM provides a conditional probability distribution of a musical event v, given a preceding
sequence of events, i.e. p(vi | vi−1, vi−2, . . . ). These events are represented as viewpoints, follow-
ing the multiple viewpoint system (Conklin and Witten, 1995). As discussed in Section 3.2.2,
the viewpoint representation is not isomorphic to the representation using basis functions. In
the following, v(xi) denotes the viewpoints representing element xi in the score.

Following the work of Gingras et al. (2016), we use IDyOM to estimate two information-theoretic
measures representing musical expectations:

1. Information content (IC). The IC measures the unexpectedness of a musical event,
and is computed as

IC(v(xi)) = − log2 p(v(xi) | v(xi−1), v(xi−2), . . . ). (6.8)

a) ICm. The information content for each melody note. This value is computed using a
model that is trained to predict the next chromatic melody pitch using a selection of
melodic viewpoints, such as pitch interval (i.e. the arithmetic difference between two
consecutive chromatic pitches, measured in MIDI note values), and contour (whether
the chromatic pitch sequence rises, falls or remains the same). IDyOM performs a
stepwise selection procedure that combines viewpoint models if they minimize model
uncertainty as measured by corpus cross entropy (Sears, 2016, pp. 255-275).

ϕICm(oi) =

{
1

ZICm
IC(vmelody(nm)) if nm ∈ oi is a melody note

ϕICm(oi−1) otherwise
(6.9)

where vmelody is the viewpoint representation of the melody notes and ZICm is a nor-
malization constant. In the case of Classical piano music, there are fewer contrapuntal
textures than in Baroque music, and therefore, we consider only a single main melodic
line for each piece (that corresponding to the soprano). We assume therefore that
there is at most one melody note per onset. Therefore, if the current onset does not
have a melody note, we use the previous value of ICm. This assumption is musically
plausible in scenarios where the notated duration of the melody notes is longer than
the duration of the notes in the accompaniment, as is the case of arpeggiated accom-
paniment figures like the Alberti bass, which is common in Classical piano sonatas. For
the experiments presented in this chapter, we use the Batik/Mozart dataset, where
the main soprano line has been manually annotated. Otherwise, automatic proce-
dures for voice separation, like the one described in McLeod and Steedman (2016),
might be required.
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6 The Role of Cognitively Motivated Features for Expressive Performance

Since the values of IC can be potentially be large (in this particular case for the
Batik/Mozart dataset they can be an order of magnitude larger that the pitch and
metrical features described below), we normalize this feature for a more efficient
training of the neural networks models described in Section 6.3.3. In this case, the
normalization constant is given as ZICm = mean(ICm) + 2std(ICm), i.e. the mean
value of the IC for all melody notes in the pieces of the Batik/Mozart dataset plus
two times their standard deviation.

b) ICc. Estimation of the IC computed for the combination of pitch events (a proxy
for harmony) at each score onset. IDyOM predicts the next combination of vertical
interval classes above the bass (see Pitch Features 1b below).

ϕICc(oi) =
1

ZICc
IC(vchord(oi)). (6.10)

where vchord uses vertical interval classes to represent onset oi and ZICc is a normal-
ization constant computed in the same way as ZICm .

2. Entropy is a measure of the degree of choice or uncertainty associated with a predicted
outcome. The entropy can be computed as

H(vi) = E{− log2 p(vi | vi−1, vi−2, . . . )} (6.11)

a) Hm. Entropy computed for each chromatic pitch in the melody. This is computed in
the same fashion as the information content for melody notes, i.e.

ϕHm(oi) =

{
1

ZHm
H(vmelody(nm)) if nm ∈ oi is a melody note

ϕHm(oi−1) otherwise,
(6.12)

where ZHm is a normalization constant computed in the same way as ZICm .

b) Hc. Entropy computed for the combined pitch events at each score onset.

ϕHc(oi) =
1

ZHc
H(vchord(oi)), (6.13)

where ZHc is a normalization constant computed in the same way as ZICm .

Tonal Tension Features (T)

In order to characterize tonal tension, we use a set of three quantities computed using the
method proposed by Herremans and Chew (2016). These features capture tonal relationships of
the music represented in Chew’s (2000) spiral array model, a three dimensional representation
of pitch classes, chords and keys constructed in such a way that spatial proximity represents
close tonal relationships. The spiral array is a parametric helix in R3 represented by

sa(ni) =




sin(u(ni))
cos(u(ni))
π√
30
u(ni)


 , (6.14)

where u : X 7→ R is a function denoting the position of the non-enharmonically equivalent pitch
classes (e.g. C] and D[ do not map into the same point) in the circle of fifths given by

u(ni) =
π

2
cof(ni), (6.15)
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Figure 6.1: Representation of non-enharmonically equivalent pitch classes in the spiral array.

where cof(ni) represents the (signed) number of fifths that the pitch class of ni is away from C
such that notes above and below C have positive and negative values, respectively (e.g. cof(C) =
0, cof(B[) = −2 and cof(G) = 1)1. This geometric location of the notes in the spiral array is
shown in Figure 6.1.

Since musical tension varies over time, Herremans and Chew (2016) propose using a sliding
window approach. A cloud is defined as the set of points in the spiral array corresponding to
one such window. In this work, we define the cloud centered on onset oi as all active notes
within a beat from the center of the cloud, i.e.,

cloud(oi) = {sa(nj) | nj is active during [onset(oi)− 1, onset(oi) + 1]}. (6.16)

The center of effect of a cloud is a point that represents the tonal center of the cloud2, which
can be computed as

coe(cloud(oi)) =

∑
nj∈cloud(oi)

duration(nj)× sa(nj)∑
nj∈cloud(oi)

duration(nj)
. (6.17)

The tonal tension features are:

1Note that the selection of C as the center of this representation is arbitrary, and a similar representation can
be described around any note. The author of this work does not endorse the C-centric hegemony pervasive in
Western music.

2The tonal center is a concept similar to that of center of mass of a dynamical system in classical mechanics.
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1. Cloud diameter (Tcd), which estimates the maximal tonal distance between notes in a
segment of music, computed as

ϕTcd =
1

ZT
max pairwisedist(cloud(oi)) (6.18)

where pairwisedist is a function that computes the Euclidean distance between all points
in the cloud and ZT is a normalization constant. Since distances in the spiral array can be
large (in particular, for the pieces in the Batik/Mozart dataset, these distances can be an
order of magnitude larger than the pitch and metrical features described below), we scale
all tension features by dividing them by the distance between enharmonically equivalent
notes (e.g. C] and D[), which means that ZT = ‖sa(C])− sa(D[)‖.

2. Cloud momentum (Tcm) quantifies harmonic movement as the tonal distance from a seg-
ment of music to the next:

ϕTcm(oi) =

{ 1
ZT
‖coe(cloud(oi))− coe(cloud(oi−1))‖ i > 0

0 i = 0
(6.19)

3. Tensile strain (Tts), the relative tonal distance between the current segment and the center
of effect of the key of the piece.

ϕTts(oi) =
1

ZT
‖coe(cloud(oi))− coekey(oi))‖, (6.20)

where coekey(oi) is the center of effect of a key, i.e. a point in the spiral array model
that represents the tonal center of a key. More specifically, the center of effect of a key
is computed as a linear combination of the center of effect of its tonic, dominant and
subdominant chords (see Section 3.4 in (Chew, 2000)).

Herremans and Chew (2016) evaluated these features by comparing them to the empirical study
by Farbood (2012), showing that these features correlate to human perception of tonal ten-
sion.

Pitch and Metrical Features

We include low-level descriptors of the musical score that have been shown to predict charac-
teristics of expressive performance.

1. Pitch (P)

a) (pitchh, pitchl, pitchm). Three features representing the chromatic pitch of the highest
note, the lowest note, and the melody note at each onset.

b) (vic1, vic2, vic3). Three features describing up to three vertical interval classes above
the bass, i.e. the intervals between the notes of a chord and the lowest pitch, excluding
pitch class repetition and octaves. For example, a C major triad (C, E, G), starting
at C4 would be represented as ( pitchl vic1 vic2 vic3 ) = ( 60

127
4
11

7
11 0 ),

where 0 denotes the absence of a third interval above C4, i.e. the absence of a fourth
note in the chord.

2. Metrical position (M)

a) bφ. This feature, referred to as the beat phase (Xia et al., 2015), represents the relative
location of an onset within the bar.
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6.4 Experiments

b) (bd, bs, bw). Three binary features encoding the metrical strength of the t-th onset.
bd is nonzero at the downbeat; bs is nonzero at the secondary strong beat in duple
meters (e.g. quarter-note 3 in 4

4, and eighth-note 4 in 6
8), and bw is nonzero at weak

metrical positions (i.e. whenever bd and bs are both zero).

A mathematical definition of these features is provided in Appendix A.1

6.3.3 Computational Model

As described in Section 4.3, As described in Chapter 4, we can use recurrent neural networks
(RNNs), a family of non-linear sequential models, to assess the contribution of the features
described above to the prediction of expressive dynamics and tempo. In this work, we use a
simple architecture, which we will refer to as bRNN, consisting of a composite bidirectional
long short-term memory layer (LSTM) with multiplicative integration (Wu et al., 2016) with 10
units (5 units processing information forwards and 5 processing information backwards) and a
linear dense layer with a single unit as output. In this way, we can model the each expressive
parameter (BPR, dBPR, VEL or dVEL) as

f(ϕ(oi)) = wT
h

(
h

(l)
i;fw(ϕ(oi) | θf )

h
(l)
i;bw(ϕ(oi) | θb)

)
+ wT

xϕ(oi) + w0, (6.21)

where hi;fw ∈ R5 and hi;bw ∈ R5 are the forwards and backwards LSTM layers with parameters
θf and θb, respectively; wh ∈ R10 and wx ∈ RM are weight vectors connecting the hidden
layers and the input features to the output of the network, respectively, where M is the number
of basis functions in the feature set; and w0 ∈ R is a scalar bias. The bidirectional layer
used in this architecture concatenates the forward and backward components of the recurrent
layer, as described in Equation (4.31). The main difference between the RNN architecture
described in this section and the one discussed in Section 4.3.5 is the use of the more sophisticated
LSTMs with multiplicative integration, compared to the vanilla recurrent layers3. Appendix
F.2.2 contains a detailed description of the LSTMs with multiplicative integration.

6.4 Experiments

For each expressive parameter, we perform 18 5-fold cross-validation experiments corresponding
to models trained on the feature sets described in Section 6.3.2: pitch features (denoted as P),
metrical features (denoted as M), expectancy features (denoted as E) and tonal tension features
(denoted as T), and all combinations thereof (e.g. P + M denotes a feature set consisting of
pitch and metrical features, or E + T denotes a feature set consisting of expectancy and tonal
tension features). Additionally, we include two feature sets consisting of a selection of features
using a feature selection (FS) method described below (P + M +T (FS) and P + M + E +
T (FS)). All feature sets are listed in the first column of Table 6.1. The 5-fold cross-validation
experiment are conducted as follows: each model is trained/tested on 5 different partitions
(folds) of the dataset, which is organized into training and test sets, such that each piece in the
corpus occurs exactly one in the test set. For each fold, we use 80% of the pieces for training
and 20% for testing the model. The training set was further split into a set for updating the
parameters of the network with 80% of the pieces in the training set and a validation set with

3Although originally published in early 2017 in (Grachten and Cancino-Chacón, 2017), the experimental results
described in Section 4.3.5 were conducted in late 2015/early 2016, whereas the article that introduced the
LSTM with multiplicative integration was published in late 2016 (Wu et al., 2016).
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Tempo Dynamics
Feature BPR dBPR VEL dVEL

Set R2 r R2 r R2 r R2 r

P 0.024 0.164 0.068 0.262 0.326 0.586 0.236 0.486
M 0.051 0.241 0.093 0.305 0.048 0.242 0.041 0.195

P + M 0.056 0.254 0.105 0.325 0.351 0.615 0.250 0.501

E 0.028 0.179 0.030 0.174 0.054 0.238 0.024 0.158
P + E 0.035 0.196 0.075 0.275 0.331 0.590 0.231 0.481
M + E 0.067 0.268 0.100 0.318 0.072 0.281 0.054 0.224

P + M + E 0.060 0.263 0.113 0.334 0.355 0.617 0.250 0.501
P + M + E (FS) 0.051 0.248 0.106 0.326 0.332 0.590 0.251 0.503

T 0.010 0.120 0.011 0.110 0.018 0.157 0.026 0.163
P + T 0.021 0.155 0.073 0.271 0.335 0.597 0.250 0.500
M + T 0.054 0.245 0.092 0.305 0.052 0.250 0.050 0.214

P + M + T 0.054 0.246 0.110 0.331 0.347 0.611 0.282 0.532
P + M + T (FS) 0.053 0.241 0.104 0.325 0.280 0.556 0.257 0.508

E + T 0.039 0.209 0.035 0.191 0.035 0.203 0.030 0.171
P + E + T 0.045 0.220 0.079 0.281 0.336 0.599 0.249 0.499
M + E + T 0.061 0.265 0.099 0.317 0.074 0.290 0.064 0.252

P + M + E + T 0.064 0.269 0.115 0.337 0.362 0.623 0.255 0.505
P + M + E + T (FS) 0.052 0.238 0.099 0.318 0.270 0.540 0.242 0.493

Table 6.1: Predictive results for expressive tempo and dynamics, averaged over all pieces on the
Batik/Mozart corpus. Larger R2 and r means more accurate predictions.

20% of the pieces. The parameters of the model are learned by minimizing the mean squared
error on the training set using RMSProp (Tieleman and Hinton, 2012).

For reproducibility, the hyper-parameters for training the models are given as follows: The
weights of the bidirectional LSTM with multiplicative integration were drawn from U(−0.01, 0.01),
and the biases and initial states were initialized to zero. We used a learning rate of 10−3, a gradi-
ent moving average decay factor of 0.9 for computing the parameter updates with RMSProp. The
value of the gradients was clipped to lie between −2 and 2. The gradients for back-propagation
were truncated after 100 steps. The batch size was set to 100 sequences of 200 steps each. To
avoid overfitting, the l2-norm weight regularization was used with regularization coefficient of
10−3. Early stopping was used after 100 epochs without improvement in the validation set. All
models were trained for a maximum of 5000 epochs.

The feature selection procedure computes the pairwise mutual information between each of the
features and each of the expressive parameters. This information-theoretic measure expresses
how much knowing the value of one variable reduces uncertainty about the value of the other
variable (Ross, 2014), and is a common way of determining the relevance of features in prediction
tasks. Formally, the mutual information between two variables a and b is given by

MI(a, b) = E
{

log

(
p(a, b)

p(a)p(b)

)}
,

where E is the expectation operator, p(a, b) is the joint probability distribution of a and b,
and p(a), p(b) are the marginal probability distributions of a and b, respectively. If a and b
are statistically independent (i.e. they do not share information about each other), the mutual
information is zero. In the FS scenario we select the 10 features with the largest mutual infor-
mation for each expressive parameter. This procedure was performed on a small subset of the
Batik/Mozart dataset (20% of the pieces selected randomly).
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Figure 6.2: Normalized mutual information between features and expressive parameters. A
larger mutual information means that the variables are more related to each other.

6.5 Results and Discussion

6.5.1 Predictive accuracy

We use the coefficient of determination R2 and Pearson’s correlation coefficient r to evalu-
ate model accuracy. Table 6.1 shows the values R2 and r averaged over all pieces on the
Batik/Mozart corpus. For each expressive parameter, we conducted a paired–samples two-
tailed t-test at the p < 0.01 level to compare the differences between the R2 values of features
sets with and without expectancy features, tension features or both groups. (e.g. P vs. P +
T,M vs. M + T, and M + P vs. M + P + T for tension features and P vs. P + E, M vs. M
+ E, and M + P vs. M + P + E for expectancy features). The results of these comparisons are
reported in Table 6.2 for parameters describing expressive tempo and Table 6.3 for parameters
describing expressive dynamics.

Figure 6.2 shows the normalized mutual information between each feature and the expressive
parameters. For the benefit of graphical display (due to differences in ranges of mutual informa-
tion), a normalization was performed by dividing the value of the mutual information between
each feature and a given expressive parameter by the sum of the mutual information for all
features for that parameter. In this plot, the height of a column (the value of the mutual in-
formation) signifies how closely related that feature is to the expressive parameter. The results
in this plot suggest that the tension features, in particular the cloud diameter might be more
related to the prediction of changes in tempo and dynamics, whereas the tensile strain might be
more related to absolute tempo and dynamics than their changes.

Note that the values in Figure 6.2 only measure the MI of the features and expressive parameters
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Tempo
BPR dBPR

Feature Set + E d + E d

∅ - 0.028 - 0.030
P 0.024 0.035 (0.36) 0.068 0.075 (0.14)
M 0.051 0.067 (0.27) 0.093 0.100 (0.12)

P + M 0.056 0.060 0.105 0.113 (0.11)
P + M + T 0.054 0.064 (0.16) 0.110 0.115 (0.06)

+ T d + T d

∅ - 0.010 - 0.011
P 0.024 0.021 0.068 0.073 (0.10)
M 0.051 0.054 0.093 0.092

P + M 0.056 0.054 0.105 0.110 (0.06)
P + M + E 0.060 0.064 0.113 0.115

+ E + T d + E + T d

∅ - 0.039 - 0.035
P + M 0.056 0.064 0.105 0.115 (0.12)

Table 6.2: Proportion of variance explained (R2) for expressive tempo using different feature
sets, averaged over all pieces on the Batik/Mozart corpus. Larger R2 values reflect
more accurate predictions. For each combination of target and feature set, the results
are listed for that feature set as is (left), and including expectancy features E, tonal
tension features T or both E + T (right). For clarity, improvements of R2 as a result
of adding E, T or both are marked in green, whereas deteriorations are marked in
red. Bold numbers mark a statistically significant difference (p < 0.01). The effect
size (Cohen’s d) is reported in parenthesis for those cases with statistically significant
differences.

at isolated time instances, without context. Although this gives a good first impression of the
relevance of features, the bRNN model presented above is specifically designed to take advantage
of the temporal context to make predictions, implying that feature values at times before and
after τ may also help to predict expressive parameters at τ . Therefore Figure 6.2 does not
necessarily reflect the relevance of features when used as input to the bRNN, which is reflected
in the results for (FS) feature sets in Table 6.1 being consistently worse than their counterparts
without feature selection.

The results in Tables 6.2 and 6.3 show that the effects of including E were most significant
for prediction of BPR and dBPR, but (mostly) not significant for predicting VEL and dVEL,
suggesting that models including expectancy features are better for predicting expressive tempo,
particularly changes in tempo. The fact that the use of expectancy features improves model
performance for tempo but not for dynamics might be due to the relation of expressive tempo
to structural properties of the music, such as phrase-final lengthening and the final ritardando
at the end of a piece (Honing, 2006). Since expectation features also relate to music structure
in the sense that music tends to be more unpredictable at boundaries between musical segments
than within segments (Pearce et al., 2008), this may in part explain why the models are better
at predicting changes in expressive tempo (dBPR).

On the other hand, according to the results in Tables 6.2 and 6.3, the effect of including T was
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Dynamics
VEL dVEL

Feature Set + E d + E d

∅ - 0.054 - 0.024
P 0.326 0.331 0.236 0.231
M 0.048 0.072 0.62 0.041 0.054 0.27

P + M 0.351 0.355 0.250 0.250
P + M + T 0.347 0.362 0.12 0.282 0.255 0.32

+ T d + T d

∅ - 0.018 - 0.026
P 0.326 0.335 0.236 0.250 0.16
M 0.048 0.052 0.041 0.050 0.18

P + M 0.351 0.347 0.250 0.282 0.40
P + M + E 0.355 0.362 0.250 0.255

+ E + T d + E + T d

∅ - 0.035 - 0.030
P + M 0.351 0.362 0.250 0.255

Table 6.3: Proportion of variance explained (R2) for expressive dynamics using different feature
sets, averaged over all pieces on the Batik/Mozart corpus. Larger R2 values reflect
more accurate predictions. For each combination of target and feature set, the results
are listed for that feature set as is (left), and including expectancy features E, tonal
tension features T or both E + T (right). For clarity, improvements of R2 as a result
of adding E, T or both are marked in green, whereas deteriorations are marked in
red. Bold numbers mark a statistically significant difference (p < 0.01). The effect
size (Cohen’s d) is reported in parenthesis for those cases with statistically significant
differences.

not significant for the prediction of BPR and VEL but it was significant for the prediction of
dVEL in all cases. For dBPR including T was only beneficial in combination with P. Based on
this result we hypothesize that the concept of tonal tension is relevant for changes in tempo, but
the features used to represent tonal tension may not convey enough information by themselves
and are therefore only advantageous in combination with more specific pitch information.

Furthermore, the results in Tables 6.2 and 6.3 suggest that using both expectancy and tension
features does not necessarily improve prediction of the expressive parameters, which supports
the hypothesis that different expressive parameters might need different sets of features, as
discussed in Section 3.6.

6.5.2 Sensitivity Analysis

In order to visualize the contribution of each feature to the prediction of the changes in tempo
and loudness, we perform a differential sensitivity analysis4 of the models by computing a local
linear approximation of the output of the bRNNs trained on all features (P + M + E + T). The
sensitivity of the model outputs to the input features for each expressive parameter is computed

4We use the definition of sensitivity analysis from the applied mathematics literature, not in the sense used in
the psychology literature.
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as
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1 ), . . . , ϕ(o

Nq
Nl

)}} is a set of input sequences selected
randomly from the dataset. The resulting sensitivity maps are plotted in Figure 6.3. For these
plots, 2500 sequences were randomly selected from the pieces in the Batik/Mozart dataset5.
Each sequence contains 400 time steps, corresponding to τ − 199, . . . , τ − 1, τ, τ + 1, . . . , τ + 200
(although for the plots we focus on τ − 5 to τ + 5). This figure can by roughly interpreted
as follows: The color in the cell that corresponds to feature ϕi and time step j represents the
(average) contribution of the value of ϕi at time j (i.e. ϕi(oj)) to the prediction of the expressive
parameter at time j = τ (the center column of the plot). Blue tones reflect feature values
that negatively contribute to the predicted value (the higher the feature value the lower the
predicted value), and red tones reflect feature values that positively contribute to the predicted
value.

The plots in Figure 6.3 suggest a tendency of the performer to emphasize certain melodic and
harmonic events by slowing down. For example, there is a tendency to slow down if the next
melodic events are unexpected (see the reddish hue in ICm for time steps > τ in the top right
plot) and to speed up if the previous melodic events were unexpected or uncertain (the blueish
hue in Hm and ICm for time steps ≤ τ in the top right plot), which is consistent with the
findings reported in (Gingras et al., 2016). On the other hand, a passage consisting of uncertain
or unexpected harmonic events contributes to an overall slower tempo (the reddish hue in Hc

and ICc for time steps ≥ τ in the top left plot).

Regarding tonal tension, according to the sensitivity maps in Figure 6.3, tonally distant melody
notes – which contribute to increased tension, captured by an increase in cloud diameter (Tcd)
– might be emphasized by slowing down (the reddish hue in Tcd for time step τ in the top right
plot). Furthermore, the sensitivity maps suggest that such a slowing down before tonally distant
melodic events might be prepared for with a slight speeding up (the bluish hue in Tcd for time
steps > τ in the top right plot). This finding is consistent with the melodic charge rule in the
KTH model (Friberg et al., 2006). On the other hand, harmonic events that contribute to the
increase of tension – such as chords that are tonally far away from the key of the piece (as is the
case of the more unstable parts of the development section of a sonata form), captured by the
increase in tensile strain (Tts), or consecutive chords that are tonally far away from each other,
captured by the cloud momentum (Tcm) – are emphasized by slowing down and an increase
in loudness (the reddish hue for time step τ in Tcm in the top right plot and in Tts in the
bottom right plot, respectively). This finding agrees with the harmonic charge rule in the KTH
model.

6.6 Conclusions

In this chapter we have investigated the plausible role that musical expectations and tonal
tension may play in shaping musical expression in classical piano performances. Our results
support the view that expectancy features, reflecting what a listener is expecting to hear, can

5As in the case of the sensitive-difference graphs described in 5.4, we transpose the sensitivity maps such that
the temporal dimension is in the x axis.
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Figure 6.3: Sensitivity plots for BPR (top left), dBPR (top right), VEL (bottom left) and dVEL
(bottom right). Each row in the plot corresponds to an input feature and each column
to the contribution of its value at that time step to the output of the model at τ (the
center of each plot). Red and blue indicate a positive and negative contribution,
respectively.

help to predict the way pianists perform a piece. In particular, our results show that using
expectancy features improves predictions of tempo, particularly changes in tempo, but does not
improve predictions of dynamics. On the other hand, our results also show that using tonal
tension information improves predictions of change in dynamics, but not predictions of absolute
tempo and dynamics. For predicting changes in tempo, using tonal tension features as defined
in (Herremans and Chew, 2016) was only beneficial when low level pitch information was also
available. This suggests that tonal tension features are potentially relevant for predicting tempo
changes, but by themselves not sufficiently specific for that purpose.

The sensitivity analysis of the trained models found some evidence relating well-known rules/guidelines
for performance, as codified by the rules in the KTH model (Friberg et al., 2006) and the results
by Gingras et al. (2016).

Future work may focus on a more explicit testing of the hypothesis that recurrent neural network
models may learn features describing tonal characteristics from low level pitch information as a
side effect of learning to predict expressive tempo and dynamics.
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7 Implementing the Basis Function Models:
The Basis Mixer

This chapter contains material published in

• Cancino Chacón, C. E. and Grachten, M. (2016). The Basis Mixer: A Computational Ro-
mantic Pianist. In Late Breaking/ Demo, 17th International Society for Music Information
Retrieval Conference (ISMIR 2016), New York, NY, USA

7.1 Introduction

This chapter discusses how to implement the BM framework as a standalone system for gener-
ating an expressive performance of a piece given its score. This system, which we call the Basis
Mixer allows a user to render an expressive performance of a piece given its score in MusicXML
format. Additionally, we present a user interface by means of a web app that combines the
Basis Mixer with a web service. Besides rendering of expressive performances, By manipulating
individual parameters to varying degrees, the Basis Mixer could be used as an educational tool
for teaching about expressive variations (e.g. contrasting metronomic with highly temporally
varied performances), playing styles (e.g. showing models trained on different performers), the
modeling process (e.g. using different versions of the predictive models – for example linear
models vs. FFNNs), etc.

The BM framework for musical expression was first proposed by Grachten and Widmer (2012).
As described in Chapter 3, this framework uses numerical encodings of musical scores (referred
to as basis functions) to learn how music is performed in an expressive manner. Chapters 3,
4, 5, 6 discuss the use of the BM framework for both analysis and synthesis of music perfor-
mances.

As discussed in Section 3.2, the BM consists of three components:

1. A performance codec C, which denotes the way the expressive characteristics of a perfor-
mance are represented by the model through the so-called expressive parameters.

2. A score representation model Y, which describes the way the information in a musical
score is represented. In the particular case of the BM framework, we use basis functions
to capture certain structural aspects of the score and represent them numerically.

3. A predictive function F , which maps elements of the score represented through the basis
functions to the expressive parameters.

Initial versions of the framework, described in Chapter 3, were limited to simple linear models
to describe the relation between expressive dynamics and the musical score in classical pi-
ano music (Grachten and Widmer, 2012; Grachten et al., 2014), Subsequent versions include
the use of non-linear models, like the use of feed-forward neural networks (FFNNs) (Can-
cino Chacón and Grachten, 2015; Cancino-Chacón et al., 2017d), and recurrent neural networks
(RNNs) (Grachten and Cancino-Chacón, 2017; Cancino-Chacón et al., 2017c; Cancino-Chacón
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7.2 Overview of the Basis Mixer

and Grachten, 2018). These non-linear and sequential models are described in more detail in
Chapter 4.

In addition to expressive dynamics and tempo, the BM framework represents articulation and
timing deviations of individual notes, and thus, allows for complete representation of expressive
piano performances (in MIDI format).

The contributions of this chapter are twofold: First, we present a description of the implemen-
tation aspects of each of the components of a BM framework, and how this implementation can
be used for rendering an expressive performance of a piece given its score (in MusicXML), as
well as describing how to train the models given a set of performances matched to their scores.
Secondly, we present an interactive web interface that allow users to control some aspects of the
expressive performance generated by the Basis Mixer.

The code of the Basis Mixer will be made publicly available1. Note that due to the ongoing
nature of the development of the BM framework, the latest state of the Basis Mixer in the
repository might not correspond to the one described in this chapter.

Due to copyright reasons, we are not allowed to distribute the datasets used for training the mod-
els (the Magaloff/Chopin and Beethoven/Zeilinger datasets). Instead, we provide several pre-
trained models corresponding to different model architectures/composer combinations.

The Basis Mixer is implemented in Python 2.72, an object-oriented programming language, and
relies heavily on Numpy3, the main Python package for scientific computing.

The rest of this chapter is structured as follows: Section 7.3 describes the implementation the
performance codec. In Section 7.4 we give an overview of the way a musical score (in MusicXML
format) is represented using the BM framework. Section 7.5 describes the implementation of
the predictive functions. In Section 7.6 we present the prototype for a web service that allows
the user to generate and manipulate an expressive performance of a piece of music using BM
models, given a MusicXML file. Finally, conclusions are presented in Section 7.7.

7.2 Overview of the Basis Mixer

In this section we provide a detailed overview of the way the different components of the Basis
Mixer interact with each other to generate a rendering of a piece given its score, and to train
the predictive functions given a training set.

The purpose of this section is to provide a guideline and motivation for each of the components
of the system, which will be described in the following sections. In the following overview,
elements denoted with the typewriter typeface (e.g. PerformanceCodec, RegressionModel, etc.)
correspond to components of the Basis Mixer.

7.2.1 Rendering a Performance

Figure 7.1 illustrates the process of rendering the performance of a piece given its score using
the Basis Mixer. The black arrows in this figure denote the flow of information between the
different components. The blue arrows denote sharing of information necessary to initialize a

1https://github.com/OFAI/basismixer.
2https://www.python.org.
3http://www.numpy.org
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Figure 7.1: Schematic representation of the relationship between components of the Basis Mixer
for rendering the performance of a piece given a score S. Pink rectangles with
rounded corners and thick black borders represent instances of the main components
of the system: BasisGenerator, RegressionModel, and PerformanceCodec. The
Yellow rectangle with a thin black border represents a method for post-processing
the predicted performance Y: rescale and recenter and use the specified average BP.
Black arrows denote the direction of the flow of information. Blue arrows denote
sharing of configuration information passed to the constructor of the instances of the
main components. The background colored rectangles without a border encapsulate
the components of the Basis Mixer that correspond to the main components of the
BM framework: the score S (in orange), the performance PS (in light yellow), the
score representation model F (in green), the performance codec C (in red), and the
predictive function F (in blue).

component of the Basis Mixer. Furthermore, the relationship of the components of the Basis
Mixer and the BM framework is highlighted with the background colored rectangles.

The Basis Mixer renders the performance of a piece is as follows:

Initializing the Basis Mixer

1. Initialize an instance of class PerformanceCodec, which implements a performance codec
C. This object defines the version of the expressive parameters used in describing the
performance. In Figure 7.1, the PerformanceCodec object defines Ny parameters. The
PerformanceCodec is described in more detail in Section 7.3 below.

2. Load the trained predictive functions (f(·)) for the parameters specified in the instance
of PerformanceCodec. Each of these models is implemented as an instance of class
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7.2 Overview of the Basis Mixer

RegressionModel, which is described in Section 7.5 below. The whole set of functions
specifies the complete predictive function F . If no function for an expressive parameter is
provided, the system will use a dummy function which returns the parameters equivalent
to a deadpan performance. In Figure 7.1, there are Ny RegressionModel objects, imple-
menting functions f (1), . . . , f (Ny), respectively, each of which corresponds to an expressive
parameter.

3. Initialize an instance of BasisGenerator, a class which implements a score representation
model (Y), which defines the basis functions used for modeling each expressive parameter.
These basis functions are specified by the trained predictive functions (since a predictive
function cannot predict an expressive parameter for a feature that was never seen in the
training set). As denoted in Figure 7.1, there is a single BasisGenerator object, which
generates the input matrices of score representations for each predictive function. The
BasisGenerator is described in Section 7.4 below.

Generating the Performance

1. Parse the score in MusicXML into a Score object (described in Section 7.4 below) and
compute the performance representation matrices Φ (implemented as Numpy arrays) cor-
responding to the input for each expressive function. In Figure 7.1, these matrices are
Φ(1), . . . ,Φ(Ny), which correspond to each of the RegressionModel objects.

2. Compute the predictions of each predictive function f(Φ) = y using the RegressionModel
objects. In Figure 7.1, these predictions are y(1), . . . ,y(Ny), which are then concatenated
into a single Y (see discussion of the form of y for the case of onset-wise and note-wise
parameters in Section 4.3.4).

3. Post-process the predictions of the model: the predictions of each parameter are standard-
ized to have zero-mean and unit variance, and then are rescaled and recentered according
to a user-specified configuration file (in the current implementation, a JSON file4). This
post-processing module (including the configuration file) is depicted in Figure 7.1. The
purpose of the post-processing is to allow the user to control aspects such as the average
tempo and maximal loudness of the performance.

4. Use the PerformanceCodec object to decode the predicted performance into a MIDI
file using the score information in the Score object (see the arrow connecting Score to
PerformanceCodec in Figure 7.1).

Audio examples of pieces rendered by the Basis Mixer are available online5.

7.2.2 Training the Basis Mixer

As described above, in order to render a performance the Basis Mixer requires models trained
on a dataset of performances matched to their scores. This process is illustrated in Figure 7.2,
which follows the same color and shape conventions as Figure 7.1.

The training of the Basis Mixer is described as follows:

1. Select the version of the performance codec C and initialize its corresponding PerformanceCodec

object.

4JavaScript Object Notation.
5http://www.carloscancinochacon.com/documents/online_extras/basis_mixer/basis_mixer.html.
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Figure 7.2: Schematic representation of the relationship between components of the Basis Mixer
for training the predictive function given a test set T . Pink rectangles with rounded
corners and thick black borders represent instances of the main components of the
system: BasisGenerator, RegressionModel, and PerformanceCodec. Black arrows
denote the direction of the flow of information. Blue arrows denote flow of configura-
tion information passed to the constructor of the instances of the main components.
The background colored rectangles without a border encapsulate the components of
the Basis Mixer that correspond to the main components of the BM framework: the
score S (in orange), the performance PS (in light yellow), the score representation
model F (in green), the performance codec C (in red), and the predictive function
F (in light blue).

2. Define the performance representation model Y and initialize its corresponding BasisGenerator

by specifying the basis functions used for modeling each expressive parameter in the per-
formance codec. In the current implementation this specification is done through a user
provided configuration file in JSON format (see the “Basis Config” providing initialization
settings to BasisGenerator (denoted by a blue arrow) in Figure 7.2).

3. Given Np matched performances (in Matchfile format, described in Section 7.3 below)
and their corresponding scores (in MusicXML format), construct the training dataset as
follows:

a) Parse each score in the dataset into a Score object

b) Use these Score objects to generate the score representations corresponding to each
of the pieces using the BasisGenerator. In Figure 7.2, the scores in the training
set, denoted as ΦT , are represented by a matrix concatenating all matrices corre-
sponding to each piece in the training set (see the discussion regarding the form of
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the performance representation for onset-wise and note-wise parameters in Section
4.3.3).

c) Encode each matched performance using the PerformanceCodec (and the Score ob-
ject corresponding to the score of the performance). The performance representation
(in terms of the expressive parameters defined by the performance codec C) of the
pieces in the training set is denoted as TT . In Figure 7.2, TT is a matrix con-
catenating the performance representations of each piece in the dataset. This this
performance representation is split into vectors t, each denoting the components of
TT corresponding to an expressive parameter (see t(1), . . . , t(Ny) in Figure 7.2). We
remind the reader that the difference between y in Figure 7.1 and t in Figure 7.2 is
that y are predictions of the model, whereas t represent actual observed performances.

4. Specify the architecture of the predictive functions f(·) predicting the expressive parame-
ters and the hyper-parameters for its optimization. In the current implementation this is
done through a configuration files. Each of these predictive functions is represented with
a RegressionModel.

5. Use the training set to train each RegressionModel using the training configuration spec-
ified in the previous step.

6. Serialize these RegressionModel objects and save them into a file.

7.3 Performance Representation

In this section, we discuss the implementation details of the PerformanceCodec object, which
allows for representing performances using the performance codecs described in Sections 3.3.1
and 4.3.2.

The current implementation of PerformanceCodec allows for specifying the performance codecs
described in previous chapters as follows:

• Performance Codec v. 1.0 (C1.0), which defines 4 expressive parameters (MIDI velocity,
log BPR, timing and log articulation) for modeling performances in a note-wise fashion
(see Section 3.3.1). This codec is best used with non-sequential models like the linear
models and FFNNs.

• Performance Codec v. 1.5 (C1.5), which defines the same parameters as codec C1.0, but uses
a smoothed version of the local beat period to compute parameters describing expressive
tempo, timing and articulation, such that the resulting parameters are more psychologi-
cally plausible (see Appendix B).

• Performance Codec v. 2.0 (C2.0), which defines 2 onset-wise expressive parameters (MIDI
velocity trend and log BPR) and 3 note-wise parameters (MIDI velocity deviations, timing
and log articulation) (see Section 4.3.2). These codec is best used with sequential mod-
els for onset-wise parameters (like RNNs) and non-sequential models (linear models or
FFNNs) for note-wise parameters.

• Performance Codec v. 2.5 (C2.5), which describes the same parameters as C2.0, but uses a
smoothed version of local beat period used in codec C1.5 (see Appendix B).

The representation of a performance in terms of the above expressive parameters for both ver-
sions of the codec is lossless up to the average beat period (BPave), which means that an encoding
of a MIDI performance in terms of these parameters allows for an exact reconstruction of the
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performance, given the score and the BPave . In the current implementation, we allow the user
to specify the average beats per minute, given by bpmave = 60 s

BPave
, since this parameter is more

intuitive than the average beat period.

An instance of the PerformanceCodec object has an encode and decode method, which imple-
ment the performance representation model Y and its corresponding performance decoder Y−1,
respectively.

We describe these functions in the following subsections.

7.3.1 Encoding a Performance

Before continuing with our description of the encode method, we explain the way a matched
performance is represented. As mentioned in Section 2.4, the datasets consisting of computer-
controlled piano performances used in this thesis (the Batik/Mozart, Magaloff/Chopin and
Zeilinger/Beethoven datasets) are stored in Matchfile format. This format was created by Ger-
hard Widmer and his colleagues for the specific purpose of matching MIDI performances to
their corresponding elements in the score. Figure 7.3 shows an excerpt of the first movement
of Sonata KV. 332 by W. A. Mozart performed by Roland Batik in Matchfile format. In this
format, each line represents a note in the performance (see the blue rectangle in the first line
in Figure 7.3) and its corresponding note in the score (see the pink rectangle in the first line in
Figure 7.3). Notes added by the performer that do not appear in the score are called inserts
(highlighted in orange in Figure 7.3). Notes in the score that were not performed are denoted
as deletions (highlighted in green in Figure 7.3).

We parse a matched performance PS in Matchfile format into a MatchFile object, that describes
the performance information. This MatchFile object contains Note and Snote objects, which
contain information about performed notes and notes in the score respectively. Additionally,
MatchFile objects have a note pairs method, which retrieves the matching pairs of Note

and Snote objects. Note objects have attributes indicating the performed MIDI pitch, MIDI
velocity, onset and offset time in seconds. Snote objects have attributes indicating the MIDI
pitch, enharmonic pitch and octave, score position and duration in beats. As discussed in
Section 3.2, notes have a key-off and a sound-off time. In this work we refer to the offset time of
a note as the latter. In the computation of the offset time of a note, we read the sustain pedal
information from Matchfiles and infer the sound-off times by taking into account the sustain
pedal events.

The encode method receives a matched performance and its corresponding score as inputs and
returns a performance representation T. For performance codec C1.0, t is represented as a
Numpy array of shape (Nx, 4), where Nx is the number of notes in the score, such that each
column corresponds to an expressive parameter (in the current implementation, the order is
MIDI velocity, log BPR, timing and log articulation). For Performance Codec v. 2.0, T consists
of two arrays:

1. Tonset-wise, a Numpy array of shape (No, 2), where No is the number of score onsets o in
the score S, and each column is an onset-wise parameter (in the current implementation,
the order is MIDI velocity trend and log BPR); and

2. Tnote-wise, a Numpy array of shape (Nx, 3), where the each column is a note-wise parameter
(MIDI velocity deviations, timing and log articulation in the current implementation).
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...

info(matchFileVersion,3.0).

info(composer,’Wolfgang Amadeus Mozart’).

info(performer,’Roland Batik’).

info(midiClockUnits,480).

info(midiClockRate,500000).

info(keySignature,[fn,major]).

info(timeSignature,3/4).

snote(n1,[f,n],3,1:1,0,1/8,0.0,0.5,[])-note(1,[f,n],3,671,1564,1564,40).

snote(n2,[f,n],4,1:1,0,2/4,0.0,2.0,[s,ls])-note(2,[f,n],4,676,1404,1480,59).

snote(n3,[a,n],3,1:1,2/16,1/8,0.5,1.0,[])-note(3,[a,n],3,892,957,1480,35).

snote(n4,[c,n],4,1:2,0,1/8,1.0,1.5,[])-note(4,[c,n],4,1071,1164,1480,33).

snote(n5,[a,n],3,1:2,2/16,1/8,1.5,2.0,[])-note(5,[a,n],3,1239,1294,1480,31).

snote(n6,[a,n],4,1:3,0,1/4,2.0,3.0,[s,le])-note(6,[a,n],4,1385,1742,1749,70).

snote(n7,[c,n],4,1:3,0,1/8,2.0,2.5,[])-note(7,[c,n],4,1455,1548,1548,16).

snote(n991,[g,n],3,89:3,2/16,1/16,266.5,266.75,[])-note(991,[g,n],3,95242,95300,95300,56).

insertion-note(992,[b,n],5,95248,95275,95275,53).

snote(n993,[a,n],5,89:3,3/16,1/32,266.75,266.875,[s])-note(993,[a,n],5,95284,95336,95336,73).

snote(n993,[c,n],4,89:3,3/16,1/16,266.75,267.0,[])-deletion.

snote(n994,[g,n],5,89:3,7/32,1/32,266.875,267.0,[s])-note(994,[g,n],5,95379,95445,95445,79).

Figure 7.3: Excerpt of the first movement of Sonata KV. 332 by W. A. Mozart performed by
Roland Batik in Matchfile format. Each line represents a score note (highlighted in
pink in the first line) and a performance note (highlighted in blue for the first line).
The score note information includes attributes such as the index of the (see n2,
which corresponds to n2 in the notation used in this thesis, highlighted in gold), its
notated pitch and octave (F natural 4 , highlighted in brown and gray, respectively
for n2). The performed note information includes the number of the note in the
MIDI file (2 highlighted in red for n2), the performed onset time (in MIDI ticks,
highlighted in light green for n2); key-off time and the sound-off time estimated
using pedal information (highlighted in purple and yellow for n2, respectively); and
the performed MIDI velocity of the note (highlighted in light blue). Performed notes
that do not represent notes in the score are denoted as insertions (highlighted in
orange). Omitted notes are denoted as deletions (see the omission of n933 highlighted
in green).

7.3.2 Decoding a Performance

As mentioned above, in addition to defining a method for encoding performances, the PerformanceCodec
class includes a method for decoding the prediction of a performance, Y, generated by the pre-
dictive function of the BM (and implemented in terms of RegressionModel objects described
below), and writing this performance into a MIDI file. In particular, the decode method of
the PerformanceCodec object implements the performance decoder corresponding to the speci-
fied performance codec (Y−1

1.0 and Y−1
2.0 for performance codecs C1.0 and C2.0, respectively). This

method receives the predicted performance representation Y and its corresponding score (rep-
resented using the methods described below), as well as the specified average bpm, to generate
an expressive performance, which is written into a standard MIDI file. For Performance Codec
v. 1.0, the decode method implements the performance decoder specified in Algorithm 3.1. For
Performance Codec v. 2.0, the decode method implements the performance decoder specified
in Algorithm 4.1. Additionally, the decode method includes subroutines to ensure that the
generated performance is a valid MIDI file, such as ensuring that the MIDI velocities of each
note are integers between 0 and 127.
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7.4 Score Representation

In this section, the implementation details of a score representation model F are discussed.
As described in Section 3.2, this representation model is defined in terms of basis functions,
numerical encodings of a variety of descriptors of a musical score. As stated above, the Basis
Mixer implements score representation models through BasisGenerator objects, and uses Score
objects to hold score information.

7.4.1 Implementation Details

A score S in MusicXML format is parsed into a Score object that describes a score ontology,
i.e. a formal representation of concepts and properties relating to the information contained by
a musical score. This Score object consists of ScorePart objects, which relate to the concept
of staves in a musical score. The most common example would be to represent each instrument
in a score by its own ScorePart6. Each of these ScorePart objects contains a TimeLine object,
which acts as a “clothes line” for the elements in a musical score such as bars, notes, performance
directives (e.g. slurs, dynamics and tempo markings), key and time signatures, etc. TimeLine

objects contain a sequence of TimePoint objects which “pin” the score elements to a score
position t. In this way, TimePoint objects contain objects (representing notes, bars, performance
directives, etc.) that start and end at score position t.

Performance directives are parsed using a context free grammar using the Ply library7. In this
way, performance directives represented by strings of text are tokenized, which allows us, for
example, to identify both Allegro molto and Allegro con brio as instances of Allegro. Addi-
tionally, given that the scores from the Magaloff/Chopin and Zeilinger/Beethoven datasets were
digitized using optical music recognition, we have a dictionary of equivalences from incorrectly
identified textual performance directives (e.g. dinn. 7→ dim.).

Each group of basis functions is implemented as a class Basis, which has a method makeBasis

for computing the value of the basis functions given a ScorePart object. The makeBasis method
returns two objects: an instance of FeatureBasis, and a list denoted as names. FeatureBasis
is a class with attributes W, which stores the value of the basis functions evaluated for their
relevant score elements as a Numpy array of shape (N,m), where N is the number of relevant
elements (onsets or notes) in the TimeLine object and m is the number of basis functions defined
by class Basis. On the other hand, names is a list stores the names of the basis functions as
strings.

A user can specify a complete score representation model Y by specifying the basis functions
(individually or by group) for each expressive parameter in a configuration file8. Given such a
configuration, an instance of the BasisGenerator class generates a score representation Φ(j) for
the j-th expressive parameter. This score representation is stored as a Numpy array of shape
(N,Mj) resulting from concatenating the arrays corresponding to the basis functions defined
by all FeatureBasis objects generated for the j-th expressive parameter, where Mj is the total
number of basis functions. In case of joint modeling of expressive parameters, the basis functions
for each expressive parameters are combined into a single array.

6Note that given the variations in the MusicXML format, in certain cases, the upper and lower staves of a piano
score could be represented as individual ScorePart objects.

7http://www.dabeaz.com/ply/.
8A JSON file in the current implementation.
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7.5 Predictive Function

7.5 Predictive Function

In this section we describe the way that the predictive functions of the BM framework are
implemented in the Basis Mixer.

7.5.1 Functions for Onset-wise Parameters

Given the sequential nature of the onset-wise expressive parameters, we use RNNs to model
dynamics and tempo. Our current implementation allows us to use vanilla recurrent layers,
but also more sophisticated recurrent architectures, such as long-short term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRUs) with or without
multiplicative integration (Wu et al., 2016). Furthermore, these architectures can be used to
build probabilistic neural networks, such as the Gaussian mixture density RNNs (GMDRNNs)
described in Appendix D.

7.5.2 Functions for Note-wise Parameters

On the other hand, to model note-wise parameters, we have implemented both linear models
described in Chapter 3, namely the deterministic linear model described in Section 3.3.3 and
the Bayesian linear model described in Section 3.4.2. We also have implemented the non-linear
models (FFNNs) described in Section 4.2.2. Furthermore, we can use FFNNs to build proba-
bilistic neural networks such as the Gaussian mixture density FFNNs (GMDFFNNs) described
in Appendix D.

7.5.3 Implementation Details

As discussed in Section 7.2, the base object implementing the predictive functions of the BM is
RegressionModel. An instance of RegressionModel has attributes input names, output names,
fit and predict. Attributes input names and output names are lists containing the name of
the input basis functions and the name of the output parameters that the RegressionModel

is predicting. This information can then be used to initialize a BasisGenerator for the pur-
pose of rendering expressive performances, as described in Section 7.2.1. Each instance of
RegressionModel can predict a single expressive parameter or a combination of expressive pa-
rameters, if they are modeled jointly.

Our current implementation allows for using any combination of models for predicting expressive
parameters, including linear models and the recurrent networks described above.

For training linear models, we use the LSMR, an iterative algorithm for solving sparse linear
least squares problems. We use the implementation of LSMR provided in scipy.sparse.linalg.
Neural networks are constructed and trained using Lasagne (Dieleman et al., 2015), a lightweight
library for building and training neural network models based on Theano (Al-Rfou et al., 2016),
a Python framework for fast computation of mathematical expressions. After a model is trained,
the RegressionModel instance containing it is serialized.

The main script for generating a rendering of a score loads the serialized instances of the
RegressionModel object, and in case there is no model for an expressive parameter, a dummy
model is used, which returns the parameters equivalent to a deadpan version.

There are several alternatives for predicting a performance:
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• Return the deterministic output of the model (for deterministic models such as the FFNNs
and RNNs).

• Return the expected value of the probability distribution (for probabilistic models such as
the Bayesian linear model described in Section 3.4, or for GMDNFFNNs and GMDRNNs).

• Return the largest component (for GMDNFFNNs and GMDNRNNs)9.

• Sample a performance from a generative distribution. Although this method is not yet im-
plemented in the current version of the Basis Mixer, a description of methods for sampling
performances is provided in Appendix G.

Models can only predict a score that is represented using the basis models the model was trained
on. If the score does not include elements for computing a basis function, their values are set to
zero.

The output of the predictive models (i.e. the predicted performance) is standardized to have
zero-mean and unit variance. The user can then specify the scaling and center of the parameters
via a configuration file (see the “Render Config” in Figure 7.1), or through the sliders in the
web interface described in Section 7.6. This step is represented by the yellow “Post-processing”
module in Figure 7.1.

7.6 Interactive Web Interface

In addition to the general implementation of the Basis Mixer discussed above, we present the
prototype of a web app, which we call The Basis Mixer: A Computational Romantic Pianist10.
This web app consists of an interactive user interface (UI) for the Basis Mixer that allows the
user to upload a score in MusicXML format and create an expressive interpretation of the score
as a MIDI and audio file. The UI is shown in Figure 7.4. For rendering the performance as an
audio file we use Fluidsynth11, an open source software synthesizer based on the SoundFont 2
specifications12.

The Web app generates a performance using models trained using the Magaloff/Chopin and
Beethoven/Zeilinger datasets, i.e. Classical and Romantic piano music from the late 18th and
19th centuries (hence the name). Using the controls in the UI, the user can specify the ren-
dering model (see the “Rendering Model” option in the UI shown in Figure 7.4) from a list
of trained models with different architectures, trained for predicting expressive parameters in-
dependently or jointly, and different training sets (e.g. using only the Magaloff/Chopin, the
Zeilinger/Beethoven or both).

Additionally, there are controls in the UI (see the faders shown in Figure 7.4) for specifying the
mean value and standard deviation13 of the different expressive parameters, thereby controlling
the overall expressive characteristics of the performance. The faders in the UI provide the Basis
Mixer the information for post processing the predicted performance, which would be provided
in a configuration file in the main implementation of the Basis Mixer (see the blue “Render

9In general, for Gaussian mixture models, the largest component is not guaranteed to be the largest mode of
the distribution (Carreira-Perpiñán, 2000).

10http://lrn2cre8.ofai.at/expression-models/basis_mixer_app/static/app.html.
11http://www.fluidsynth.org.
12SoundFont refers both to a file format and its associated technology for sample-based synthesis (E-mu Systems,

Inc., 2006).
13referred to as degree of variation in UI, since we believe that this term might be more intuitive for the user.
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7.7 Conclusions

Figure 7.4: Prototype UI for the Web App.

Config” file depicted in the schematic representation in Figure 7.1). In the UI, we rename the
expressive parameters to terms that we believe are more intuitive for the user:

• Tempo refers to log BPR;

• Timing refers to timing;

• Loudness refers to MIDI velocity trend;

• Loudness spreading refers to MIDI velocity deviations; and

• Articulation refers to log articulation.

Furthermore, there is a checkbox in the UI that allows the user to include grace notes in the
score. Since grace notes do not have an explicit duration, they are “expanded”, meaning that
they “steal” duration from the main note that they belong to. The user can control how much
duration grace notes steal from their main note using a fader.

7.7 Conclusions

This chapter describes an implementation of the BM framework, called the Basis Mixer. This
implementation allows for generating expressive music performances given a score in MusicXML
format. Additionally, we present the prototype of an interactive interface that allows the user
to upload a score and control certain aspects of the rendering.

Future work includes using adapting the Basis Mixer to an interactive scenario, where a user
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can control certain aspects of the expressive performance (such as loudness and tempo) using
an interface such as a MIDI theremin, or hand controller such as the Leap Motion14.

The implementation of the Basis Mixer described in this chapter renders an expressive perfor-
mance in an offline fashion. Chapter 8 describes an accompaniment system that adapts the
Basis Mixer to allow for expressive accompaniment in real-time.

14https://www.leapmotion.com.
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8 Using Basis Function Models for Expressive
Accompaniment: The ACCompanion

This chapter contains material published in

• Cancino-Chacón, C., Bonev, M., Durand, A., Grachten, M., Arzt, A., Bishop, L., Goebl,
W., and Widmer, G. (2017a). The ACCompanion v0.1: An Expressive Accompaniment
System. In Late Breaking/ Demo, 18th International Society for Music Information Re-
trieval Conference (ISMIR 2017), Suzhou, China

8.1 Introduction

In this chapter, we present a preliminary version of an expressive automatic accompaniment
system capable of adapting aspects of the accompaniment performance to the current playing
style of the soloist.

So far, the BM framework described in this thesis has focused on analysis and generation of solo
performances. In Chapter 5 we describe an extension of the BM for modeling ensemble perfor-
mances, but this approach is mostly aimed at analyzing and comparing (recorded) performances
of a piece, not for the purpose of generating a new rendering of the piece. Nevertheless, in recent
years there has been a growing interest in developing human–computer interaction systems that
generate expressive music performances. As generative models, these interactive systems allow
humans to influence a performance either by generating their own expression (either accom-
panying or improvising with the user), or by allowing the user to shape certain aspects of the
performance in real time (i.e. allowing the user to conduct the performance). Furthermore, as
analysis tools, these models can be used to gain knowledge about the way humans interact with
each other.

Rowe (1992) proposed a terminology for categorizing interactive music systems in three dimen-
sions:

1. score-driven vs. performance-driven, referring to whether the system follows a musical
score or responds to a human performance;

2. instrument paradigm vs. player paradigm, if the system is meant for solo or ensemble
performances;

3. transformative vs. generative vs. sequenced, describing how the system renders the music.

For more thorough review of the current state-of-the-art in expressive interactive systems see
Section 9.3.2 and (Chew and McPherson, 2017).

According to Rowe’s taxonomy, accompaniment systems are score-driven, player paradigm sys-
tems that automatically generate synchronized accompaniment for a (human) solo performance,
(usually) in real time.
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Dannenberg (1984) identifies three tasks that accompaniment systems must solve in order to
successfully perform together with a human:

1. Detecting the solo part, i.e. capturing a human performance in real time (either from a
microphone or a MIDI instrument) and identifying the performed notes.

2. Matching the detected input to the score, i.e. matching these performed notes to notes in
the score (also in the presence of errors). The first two tasks are commonly referred to
as real-time score following, and a system for solving this task is referred to as a score
follower (SF).

3. Generating an expressive accompaniment part.

While most of the work on accompaniment systems has focused on the problem of score following
(Cont et al., 2012; Nakamura et al., 2015a; Raphael, 2010), in recent years there has been
increased interest in exploring expressive accompaniment systems. For example, Xia et al.
(2015) present an accompaniment system capable of generating expressive dynamics and timing
using linear dynamical systems.

In this chapter, we present a preliminary version of an expressive accompaniment system for
MIDI input, which we call the ACCompanion. This system combines a monophonic SF based
on Hidden Markov Models (HMMs) with a version of the Basis Mixer described in Chapter 7
adapted for the accompaniment scenario. In its current state, the system can react to the playing
style of the soloist, in particular in terms of the overall dynamics, tempo and articulation. The
current implementation of this system consists of three main modules that run in parallel with
each other:

1. a module that implements the SF, a module that adapts the expression of the accompa-
niment part according to the performance style of the soloist (which we refer to as the
accompanist); and

2. a module that handles the MIDI inputs and feeds them to the SF, and generates the MIDI
messages corresponding to the accompaniment part and sends them to the output MIDI
device. We refer to this module as the MIDI handler.

Each of these modules roughly corresponds to one of the tasks proposed by Dannenberg (1984):
the MIDI producer covers the first task (and some aspects of the third task), and the SF and
accompanist modules solve the second and third task, respectively. In the rest of this chapter we
will focus on the SF and accompanist modules, since they are the most interesting components
from the point of view of computational models of expressive performance, although we will
provide some brief overview of the MIDI handler.

As mentioned in Chapter 1, the work on the ACCompanion is part of an inter-institutional
collaboration involving the Austrian Research Institute for Artificial Intelligence, the Institute
of Computational Perception at the Johannes Kepler University Linz and the Department of
Musical Acoustics at the University of Music and Performing Arts Vienna. The overall design of
the system was done by myself, but specific components of the system were designed by Amaury
Durand and Martin Bonev. In particular, Amaury designed the HMM-based SF(described below
in Section 8.2) and Martin designed a graphical interface for visualizing the performance of the
solo and accompaniment parts (described below in Section 8.4). I adapted the Basis Mixer for
a real-time accompaniment scenario (with occasional help from Maarten Grachten). The bulk
the implementation of the system was done by Amaury, Martin Bonev and myself. We thank
Jan Hajič Jr. and Anna Aljanaki for testing an early version of the prototype.

The rest of this chapter is structured as follows. Section 8.2 discusses the HMM-based mono-
phonic SF. Section 8.3 briefly describes how to generate the expressiveness in the accompaniment.
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Section 8.4 provides some technical details on the implementation of the prototype version of
the ACCompanion. Finally, conclusions are provided in Section 8.5.

8.2 Score Following

This section discusses theoretical aspects of score following relevant for expressive accompani-
ment systems, as well as presenting a brief overview of the HMM-based monophonic SF used in
the ACCompanion. As mentioned in the introduction, in our prototype this SF was designed
and implemented by Amaury Durand. A detailed description of this SF is provided in (Durand,
2017).

As mentioned above, the task of score following involves both detecting the solo part and match-
ing this part to the corresponding parts in the score. Since the ACCompanion is a system for
MIDI input, the first task is easily solved, since for each performed note there is a corresponding
MIDI note, which as described in Section 3.2, can be described with four parameters: its MIDI
pitch, MIDI velocity, onset time and duration.

The rest of this section is structured as follows: Section 8.2.1 provides a brief overview of the
score following task, focusing on aspects relevant to expressive accompaniment. Section 8.2.2
describes the HMM-based score follower used in the ACCompanion.

8.2.1 Description of the Score Following Problem for Expressive Accompaniment

In the typical scenario of a duet performance, we can consider that a duet score S consists of two
parts, S(s) and S(a) which correspond to the solo and accompaniment parts, respectively. The

sets of notes in the solo and accompaniment scores are denoted as X (s) = {n(s)
i | n

(s)
i ∈ S(s)}

and X (a) = {n(a)
i | n(a)

i ∈ S(a)}, respectively. In a similar way, the sets of onsets in the solo

and accompaniment scores are denoted as O(s) = {o(s)
i | o

(s)
i ∈ S(s)} and O(a) = {o(a)

i | o(a)
i ∈

S(a)}, respectively. The equivalent performed onset1 corresponding to the i-th score position

in the accompaniment and solo scores will be denoted as ôperfi;a and ôperfi;s , respectively. In this
chapter, we use a slightly different formulation of the inter-onset interval (IOI) than the one
used throughout this thesis. Instead of associating the IOI to the beginning of the interval
(i.e. IOI(oi) = onset(oi+1)− onset(oi), as discussed in Section 3.3.1), we associate the IOI to the
end of the interval, i.e. IOI(oi) = onset(oi)− onset(oi−1). This change is required in the case of
real-time causal accompaniment systems, since at a given point in time we only know when the
last onset was performed and not when the next onset will be performed.

Furthermore, since we are assuming that the solo part is performed in a MIDI instrument, we

can represent the performance of the solo part with X (s)
perf = {n(p)

i | n
(p)
i ∈ P(s)}, where n

(p)
i is

the i-th performed note, and |X (s)
perf | = Np is the total number of performed notes. In this case,

the onset and duration of performed solo note n(p) are given in seconds and not in beats as is
the case of score notes. Since we are assuming that the solo part is monophonic, the number of

notes in the solo score is equal to the number of score onsets in the solo score, i.e. N
(s)
x = N

(s)
o .

We will slightly abuse notation and denote ôperfi;p as the onset time (in seconds) of the notes

performed by the soloist2.

1an aggregate of the performed onset times of all notes belonging to that score onset. See Section 3.3.1.
2Note that even if the solo part is monophonic, the i-th performed onset ôperfi;p might not correspond to the i-th

equivalent performed onset of the solo part ôperfi;s , since the latter represents the performance information that
has been matched to an element of the score of the solo part, whereas the first one refers to the notes that the
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The set of notes performed by the soloist X (s)
perf might contain notes that do not correspond

to any note in X (s), which we will refer to as insertions. Conversely, a note in X (s) omitted

during P(s) will be referred to as a skip. With n
(p)
i∗ , we denote the note in the set of performed

notes X (s)
perf that corresponds to score note n

(s)
i ∈ X (s); and with n

(s)
i∗ , we denote the note in

X (s) that corresponds to note n
(p)
i ∈ X (s)

perf . It is important to note the real-time aspect of the
score-following process. In contrast to the offline performance rendering considered in previous
chapters, there is no complete match of the performance of the solo part to its score, but a
partial one that is updated every time that there is a new note performed by the soloist. Using
the idea of matched performance from Definition 8.1, we can define an SF as follows:

Definition 8.1 (Score Follower). A score follower (SF) is a function sfollower : P(s) 7→ S(s)

that maps events in the performance of the solo part (in this case performed MIDI notes) to
their corresponding elements in the score in real-time. We denote this function as

sfollower
(
P(s), τ | S(s)

)
= P

(s;τ)
S , (8.1)

where P
(s;τ)
S =

{(
n

(s)
i , n

(p)
i∗

)
| n(s)

i ∈ X (s) and n
(p)
i∗ ∈ X (s)

perf such that onsetperf

(
n

(p)
i∗

)
≤ τ ∀i

}

is a partially matched performance up to (absolute) performance time τ in seconds.

The above definition describes an SF that matches notes in the performance to notes in the
score, i.e. a partial note-wise performance-to-score matcher, instead of simply matching events
of the performance to score positions (i.e. in an onset-wise fashion). Having such a note-wise
SF is a desirable feature for the case of an expressive accompaniment system, since it allows the
accompaniment system to adapt its performance of the accompaniment part to aspects of the
performance style of the soloist that are inherently defined at the note level (such as articulation,
which requires the performed duration of the individual notes).

Since we are only considering the case of monophonic SFs, we will abuse notation and write the

matching of a performed note n
(p)
i to a note in the solo part as

sfollower
(
n

(p)
i

)
=

{
n

(s)
i∗ if the SF believes n

(p)
i to correspond to score note n

(s)
i∗

insertion otherwise.

(8.2)

In the above equation we say that the SF “believes” that a performed note corresponds to a
score note, instead of saying that the performed note actually corresponds to a score note, to
emphasize that the sfollower function produces an estimate of the note in the score to which
a performed note should be matched (i.e. the score follower can incorrectly match a performed
note). In the case of a real-time accompaniment, SFs with high accuracies are required3.

8.2.2 HMM-based Score Follower

In this section we provide a brief overview of the probabilistic SF used in the ACCompan-
ion.

The SF used in the ACCompanion is based on the switching Kalman filter, a hybrid probabilistic
model which combines an HMM and a Kalman filter (i.e. a linear dynamical system), whose

soloist performs, including ornaments (which are not considered in this version of the system) and mistakes.
3How accurate an SF must be for the purpose of expressive accompaniment is an open research question.
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parameters depend on the states of the HMM (Murphy, 1998). In the rest of this discussion, we
refer to this model as Kalman HMM (KHMM).

An HMM is a state space model defined by two discrete processes: a latent (hidden) process,
which is assumed to be a Markov chain, and an observed process, which depends on the latent
process (Rabiner, 1989). A Kalman filter can be thought of as a special kind of HMM where both
latent and observed processes are continuous and have linear dependencies (Bishop, 2006).

Using the terminology from HMMs, in the setup of an accompaniment system we observe a

sequence of notes n
(p)
0 , n

(p)
i , . . . , n

(p)
Np

, each of which corresponds to a position in the solo score,

which we want to estimate (since it is hidden).

In the following, we describe the state space of the KHMM:

Observed Variables:

• Pi is a discrete random variable representing the MIDI pitch of performed note n
(p)
i .

• IOIi is a continuous random variable representing the IOI between n
(p)
i and n

(p)
i−1.

Latent Variables:

• Oi is a discrete random variable representing the index of the onset in the solo score

corresponding to the observed performed note n
(p)
i

4. We let Oi take integer values between

in 0 and N
(s)
o − 1, and all half-integers in between (e.g. 0.5, 1.5, 2.5). This set of values is

denoted as Q =
{

0, 0.5, . . . , N
(s)
o − 1

}
. Integer values correspond to the indices of onsets

in the solo score (e.g. Oi = j means that the KHMM assigns n
(p)
i to score onset o

(s)
j ).

Half-integer values correspond to insertions.

• BPi is a continuous random variable representing the local beat period (BP) in seconds

estimated for performed note n
(p)
i .

The initial states of these latent variables are denoted as O−1 and BP−1, respectively. In the fol-
lowing discussion, the shorthand notationAa:b refers to the sequenceAa, Aa+1, . . . , Ab−1, Ab.

The KHMM is completely specified by three components:

1. A prior initial distribution of the latent variables, denoted as p(O−1) and p(BP−1), re-
spectively.

2. A transition model specifying the probability distribution of latent variables Oi and BPi,
respectively, given the sequence of observed and latent variables. The transition model of
the KHMM can be written as

p(Oi | O−1:i−1, BP−1:i, IOI0:i−1, P0:i, IOI0:i) = p(Oi | Oi−1) (8.3)

p(BPi | BP−1:i−1, O−1:i, IOI0:i, P0:i) = p(BPi | BPi−1, Oi), (8.4)

where p(Oi | Oi−1) is the transition model from the HMM and p(BPi | BPi−1, Oi) is the
transition model from the Kalman filter, whose parameters depend on the state of Oi.

3. An observation model, which specifies the probability distribution of the current observa-
tion given the sequence of observations and latent states. The observation model of the

4Since we are assuming that the solo score is strictly monophonic, each score onset in the solo part corresponds
to a single note, and therefore, we can denote both score onsets and notes with the same index.
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KHMM is defined as

p(Pi | P0:i−1, O−1:i, BP−1:i, IOI0:i−1) = p(Pi | Oi) (8.5)

p(IOIi | IOI0:i−1, O−1:i, BP−1:i, P0:i) = p(IOIi | Oi, BPi), (8.6)

where p(Pi | Oi) is the HMM part of the observation model, and uses the tempo from the
latent state of the Kalman filter.

Using these components, we can write the joint probability distribution defined by the KHMM
as

p(O0:Np , BP0:Np , P0:Np , IOI0:Np) =p(O−1)p(BP−1)

Np−1∏

i=0

p(Oi | Oi−1)p(BPi | BPi−1, Oi)

×
Np−1∏

i=0

p(Pi | Oi)p(IOIi | Oi, BPi). (8.7)

The KHMM model is illustrated in Figure 8.1, where the nodes represent random variables (in
the figure, square nodes represent discrete variables and circles represent continuous variables)
and directed edges (arrows in the figure) indicate dependencies between the variables.

At a given position, we can use the KHMM to infer the latent states (the index of the score
position and the BP of the solo) in a causal way as

q̂i = argmax
qi∈Q

p(Oi = qi | P0:i, IOI0:i) (8.8)

b̂i = E {BPi | P0:i, IOI0:i, q̂i} (8.9)

where q̂i is the estimated index of the score onset and estimated BP corresponding to performed

note n
(p)
i , respectively. This inference of the latent states can be efficiently done using the

forward algorithm (Rabiner, 1989; Murphy, 1998). For a more detailed description of the form
of the components of the KHMM (initial prior distribution, transition and observation models)
see Section 3.3 in (Durand, 2017). An explicit algorithm for inferring the latent states of the
KHMM is presented in Algorithm 2.3.1 in (Durand, 2017).

Using the above estimation of the latent state representing the score onsets, we can write the
SF function defined in Equation (8.2) as

sfollower
(
n

(p)
i

)
=

{
n

(s)
q̂i

if q̂i ∈ Z
insertion otherwise.

(8.10)

8.3 Adapting the Basis Function Models for Expressive
Accompaniment

This section focuses on describing the accompanist module of the ACCompanion. In a nutshell,
the accompanist module adapts the BM framework, in particular the RNBM introduced in
Section 4.3, for the case of modeling expressive accompaniment.

We use RNBM to allow the ACCompanion to adjust its performance to the soloist in three
steps:
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Latent:

Observed:

· · · Oi−1 Oi Oi · · ·

· · · BPi−1 BPi BPi+1 · · ·

IOIi−1 IOIi IOIi+1

Pi−1 Pi Pi+1

Figure 8.1: Schematic representation of the KHMM score follower. Oi (in pink) is a random
variable representing the onset at observation i. BPi (in blue) is a random variable
representing the performed BP at observation i. IOIi (in orange) is a random
variable representing the observed IOI at observation i. Pi (in light green) is a
random variable representing the observed MIDI pitch at observation i. Square
nodes represent discrete variables and circle nodes represent continuous variables.
The gray boxes denote the latent and observed variables. See text for explanation.

1. Before the performance starts, we precompute the performance of the accompaniment
using the RNBM (using the Basis Mixer described in Chapter 7), and scale and/or center
the predictions.

2. Every time that the SF identifies a note performed by the soloist as a note in the score, we
update our estimates of the performed local dynamics, tempo and articulation (we refer
to these parameters as the local playing style of the soloist).

3. We use the estimates of the local playing style of the soloist to rescale and/or recenter the
predictions of the RNBM.

In the rest of this section, we describe each of these steps in more detail.

8.3.1 Precomputing the Performance of the Accompaniment Score

In this section we describe how to use RNBM for precomputing the performance of the accom-
paniment score, which will be later adapted in real-time to the performance of the soloist.

We use performance codec C2.5, defined in Appendix B for modeling an expressive performance
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with RNBMs. This codec is a variant of performance codec C2.0 (described in Section 4.3.2) which
uses a smoothed version of the local beat period to compute parameters describing expressive
tempo, timing and articulation, such that the resulting parameters are more psychologically
plausible Performance codec C2.5 describes an expressive performance using five parameters,
divided into two groups:

1. two onset-wise parameters describing loudness (MIDI velocity trend) and tempo (the log-
arithm of the beat period ration, or log BPR); and

2. three note-wise parameters, where two parameters of these parameters describe devia-
tions from the local dynamics and tempo for the individual notes (MIDI velocity devia-
tions and timing, respectively); and a parameter describing the articulation of each notes
(log articulation).

The predictive model of the RNBM consists of two RNNs for predicting MIDI velocity trend
and log BPR, respectively, and three FFNNs for predicting MIDI velocity deviations, timing and
log articulation, respectively.

The architecture of the RNNs consists of a single LSTM layer with multiplicative integration
with 20 units, and a linear output. The architecture of the FFNNs consists of a single hidden
layer with 20 softplus units and an output layer with a single linear unit. These architectures
were chosen for their simplicity. In future work, it would be interesting to explore which neural
architectures lead to better predictions. These networks were trained to minimize the squared
error on the Zeilinger/Beethoven dataset using RMSProp (Tieleman and Hinton, 2012), a variant
of the stochastic gradient descent algorithm (SGD) as described in Section 4.2.2. We use 80%
of the pieces for training and 20% for validation. All networks were trained for a maximum
of 5000 epochs with a learning rate of 10−3 and a gradient moving average decay of 0.9. To
avoid overfitting, we use l2-norm weight regularization with a coefficient of 10−3. For FFNNs,
dropout was used after the hidden layer, with a probability of 0.5. For RNNs, the value of
the gradients was clipped to lie between −2 and 2. The gradients for back-propagation were
truncated after 50 steps. Early stopping was used after 100 epochs without improvement in the
validation set.

Using these trained networks, we generate predictions of each of the parameters as

f (veltrend )(Φ(veltrend )) = y(veltrend ) ∈ RN
(a)
o (8.11)

f (log bpr)(Φ(log bpr)) = y(log bpr) ∈ RN
(a)
o (8.12)

f (veldev )(Φ(veldev )) = y(veldev ) ∈ RN
(a)
x (8.13)

f (tim)(Φ(tim)) = y(tim) ∈ RN
(a)
x (8.14)

f (log art)(Φ(log art)) = y(log art) ∈ RN
(a)
x (8.15)

where each f (j) and Φ(j) are the predictive function and the matrix representation of the accom-
paniment score through basis functions corresponding to the j-th expressive parameter (MIDI
velocity trend, log BPR, MIDI velocity deviations, timing and log articulation), respectively. In
contrast to the case of the solo performance, the accompaniment score is not assumed to be
monophonic, and so the number of notes in the score is generally larger than the number of

onsets in the score, i.e. N
(a)
x ≤ N (a)

o .
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The predictions of the network are then scaled and recentered as follows:

ŷ(veltrend ) =
1

average
(
y(veltrend )

)y(veltrend ) (8.16)

ŷ(log bpr) = y(log bpr) − average
(
y(log bpr)

)
· 1 (8.17)

ŷ(veldev ) = 127 · y(veldev ) (8.18)

ŷ(tim) = y(tim) − average
(
y(tim)

)
· 1 (8.19)

ŷ(log art) = y(log art) − average
(
y(log art)

)
· 1 (8.20)

where average(·) computes the average value of the components of its input vector, and 1 is

a vector of ones of the appropriate size (i.e. the vector is in RN
(a)
o for veltrend and log bpr and

in RN
(a)
x otherwise). Although the scaling and recentering procedure described above does not

constitute a proper normalization in the strict mathematical sense, for the sake of convenience
we will refer to the above defined vectors as normalized predictions of the RNBM.

8.3.2 Capturing the Local Performance Style of the Soloist

In this section we describe how to capture the local performance style of the soloist in terms
of tempo, dynamics and articulation. In the following discussion, to avoid cluttering notation,

we will slightly abuse notation and refer to o
(s)
i as both the current (matched) performed note

and onset, since in the case of a monophonic solo part, each score onset consists of a single
note.

Tempo

While in our preliminary tests we found that the KHMM described in Section 8.2.2 provides
accurate and robust estimates of the score position of the solo part, we found that the estimates
of the local tempo (see Equation (8.9)) were not very stable.

In order to address this issue we propose to use two alternative methods:

• The first of these methods is to use the instantaneous BP, computed only from the local
IOI, i.e.,

BPi;lioi =
ôperf i, s− ôperfi−1,s

IOI(oi)
, (8.21)

where IOI
(
o

(s)
i

)
= onset

(
o

(s)
i+1

)
− onset

(
o

(s)
i

)
is the score IOI, as discussed in Section

8.2.1. We will refer to this method as local IOI estimation. Not surprisingly, we found in
our tests that using this method leads to an extremely reactive system: the system always
seems to be catching up with what the soloist is performing, which does not lead to a very
rewarding playing experience. This is particularly evident (and annoying) in places where
the soloist is slowing down.

• The second method involves using a linear sensorimotor synchronization (LSMS) model (Vor-
berg and Schulze, 2002). This model predicts the next performed onset based on the previ-
ous performed onset, an estimate of the tempo and the asynchrony between the predicted
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and the onset and the actual observed onset . The updates of this model can be computed
as:

ôperfi,s∗ = ôperfi−1,s∗ + BPi−1;lsmsIOI
(
o

(s)
i

)
− ηaAi−1 (8.22)

BPi;lsms = BPi−1;lsms + ητAi−1 (8.23)

Ai = ôperfi,s∗ − ô
perf
i,s , (8.24)

where ôperfi,s denotes the actually observed onset and ôperfi,s∗ the onset predicted by the LSMS
model. BPi;lsms denotes the estimated BP, and Ai is the asynchrony. In the above estima-
tion, ηa and ητ are parameters determining how much the asynchrony affects the updates
of onset and tempo, respectively (small ηa and ητ imply that the model updates the tempo
very slowly, and large ηa and ητ produce fast changes in tempo).

An issue with the LSMS method is that if the difference between the initial BPR specified to
the system and the initial tempo by the soloist is large, the system takes longer to adapt, which
leads to the soloist feeling that the system is not very responsive. In practice, we found out that
a better strategy is to use a hybrid scheme, where the initial estimation of the tempo is done
with the local IOI model (for the first onsets), and then switches to the LSMS model, i.e.,

BPi =





BPinit if i = 0
BPi;lioi if 1 ≤ i ≤ 3
BPi;lsms otherwise.

(8.25)

where BPinit is the initial tempo.

Determining which tempo model is best for the case of expressive accompaniment systems is an
open research question. Most research in accompaniment systems tend to use (Gaussian) linear
models (Raphael, 2001a, 2003; Cont et al., 2012; Nakamura et al., 2013; Xia and Dannenberg,
2015; Burloiu, 2016; Maezawa and Yamamoto, 2016; Cancino-Chacón et al., 2017a). Future
work might involve experimenting with more sophisticated sensorimotor models of synchroniza-
tion.

Dynamics

For capturing the dynamics performed by the soloist, we use a running average estimation of
the MIDI velocity of the solo part. This average MIDI velocity is computed as

csveli = csveli−1 + vel
(
o

(s)
i

)
(8.26)

veli =
csveli − csveli−kvel

kvel
(8.27)

where csveli is a term that iteratively computes the cumulative sum of the performed MIDI

velocities (we initialize to csvel−1 = 0), and vel
(
o

(s)
i

)
is the MIDI velocity of the latest performed

note that was matched to an onset in the solo score. The parameter kvel ≥ 1 ∈ Z is an integer
controlling the smoothness of the curve of MIDI velocity. A large kvel produces a very smooth
MIDI velocity curve, and kvel = 1 produces the performed MIDI velocity of the current note in
the solo part. In our experiments we set kvel = 3.

This method of computing average MIDI velocity means that if the soloist were to make a single
(loud) accent, the accompaniment would not overcompensate by playing too loudly.
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Articulation

The articulation is estimated using a running average of the articulation ratio, computed as

csarti = csarti−1 +
durationperf

(
o

(s)
i

)

BPi × duration
(
o

(s)
i

) (8.28)

arti =
csarti − artkart

kart
(8.29)

where durationperf

(
o

(s)
i

)
and duration

(
o

(s)
i

)
are the performed and notated duration of the

latest performed note5; BPi is the current estimate of the local tempo (computed using Equation
8.25), and csarti is a term that iteratively computes the cumulative sum of the articulation ratio
(and is initialized to csart−1 = 0). As described for kvel, the parameter kart ≥ 1 ∈ Z is an integer
controlling the smoothness of the articulation curve. In our experiments we set kart = 3.

Similar to the case of the average MIDI velocity described above, this method for computing the
articulation ratio means that if the soloist were to make a single note staccato in an otherwise
legato section, the accompaniment would not also suddenly be performed staccato.

8.3.3 Adapting the Performance of the Accompaniment Part to the Soloist

Finally, in this section we describe how to combine the precomputed normalized prediction of the
performance of the accompaniment score described in Section 8.3.1 and the local performance
style of the soloist described in Section 8.3.2 to adapt the performance of the accompaniment
to the soloist.

In the following discussion, ŷ
[
o

(a)
k

]
will denote the components of a vector of normalized pre-

dictions corresponding to the notes in score onset o
(a)
k in the accompaniment part. The i-th

component of ŷ
[
o

(a)
k

]
will be denoted as ŷl

[
o

(a)
k

]
, which corresponds to the l-th note belonging

to o
(a)
k , which we denote as n

(a)
kl

. For the sake of keeping notation consistent, ŷ
[
o

(a)
k

]
will always

be written as boldface, even if this quantity is a scalar, as is the case for the onset-wise pa-
rameters or for score onsets corresponding to a single note in the case of note-wise parameters.
Furthermore, in order to avoid confusions with different indices denoting different score posi-
tions, in this section we will use index i to exclusively denote the index of the latest performed

note in the solo part. Given the latest matched performed note of the solo part o
(s)
i , performed

at onset time ôperfi,s , we first need to identify the set of upcoming onsets in the accompaniment
score, which we denote by

O(a)
next

(
o

(s)
i

)
=
{
o

(a)
k | onset

(
o

(a)
k

)
≥ onset

(
o

(s)
i

)}
. (8.30)

In the rest of this section, we describe how to adapt the normalized predictions of the RNBM
to the local playing style of the soloist.

Tempo, Timing and Articulation

In order to generate the onsets times of the notes in the accompaniment, we use the estimated
tempo from the soloist to scale the tempo predictions of the RNBM and generate equivalent

5See discussion about the importance of note-wise matching for score following in Section 8.2.1.
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onset times for each onset. Afterwards we use the timing and articulation predictions of the
RNBM to predict the equivalent onset times and durations for each note in the accompaniment
score onsets, respectively. This procedure is described as follows:

By definition, the first onset in the set of upcoming onsets has either the same score position as

o
(s)
i , or occurs afterwards. The equivalent onset time for this onset, which we denote as o

(a)
i0

is
given as

ôperfi0;a = ôperfi;s + 2
ŷ(log bpr)

[
o
(a)
i0

]
· BPi ·

(
onset

(
o

(a)
i0

)
− onset

(
o

(0)
i

))
, (8.31)

where BPi is the estimated tempo of the soloist, computed as described in Section 8.3.2 using

Equation 8.25. The above equation implies that if both o
(a)
i0

and o
(s)
i have the same score position,

they have exactly the same performance onset time. Note that this property works only if the
accompaniment is being reproduced in a MIDI device, where the time between receiving the
MIDI message of the solo performance and sending the message for the accompaniment note is

negligible. The equivalent onset times for the rest of the onsets in O(a)
next

(
o

(s)
i

)
(i.e. onsets with

indices j > i0) is given by

ôperfj;a = ôperfj−1;a + 2
ŷ(log bpr)

[
o
(a)
j

]
· BPi ·

(
onset

(
o

(a)
j

)
− onset

(
o

(a)
j−1

))
. (8.32)

Using the timing predictions of the RNBM, the onset time of the k-th note of onset o
(a)
j (denoted

as ôperfjk;a ) in the set of upcoming onsets can be estimated as

ôperfjk;a = max
(
ôperfi;s ; ôperfjk;a − ŷ

(tim)
k

[
o

(a)
j

])
(8.33)

where max(· ; ·) returns the maximum argument. The inclusion of this operator is motivated
by the fact that the timing deviations allow a note to be played before or after the equivalent
onset. Therefore it could happen that the onset time of a note is estimated to occur at a time
before the current observed onset (i.e. ôperfi;s ). The current version of the ACCompanion cannot

time-travel to the past to perform a note before the current (absolute) onset time6.

In a similar way, the duration of the k-th note of onset o
(a)
j (denoted as d̂jk;a) in the set of

upcoming onsets can be estimated as

d̂jk;a = arti · 2ŷ
(log art)
k

[
o
(a)
j

]
· duration

(
n

(a)
jk

)
· BPi, (8.34)

where arti is the moving average of the articulation ratio of the soloist computed using Equation
(8.29).

Dynamics

The maximal MIDI velocity for each onset in O(a)
next

(
o

(s)
i

)
is given by

v̂perfj;a = veli · ŷ(veltrend )
[
o

(a)
j

]
, (8.35)

6Given our current understanding of general relativity, it is very unlikely that any accompaniment system would
be able to do so.

126



8.4 The ACCompanion

MIDI handler

Score Follower Accompanist

Soloist Accompaniment

Figure 8.2: Schematic representation of the modules of the ACCompanion. Black arrows rep-
resent the flow of information for computing the accompaniment part. The thick
orange arrow represents the implicit effect of the system output on the (live) soloist.

where veli is the moving average of the MIDI velocity of the soloist, computed using Equation

(8.27). The MIDI velocity for the k-th note in accompaniment score onset o
(a)
j is given by

v̂perfjk;a = v̂perfj;a − ŷ
(veldev )
k

[
o

(a)
j

]
. (8.36)

Algorithm 8.1 summarizes the algorithm described in this section. The method produce midi

referenced in this algorithm is a MIDI messages scheduler, i.e. a method that receives information
about the MIDI notes to be played, and sends the MIDI messages to the output MIDI device at
the specified time. This method is the main interface between the accompanist and the MIDI
Handler module of the ACCompanion.

8.4 The ACCompanion

This section provides a general overview of the ACCompanion. As described in Section 8.1, the
system consists of three main components: a module that allows for score following (the SF), a
module that adapts the expression of the accompaniment to the solo part (the accompanist), and
a third module that handles the MIDI input and output (the MIDI handler). The relationship
between these components is illustrated in Figure 8.2. In this figure, black arrows denote how
the information flows from the soloist to each of the modules of the system. The orange arrow
denotes the implicit effect of the system output on the (live) soloist7.

7There is evidence that ensemble performers both deliberately and automatically adapt to each other’s perfor-
mance (Repp, 2001; van der Steen and Keller, 2013). It is important to note that this implicit effect of the
output of the accompaniment system on the live soloist is not explicitly modeled in the current version of the
ACCompanion.
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Algorithm 8.1: accompaniment step

Input:

• o(s)
i : current matched solo score onset (with performed onset time ôperfi,s )

• BPi: current estimated beat period of the solo part
• veli: moving average of the MIDI velocity of the last matched solo note
• arti: moving average of the articulation ratio of the last matched solo note
• ŷ(veltrend ): normalized predictions for MIDI velocity trend
• ŷ(log bpr): normalized predictions for log BPR
• ŷ(veldev ): normalized predictions for MIDI velocity deviations
• ŷ(tim): normalized predictions for timing
• ŷ(log art): normalized predictions for log articulation

1 Get set of upcoming onsets in the accompaniment score

O(a)
next(o

(s)
i ) =

{
o

(a)
k | onset

(
o

(a)
k

)
≥ onset

(
o

(s)
i

)}
(8.37)

2 for o
(a)
j ∈ O(a)

next

(
o

(s)
i

)
do

3 Compute the average onset times

ôperfj;a =





ôperfi;s + 2
ŷ(log bpr)

[
o
(a)
i0

]
· BPi ·

(
onset

(
o

(a)
i0

)
− onset

(
o

(s)
i

))
if j = i0

ôperfj−1;a + 2
ŷ(log bpr)

[
o
(a)
j

]
· BPi ·

(
onset

(
o

(a)
j

)
− onset

(
o

(a)
j−1

))
otherwise

(8.38)

4 for n
(a)
jk
∈ o(a)

j do

5 Compute onset time of note n
(a)
jk

ôperfjk;a = max
(
ôperfi;s ; ôperfjk;a − ŷ

(tim)
k

[
o

(a)
j

])
(8.39)

6 Compute MIDI velocity of note n
(a)
jk

v̂perfjk;a = veli · ŷ(veltrend )
[
o

(a)
j

]
− ŷ(veldev )

k

[
o

(a)
j

]
(8.40)

7 Compute duration of note n
(a)
jk

d̂jk;a = arti · 2ŷ
(log art)
k

[
o
(a)
j

]
· duration

(
n

(a)
jk

)
(8.41)

8 Send performance information to MIDI messages scheduler

produce midi
(
n

(a)
jk
, v̂perfjk;a , ô

perf
jk;a , d̂jk;a

)
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The rest of this section is structured as follows: In Section 8.4.1 we discuss implementation
details of the ACCompanion. Section 8.4.2 discusses two methods for live demos for visualizing
and showcasing how the ACCompanion works. Section 8.4.3 describes the participation of the
ACCompanion in a competition for computational accompaniment systems. Finally, Section
8.4.4 describes two videos produced to showcase the capabilities of the ACCompanion.

8.4.1 Implementation Details

As the case of the Basis Mixer described in Chapter 7, the ACCompanion is implemented in
Python 2.78 and relies heavily on Numpy9. In contrast to the Basis Mixer, which renders the
performance of a score in an offline fashion, for the purpose of expressive accompaniment it is
important that the system runs in real-time. Furthermore, as previously mentioned, each of the
three modules of the ACCompanion has to run in parallel with each other. We solve this issue by
using Multiprocessing, a Python module that allows for spawning processes in parallel10.

The implementation of the KHMM in the SF module is based on the HMM implemented in
madmom11, a Python library for audio signal processing which focuses on music information
retrieval (MIR) tasks.

The MIDI handler uses the Python-RTMidi library for handling input and output of MIDI
messages in real-time12. This module includes functions for selecting the input and output
MIDI ports. The incoming MIDI messages from the solo part are sent to the SF module. The
MIDI handler includes the produce midi method referenced in Algorithm 8.1. This method is
a MIDI messages scheduler that receives information about the MIDI notes to be played, and
sends the MIDI messages to the output MIDI device at the specified time. The messages are
stored in a queue, which is updated every time that the score follower identifies a performed note
as being a note in the solo score. For the actual implementation of the system, produce midi

also includes a way to identify whether a note in the accompaniment has already been played,
so that there are no duplicate notes.

Algorithm 8.2 presents a schematic description of the ACCompanion. The method perf info

referenced in this algorithm encapsulates the estimation of the local playing style of the soloist
in terms of the beat period BPi , the moving average of the MIDI velocity of the solo, and the
moving average of the articulation ratio of the solo, as described in Section 8.3.2.

8.4.2 Methods for Demonstrating and Visualizing the ACCompanion

In this section we describe two methods for illustrating how the ACCompanion works. The first
of these methods is a visualization of the performance of the solo and accompaniment parts,
and the second method is the use of a controller to exaggerate aspects of the performance of the
accompaniment part.

In addition to the modules described above, the current implementation of the ACCompanion
includes a display that provides visual feedback of the performance of a piece. We refer to this
visualization tool as the performance visualizer of the ACCompanion. This visualization displays
both the solo and accompaniment parts in a piano roll in real time. The performance visualizer

8https://www.python.org.
9http://www.numpy.org.

10https://docs.python.org/2/library/multiprocessing.html.
11https://madmom.readthedocs.io/en/latest/.
12https://spotlightkid.github.io/python-rtmidi/.
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Algorithm 8.2: ACCompanion v. 0.1

Data:
• S(a): Score of the accompaniment part
• S(s): Score of the solo part
• ŷ(veltrend ): normalized predictions for MIDI velocity trend
• ŷ(log bpr): normalized predictions for log BPR
• ŷ(veldev ): normalized predictions for MIDI velocity deviations
• ŷ(tim): normalized predictions for timing
• ŷ(log art): normalized predictions for log articulation
• BPinit: Initial beat period
• velinit: Initial MIDI velocity trend
• artinit: Initial articulation ratio

1 while Performance of S do

2 if min onset
(
O(a)

)
≤ min onset

(
O(s)

)
then

3 Start accompaniment

accompaniment step
(
o

(a)
0 ,BPinit, velinit, artinit

)

4 if Soloist plays note n(p) then
5 Estimate if note belongs to the score position or if it an insertion using the KHHM:

oest = sfollower(n(p)) (8.42)

if oest is not an insertion then
6 Assign to a note in the score:

o
(s)
i = oest (8.43)

Get performance parameters of the solo:

BPi, veli, arti = perf info
(
o

(s)
i

)
(8.44)

Update accompaniment:

accompaniment step
(
o

(s)
i ,BPi, veli, arti

)
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8.4 The ACCompanion

Figure 8.3: Screenshot of the performance visualizer of the ACCompanion.

was designed and implemented by Martin Bonev under supervision from Werner Goebl, Laura
Bishop and myself. A simple color scheme is used to illustrate the loudness, with brighter color
lines representing louder notes. Solo and accompaniment parts are distinguished using different
colors. In the solo part, green lines represent correctly played notes, while inserted and misplayed
notes are drawn in red. The accompaniment part is presented with purple lines. A screenshot
of the visualization is shown in Figure 8.3.

For the demonstration purposes, we use a USB knob controller, a PowerMate by Griffin Tech-
nology13, to exaggerate or minimize certain aspects of the expressive performance by controlling
the scaling of the expressive parameters in real time. In the current implementation, the con-
troller can scale the overall articulation, as well as the note-wise deviations of MIDI velocity.
The angle of rotation of the PowerMate is mapped to a scalar variable pm that lies between
−1 to 1, which we refer to as the value of the PowerMate. Rotating the PowerMate to the
right increases the value of pm until it reaches 1 and then does not increase further even if the
user keep rotating right. Rotating the PowerMate to the left decreases the value of pm until
it reaches -1. Pressing the button of the PowerMate resets pm = 0. Using this parameter,
the PowerMate exaggerates the spread of MIDI velocities and the articulation by scaling the
normalized predictions, i.e.,

ŷ(veldev ) ← αpmτ ŷ(veldev ) (8.45)

ŷ(log art) ← αpmτ ŷ(log art) (8.46)

where α is a constant (in the current implementation α = 3) and pmτ is the value of the
PowerMate at time τ . For practical reasons, it would be very resource-consuming to rescale the
normalized predictions every time that the value of the PowerMate changes, since this would
involve calling the accompaniment step method and updating the scheduler of output MIDI
messages. Instead, we only update the value of the normalize parameters every time that there
is a note performed by the soloist that is matched to the solo score.

13https://griffintechnology.com/us/products/stylus-keyboards/powermate
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8.4.3 AccompaniX 2017

In May 2017, an early version of the ACCompanion participated in the AccompaniX 2017: Ar-
tificial Duet Performer Competition14. This competition aimed to showcase systems capable of
producing expressive accompaniment in coordination with a human soloist. The most successful
systems would be able to adapt in real-time to variabilities in timing, dynamics and articulation
in the solo part. Competition participants were given scores and pre-recorded soloist perfor-
mances for four pieces, all containing monophonic solo lines and polyphonic accompaniment.
The task was then to produce a coordinated accompaniment performance for one of the pieces,
with the constraint that the system producing accompaniment had to be causal – that is, it
could not make use of future information from the human performance, even when running
off-line (i.e. with a pre-recorded performance, not in real-time). Participants of the competition
had to upload their systems to a server before the competition organizers used them to produce
performances for evaluation, which meant that we as participants were unable to adjust param-
eters to the specific case of the performance. A limitation of the competition format was the
human soloist performances were pre-recorded, so interaction between duet partners was only
one-way (the system could adapt to the soloist, but not vice versa).

An evaluation of submitted systems was conducted through an online survey in which listeners
rated the quality of the duet performances.

The ACCompanion won a U.S. $500 Award for Creative Achievement. Chris Raphael’s Music
Plus One (Raphael, 2001a, 2010) won the first prize.

8.4.4 Videos for ISMIR 2017

We produced two videos showcasing the capabilities of the system to be presented at the Late
Breaking/Demo session of the 18th International Society for Music Information Retrieval Con-
ference held in Suzhou, China15. These videos were recorded at the Fanny Hensel-Mendelssohn
Hall at the University of Music and Performing Arts Vienna, in collaboration with Werner
Goebl, Gerhard Widmer, Laura Bishop, and Martin Bonev. The pieces were performed on a
Bösendorfer CEUS 280VC grand piano, a computer-controlled piano that allows for capturing
the performance information in MIDI format.

Figure 8.5 shows the setup for recording the demonstration videos. The audio of the piano was
captured using two microphones. The accompaniment part was generated using the Bönsedorfer
preset of the ESX24 instrument sampler included in Logic Pro X16.

In these demo videos, the piano roll (i.e. the performance visualization described above) shows
the notes performed by the soloist in green and the accompaniment in purple. Wrong notes
performed by the soloist are displayed in red. The intensity of the colors in the piano roll
corresponds to the loudness (the MIDI velocity) of the performed notes. The performance
errors by the soloists are deliberate to showcase the capabilities of the system.

In the first video, Werner Goebl performs the right-hand part of the second movement of the
Sonata No. 16 KV. 545 by W. A. Mozart. The left-hand part is performed by the ACCompanion.
In the second video, Gerhard Widmer performs The Wild Geese, the piece that was submitted
for the AccompaniX 2017 competition. Note that in these performances there are deliberate

14http://bregman.dartmouth.edu/turingtests/Automatic-accompaniment.
15These videos are available online: http://www.carloscancinochacon.com/documents/online_extras/

ismir2017lbd/online_extras.html.
16https://www.apple.com/logic-pro/plugins-and-sounds/.
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8.5 Conclusions

Figure 8.4: Thumbnails of the videos demonstrating the capabilities of the ACCompanion. On
the left: Werner Goebl performing the right hand part of second movement of the
Sonata No. 16 KV. 545 by W. A. Mozart. On the right: Gerhard Widmer performs
the solo part of The Wild Geese. The piano rolls represent the visualization described
in Section 8.4. These videos were recorded at the Fanny Hensel-Mendelssohn Hall
at the University of Music and Performing Arts Vienna. The piano is a Bösendorfer
CEUS 280VC.

attempts by the soloist to play incorrect and/or repeated notes (especially in the second part of
the second movement of Mozart’s Sonata No. 16) to showcase the capabilities and robustness of
the system.

8.5 Conclusions

In this chapter, we have presented a first prototype of an automatic accompaniment system.
The current version of the ACCompanion uses an HMM-based monophonic score follower to
match the input of the soloist to a position in the score, combined with an adapted version of
the BM to generate an expressive accompaniment part that reacts to the performance style of
the soloist.

Future versions of the ACCompanion need to improve in two main directions: better score follow-
ing (including expanding the system to follow complex polyphonic music) and better generation
of expressive accompaniment parts.

For the first problem, it would be interesting to test more sophisticated HMM-based approaches
(including second order HMMs and hidden semi-Markov Models) following the work by Naka-
mura et al. (2015a). Another interesting route could be through the use of on reinforcement
learning, following recent promising work by Dorfer et al. (2018).

For the second problem, we aim at integrating more complex variants of the BM framework
for expressive performance, trained on real ensemble performance data. In particular, it would
be important to develop a model that uses the performance of the soloist as an input to make
predictions of the accompaniment part, instead of simply scaling and centering a pre-computed
performance, as is the case of the current implementation. Additionally, it would be interesting
to expand the model to also predict expressive nuances in the soloist performance, instead of
only reacting to them. In this way, the estimation of the local playing style of the soloist could
be predictive rather than reactive. A model capable of predicting expression would likely be
more engaging to perform with than a purely reactive system. Preliminary tests showed that
the experience of the performer is very dependent on the accuracy of the score following, in
particular to the estimation of tempo. It would be interesting to explore other possibilities for
tempo models including more sophisticated sensorimotor synchronization models such as the
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Figure 8.5: Setup for recording the demonstration videos at of the ACCompanion. In the picture
(left) Gerhard Widmer, Werner Goebl (at the piano) and myself (in front of the
computer).

.

adaptation and anticipation model by van der Steen and Keller (2013).

For this early prototype, we have not yet done any thorough evaluation, other than playing with
it in order to obtain a general impression. Later versions will, of course, be evaluated in much
more systematic ways, for instance by measuring how well their performances correlate with
those of human musicians. However, this quantitative approach to evaluation is intrinsically
problematic, as it makes very limiting assumptions regarding what kinds of performances are
musically meaningful and ‘good’. Ultimately, really meaningful tests will have to involve the
judgment of human musicians and listeners. We defer this to later stages of the project, where
we hope to have a more complete and musically sophisticated system.
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9 In Conclusion: A Comprehensive and Critical
Review of the Current State of the Field

By way of conclusion, this final chapter offers a comprehensive survey and critical review of the
current state of the art of the broad field of computational performance modeling, written after,
and including, my own research as presented in this thesis. This text will be published as

• Cancino-Chacón, C., Grachten, M., Goebl, W., and Widmer, G. (2018). Computational
Models of Expressive Music Performance: A Comprehensive and Critical Review. To
appear in Frontiers in Digital Humanities

The text of the article is reproduced here “as is”, including the original introduction and moti-
vation sections, so that it can be read as a self-contained document, independently of the rest
of this thesis.

9.1 Introduction

The way a piece of music is performed is a very important factor influencing our enjoyment of
music. In many kinds of music, particularly Western art music, a good performance is expected
to be more than an exact acoustic rendering of the notes in the score. Performers have certain
liberties in shaping various parameters (e.g., tempo, timing, dynamics, intonation, articulation,
etc.) in ways that are not prescribed by the notated score, and are expected to use these to
produce an expressive rendition of the piece in question. This applies not only to classical music,
where interpretation and performance are perpetual topics of artistic and aesthetic discussion,
but to virtually all kinds of music. Expressive performance, as we will call it in the following, is
known to serve several purposes: foremost, to express and communicate the performer’s under-
standing of structure and affective content (‘meaning’) inherent in a composition, and in this
way to bring out dramatic, affective, and emotional qualities that, in the best case, may en-
gage and affect the listeners emotionally. Expert musicians learn (mostly implicit) performance
rules through many years of focused and intensive practice and intellectual engagement with
music. Given the central importance of this subtle art, the principles behind, and processes
involved in, expressive performance should be a central topic of research in music and music
psychology.

The systematic study of expressive music performance is a relatively young field, starting in the
first half of the 20th Century with the advent of recording technology (Binet and Courtier, 1896;
Seashore, 1938). The second half of the 20th Century saw an increased interest in looking at
performance from the perspective of music psychology and cognition (Clynes, 1969; Gabrielsson,
1974; Longuet-Higgins and Lee, 1982, 1984; Clynes, 1986, 1987; Palmer, 1996). The field gained
more attraction in the late 1980’s, with advances in computers and electronic instruments, which
facilitated more precise data capturing (Kirke and Miranda, 2013). Music performance science
is a highly inter-disciplinary field, and a thorough review of the state of the art of the full field
is outside the scope of this chapter. We refer the interested reader to the very comprehensive
review articles by Palmer (1997) and Gabrielsson (1999, 2003). For a review of performance
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research from a musicological point of view see Rink (1995, 2002, 2003). For philosophical
perspectives on expressiveness in music, we refer the reader to Davies (1994, 2001).

This chapter focuses on a narrower and more specific topic: computational models of expressive
performance, that is, attempts at codifying hypotheses about expressive performance – as map-
pings from score to actual performance – in such a precise way that they can be implemented as
computer programs and evaluated in systematic and quantitative ways. This has developed into
a veritable research field of its own over the past two decades, and indeed the present work is not
the first survey of its kind; previous reviews of computational performance modeling have been
presented by Widmer and Goebl (2004), De Poli (2004), and Kirke and Miranda (2013).

The new review we offer here goes beyond these earlier works in several ways. In addition to
providing a comprehensive update on newer developments, it is somewhat broader, covering
also semi-automatic and accompaniment systems, and discusses the components of the models
in more detail than previous reviews. In particular, it provides an extended critical discussion of
issues involved in model choices – particularly the selection and encoding of input features (score
representations) and output parameters (expressive performance dimensions) – and the evalua-
tion of such models, and from this derives some research directions that should be pursued with
priority, in order to advance the field and our understanding of expressive music performance.
As in earlier papers, we focus on models for notated music, i.e., music for which a musical score
(a symbolic description of the music) exists. This includes most Western art music. A review of
models of expressive performance for non-western or improvised music traditions is outside the
scope of this work.

The rest of this text is organized as follows: Section 9.2 introduces the concept of computational
music performance models, including possible motivations, goals, and general model structure.
Section 9.3 attempts to give a comprehensive overview of the current state of the art, focusing on
several current trends in the field. Section 9.4 offers a critical discussion of crucial modeling as-
pects, and offers a critical view on the ways in which performance models are currently evaluated.
Section 9.5 concludes the chapter with a list of recommendations for future research.

9.2 Computational Modeling of Expressive Performance

9.2.1 Motivations for Computational Modeling

Formal and computational models of expressive performance are a topic of interest and research
for a variety of scientific and artistic disciplines, including computer science, music psychology
and musicology, among others. Accordingly, there is an wide variety of motivations for this kind
of modeling. Broadly speaking, we can categorize these motivations into two groups: on the
one hand, computational models can be used as an analytical tool for understanding the way
humans perform music; on the other hand, we can use these models to generate (synthesize)
new performances of musical pieces in a wide variety of contexts.

As analysis tools, computational models permit us to study the way humans perform music by
investigating the relationship between certain aspects of the music, like the phrase structure, and
aspects of expressive performance, such as expressive timing and dynamics. Furthermore, they
allow us to investigate the close relationship between the roles of the composer, the performer
and the listener (Kendall and Carterette, 1990; Gingras et al., 2016). Expressive performance
and music perception form a feedback loop in which expressive performance actions (like a
slowing down at the end of a phrase) are informed by perceptual constraints or expectations,
and the perception of certain musical constructs (like grouping structure) is informed by the
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way the music is performed (Chew, 2016). In this way, computational models could also be used
to enhance our understanding of the way humans listen to music.

On the other hand, computational performance models can be interesting in their own right,
as tools for generating automatic or semi-automatic performances. In this case, a generative
system might attempt to produce a convincing or human-like performance of a piece of music
given its score (Friberg et al., 2006; Grachten and Widmer, 2012; Okumura et al., 2014) or
try to play alongside human musicians, not only tracking their expressive performance but also
introducing its own expressive nuances (Xia et al., 2015; Cancino-Chacón et al., 2017a). Such
systems might have many applications, including realistic playback in music typesetting tools
(such as Finale or MuseScore) and automatic expressive accompaniment for rehearsing. Also,
there is now a renewed interest in systems that automatically generate (i.e. compose) music. As
pointed out by Herremans et al. (2017), automatic performance systems might be an important
component in making automatic music generation usable by the general public.

From a philosophical perspective, the idea of musical expressiveness presents a number of is-
sues (Davies, 2001). Among these is the fundamental question of whether an expressive per-
formance can be fully captured using numerical descriptors. For example, Bergeron and Lopes
(2009) discuss whether a complete sonic description of the music without any visual component
can fully convey the expressivity of music. That hearing and seeing a musical performance
provides for a richer experience1 is an interesting and plausible hypothesis, but this question
goes beyond the scope of the present chapter. In any case, it should be undisputed that there
is more than enough expressivity to be perceived – and thus also modeled – from just a sonic
representation; after all, listening to a recorded performance is still the predominant way of
enjoying music, and it can be a rewarding experience.

9.2.2 Components of the Performance Process

In her seminal review, Palmer (1997) groups the reported work in three sections that can be taken
to reflect the human cognitive processes involved in performing a piece of notated music:

1. Interpretation. According to Kendall and Carterette (1990), music performance is a
communication process in which information (emotional and semantic content of the piece)
flows from the composer to the performer to the listener. We note here that these should be
regarded as roles rather than agents, since, for example, the composer and performer may
be embodied by the same person. An important task for the performer is to determine how
to convey the message from the composer to the listener. Palmer refers to interpretation
as the act of arriving at a conceptual understanding of structure and emotional content or
character of a given piece, in view of a planned performance. Examples of relevant struc-
tural aspects are the grouping and segmentation of sequences into smaller subsequences
to form hierarchical levels – such as those proposed by Lerdahl and Jackendoff (1983) in
their Generative Theory of Tonal Music (GTTM).

2. Planning. Through planning the performer decides how to relate the syntax of musical
structure to expression through style-specific actions and constraints. Such actions include,
e.g., the use of arch-like patterns in dynamics and tempo to elucidate the phrasing structure
(Todd, 1992; Friberg and Sundberg, 1999).

3. Movement. Finally, a performer needs to transform a performance plan into a concrete
execution of the piece by means of physical movement. These movements can be seen as

1Or, as Bergeron and Lopes (2009) (quoting Robert Schumann) put it: “if Liszt played behind a screen, a great
deal of poetry would be lost.”
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Figure 9.1: Computational Modeling Scenario.

embodied human–music interactions which have an impact on the way humans perform
and perceive music (Leman et al., 2017a).

In Section 9.4.2, we will present a discussion on how different aspects and methods of computa-
tional modeling of performance fit into these categories, as well as the implications of the choice
for the modeling.

9.2.3 Components of Computational Models

Ideally, a full computational model of expressive performance should cover all three of the above
aspects. However, the models described in the literature so far focus almost exclusively on
the planning process, conceptualizing it as a mapping from a given score to specific patterns
in various performance parameters (e.g., timing or dynamics) and, eventually, to an acoustic
realization of the piece (De Poli, 2004). Thus, in the remainder of this review we will adopt this
(admittedly too) limited view and discuss existing performance models in this context.

Kirke and Miranda (2013) proposed a generic framework for describing research in expressive
performance. In the present chapter, we adopt a simplified version of this framework involving
three main components by which computational performance models (in the limited sense as
explained above) can be characterized. The resulting simple modeling scenario is shown in
Figure 9.1, along with a fragment of a musical score.

By score features – which are the inputs to the computational model – we denote descriptors used
to represent a piece of notated music. Some of these features may be given directly by the score
(such as notated pitches and durations), while others may be computed from the score in more
or less elaborate ways, by some well-defined procedure (such as the cognitive features discussed
in Section 9.3.3). Features can range from low-level descriptors such as (MIDI) pitches (Grindlay
and Helmbold, 2006; Friberg et al., 2006; Cancino Chacón and Grachten, 2015) and hand-crafted
features, like encodings of metrical strength (Grindlay and Helmbold, 2006; Giraldo and Ramı́rez,
2016a); to cognitively inspired features, like Narmour’s Implication-Realization (IR) descriptors
(Flossmann et al., 2013; Giraldo and Ramı́rez, 2016b), or even features learned directly from the
score using unsupervised machine learning (Grachten and Krebs, 2014; van Herwaarden et al.,
2014). The process of extracting score features corresponds to the Music/Analysis module in
Kirke and Miranda (2013)’s framework and can be seen as at least partly related to Palmer’s
Interpretation aspect (see above).
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An expressive parameter – the output of a model – is a numerical encoding of an aspect of
expressive performance. Since most systems deal with piano music, the most common descriptors
relate to loudness, expressive tempo and timing, and articulation (Kirke and Miranda, 2013;
Widmer and Goebl, 2004), but of course they can also include other parameters like timbral
features (Raphael, 2009; Ohishi et al., 2014) and intonation (Clynes, 2005), or higher-level
patterns such as “pulse microstructure” (Clynes, 1987). The expressive parameters correspond
to the outputs of the Performance Knowledge module in Kirke and Miranda (2013)’s framework.
Section 9.4.1 presents a critical review of the choices involved in selecting and encoding these
parameters.

A computational model then, in our context, is any computable function that maps score features
to expressive parameters or, to be more precise, can make a prediction of the values of expres-
sive parameters, given a score (represented via score features) as input. In music performance
modeling, this is typically done by means of mathematical functions (probabilistic models, ar-
tificial neural networks, etc.) (Teramura et al., 2008; Kim et al., 2010; Grachten and Widmer,
2012) or by means of rules (Friberg et al., 2006; Canazza et al., 2015). Some of these models
can be trained using a dataset of expressive performances. The model/function corresponds
to the Performance Knowledge and the Performance Context in Kirke and Miranda (2013)’s
framework; the training of the model corresponds to the Adaptation Process, and the datasets
are the Performance Examples.

9.3 A Synopsis of Current State and Recent Trends

In this section we discuss some of the recent trends in computational performance modeling.
This brief overview is meant as an update to earlier review papers by Widmer and Goebl (2004),
De Poli (2004) and Kirke and Miranda (2013). In the following, we will refer to a model as static
if its predictions only depend on a single event in time (e.g. linear regression, feed forward neural
networks), and dynamic if its predictions can account for time-dependent changes (e.g. hidden
Markov models or recurrent neural networks).

9.3.1 Data-driven Methods for Analysis and Generation of Expressive
Performances

A first noteworthy trend in recent research is an increasing focus on data-driven approaches to
performance modeling, relying on machine learning to infer score-performance mappings (and
even the input score features themselves) from large collections of real data (scores and perfor-
mances). This is in contrast to rule-based approaches where performance rules are manually
designed, based on musical hypotheses.

An important example of the rule-based variety is the KTH model (Sundberg et al., 1983;
Friberg et al., 2006), developed at the Royal Institute of Technology (KTH) in Stockholm.
These rules were developed and evaluated through an iterative analysis-by-synthesis approach
involving judgments by experts and listening tests. A performance is shaped by a (linear)
combination of the effects of the rules, which the user can weigh individually. The KTH model
has been implemented as a software package called Director Musices (DM) (Friberg et al., 2000;
Masko et al., 2014). Recent versions of the KTH model include cognitively motivated rules
regarding musical accents (Bisesi et al., 2011). Friberg and Bisesi (2014) study the use of the
system for modeling stylistic variations for Baroque, Romantic and Contemporary art music.
The KTH model won the first prize at the RenCon, a competition for computational models of
performance, in 2004 (see also Section 9.4.3 below).
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While early data-driven approaches (Widmer, 1995, 1996, 2000; Widmer and Tobudic, 2002;
Widmer, 2003) aimed at learning explicit performance rules at various structural levels (from
individual notes to higher phrasing levels), using methods like instance-based learning and in-
ductive logic programming, recent advances in machine learning – in particular relating to
probabilistic graphical models and (deep) neural networks – have led to a surge of such methods
in computational performance modeling, which will be reviewed in the following.

Data-driven Methods for Performance Analysis

As tools for analysis, computational methods can be used for several purposes, including studying
the relationship between structural aspects of the score and specific aspects of a performance,
or for comparing expressive renderings by different performers.

Explaining/modeling aspects of performance An important question in analyzing expressive
performance is determining the likely ‘causes’ of observed performance patterns, i.e, structural
or other aspects of a piece that would ‘explain’ why a certain passage was (or needs to be) played
in a certain way. By analyzing large amounts of data, data-driven methods can find systematic
relations between measured performance aspects (e.g., changes in tempo and dynamics) and
various structural aspects of a musical score (e.g., pitch content, metrical and phrasing struc-
ture), notated performance indications (e.g., dynamics markings such as piano and forte or
articulation marks such as legato slurs and staccato), or even aspects related to our perception
of music, like melodic expectation (as far as we are able to infer or compute these in a reliable
way from a score).

Examples of such approaches include the work by Kosta et al. (2014, 2015, 2016), who focus on
the relationship between dynamics markings and expressive dynamics, and the Basis Function
Model (Grachten and Widmer, 2012) – a framework that encodes score properties via so-called
basis functions – which attempts to quantify the contribution of a variety of score descriptors
(such as pitch, metrical position and dynamics markings) to expressive dynamics (Cancino-
Chacón et al., 2017d) and timing (Grachten and Cancino-Chacón, 2017). Fu et al. (2015)
study timing deviations in arpeggiated chords with statistical methods. Gingras et al. (2016)
and Cancino-Chacón et al. (2017c) focus on linking information-theoretic features quantifying
the expectation of musical events in listeners, to expressive timing. Caramiaux et al. (2017)
study performers’ skill levels through variability in timing and features describing finger motion.
Marchini et al. (2014) study the use of score features describing horizontal (i.e. melodic) and
vertical (i.e. harmonic) contexts for modeling dynamics, articulation and timbral characteristics
of expressive ensemble performances, focusing on string quartets. Using machine learning and
feature selection techniques, Giraldo and Ramı́rez (2016b) and Bantula et al. (2016) evaluate a
number of score descriptors in modeling expressive performance actions for jazz guitar and jazz
ensembles, respectively.

A second form of analysis focuses on specific patterns and characteristics in curves of expressive
parameters. This includes work on methods for visualizing expressive parameters and their
characteristics (Langner and Goebl, 2003; Grachten et al., 2009; Chew and Callender, 2013),
on inferring performance strategies like phrasing from expressive timing (Chuan and Chew,
2007) or dynamics (Cheng and Chew, 2008), and clustering of patterns of (phrase-level) tempo
variations (Li et al., 2014, 2015, 2016, 2017). The results obtained with such methods support the
existence of common performance strategies (Cheng and Chew, 2008; Kosta et al., 2016; Li et al.,
2014). Quantitative studies on the contribution of various score features to expressive parameters
reveal well-known relationships, like the importance of pitch (height) for predicting expressive
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dynamics, and the relationship between metrical features and timing deviations. At the same
time, some results indicate that aspects of performance (like expressive tempo and dynamics)
might be related in more than one way to structural aspects of the music, e.g. phrasing has been
shown to be related to dynamics (Cheng and Chew, 2008) or timing (Chuan and Chew, 2007).
An interesting finding is the importance of features and models that allow for describing the
musical contexts, both horizontal (temporal) (Kosta et al., 2016; Gingras et al., 2016; Grachten
and Cancino-Chacón, 2017) and vertical (i.e. harmonic) (Marchini et al., 2014).

Comparing expressive performances A different approach to analyzing expressive perfor-
mances is to compare different renditions of the same piece by different performers, which
allows for studying of commonalities and differences in performance strategies. Some of the
work in this direction follows an unsupervised approach, which does without any score infor-
mation, instead focusing on comparing aligned curves of expressive parameters that encode the
performances. Sapp (2007, 2008) presents a graphical approach and explores different metrics
for comparing collections of performances of the same piece. Liem et al. (2011) and Liem and
Hanjalic (2011) propose a method for comparing expressive timing by studying alignment pat-
terns between expressive performances of the same piece using standard deviations and entropy,
respectively. Liem and Hanjalic (2015) use Principal Components Analysis (PCA) to localize
areas of cross-performance variation, and to determine similarities between performances in or-
chestral recordings. Peperkamp et al. (2017) present a formalization of relative tempo variations
that considers performances as compositions of functions which map performance times to rele-
vant feature spaces. Rather than focusing on a single aspect like dynamics or timing, Liebman
et al. (2012) present a phylogenetic approach that compares and relates performances of two solo
violin pieces by different performers, using performance descriptors like bowing, tempo changes,
and phrase duration. Grachten et al. (2017) use Basis Function models to assess the contribution
of score features pertaining to individual orchestral instruments to the overall loudness curves,
using differential sensitivity analysis, which allows for graphically comparing pairs of recordings
of the same piece by different conductors and orchestras. Methods for comparing performances
can be used for identifying musicians by their individual performance styles. This has been
demonstrated for violinists (Molina-Solana et al., 2008, 2010a), saxophone players (Ramı́rez
et al., 2007), and pianists (Stamatatos and Widmer, 2005; Saunders et al., 2008; Grachten and
Widmer, 2009; Molina-Solana et al., 2010b).

Computational methods for performance comparison have produced some interesting results.
They support the idea of common performance strategies across performers, as well as consistent
individual differences between performers. Furthermore, they seem to support musicologically
plausible hypotheses such as the change in playing style over the years and differences between
mainstream and historically informed performance styles, while only providing weak evidence
for the existence of “performance schools” (Liebman et al., 2012). The formalization of tempo
proposed by Peperkamp et al. (2017) provides an interesting mathematical constraint on tempo
curves as convex linear combinations of tempo variation functions.

In spite of all this, there has been only little progress in really understanding the way humans
perform music expressively. An important issue is that effectively all studies are limited to
small datasets (at least compared to other machine learning domains) that only contain a small
selection of pieces and/or performers. This raises the question how well (or if) the insights
gained from these studies generalize to other performers or kinds of music. Also, most models
rely on features that capture only small local contexts, so that the resulting models cannot
properly account for long temporal dependencies that might be important for understanding
global aspects of performance expression. We still largely fail to understand how to model
long-term, non-contiguous relationships in complex music. The hope is that recent advances in
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(deep) machine learning may open new possibilities here (Widmer, 2017).

Data-driven Methods for Performance Generation

In this section we examine recent work on autonomous generative systems. While computational
methods for analysis tend to focus on explaining a single aspect of expression, generative models
most commonly have to consider more expressive parameters, with expressive tempo/timing and
dynamics being the most popular. As previously discussed, a major trend in this area is the use
of complex probabilistic approaches and the use of neural-network-based methods.

Probabilistic Approaches In a nutshell, probabilistic approaches describe expressive perfor-
mances by modeling the probability distribution of the expressive parameters given the input
score features. Table 9.1 presents some of the recent probabilistic performance systems in terms
of their computational models, expressive parameters, and score features. Please note that the
column relating to score features in Table 9.1 is not exhaustive, given the potentially large
number of features used in each model.

While each model conceptualizes a music score and its corresponding expressive performance
differently, there are some interesting commonalities. Several researchers use variants of Hidden
Markov Models (HMMs) to describe the temporal evolution of a performance, such as Hierar-
chical HMMs (Grindlay and Helmbold, 2006), Dynamic Bayesian Networks (DBNs) (Widmer
et al., 2009; Flossmann et al., 2011, 2013), Conditional Random Fields (CRFs) (Kim et al., 2010,
2011, 2013) or Switching Kalman Filters (Gu and Raphael, 2012). Furthermore, most models
assume that the underlying probability distribution of the expressive parameters is Gaussian
(Grindlay and Helmbold, 2006; Teramura et al., 2008; Gu and Raphael, 2012; Flossmann et al.,
2013; Okumura et al., 2014). A different approach is taken by Kim et al. (2013) and Moulieras
and Pachet (2016), who use maximum entropy models to approximate the underlying probabil-
ity distributions. While most models focus on Western classical music, Moulieras and Pachet
(2016) focus on expressive performance of jazz piano.

In terms of expressive parameters, most models describe expressive dynamics using the note-
wise MIDI velocity. This is mostly done by either making predictions from a static model
(Teramura et al., 2008), focusing only on monophonic melodies (Grindlay and Helmbold, 2006;
Gu and Raphael, 2012; Moulieras and Pachet, 2016), or assuming a decomposition of the piece
into monophonic streams (Kim et al., 2013; Okumura et al., 2014). On the other hand, there
seems to be a variety of descriptors for expressive tempo and timing, with some models focusing
on the inter-beat interval (IBI; a local estimation of the time between consecutive beats) or
inter-onset interval (IOI; the time interval between consecutive onsets), some on the local beats
per minute (bpm; the inverse of the IBI). Other models target local changes in their expressive
parameters, by means of modeling their first differences2. Most models use a combination of
low-level features – pitch, onset and duration of notes, as well as encodings of dynamics and
articulation markings – and high-level features describing musically meaningful structures, such
as metrical strength. Most systems only model expressive parameters independently, and the
few exceptions focus on specific combinations of parameters, such as the ESP system (Grindlay
and Helmbold, 2006) that jointly models tempo and tempo changes, but describes dynamics
independently, and the model by Moulieras and Pachet (2016), which jointly models timing and
dynamics.

2For a parameter pi, the first (finite) difference refers to ∆pi = pi − pi−1.
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Artificial Neural Network-based Approaches Broadly speaking, artificial neural networks
(ANNs) can be understood as a family of mathematical functions describing hierarchical non-
linear transformations of their inputs. The success of ANNs and deep learning in other areas,
including computer vision and natural language processing (Goodfellow et al., 2016) and mu-
sic information retrieval (Humphrey et al., 2012; Schlüter, 2017), has motivated their use for
modeling expressive performance in recent years. A description of systems using ANNs for per-
formance generation is given in Table 9.2. As in the case of probabilistic models, the list of score
features for each model is not exhaustive.

Some ANN-based approaches use feed forward neural networks (FFNNs) to predict expressive
parameters as a function of the score features (Bresin, 1998; Cancino Chacón and Grachten,
2015; Giraldo and Ramı́rez, 2016a). These systems tend to compensate for the static nature of
FFNNs by including score features that describe some of the musical context of a performed
note (e.g. features describing the adjacent rhythmic/melodic context). Other approaches use
recurrent neural networks (RNNs), a class of dynamic ANNs, to model temporal dependen-
cies between score features and expressive parameters (Cancino Chacón and Grachten, 2016;
Cancino-Chacón et al., 2017d). While early versions of the Basis Mixer, an implementation of
the Basis Function model, used a simple linear model (Grachten and Widmer, 2012; Krebs and
Grachten, 2012), current incarnations (Cancino Chacón and Grachten, 2016) use both FFNNs
and RNNs as non-linear function classes, either in the form of deterministic ANNs, or as Gaussian
mixture density networks – probabilistic ANNs in which the outputs of the network parameterize
the joint probability distribution of a Gaussian Mixture Model.

Neural network models closely follow probabilistic approaches in terms of their expressive pa-
rameters. Instead of expecting a human-annotated or heuristically computed decomposition of a
polyphonic score into monophonic streams, Cancino Chacón and Grachten (2016) decompose a
performance into a series of sequential and non-sequential expressive parameters, which permits
to model both temporal trends in dynamics and tempo, and local effects (note-level) in timing,
articulation and dynamics deviations. Giraldo and Ramı́rez (2016a) present an approach for
modeling jazz guitar performances which allows for describing not only dynamics and timing,
but also ornamentation.

In terms of input features, most ANN models again tend to rely on a combination of low-level
hand-crafted features describing local aspects describing individual notes, and some higher-level
features relating to structural properties of the music. On the other hand, some researchers
have tried to use ANNs to automatically learn features from low-level representations of the
score. Grachten and Krebs (2014) and van Herwaarden et al. (2014) use Restricted Boltzmann
Machines (RBMs), a probabilistic class of neural networks, to learn features from note-centered
piano rolls in an unsupervised fashion.

9.3.2 Expressive Interactive Systems: Models for Technology-mediated
Performance

A second major trend that can be observed in recent years is a growing interest in develop-
ing human–computer interaction systems that generate expressive music performances. Rowe
(1992) proposed a terminology for categorizing interactive music systems in three dimensions:
score-driven vs. performance-driven, referring to whether the system follows a musical score
or responds to a human performance; instrument paradigm vs. player paradigm, if the system
is meant for solo or ensemble performances; and transformative vs. generative vs. sequenced,
describing how the system renders the music. The focus of the present survey is on expressive
score-driven systems; performance-driven approaches such as interactive improvisation systems

144



9.3 A Synopsis of Current State and Recent Trends

T
ab

le
9.

2:
N

eu
ra

l
N

et
w

or
k

B
as

ed
M

o
d
el

s

S
y
st

e
m

C
o
m

p
u

ta
ti

o
n

a
l

M
o
d
e
l

E
x
p

re
ss

iv
e

P
a
ra

m
e
te

rs
S

c
o
re

F
e
a
tu

re
s

B
re

si
n

B
re

si
n

(1
99

8)
F

F
N

N
s

•
T

em
p

o:
IO

I
•

A
rt

ic
u

la
ti

on
:

p
er

fo
rm

ed
d

u
ra

ti
on

•
D

y
n

am
ic

s:
ch

an
ge

in
lo

u
d

n
es

s

•
L

ow
-l

ev
el

:
p

it
ch

,
d

u
ra

ti
o
n

,
m

el
o
d

ic
in

te
rv

a
l

•
H

ig
h

-l
ev

el
:

en
co

d
in

g
s

o
f

co
n

d
it

io
n

s
fo

r
K

T
H

ru
le

s,
li

ke
le

a
p

a
rt

ic
u

la
ti

o
n

,
m

el
o
d

ic
ch

a
rg

e,
a
rt

ic
u

la
ti

o
n

re
p

et
it

io
n

U
n

su
p

e
rv

is
e
d

R
B

M
va

n
H

er
w

aa
rd

en
et

al
.

(2
01

4)
;

G
ra

ch
te

n
an

d
K

re
b

s
(2

01
4)

R
B

M
(f

ea
tu

re
s)

+
L

in
ea

r
M

o
d

el
s

•
D

y
n

am
ic

s:
M

ID
I

ve
lo

ci
ty

•
L

ow
-l

ev
el

:
n

o
te

-c
en

te
re

d
p

ia
n

o
-r

o
ll

,
M

ID
I-

ve
lo

ci
ty

h
is

to
ry

G
ir

a
ld

o
&

R
a
m

ı́r
e
z

G
ir

al
d

o
an

d
R

am
ı́r

ez
(2

01
6a

)

•
O

rn
am

en
ta

ti
on

(c
la

ss
ifi

ca
ti

on
):

F
F

N
N

s,
d

ec
is

io
n

tr
ee

s,
S

V
M

s,
k
-N

N
•

T
im

in
g,

A
rt

ic
u

la
ti

on
an

d
D

y
n

am
ic

s
(r

eg
re

ss
io

n
):

F
F

N
N

s,
re

gr
es

si
on

tr
ee

s,
S

V
M

s,
k
-N

N

•
T

im
in

g:
on

se
t

d
ev

ia
ti

on
•

A
rt

ic
u

la
ti

on
:

d
u

ra
ti

on
ra

ti
o

•
D

y
n

am
ic

s:
en

er
gy

ra
ti

o
•

O
rn

am
en

ta
ti

on

•
L

ow
-l

ev
el

:
p

it
ch

,
d

u
ra

ti
o
n

,
p

o
si

ti
o
n

in
b

a
r

•
H

ig
h

-l
ev

el
:

N
a
rm

o
u

r’
s

IR
fe

a
tu

re
s,

ke
y,

m
et

ri
ca

l
p

o
si

ti
o
n

,
p

h
ra

se
p

o
si

ti
o
n

B
a
si

s
M

ix
e
r

G
ra

ch
te

n
an

d
W

id
m

er
(2

01
2)

;
C

an
ci

n
o

C
h

ac
ón

an
d

G
ra

ch
te

n
(2

01
6)

•
O

n
se

t-
w

is
e

m
o
d

el
:

R
N

N
s

•
N

ot
e-

w
is

e:
m

o
d

el
s

F
F

N
N

s
M

o
d

el
s

ca
n

b
e

ei
th

er
d

et
er

m
in

is
ti

c
N

N
s

or
p

ro
b

ab
il
is

ti
c

G
M

D
N

s

•
T

em
p

o:
lo

g-
IB

I
(o

n
se

tw
is

e)
•

T
im

in
g:

O
n

se
t

d
ev

ia
ti

on
s

(n
ot

ew
is

e)
•

A
rt

ic
u

la
ti

on
lo

g-
d

u
ra

ti
on

(n
ot

ew
is

e)
•

D
y
n

am
ic

s:
M

ID
I

ve
lo

ci
ty

tr
en

d
(o

n
se

tw
is

e)
an

d
d

ev
ia

ti
on

s
(o

n
se

tw
is

e)

E
n

co
d

in
g

o
f

sc
o
re

a
sp

ec
ts

th
ro

u
g
h

b
a
si

s
fu

n
ct

io
n

s.
•

L
ow

-l
ev

el
:

p
it

ch
,

d
u

ra
ti

o
n

,
d

y
n

a
m

ic
s

a
n

d
a
rt

ic
u
la

ti
o
n

m
a
rk

in
g
s,

p
o
si

ti
o
n

in
b
a
r

•
H

ig
h

-l
ev

el
:

to
n

a
l

te
n

si
o
n

,
h

a
rm

o
n

ic
a
n

a
ly

si
s

145



9 In Conclusion: A Comprehensive and Critical Review of the Current State of the Field

are beyond the scope of this chapter. A more thorough review of interactive systems is provided
by Chew and McPherson (2017).

Conductor Systems

Conductor systems allow the user to shape a solo performance in real-time, and in Rowe’s
taxonomy would classify as score-driven, instrument paradigm, transformative systems. Such
models divide the rendering of an expressive performance into three parallel subtasks: capturing
the input from the user, mapping such input to expressive parameters, and providing feedback
to the user in real time. Table 9.3 shows several feedback and conductor models. For a more
thorough review of feedback models we refer the reader to Fabiani et al. (2013).

Common ways for a user to control certain aspects of a performance are either via high-level
semantic descriptors that describe the intended expressive character – often selected from some
2D space related to Russell (1980)’s valence–arousal plane (Friberg, 2006; Canazza et al., 2015);
or via physical gestures, measured either through motion capture (Fabiani, 2011) or by using
physical interfaces (Chew et al., 2005; Dixon et al., 2005; Baba et al., 2010). Some systems even
attempt to provide a realistic simulation of conducting an orchestra (Fabiani, 2011; Baba et al.,
2010).

Regarding the mapping of expressive intentions to performance parameters, some systems give
the performer direct control of expressive parameters (e.g. tempo and MIDI velocity) via their
input (Chew et al., 2005; Dixon et al., 2005). This allows for analyzing the way humans perform
music (Chew et al., 2005, 2006). On the other hand, most systems use rule-based models, like
the KTH model, to map the user input to expressive parameters (Friberg, 2006; Baba et al.,
2010; Fabiani, 2011; Canazza et al., 2015).

Accompaniment Systems

Accompaniment systems are score-driven, player paradigm systems, according to Rowe’s tax-
onomy. In order to successfully perform together with a human, accompaniment systems must
solve three tasks: detecting the solo part, matching the detected input to the score, and gen-
erating an expressive accompaniment part (Dannenberg, 1984). The first tasks refers to the
ability of the system to capture a human performance in real time (either from a microphone or
a MIDI instrument) and identify the performed notes, while the second refers to matching these
performed notes to notes in the score (also in the presence of errors). The third task involves
generating an expressive accompaniment that adapts to the performance of the soloist. The first
two tasks are commonly referred to as real-time score following. In this review we focus mostly
on accompaniment systems for notated Western classical music. For perspectives on accompa-
niment systems for popular music, we refer the reader to Dannenberg et al. (2014).

Perhaps the most well-developed accompaniment systems are Antescofo (Cont, 2008; Cont et al.,
2012) and Music Plus One (Raphael, 2001a,b, 2010). Antescofo is not only a polyphonic accom-
paniment system, but a synchronous programming language (i.e. a computer language optimized
for real-time reactive systems) for electro-acoustical musical composition. Both systems solve
the score following problem using dynamic probabilistic graphical models such as variants of
HMMs and DBNs. Eurydice (Nakamura et al., 2013, 2014a, 2015a,b) is a robust accompani-
ment system for polyphonic music that allows for skips, repetitions and ornaments using hidden
semi-Markov models.

In spite of the great progress in automatic accompaniment systems, Xia (2016) points out that
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most of the work on accompaniment systems has focused on solving the score following problem,
while overlooking the generation of expressivity in the accompaniment part, or mostly focusing
on expressive timing. However, in recent years there has been a growing interest in expressive
accompaniment systems. Specifically, Xia and Dannenberg (2015) and Xia et al. (2015) show
how to use linear dynamical systems trained via spectral learning, to predict expressive dynamics
and timing of the next score events. The ACCompanion (Cancino-Chacón et al., 2017a) is a
system that combines an HMM-based monophonic score follower with a variant of the Basis
Mixer to predict expressive timing, dynamics, and articulation for the accompaniment.

Another interesting recent development in accompaniment systems is embodied human–computer
interactions through humanoid robots (Hoffman and Weinberg, 2011; Lim et al., 2012; Solis and
Takanishi, 2013; Xia, 2016). These robots could be used for studying the way humans interact
with each other.

9.3.3 Use of Cognitively Plausible Features and Models

A third clearly recognizable trend in performance modeling has to do with using features and
models inspired by music psychology and cognition. While in early work (e.g., Widmer, 2003)
the focus was on features rooted in music theory, such as scale degrees, melodic intervals and
metrical positions, recent years have seen an increased interest in developing descriptors that
capture some aspects of the way humans – both listeners and performers – hear music. Wiggins
et al. (2010) suggest that music theory is a kind of folk psychology, and thus, might benefit from
being more explicitly informed by music cognition. The music cognition literature supports the
hypothesis that much of the way we perform music is informed by the way we perceive music
(Farbood, 2012; Goodchild et al., 2016).

Cognitively Inspired Features

From a computational modeling perspective, perhaps the most straightforward approach to-
wards cognitively plausible models is to use features related to aspects of cognition. An im-
portant aspect of music cognition is the expectation of musical events. One of the most com-
monly used frameworks of music expectation in computational models of expression is Narmour’s
Implication–Realization (IR) model (Narmour, 1990). The IR model is a music-centered cogni-
tive framework based on Gestalt theory that has emerged from Schenkerian analysis. It defines
a number of patterns of listeners’ ongoing expectations regarding the continuation of a melody,
and how these expectations can be realized to different degrees by the actual continuation.
Methods that include features based on IR include YQX (Flossmann et al., 2013), Giraldo and
Ramı́rez (2016b)’s approach to studying expression in Jazz guitar, and Marchini et al. (2014)’s
approach for string quartets. More recently, there has been an interest to use information
theoretic features computed using the IDyOM model (Pearce, 2005), a probabilistic model of
statistical learning whose expectations have been shown to match human listeners’. Gingras
et al. (2016) use entropy and information content as features to study expressive timing and
perceived tension. This work supports Kendall and Carterette (1990)’s hypothesis regarding the
communication between the composer, the performer and the listener by linking expectation
features, defined by the composer, to expressive timing, controlled by the performer, which is
linked to perceived tension by the listener. Cancino-Chacón et al. (2017c) explore the use of
these information-theoretic features for actually predicting expressive tempo and dynamics of
polyphonic piano music.

Other related cognitive aspects that influence the way humans perform music are the perception
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of tonality and tonal tension (Farbood, 2012; Chew, 2016). Several systems incorporate features
relating to the tonal hierarchies defined by Krumhansl and Kessler’s profiles (Krumhansl, 1990),
including YQX (Flossmann et al., 2013), (Giraldo and Ramı́rez, 2016b) and the Basis Function
models (Cancino Chacón and Grachten, 2016; Cancino-Chacón et al., 2017d; Cancino-Chacón
and Grachten, 2018), which also include tonal tension features by Herremans and Chew (2016)
to predict expressive tempo, timing, dynamics and articulation.

Cognitively Inspired Models

On the other hand, some researchers incorporate aspects of cognition as part of the design
of the computational model itself. Recent versions of the KTH model includes some rules
that refer to musical accents (Bisesi et al., 2011), local events that attract a listener’s attention
through changes in timing, dynamics, articulation or pedaling; and musical tension rules (Friberg
et al., 2006). The approach presented by Gu and Raphael (2012) decomposes expressive timing
into discrete “behaviors”: constant time, slowing down, speeding up and accent, which, as
the authors argue, are more similar to the way human performers conceptualize expressive
performance actions. Polyhymnia (Kim et al., 2013) uses 3 Conditional Random Fields (CRFs)
to independently model the highest, lowest and internal voices. This decomposition allows the
model to define the expressive parameters for the internal voices in terms of the outermost
voices, following the hypothesis that listeners perceive the expressivity of the uppermost and
lowermost voices more clearly than that of the inner voices (Huron and Fantini, 1989).

9.3.4 New Datasets

Data-driven modeling requires data – in the present case, corpora of music performances from
which aspects of expressive performance can be readily extracted. This is a non-trivial problem,
particularly for notated music, since performances not only have to be recorded (as audio or
MIDI files), but they also have to be aligned to the corresponding score, so that we obtain a
mapping between elements in the performance (temporal position in the case of audio recordings,
or MIDI pitch, onset and offset times) and elements in the score (score position, or an explicit
mapping between a performed MIDI note and a note in the score). This is required in order to
be able to calculate, e.g., expressive timing as the deviation of played on- and offsets from the
corresponding time points implied by the score.

Table 9.4 presents some of the datasets used for modeling expressive performances in current
research. Note that this list is not exhaustive; it is intended to give representative examples of the
kinds of existing datasets. Performance datasets can be characterized along various dimensions,
which are also shown in Table 9.4:

1. Instrumentation and Solo/Ensemble Setting. Performance datasets can include a
variety of instruments, ranging from solo to ensemble performances. By far the most
studied instrument in computational modeling is the piano, partially due to the existence
of computer-controlled instruments such as the Bösendorfer SE/CEUS or the Yamaha
Disklavier. However, recently there is also an increased interest in modeling ensembles
(Marchini et al., 2014; Liem and Hanjalic, 2015; Grachten et al., 2017). For datasets
relating to ensemble performances, an important distinction is between those which only
reflect collective characteristics of the performance (as might be the case with datasets
containing audio recordings where, e.g., timing and loudness of individual instruments are
hard or even impossible to disentangle), and datasets where note-precise data is captured
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for each performer in the ensemble (as is the case with the Xia dataset described in (Xia
and Dannenberg, 2015)).

2. Performer(s). Research on music performance has studied a wide range of musical skill
levels, from novices and amateurs to advanced music students (i.e. enrolled in advanced
undergraduate and post-graduate music programs), professionals and world-renowned per-
formers. (Whether the performances by ‘world-renowned’ performers are in any way better
than those of ‘professional’ performers, or who qualifies as a famous artist, are, of course,
subjective matters.). Again, “performer” might not be singular, as some datasets relate
to ensemble performances (cf. the Xia, Marchini and RCO/Symphonic datasets in Table
9.4).

3. Genre and Epoch refer to the kind of music contained in the database and the period
in which the music was composed. Most of the work on expressive performance modeling
has focused on 19th century Western classical music. In Table 9.4, “Classical” denotes
Western classical music and “Popular” denotes music genres such as jazz, folk, rock and
pop.

4. Multiple Performances. Different musicians perform the same pieces in different ways,
and it is highly unlikely that the same performer would generate exactly the same perfor-
mance more than once. Datasets that include multiple performances of the same piece by
different performers allow modeling commonalities and systematic differences among per-
formers, while multiple performances of a piece by the same performer could bring insights
into the different aspects that contribute to specific realizations of expressive performance
actions.

5. Source refers to whether the performances are taken from audio recordings or played
on a computer-controlled instrument. Another related issue is whether the performances
are recorded in front of a live audience, in a recording studio, or in a research lab. Such
differences may have an influence on expressive parameters (Moelants et al., 2012).

6. Alignment refers to whether there is a mapping between elements in the performance and
the score. (Producing such mappings is generally a very tedious task.) Alignments can
be note-wise, i.e., individual performed notes are matched to their corresponding symbolic
representations in the score; or onset-wise, where there is just a mapping between temporal
position in the performance and score position.

In spite of the apparent richness and variety of data, it is important to raise awareness to some
issues, like the fact that it is unlikely that the same performance would happen in two different
kinds of rooms with different audiences (Di Carlo and Rodà, 2014). Furthermore, in the case of
computer-controlled instruments, the mapping from MIDI velocities to loudness and timbre is
dependent on the instrument.

But perhaps one of the most pressing issues is the availability of the datasets. Part of the
impressive progress in other Artificial Intelligence domains is due to the availability of large
standard datasets, which allow for comparing different approaches. In our case, however, only a
few of the performance datasets are publicly available, often due to rights issues. (Of the datasets
reported in Table 9.4, only CrestMuse PEDB, Xia, Vienna 4x22, Mazurka and the e-Piano
competition datasets are publicly available). A noteworthy effort towards the compilation of
large and varied performance datasets is being made by the CrestMuse group in Japan (Hashida
et al., 2017), who not only provide a second edition of the PEDB database, but also have provided
some tools for aligning MIDI performances to scores (Nakamura et al., 2017). A more in-depth
review of methods for extracting information from performances can be found in (Goebl et al.,
2008) and (Goebl and Widmer, 2009).
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In particular for score-based music it is of capital importance to have central datasets that
combine score information, structural annotation, performance data and performance annota-
tion. Crowd-sourcing platforms for creating and maintaining such databases are an avenue that
should definitely be pursued.

9.3.5 Computational Models as Tools for Music Education

A final recent trend we would like to mention here is the increased interest in exploring com-
putational models of expressive performance for educational purposes. Juslin (2003) already
pointed out that insights learned by developing such models can help understand and appre-
ciate the way musicians perform music expressively. Furthermore, initiatives like the RenCon
competition have stressed from the beginning the importance of using computational models
for educational purposes, stating in a tongue-in-cheek manner that RenCon’s long-term goal is
to have a human performer educated using a computational system win the first prize at the
International Chopin Piano Competition by 2100 (Hiraga et al., 2002).

A possible use of computational models as tools for education is to analyze performance strategies
from visualizations of expressive parameters (Langner and Goebl, 2003; Grachten et al., 2009;
Chew, 2012, 2016) or comparing characteristics of a performance (Sapp, 2007, 2008; Liem and
Hanjalic, 2015; Grachten et al., 2017). By highlighting similarities and variations in expressive
patterns and qualities in performances and relating these to aspects of the written score, this
kind of analyses might be interesting not only to music students, buy also to general audiences,
stimulating listeners’ engagement with, and understanding of, music. All of this could be built
into active music listening interfaces (Goto, 2007), such as the integrated prototype of the
PHENICX project3 (Liem et al., 2015).

Computer accompaniment systems can help musicians to practice. First concrete examples
are commercial applications such as Smartmusic4, which commercializes Roger Dannenberg’s
research, Cadenza5, based on work by Chris Raphael and Antescofo (Cont, 2008), which has been
developed into commercial applications for providing adaptable backing tracks for musicians and
music students6. Conductor and feedback systems can be also be used for educational purposes,
either as a simulation of orchestra conducting for conducting students (Peng and Gerhard, 2009;
Baba et al., 2010), or as interactive experiences for helping to introduce general audiences to
classical music (Sarasúa et al., 2016).

Another dimension is the technical and mechanical aspects of instrument playing and practic-
ing. Here, for example, algorithms that can determine the difficulty of a piece (Sébastien et al.,
2012; Nakamura et al., 2014b) or propose appropriate fingering strategies (Al Kasimi et al.,
2007; Balliauw et al., 2015; Nakamura et al., 2014b) would be useful. Furthermore, compu-
tational models might help determine a performer’s skill level (Grindlay and Helmbold, 2006;
Caramiaux et al., 2017). Musical e-learning platforms such as Yousician7 and Music Prodigy8

(and many more, as this is a rapidly growing business segment for start-ups) might benefit
from models of performance to provide a more engaging experience, as well as to develop better
musicianship.

3http://phenicx.com
4https://www.smartmusic.com.
5http://www.sonacadenza.com
6https://www.antescofo.com.
7https://yousician.com.
8https://www.musicprodigy.com.
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9.4 A Critical Discussion of Parameter Selection and Model
Evaluation

The following section presents a discussion of how certain choices in the score features, expressive
parameters and models affect what a computational performance model can describe. We focus
on three main aspects, namely, the effects of the choice of expressive targets (Section 9.4.1), the
level at which a system models expressive performance, based on Palmer’s categories described
in 9.2.2 above (Section 9.4.2), and on the way models are evaluated (Section 9.4.3).

9.4.1 Encoding Expressive Dimensions and Parameters

As explained in Section 9.2.3 above, expressive parameters are numerical descriptors that capture
certain aspects of a performance. As already discussed by De Poli (2004) (and this remains true
today), there seems to be no consensus on the best way of describing a music performance.
Instead, each formulation uses variants of these parameters, which has some consequences on
the kinds of performances or performance aspects that can be modeled.

The most commonly modeled performance aspects (for the piano) are expressive tempo/timing,
dynamics and articulation. To keep the discussion manageable, we will also restrict ourselves
to these parameters here, leaving out other dimensions such as timbral parameters, vibrato, or
intonation. A piano performance can be represented in the most simplistic way by the three
MIDI parameters note onset, offset, and key velocity. Other instruments might involve other
parameters such as bow velocity for string instruments (Marchini et al., 2014). Furthermore,
in some instruments, like winds and strings, there might be a discussion whether to model
perceptual or physical onsets (Vos and Rasch, 1981), or indeed whether the notion of a well-
defined, exact onset time is meaningful.

Tempo and Timing

Expressive tempo and timing ultimately relate to the ‘temporal position’ of musical events.
Broadly speaking, tempo refers to the approximate rate at which musical events happen. This
may refer to the global tempo of a performance (which is often roughly prescribed in the score
by the metronome number), or to local tempo, which is the rate of events within a smaller time
window and can be regarded as local deviations from the global tempo. Expressive timing,
finally, refers to deviations of the individual events from the local tempo. Setting these three
notions apart is of crucial importance in quantitative modeling of performance, computational
or otherwise.

There is support from the music psychology literature that timing patterns are tempo-dependent
(Desain and Honing, 1994; Repp et al., 2002; Honing, 2005; Coorevits et al., 2015). Although
there is no clear-cut definition of where local tempo variations end and expressive timing starts,
the distinction between local tempo and timing was shown to be perceptually relevant in a
study by Dixon et al. (2006) where listeners rated beat trains played along with expressive
performances, and were shown to prefer slightly smoothed beat trains over beat trains that were
exactly aligned to the note onsets. This reinforces the idea that note level irregularities should
be not be regarded as as micro-fluctuations of local tempo, but rather as deviations from local
tempo. A similar result was presented by Gu and Raphael (2012). Honing (2005, 2006) provides
valuable insight into the limits of expressive timing by observing that very strong deviations
from a steady beat may interfere with the rhythm that is perceived by the listener. Assuming
that a goal of the performer is to make the listener accurately recognize the rhythmic categories
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of the score being played, this constrains the freedom of expressive timing. Honing (2006) then
uses a model of human rhythm perception to infer limits on expressive timing for phrase endings
based on their rhythmic patterns.

Several computational models explicitly separate tempo and timing. Recent versions of the KTH
model (Friberg et al., 2006, see Table 1) have rules dealing with tempo (e.g. phrasing rules) and
timing (e.g. melodic sync, micro-level timing). In Laminae (Okumura et al., 2014), tempo is
represented by the average BPM per beat, while timing is defined as the onset deviations relative
to the beat. Polyhymnia (Kim et al., 2011) decomposes tempo into two expressive parameters,
calculating tempo curves for the highest and lowest melodic lines. YQX (Flossmann et al.,
2013) represents tempo as the lower frequency components of the log-IOI ratio series, and
timing as the residual high frequency components. In a similar fashion, the most recent version
of the Basis Mixer (Cancino Chacón and Grachten, 2016) computes expressive tempo from the
smoothed log-IOI series, where the estimated IOIs come from a smoothed (spline) interpolation
of the performed onsets, and timing as the deviations from these estimated IOIs. There are
some practical issues with the use of smooth tempo targets, such as the problem of phrase
boundaries, where tempo changes are not necessarily smooth. A solution involving adaptive
smoothing (Dixon et al., 2006) – splines with manual knot placement at phrase boundaries
– would require human annotation of the phrase structure. Dannenberg and Mohan (2011)
describe an interesting dynamic programming optimization algorithm to find the best spline fit
allowing a finite number of knots without manual annotations. Other approaches involve local
linear approximations of the tempo (Xia, 2016) or multiple hierarchical decompositions (Widmer
and Tobudic, 2002).

Another issue related to the modeling of tempo and timing is scaling of the expressive param-
eters, which determines whether we model relative tempo changes, or the actual tempo itself.
Chew and Callender (2013) argue in favor of using log-tempo for analysis of performance strate-
gies. Flossmann et al. (2013), Kim et al. (2013) and Grachten and Cancino-Chacón (2017)
use logarithmic tempo parameters, while most works focus on linear parameters (Grindlay and
Helmbold, 2006; Teramura et al., 2008; Gu and Raphael, 2012; Okumura et al., 2014; Gingras
et al., 2016; Cancino-Chacón et al., 2017c; Peperkamp et al., 2017).

Some choose to focus on modeling the dynamic change in the parameters instead of the param-
eters themselves, by calculating differences. Gingras et al. (2016) model both IOIs and their
first differences – also for a technical reason, since the IOI series is not stationary, and thus not
suitable for linear time-series analysis. Okumura et al. (2014) focus on the changes in expressive
tempo, by explicitly modeling the conditional probability distribution of the current expres-
sive tempo given its previous difference, using Gaussian distributions. Grindlay and Helmbold
(2006) jointly model expressive tempo and its first differences, which leads to more coherent
predictions.

Articulation

Articulation, in the case of the piano, refers to the ratio between the performed duration of a
note and its notated value and therefore also describes the amount of overlap between consec-
utive notes. Common articulation strategies include staccato (shortening compared to notated
duration) and legato (smooth connection to following note). While most generative models deal
with expressive tempo/timing, not all of them model articulation. As with tempo, there are
several variants of quantitatively describing articulation, including the use of linear (Flossmann
et al., 2013) or logarithmic scaling of the parameters (Kim et al., 2011; Cancino Chacón and
Grachten, 2016).
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To the best of our knowledge, no data-driven generative system has attempted to model pedaling,
a subtle art that has complex consequences for note durations, but also for the overall sound of a
passage. The effect of pedaling on articulation may still be modeled implicitly, by distinguishing
between the events of a piano key release and the actual ending of the associated sound (when
the sustain pedal is released), as is done in the Basis Function models, for example.

Expressive Dynamics

To simply relate performed dynamics to loudness would miss a number of important aspects
of expressive performance. As discussed by Elowsson and Friberg (2017), there is a difference
between mere loudness and perceived dynamics. For example, it has been noted that the timbral
characteristics of instruments (and therefore, their spectra) change with the performed intensity.
Liebman et al. (2012) choose not to focus on loudness since analysis of loudness might not be
entirely reliable.

Most approaches for the piano use MIDI velocity as a proxy for loudness. However, it must be
noted that the mapping of MIDI velocities to performed dynamics and perceived or measured
loudness in piano is not standardized in any way – it may be non-linear, and change from
instrument to instrument. Some systems simply use MIDI velocity as an expressive target
for each note, while others – particularly those for polyphonic music – decompose the MIDI
velocity into several parameters. Early versions of the Basis Function model (Grachten and
Widmer, 2012; Cancino Chacón and Grachten, 2015), as well as the unsupervised approach by
van Herwaarden et al. (2014) and the NAIST model (Teramura et al., 2008), are non-sequential
models and thus predict MIDI velocity for each score note. Sequential models such as ESP
(Grindlay and Helmbold, 2006), Laminae (Okumura et al., 2011) and Polyhymnia (Kim et al.,
2011) decompose a piece of music into several melodic lines, either automatically (Polyhymnia)
or manually (ESP, Laminae), and predict the MIDI velocity for each voice independently. The
latest version of the Basis Function models decomposes a performance into a dynamic trend,
either the average or the maximal MIDI velocity at each score position (Cancino Chacón and
Grachten, 2016; Cancino-Chacón et al., 2017c), and a local parameter describing the deviations
from the trend for each score note. The rationale for this decomposition is that it allows for
modeling the temporal evolution of expressive dynamics, something that cannot easily be done
in polyphonic music when dynamics is represented as an attribute of individual notes.

In the case of audio, the problem of choosing a metric for expressive dynamics is more com-
plicated due to the large number of measures of loudness. A common trend is to use loudness
measures that take into account human perception, such as the EBU R 128 measure defined
for regulation of loudness in the broadcasting industry (Grachten et al., 2017), and smoothed
loudness curves in sones (Kosta et al., 2016).

Joint Modeling of Parameters

Musicians’ expressive manipulations of tempo, timing, dynamics, and articulation have been
studied from a cognitive perspective, both individually and in combination, to determine how
they shape listeners’ perceptions of performed music. A number of studies have sought to identify
interactions between pairs of expressive parameters like timing and dynamics (Tekman, 2002;
Boltz, 2011), and timing and tempo (Desain and Honing, 1994; Repp et al., 2002; Coorevits et al.,
2015, 2017). While the music psychology literature provides some indication of how listeners
expect pairs of expressive parameters to relate in certain (simplistic) contexts, it remains unclear
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whether these relationships are upheld during normal music performance, when the underlying
piece is complex and many expressive parameters must be manipulated in parallel.

The influential model of expressive tempo and dynamics by Todd (1992) states that both as-
pects are linearly coupled by default (unless the musical context demands a decoupling), and
suggests that this coupling may be especially tight for romantic piano music. The model pre-
dicts arc-like dynamics and tempo shapes to express phrase structure. Grindlay and Helmbold
(2006)’s HHMM-based ESP system allows for the joint modeling of expressive parameters, how-
ever the focus in their work is strongly on local tempo. No quantitative results are given for the
modeling of tempo in combination with dynamics and articulation. The KTH model (Friberg
et al., 2006) includes rules that prescribe the joint variation of multiple parameters, such as a
phrasing rule that accounts for arc-like shapes in dynamics and tempo, similar to those in Todd
(1992). Several other authors combine separate models for each expressive parameter, and do
not consider interactions (Teramura et al., 2008; Widmer et al., 2009), or consider only a single
expressive parameter (Kosta et al., 2016; Peperkamp et al., 2017). Recent versions of the Basis
Function models (Cancino Chacón and Grachten, 2016) allow for joint estimation of parameters
using Gaussian mixture density networks (GMNs); parameters defined for individual notes and
parameters defined only per score time point are modeled in separate sets. Xia and Dannen-
berg (2015) and Xia et al. (2015) jointly model expressive dynamics and tempo using linear
dynamical systems, with the underlying assumption that the joint distribution of the param-
eters is Gaussian. The approach presented by Moulieras and Pachet (2016) models dynamics
and timing jointly with a joint probability distribution approximated using a maximum entropy
approach. Since this approach is not Gaussian, the form of the distribution depends on the
training data.

To the best of our knowledge, there has not been an extensive computational study analyzing
whether the joint estimation of parameters improves the generative quality of predictive mod-
els. Furthermore, in some cases performers will manipulate two parameters in different ways
during the course of a single piece to achieve different expressive goals (e.g. slowing down while
simultaneously getting softer, then elsewhere slowing down while getting louder). Whether the
consistent use of particular parameter relationships relates to the aesthetic quality of a perfor-
mance, increases its predictability, or makes the communication of expression more successful
likewise requires further study.

9.4.2 Relation to Palmer’s Categories

Interpretation

As stated in Section 9.2.2, expressive performance of notated music can be seen as a com-
munication process in which information flows from the composer to the listener through the
performer (Kendall and Carterette, 1990). In this case, the role of the performer involves seman-
tically and affectively interpreting the score. Gingras et al. (2016) provide evidence supporting
this relationship by linking information-theoretic features (related to the role the composer) to
expressive timing (performer), which is a good predictor of perceived tension (listener).

An important aspect of the interpretation of a score is to highlight structural content. A common
approach taken by many systems is to rely on input features describing group boundaries and
phrase structure. Friberg et al. (2006) and Grindlay and Helmbold (2006) use features related
to phrase structure, which is assumed to be manually annotated in the score. Giraldo and
Ramı́rez (2016a,b) use LBDM, an automatic segmentation algorithm based on Gestalt theory
(Cambouropoulos, 1997).
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Another important aspect in polyphonic Western music is the hierarchical relations and inter-
actions between different voices, which in most cases involves distinguishing the main (or most
salient) melody. Several models require the melody to be annotated (Grindlay and Helmbold,
2006; Cancino-Chacón et al., 2017c; Okumura et al., 2014). Other models simply assume that
the main melody is composed of the highest notes (Teramura et al., 2008; Flossmann et al.,
2013).

Another marker of music structure are the patterns of tension and relaxation in music, linked
to several aspects of expectedness. Farbood (2012) showed a relationship between expressive
timing and perceived tension. Grachten and Widmer (2012) use Narmour’s (1990) Implication–
Realization model to link expressive dynamics to melodic expectation, but observe no substantial
improvement over simpler models that use only pitch and dynamics annotations as predictors.
Chew (2016) introduces the idea of tipping points, i.e. extreme cases of pulse elasticity, and their
relation to tonality, in particular harmonic tension. The KTH model includes features describing
harmonic tension (Friberg et al., 2006). Gingras et al. (2016) show relationship of expressive
timing and perceived tension. Recent versions of the Basis Function models (Cancino Chacón
and Grachten, 2016) include harmonic tension features computed using the methods proposed
by Herremans and Chew (2016).

Beyond the identification of structural aspects, another important aspect of interpretation is to
highlight particular emotional content of the music. Juslin (2003) points out that “[a] function
of performance expression might be to render the performance with a particular emotional ex-
pression”. Research in music and emotion is a very active field (see Juslin and Sloboda (2011)
for an overview), which includes studying the relationship between intended emotion and per-
formance gestures and strategies (Juslin, 2001; Gabrielsson and Lindström, 2010; Bresin and
Friberg, 2011). Eerola et al. (2013) study the contribution of expressive dimensions such as
tempo, dynamics, articulation, register and timbre to determining emotional expression. Their
results suggest that expressive dimensions interact linearly, and their contributions seem to be
additive. While some generative models allow the user to control the intended emotion or ex-
pressive character (Bresin and Friberg, 2000; Friberg, 2006; Canazza et al., 2015), to the best
of our knowledge no autonomous generative model attempts to recognize emotive content of a
piece directly from analysis of the score, and render it appropriately.

Planning

While interpretation of a musical score aims at uncovering its semantic and affective content,
performance planning refers to how this content, along with more or less specific artistic or
expressive intentions of the performer, is turned into specific expressive performance decisions.
In this view, most computational models of expressive performance act at this level, since they
focus on explicitly (i.e. quantitatively) relating structural aspects of the score to parameters
encoding an expressive performance.

An important characteristic of Western classical music is the hierarchical nature of its structure.
Repp (1998) points out that “[t]he performer’s (often subconscious) intention seems to ‘act out’
the music’s hierarchical grouping structure and thereby communicate to the listeners”. It is
therefore important to determine how the different hierarchical levels interact with each other
and contribute to the overall expression. The relation between the hierarchical structure and
expression has been explored in the cognitive literature (Clarke, 1993; Repp, 1998; Toiviainen
et al., 2010). Widmer and Tobudic (2002) explore the relationship between hierarchical levels of
the phrase structure and expressive tempo, using a multilevel decomposition of the tempo curves
corresponding to each level of the phrase structure, and an inductive rule learning method to
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model the note-wise performance residuals. Tobudic and Widmer (2006) expand on this work
using an instance-based learning method in which the hierarchical phrase structure is represented
using first-order logic.

An important design issue relating to the structure–expression relationships is how the choice
of score (feature) representation affects the possible performance gestures that can be modeled
(i.e. planned). An example of this would be whether the possible patterns of dynamics and
timing deviations that a system can describe are ‘implicitly’ assumed from the encoding of
features – as might be the case with systems using features describing metrical strength and
metrical hierarchy (Grindlay and Helmbold, 2006; Teramura et al., 2008; Kim et al., 2011;
Marchini et al., 2014; Giraldo and Ramı́rez, 2016a) – or can be inferred directly from human
performances using more agnostic features denoting metrical position (Xia et al., 2015; Cancino-
Chacón et al., 2017d).

Movement

Humans need to transform the result of the interpretation and planning stages into an actual
acoustic rendering of a piece by means of movements of their bodies (i.e., actually playing the
instrument). In this regard, we can consider movement and embodiment as necessary conditions
for (human) expressive performance. Similar to the concept of embodied cognition (Leman et al.,
2017a), neuroscientific accounts refer to the “action–perception loop,” a well-trained neural con-
nection between the aim of an action, here the musical sound, and its execution, the necessary
body movements at the musical instrument (Novembre and Keller, 2014). Musicians, having
practiced over decades, will “hear” or imagine a certain sound and execute the appropriate body
movements automatically. Likewise, co-musicians or the audience will perceive a performance
through hearing and seeing the performer (Platz and Kopiez, 2012); and even from only hearing
the sound, experienced listeners will be able to deduce bodily states and movement character-
istics of the performer. Leman et al. (2017b) discuss the role of the hand as a co-articulated
organ of the brain’s action–perception machinery in expressive performance, music listening and
learning.

Body motion is an essential means of non-verbal communication not only to the audience, but
also among musicians. Goebl and Palmer (2009) showed in ensemble performances of simple
melodies that visual information became more important to stay in synchrony (i.e., musicians’
head movements were more synchronized) as auditory cues were reduced. Body movements
serve specific roles at certain places in a piece (e.g., at the beginning, after fermatas). Bishop
and Goebl (2017b,a) study specific head motion kinematics in ensemble performance used to
cue-in a piece without upbeat. They found characteristic patters including acceleration peaks
to carry relevant cueing information.

In spite of the progress in music psychology and embodied cognition, few computational ap-
proaches take into account aspects of motion while modeling expressive performance. However,
the availability of motion capture technology as well as new trends in psychological research
might open the field of modeling expressive movement. The KTH model includes performance
noise as a white noise component relating to motor delay and uses 1/f noise to simulate noise
coming from an internal time-keeper clock (Friberg et al., 2006). Dalla Bella and Palmer (2011)
show that finger velocity and acceleration can be used as features to identify individual pianists.
Marchini et al. (2013, 2014) study expressive performance in string quartets using a combination
of music-only related expressive parameters, as well as bow velocity, a dimension of movement
directly related to performed dynamics. Caramiaux et al. (2017) assess whether individuality
can be trained, that is whether the differences in performance style are related to development
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in skill and can thus be learned. Their results suggest that motion features are better than
musical timing features for discriminating performance styles. Furthermore, the results suggest
that motion features are better for classification.

9.4.3 Evaluating Computational Performance Models

How the quality or adequacy of computational performance models can be evaluated in a sys-
tematic and reliable fashion is a difficult question. First of all, the evaluation will depend on the
purpose of the model. A model designed to serve an explanatory purpose should be evaluated
according to different criteria than a model for performance generation. In the former case, the
simplicity of the model structure may be of prime importance, as well as how easily the model
output can be linked to aspects of the input. In the latter, we may be more interested in how
convincing the generated performance sounds than how easy it is to understand the decisions of
the model.

Furthermore, when we evaluate a model by the quality of its output, an important issue is the
ultimately subjective nature of judging the musical quality of an expressive performance. And
while we might even be able to formulate principles to which a good performance should adhere,
it is entirely conceivable that a performance conforming to all these principles fails to please us,
or conversely, that a performance defying these principles is nevertheless captivating.

Bresin and Friberg (2013) formulate several more formal aspects of computational performance
models that can be evaluated, including their ability to reproduce/reconstruct (specific) human
performances and their capacity to adapt to different expressive intentions/contexts.

Attempts at Quantitative, ‘Objective’ Evaluation

Most of the work described above relies on quantitative evaluation in terms of predictive capa-
bilities and/or goodness of fit, relative to a given set of human performances. These measures
tend to focus on the prediction or reconstruction error – e.g., in the form of the correlation or
the mean squared error (MSE) between the performance patterns predicted by a model, and a
real human performance –, or on a so-called likelihood function (which gives the probability of
observing a given (human) performance, given a particular model). What all these approaches
have in common is that they base their evaluation on a comparison between a model’s output,
and a – usually one specific – performance by a human musician (most often additional perfor-
mances by the same musician(s) from whom the model was learned). This is problematic for
several reasons:

• Comparison to a single ‘target’ performance is highly arbitrary, given that there are many
valid ways to perform a piece. A good fit may at least indicate that a model has the
capacity of encoding and describing the specific performances by a specific performer
(with, presumably, a specific style). A poor fit does not necessarily mean that the model’s
predictions are musically bad.

• What is more, there is no guarantee that higher correlation, or lower MSE implies a
musically better performance, nor indeed that a performance that sounds more similar
to the target. Especially outliers (single errors of great magnitude) can influence these
measures. Errors may not be equally salient for all data points. Accounting for this would
require a model of perceived saliency of musical positions and errors, which is currently
out of reach (or has not been tackled yet).
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• A more technical point is that we cannot compare performance models that encode an
expressive dimension using different parameters (such as modeling expressive tempo using
IBI vs. BPM, or using linear vs. logarithmic parameters), because quantitative correlation
or error measures must assume a particular encoding. There are currently no canonical
definitions of the expressive dimensions.

These kinds of problems have also been faced in other domains, and have been addressed in the
computer vision literature with the introduction of the Structural Similarity Index (Wang et al.,
2004), a perception-based metric that considers perceptual phenomena like luminance masking,
as well as perceived change in structural information. However, to the best of our knowledge,
there has not been any attempt to define similar measures for music, or to propose a custom
measure for expressive performance.

Bresin and Friberg (2013) suggest to relate these error metrics to more general perceptual models.
An example of this would be reporting the error in terms of just noticeable differences (JNDs)
in the expressive parameters. Nevertheless, it is worth noticing that JNDs are highly dependent
on the musical context.

Qualitative Evaluation via Listening Tests

The obvious alternative to quantitative, correlation-based evaluation is evaluation by listening:
playing human and computer-generated performances to human listeners and asking them to
rate various qualities, or to simply rank them according to some musical criteria.

An early initiative that attempted to provide a systematic basis for this was RenCon (Perfor-
mance Rendering Contest),9 a Japanese initiative that has been organizing a series of contests
for computer systems that generate expressive performances (Hiraga et al., 2002, 2003, 2004,
2006; Katayose et al., 2012). At these RenCon Workshops, (piano) performances of different
computational models were played to an audience, which then voted for a ‘winner’ (the most
‘musical’ performance). It is currently not clear if this initiative is being continued. (Actually,
the last RenCon workshop we are aware of dates back to 2013.)

Also, there are a number of issues with audience-based evaluation, which clearly surfaced also
in the RenCon Workshops: the appropriate choice of music; the listeners’ limited attention
span; the difficulties inherent in comparing different kinds of systems (e.g., fully autonomous
vs. interactive), or systems that model different performance parameters (e.g., not all models
address the articulation dimension, or autonomously decide on the overall tempo to be chosen).
Finally, reproducibility of results is an issue in audience-based evaluation. There is no guarantee
that repeating a listening test (even with the same audience) will yield the same results, and it
is impossible to compare later models to models that have been evaluated earlier.

A particular and very subtle problem is the choice, and communication to the human subjects,
of the rating criteria that should be applied. This can also be exemplified with a recent ‘Turing
Test’ described in (Schubert et al., 2017), where piano performances produced by several systems
that had won recent RenCon competitions, along with one performance by a real human pianist,
were rated by a human listening panel. The subjects were asked to rate the performances (all
rendered on the same piano) according to different dimensions. The question that the analysis in
(Schubert et al., 2017) then mainly focuses was to what degree the listeners believed that “[t]he
performance was played by a human”. Without going into the details of the results10, it is clear

9www.renconmusic.org
10Briefly: it turned out that on this ‘perceived humanness’ rating scale, several computational models scored

at a level that was statistically indistinguishable from the human pianist, with the linear Basis Function
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that such a question may be interpreted differently by different listeners, or indeed depending
on what apparent weaknesses are heard in a performance: a performance with extreme timing
irregularities might be (erroneously) classified as ‘human’ because the listener might believe
that it was produced by a poor piano student or a child, or that it could not be the output
of a computer, because computers would be able to play with perfect regularity. Generally, an
inherent problem with qualitative listening evaluations is that one single cue (e.g., ‘strange’,
unusual mistake) can give away a given trial as probably computer-generated, independent of
how convincing the rest was.

There is plenty of evidence in the music psychology literature showing that the assessment of
the quality of a performance depends not only on the quality of its acoustic rendering, but on
a number of other factors. Platz and Kopiez (2012) present a meta-analysis of 15 studies from
1985 to 2011 supporting the hypothesis that audio-visual presentation enhances appreciation
of music performance. Their results show that the visual component is an important factor in
the communication of meaning. Tsay (2013) present controversial results suggesting that visual
information alone might be sufficient when determining the winner of a music competition. Wap-
nick et al. (2009) suggest that certain non-musical attributes like the perceived attractiveness
of a performer or the way they behave on stage affects ratings of high-level piano performances,
particularly on short performances. Thompson et al. (2007) study the evolution of listeners’
assessments of the quality of a performance over the course of the piece. Their results suggest
that even while listeners only need a short time to reach a decision on their judgment, there is a
significant difference between the initial and final judgments. Wesolowski et al. (2016) present
a more critical view of listeners’ judgments by examining the precision.

De Poli et al. (2014) and Schubert et al. (2014a) specifically study how the audience judges entire
performances of computational models, by analyzing listeners’ scores of several aspects including
technical accuracy, emotional content and coherence of the performed style. The listeners were
categorized into two different cognitive styles: music systemizers (those who judge a performance
in technical and formal terms) and music empathizers (describe a performance in terms of its
emotive content). Their results suggest that preference for different performances cannot be
attributed to these cognitive styles, but the cognitive style does influence the justification for a
rating. Schubert et al. (2014b) suggest that the conceptual difference between music empathizers
and music systemizers might not be sufficient to capture significant differences in evaluating
music performances.

Despite all these problematic aspects, some way of qualitative, expert- or listener-based evalu-
ation of computational performance models seems indispensable, as the quantitative measures
described in the previous section definitely fall short of capturing the musical (not to mention the
emotional) quality of the results. This is a highly challenging open problem for the performance
research community – and an essential one.

9.5 Conclusions

This work has reviewed some recent developments on the study and generation of expressive
musical performances through computational models. Perhaps the most notable trends are a
strong focus on data-driven methods for analysis and generation, which mirrors the trend in
other areas such as natural language processing and computer vision; and increased interest in
interactive systems, which allow us to explore musical human–computer interactions.

model (Grachten and Widmer, 2012) achieving the highest ‘humanness’ ratings (higher than even the human
performance).
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9 In Conclusion: A Comprehensive and Critical Review of the Current State of the Field

In their current state, computational models of performance provide support for a number
of musically and cognitively plausible hypotheses, such as the existence of certain patterns in
performance, the importance of attending to the local context in the score (Marchini et al.,
2014; Kosta et al., 2016; Grachten and Cancino-Chacón, 2017), and Kendall and Carterette
(1990)’s communication model for the role of composer, performer and listener (Gingras et al.,
2016). Nevertheless, most approaches focus on mapping local syntactic structures to performance
gestures, but are not able to model the longer hierarchical relationships that might be relevant
for a full understanding of the music, and its dramatic structure.

There remains much to be done in order to advance the state of the art, and to improve the
utility of such computational models – both as vehicles for exploring this complex art, and as
practical tools. We would like to end this chapter by briefly highlighting four aspects (out of
many) to consider for further research in the immediate future:

1. Dataset creation. The power of data-driven methods comes at the cost of requiring large
amounts of data, in this case specifically, performances aligned to their scores. As pointed
out by Juslin (2003), this might be an issue preventing the advance in computational
models of music expression. As discussed in Section 9.3.4, currently available datasets do
not yet reach the size (in terms of amount of data and variety) that has been able to boost
other domains such as computer vision. Still, progress is being made, with initiatives like
those by the CrestMuse group in Japan (Hashida et al., 2017). We would like to encourage
the community at large to focus on developing more datasets, in a joint effort.

2. Expressive Parameters. As discussed in Section 9.4.1, there is no consensus regarding
the encoding of expressive dimensions. Efforts should be made to investigate the effects
of the choice of performance parameters encoding, as well as joint estimation of parame-
ters. An interesting direction would be to search for representations that are cognitively
plausible (in terms of human real-time perception and memory).

3. Models of music understanding and embodiment. As pointed out by Widmer
(2017), it is necessary to develop models and features that better capture the long term
semantic and emotive relationships that appear in music. This might require to develop
better features, including learned features, as well as reframing the computational tasks
in terms of approaches like reinforcement learning. Furthermore, more research efforts
into developing computational models that include aspects of embodied music interaction
might be required.

4. Evaluation Having well-established and valid criteria for evaluating different models, and
comparing their performance to that of humans, is essential to making progress. In terms
of quantitative measures, more work will be required to conduct research that studies the
effects and biases involved in the choice of evaluation metrics. Furthermore, it would be
interesting to evaluate computational models of expression as models of cognition, not
only focusing on how well they reproduce the observed data, but also if the predictions of
the model are cognitively plausible (Honing, 2006). Ideally, quantitative measures should
relate to perceptually relevant aspects of performances, as perceived by musical listeners.
In terms of qualitative, truly musical evaluation, which we consider indispensable, we need
more efforts towards establishing venues for systematic evaluation and comparison, like
the RenCon workshop and similar initiatives. And again, studies that give us a better
understanding of how humans evaluate performances, would be extremely useful.

While at this stage (and perhaps forever) it is more than uncertain whether computational
models of performance will ever successfully beat humans in high-profile competitions, as stated
as a goal by the RenCon initiative (Hiraga et al., 2002), there is no doubt that understanding
the way humans create and enjoy expressive performances is of great value. It is our hope that
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9.5 Conclusions

the field of research we have attempted to portray here can contribute to such an understanding,
and develop useful musical tools along the way.

163



Bibliography

Academy of Motion Picture Arts and Sciences (2015). The 19th Academy Awards — 1947.
www.oscars.org/oscars/ceremonies/1947. Accessed: 13-04-2018.

Adamson, J. (1990). Bugs Bunny: Fifty Years and Only One Grey Hare. Henry Holt, New
York.

Agres, K., Cancino, C., Grachten, M., and Lattner, S. (2015). Harmonics co-occurrences boot-
strap pitch and tonality perception in music: Evidence from a statistical unsupervised learning
model. In Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci 2015),
Pasadena, CA, USA.

Al Kasimi, A., Nichols, E., and Raphael, C. (2007). A Simple Algorithm for Automatic Gen-
eration of Polyphonic Piano Fingerings. In Proceedings of the 8th International Society for
Music Information Retrieval Conference (ISMIR 2007), pages 355–356, Vienna, Austria.

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien,
F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J., Bisson, V.,
Bleecher Snyder, J., Bouchard, N., Boulanger-Lewandowski, N., Bouthillier, X., de Brébisson,
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Translated by Ańıbal Froufe.

Rodà, A., Schubert, E., De Poli, G., and Canazza, S. (2015). Toward a musical Turing test for
automatic music performance . In International Symposium on Computer Music Multidisci-
plinary Research.

Ross, B. C. (2014). Mutual Information between Discrete and Continuous Data Sets. PLOS
ONE, 9(2):e87357–5.

Rowe, R. (1992). Interactive Music Systems: Machine Listening and Composing. MIT Press,
Cambridge, MA, USA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(9):533–536.

Russell, J. A. (1980). A Circumplex Model of Affect. Journal of Personality and Social Psy-
chology, 39(6):1161–1178.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S. (2010). Variance
based sensitivity analysis of model output. Design and estimator for the total sensitivity index.
Computer Physics Communications, 181(2):259–270.

180



BIBLIOGRAPHY

Sapp, C. S. (2007). Comparative Analysis of Multiple Musical Performances. In Proceedings
of the 8th International Society for Music Information Retrieval Conference (ISMIR 2007),
Vienna, Austria.

Sapp, C. S. (2008). Hybrid Numeric/Rank Similarity Metrics for Musical Performance Analysis.
In Proceedings of the 9th International Society for Music Information Retrieval Conference
(ISMIR 2008), pages 501–506, Philadelphia, PA, USA.
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A Basis Functions

A.1 List of Basis Functions

In this section we provide the complete list of all basis functions defined in the main text. In
this appendix, we take some descriptions of the basis functions directly from the main text
(in particular for the features described in Chapter 6) for the sake of having a standalone
document.

Following the notation introduced in Sections 2.3 and 3.2, PS denotes an expressive performance
matched to score S, X = {n0, . . . , nNx−1} represents the set of |X | = Nx notes in a musical
score and O = {o0, . . . , oNo−1} represents the set of |O| = No score onsets. The set of all notes
that occur at the same score position as score note ni will be denoted as o(ni) = {nj ∈ o |
onset(nj) = onset(ni)}, with onset(ni) being the onset time of ni. See Figure 3.4 for an example
of a musical score and its different elements.

A.1.1 Pitch

1. Polynomial pitch model. A third order polynomial model to describe the dependency
of an expressive parameter on pitch. This polynomial model defines three basis functions:

ϕpitch(ni) =
pitch(ni)

127
ϕpitch2(ni) =

(
pitch(ni)

127

)2

ϕpitch3(ni) =

(
pitch(ni)

127

)3

,

(A.1)

where pitch(ni) represents the MIDI note number of ni.

2. Highest, Lowest and Melody pitch. Three features representing the chromatic pitch
of the highest note, the lowest note, and the melody note at each onset.

ϕpitchh(oi) =
max pitch(oi)

127
(A.2)

ϕpitchh(oi) =
min pitch(oi)

127
(A.3)

ϕpitchm(oi) =

{
pitch(nm)

127 if nm ∈ oi is a melody note
0 otherwise.

(A.4)

Note that the basis function representing the pitch of the melody requires a (manual)
annotation of the main melody of the piece. In the datasets used in this work, only the
Batik/Mozart has this property.

3. Vertical interval class Three features describing up to three vertical interval classes
above the bass, i.e. the intervals between the notes of a chord and the lowest pitch, ex-
cluding pitch class repetition and octaves. The set of vertical interval classes with respect
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A Basis Functions

to the lowest pitch is vintc(oi) = {(pitch(nj) −min pitch(oi)) mod 12 | nj ∈ oi}. We can
express these basis functions as

ϕvick(oi) =

{
1
11 uniquesort(vintc(oi), k + 1) if |vintc(oi)| > k

0 otherwise,
(A.5)

where uniquesort(·, k) is a function that gets the unique elements of a set, orders their
values in an ascending fashion and returns the k-th element.

4. Piano-roll slice. A set of 88 binary features describing the active notes at the current
score position. Each feature is given by

ϕpiano-rollj (oi) = 1{j ∈ active(oi)}, (A.6)

where 1{·} is the indicator function1, and active(oi) = {pitch(nk) | nk ∈ S and nk is active at onset(oi)}
are the pitches active at score position onset(oi).

5. Vertical neighbors. Two basis functions that evaluate to the number of simultaneous
notes with lower, and higher pitches, respectively, and a third basis function that evaluates
to the total number of simultaneous notes at that position.

ϕup. neighbors(ni) = |{nj ∈ o(ni) | pitch(nj) > pitch(ni)}| (A.7)

ϕlow. neighbors(ni) = |{nj ∈ o(ni) | pitch(nj) < pitch(ni)}| (A.8)

ϕtot. neighbors(ni) = |{nj ∈ o(ni) | pitch(nj) 6= pitch(ni)}| (A.9)

A.1.2 Metrical

A time signature is represented as a
b, where a is the length of the bar in beats, and b is the beat

type.

1. Metrical. Representation of the time signature of a piece, and the (metrical) position of
each note in the bar. For each time signature a

b, there are a + 1 basis functions: a basis
functions indicate notes starting at each beat, respectively, and a single basis function
indicates notes starting on a weak metrical position. For example, the basis function
labeled 4

4 beat 1 evaluates to 1 for all notes that start on the first beat in a 4
4 time signature,

and to 0 otherwise.

ϕa
b beat j(ni) = 1

{
onset(ni) mod a

a
+ 1− j = 0

}
(A.10)

ϕa
b weak(ni) = 1

{
onset(ni) mod a

a
/∈ Z
}

(A.11)

2. IOI. The inter-onset-interval (IOI) is the time between the onsets. For each note in score
onset oi, a total of 2MIOI basis functions represent the IOIs between the MIOI previous
onsets and the next MIOI onsets, e.g. for MIOI = 3, the onsets between (i − 2, i − 3),
(i − 1, i − 2), (i, i − 1), (i, i + 1), (i + 1, i + 2), and (i + 2, i + 3). These basis functions
provide some context of the (local) rhythmical structure of the music. Each of these basis
functions are defined as

ϕIOI (i±j,i±k)(oi) = onset(oi±k)− onset(oi±j) (A.12)

1See Equation (H.19).
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3. Duration. A basis function that encodes the duration of a note. While the IOI describes
the time interval between two notes, the duration of a note refers to the time that such
note is sounding.

ϕduration(ni) = duration(ni) (A.13)

4. Rest. Indicates whether notes precede a rest.

ϕrest(ni) = 1 {ni is preceded by a rest} . (A.14)

5. Beat phase. The relative location of an onset within the bar, computed as

ϕbφ(oi) =
onset(oi) mod a

a
, (A.15)

where a is the length of the bar in beats.

6. Metrical strength. Three binary features encoding the metrical strength of the t-th
onset. bd is nonzero at the downbeat; bs is nonzero at the secondary strong beat in duple
meters (e.g. quarter-note 3 in 4

4, and eighth-note 4 in 6
8), and bw is nonzero at weak metrical

positions (i.e. whenever bd and bs are both zero).

ϕbd(on) = 1{ϕbφ(oi) = 0} (A.16)

ϕbs(on) = 1{onset(on) mod a ∈ secondary strong beat} (A.17)

ϕbw(on) = 1{ϕbd(on) = 0 and ϕbs(on) = 0}. (A.18)

A.1.3 Notated Performance Directives

In this section, we describe basis functions encoding notated performance directives. Figure
A.1 shows the first 16 bars of Sonata No. 18 Op. 31 No. 3 by L. van Beethoven where the
performance directives have been highlighted with colored rectangles. In this example, the
marking p (highlighted in purple) appears three times (i.e. has three instances): in the first
beat of the first bar, in the first beat of the seventh bar and in the first beat of the 16th bar. In
the following discussion we will refer to the j-th instance of a performance marking as the j-th
time that such a marking appears in the score in chronological order.

1. Dynamics markings. Bases that encode dynamics markings, such as shown in Figure 3.9.
We have three groups of these functions:

a) Constant dynamics markings. Basis functions that describe a constant relative
loudness level, such as p and f (see the p markings highlighted in purple in the
example in Figure A.1). For each constant dynamics marking cd, its corresponding
basis function is defined as

ϕcd(ni) = 1{ni is in a section with a cd marking}. (A.19)

b) Gradual dynamics markings. Basis functions that describe gradual changes in
loudness, such as crescendo and diminuendo (see the cresc. markings highlighted
in green in Figure A.1), are represented through a combination of a ramp function,
followed by a constant (step) function, that continues until a new constant dynamics
marking (e.g. f ) appears, as illustrated by ϕcresc in Figure 3.9. The corresponding
basis function for each type of gradual dynamics markings gd is given by

ϕgd(ni) = rampstepgd(ni | S), (A.20)
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A Basis Functions

Figure A.1: Excerpt of the Sonata No. 18 Op. 31 No. 3 by L. van Beethoven. The colored rect-
angles/circles highlight notated performance directives. Purple rectangles highlight
instances of p; yellow rectangles highlight instances of legato slurs; green rectangles
highlight instances of crescendo, red rectangles highlight instances of ritardando
(whose effect ends in the a tempo markings, highlighted in gray); little blue circles
highlight staccato markings; pink rectangles highlight fermatas; light blue rectan-
gles highlight instances of sf markings; an orange rectangle highlights an instance
of Allegro; a violet rectangle highlights an instance of a grace note. The excerpt
from the score comes from the Breitkopf & Härtel edition (van Beethoven, 1862).

where rampstepgd(·) is a function given by

rampstepgd(xi | S) =
∑

gdj∈S
rmstgdj (ni), (A.21)

with rmstgdj (·) encoding the j-th instance in score S of a gradual dynamics marking
gd. This function is given as

rmstgdj (ni) =





onset(ni)−start(gdj)
end(gdj)−start(gdj)

if start(gdj) ≤ onset(ni) ≤ end(gdj)

1 if end(gdj) < onset(ni) < next(cd)
0 otherwise

(A.22)

where start(gdj) and end(gdj) represent the start and end time (in beats) of the
marking, e.g. the beginning and end of the hairpin; and next(cd) denotes the starting
score position of the next constant dynamics marking.

c) Indicator dynamics markings. Basis functions that describe markings such as
sf (sforzato) and sfz (sforzando) denoting an accented note (see the sf markings
highlighted in light blue in Figure A.1). For each indicator dynamics marking id, its
corresponding basis function is given as

ϕid(ni) = 1{ni has an id marking}. (A.23)

2. Context Dynamics Markings.

a) Gradual Dynamics Markings. This set of basis functions, intends to differentiate
between gradual loudness annotations in different loudness contexts. We do this
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by combining each gradual annotation with its preceding and succeeding loudness
level, for example p → crescendo → mf , or f → diminuendo → mf . For each
combination sd→ gd→ ed we define a function ϕsd→gd→ed(ni) computed using as

ϕsd→gd→ed(ni) = rampstepsd→gd→ed(ni | S). (A.24)

3. Slur. A representation of legato articulations indicating that musical notes are performed
smoothly and connected, i.e. without silence between each note (see the legato slurs high-
lighted in yellow in Figure A.1). The beginning and ending of a slur are represented
by decreasing and increasing ramp functions, respectively. The first (denoted slur decr)
ranges from one to zero, while the second (denoted slur incr) ranges from zero to one over
the course of the slur. These functions are given by

ϕslur incr(ni) = rampslur(ni | S) (A.25)

ϕslur decr(ni) = decrampslur(ni | S) (A.26)

where rampslur(·), decrampslur(·) are functions given by

rampslur(ni | S) =
∑

slurj∈S
rmpslurj (ni) (A.27)

decrampslur(ni | S) =
∑

slurj∈S
rmdcslurj (ni) (A.28)

with rmpslurj and dcrmslurj encoding the j-th instance in score S of the legato slurs.

rmpslurj (ni) =

{
onset(ni)−start(slurj)
end(slurj)−start(slurj)

if start(slurj) ≤ onset(ni) ≤ end(slurj)

0 otherwise

(A.29)

rmdcslurj (ni) =

{
end(slurj)−onset(ni)

end(slurj)−start(slurj)
if start(slurj) ≤ onset(ni) ≤ end(slurj)

0 otherwise

(A.30)

4. Tempo Markings.

a) Constant tempo markings. Bases that describe a constant tempo, such as Ada-
gio, Moderato or Allegro (see the Allegro marking highlighted in orange in Figure
A.1). For each ct dynamics marking, the basis functions are defined as

ϕct(oi) = 1{oi is in a section with a ct marking} (A.31)

b) Gradual tempo markings Encoding of markings that indicate gradual changes
in the tempo of the music. These markings include rallentando, ritardando and
accelerando (see ritard. highlighted in red in Figure A.1). Mathematically, these
basis functions can be defined in a similar way to the dynamics and markings. For
each gradual tempo marking gt there is a basis function defined as

ϕgt(oi) = rampgt(oi | S) (A.32)

where the start and end of the j-th instance of gt ∈ S are and

start(gtj) = onset(gtj)

end(gtj) =

{
notated end of effect of gtj if dashes or a tempo are given

next(ct) otherwise.
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5. Repeat. Takes into account repeat and ending barlines, i.e. explicit markings that indi-
cate the structure of a piece by indicating the end of a particular section (which can be
repeated), or the ending of a piece. The barlines are represented by an anticipating ramp
function leading up to the repeat/ending barline over the course of a measure. For each
type of barline bl (ending or repeat), we define a function

ϕbl(ni) = rampbl(ni | S, lc), (A.33)

where ramp(ni | S, lc) is the ramp function defined in Equation (A.25) and lc ∈ R>0 the
length of the ramp, which defines the beginning and end of effect of the j-th instance of
bl ∈ S as start(blj) = onset(blj) − lc and end(blj) = onset(blj). In our experiments, lc is
the length of the bar in beats.

6. Accent. Accents of individual notes or chords, such as the marcato in Figure 3.9. We
define a basis function as

ϕaccent(ni) = 1{ni has an at marking}. (A.34)

7. Staccato. Encodes staccato markings on a note, an articulation indicating that a note
should be temporally isolated from its successor, by shortening its duration (see the stac-
cato markings highlighted in blue in Figure A.1). The basis function for these markings
is defined as

ϕstaccato(ni) = 1{ni has a staccato marking}. (A.35)

8. Grace notes. Encoding of musical ornaments that are melodically and or harmonically
nonessential, but have an embellishment purpose (see the acciaccatura highlighted in violet
in Figure A.1). The basis function for these ornaments is given as

ϕgrace(ni) = 1{ni is a grace note}. (A.36)

9. Fermata. A basis function that encodes markings that indicate that a note should be
prolonged beyond its normal duration (see the fermatas highlighted in pink in Figure A.1).
A basis function encodes fermatas as

ϕfermata(ni) = 1{ni has a fermata}. (A.37)

A.1.4 Music Theoretic Features

1. Harmonic Two sets of indicator basis functions that encode a computer–generated har-
monic analysis of the score based on the probabilistic polyphonic key identification algo-
rithm proposed by Temperley (2007). This harmonic analysis produces an estimate of
the key and scale degree, i.e. the roman numeral functional analysis of the harmony of
the piece, for each bar of the score. A set of basis functions encode all major and minor
keys while another set of basis functions encodes scale degrees. These basis functions are
defined as

ϕkeyj (ni) = 1{key(ni) = j} (A.38)

ϕscale degreej (ni) = 1{scdeg(ni) = j}, (A.39)

where key(ni) is the key of the bar to which ni belongs estimated by Temperley’s HMM-
based key estimation algorithm; and scdeg(ni) is the scale degree of the root of the tonic
triad estimated by the key estimation method with respect to the global key of the piece.
The key of the piece is taken from the score (if given), or using a global estimate using the
key estimation algorithm.
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A.1.5 Expectancy Features

IDyOM provides a conditional probability distribution of a musical event v, given a preced-
ing sequence of events, i.e. p(vi | vi−1, vi−2, . . . ). These events are represented as viewpoints,
following the multiple viewpoint system (Conklin and Witten, 1995). We denote v(xi) to the
viewpoints representing element xi in the score.

1. Information content (IC). The IC measures the unexpectedness of a musical event,
and is computed as

IC(v(xi)) = − log2 p(v(xi) | v(xi−1), v(xi−2), . . . ). (A.40)

a) ICm. The information content for each melody note. This value is computed using a
model that is trained to predict the next chromatic melody pitch using a selection of
melodic viewpoints, such as pitch interval (i.e. the arithmetic difference between two
consecutive chromatic pitches, measured in MIDI note values), and contour (whether
the chromatic pitch sequence rises, falls or remains the same). IDyOM performs a
stepwise selection procedure that combines viewpoint models if they minimize model
uncertainty as measured by corpus cross entropy (Sears, 2016, pp. 255-275).

ϕICm(oi) =

{
1

ZICm
IC(vmelody(nm)) if nm ∈ oi is a melody note

ϕICm(oi−1) otherwise
(A.41)

where vmelody is the viewpoint representation of the melody notes and ZICm is a
normalization constant (see Section 6.3.2).

b) ICc. Estimation of the IC computed for the combination of pitch events (a proxy
for harmony) at each score onset. IDyOM predicts the next combination of vertical
interval classes above the bass.

ϕICc(oi) =
1

ZICc
IC(vchord(oi)). (A.42)

where vchord uses vertical interval classes to represent onset oi and ZICc is a normal-
ization constant computed in the same way as ZICm .

2. Entropy is a measure of the degree of choice or uncertainty associated with a predicted
outcome. The entropy can be computed as

H(vi) = E{− log2 p(vi | vi−1, vi−2, . . . )} (A.43)

a) Hm. Entropy computed for each chromatic pitch in the melody. This is computed in
the same fashion as the information content for melody notes, i.e.

ϕHm(oi) =

{
1

ZHm
H(vmelody(nm)) if nm ∈ oi is a melody note

ϕHm(oi−1) otherwise
(A.44)

where ZHm is a normalization constant computed in the same way as ZICm .

b) Hc. Entropy computed for the combined pitch events at each score onset.

ϕHc(oi) =
1

ZHc
H(vchord(oi)) (A.45)

where ZHc is a normalization constant computed in the same way as ZICm .
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A.1.6 Tonal Tension Features

Chew’s spiral array is a parametric helix in R3 represented by

sa(ni) =




sin(u(ni))
cos(u(ni))
π√
30
u(ni)


 , (A.46)

where u : X 7→ R is a function denoting the position of the non-enharmonically equivalent pitch
classes (e.g. C] and D[ do not map into the same point) in the circle of fifths given by

u(ni) =
π

2
cof(ni), (A.47)

where cof(ni) represents the (signed) number of fifths that the pitch class of ni is away from C
such that notes above and below C having positive and negative values, respectively (e.g. cof(C) =
0, cof(B[) = −2 and cof(G) = 1)2.

Herremans and Chew (2016) propose using a sliding window approach, since musical tension
varies over time. A cloud is defined as the set of points in the spiral array corresponding to one
such windows. In this work, we define the cloud centered on onset oi as all active notes within
a beat from the center of the cloud i.e.

cloud(oi) = {sa(nj) | nj is active during [onset(oi)− 1, onset(oi) + 1]}. (A.48)

The center of effect of a cloud is a point that represents the tonal center of the cloud, computed
as

coe(cloud(oi)) =

∑
nj∈cloud(oi)

duration(nj)sa(nj)∑
nj∈cloud(oi)

duration(nj)
. (A.49)

The tonal tension features are:

1. Cloud diameter (Tcd), which estimates the maximal tonal distance between notes in a
segment of music, computed as

ϕTcd =
1

ZT
max pairwisedist(cloud(oi)) (A.50)

where pairwisedist is a function that computes the euclidean distance between all points
in the cloud, and ZT is a normalization constant.

2. Cloud momentum (Tcm) quantifies harmonic movement as the tonal distance from a
segment of music to the next:

ϕTcm(oi) =

{ 1
ZT
‖coe(cloud(oi))− coe(cloud(oi−1))‖ i > 0

0 i = 0
(A.51)

3. Tensile strain (Tts), the relative tonal distance between the current segment and the
center of effect of the key of the piece.

ϕTts(oi) =
1

ZT
‖coe(cloud(oi))− coekey(oi))‖, (A.52)

where coekey(oi) is the center of effect of the key, computed using the method described
in (Chew, 2000).

2Note that the selection of C as the center of this representation is arbitrary, and a similar representation can
be described around any note.
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A.2 List of Orchestral Basis Functions

This appendix lists the basis functions in the RCO/Symphonic dataset. Each group lists the
different categories of basis functions.

Accent

1. Accent.

A Total of 33 Basis functions, each corresponding to an instrument listed in Appendix
A.3.

Duration

1. Duration.

A Total of 33 Basis functions, each corresponding to an instrument listed in Appendix
A.3.

Fermata

1. Fermata.

A Total of 33 Basis functions, each corresponding to an instrument listed in Appendix
A.3.

IOI

1. (i, i− 1).

A Total of 33 Basis functions, each corresponding to an instrument listed in Appendix
A.3.

Metrical

As previously explained, there is a basis function per beat per instrument, e.g. Violin 4
4 beat 1

and Violin 4
4 beat 2 are two different basis functions.

1. 3
8: {beat 1, beat 2, beat 3, weak}
A total of 67 basis functions corresponding to the following instruments

• Viola

• Timpani

• Bass Trombone

• Contrabass Tuba

• Bassoon

• Bass Drum

• Trumpet

• Cello

• Clarinet

• Violin

• Oboe

• Flute
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• Bass Clarinet

• Tam-Tam

• Contrabass

• Triangle

• Alto Trombone

• English Horn

• Glockenspiel

• Cymbals

• Harp

• French Horn

2. 2
4: {beat 1, beat 2, weak}
A total of 50 basis functions corresponding to the following instruments:

• Oboe

• Triangle

• Harp

• English Horn

• Glockenspiel

• Cello

• Violin

• Contrabassoon

• Bassoon

• Soprano Voice

• Timpani

• Bass Trombone

• Viola

• Contrabass

• Sleigh Bells

• Flute

• Clarinet

• French Horn

• Trumpet

3. 3
4: {beat 1, beat 2, beat 3, weak}
A total of 85 basis functions corresponding to the following instruments:

• Flute

• Timpani

• Tenor Voice

• Trombone

• Contrabassoon

• Piccolo

• Contrabass

• Alto Trombone

• Cello

• Clarinet

• Alto Voice

• Viola

• Soprano Voice

• Bass Trombone

• Contrabass Tuba

• Bassoon

• Trumpet

• Violin

• Oboe

• Bass Voice

• French Horn

4. 6
8: {beat 1, beat 2, beat 3, beat 4, beat 5, beat 6, weak}
A total of 103 basis functions corresponding to the follow instruments
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• Violin

• Timpani

• Cello

• Tenor Voice

• Baritone Voice

• Contrabass

• Piccolo

• Flute

• Clarinet

• Trombone

• Alto Voice

• Bassoon

• Soprano Voice

• Trumpet

• Bass Voice

• Viola

• Contrabassoon

• French Horn

• Oboe

5. 4
4: {beat 1, beat 2, beat 3, beat 4, weak}
A total of 156 basis functions, corresponding to the follow instruments

• Bass Voice

• Wagner Tuba

• Contrabass Tuba

• Soprano Voice

• Bassoon

• Contrabass

• Flute

• Trombone

• Cymbals

• Viola

• Clarinet

• Bass Clarinet

• Oboe

• French Horn

• Bass Drum

• Tenor Voice

• Baritone Voice

• Triangle

• English Horn

• Piccolo

• Cello

• Contrabassoon

• Alto Trombone

• Glockenspiel

• Trumpet

• Harp

• Alto Voice

• Tam-Tam

• Sleigh Bells

• Violin

• Timpani

• Bass Trombone

6. 2
2: {beat 1, beat 2, weak}
A total of 71 basis functions, corresponding to the following instruments:

• Oboe

• French Horn

• Baritone Voice

• Bass Clarinet
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• Viola

• Piccolo

• Trumpet

• Tenor Voice

• Alto Trombone

• Bass Voice

• Contrabass

• Violin

• Contrabassoon

• Contrabass Tuba

• Tenor Trombone

• Bassoon

• Trombone

• Soprano Voice

• Timpani

• Cello

• Alto Voice

• Bass Trombone

• Flute

• Clarinet

7. 12
8 : {beat 0, beat 1, beat 2, beat 3, beat 4, beat 5, beat 6, beat 7, beat 8, beat 9, beat 10,
beat 11, weak}

A total of 140 basis functions, corresponding to the following instruments:

• French Horn

• Oboe

• Violin

• Clarinet

• Flute

• Timpani

• Contrabass

• Cello

• Bassoon

• Trumpet

• Viola

Onset Indicator

1. Onset.

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

Polynomial Pitch

1. Pitch.

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

Repeat

1. Repeat end wide.

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.
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Ritardando

1. Ritardando

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

Slur

1. Slur increase

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

2. Slur decrease

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

3. Slur step

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

Staccato

1. Staccato

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.

Unique Loudness Annotations

1. pppp

A total of 9 basis functions corresponding to the following instruments:

• Flute

• Harp

• Contrabass

• Clarinet

• Bass Drum

• Timpani

• Viola

• Violin

• Cello

2. ppp

A total of 20 basis functions corresponding to the following instruments

• Bass Drum

• Cello

• French Horn

• Trumpet

• Oboe

• Contrabass Tuba

• Timpani

• Clarinet

• Bass Trombone

• Violin

• Bass Clarinet

• English Horn
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• Bassoon

• Viola

• Flute

• Alto Trombone

• Contrabass

• Harp

• Cymbals

• Sleigh Bells

3. pp

A total of 31 basis functions corresponding to the following instruments

• Harp

• Triangle

• Tenor Trombone

• Bass Drum

• Tam-Tam

• Sleigh Bells

• Trombone

• Contrabassoon

• Soprano Voice

• Clarinet

• Violin

• Contrabass

• Wagner Tuba

• Tenor Voice

• Cello

• Flute

• Trumpet

• Bass Clarinet

• Contrabass Tuba

• Bass Voice

• Viola

• English Horn

• Bass Trombone

• Alto Voice

• Alto Trombone

• Oboe

• Cymbals

• Piccolo

• Bassoon

• Timpani

• French Horn

4. p

A total of 31 basis functions corresponding to the following instruments

• Timpani

• Bassoon

• Sleigh Bells

• Violin

• Trombone

• Alto Voice

• Clarinet

• Contrabass Tuba

• Contrabass

• Contrabassoon

• French Horn

• Oboe

• Cello

• Viola

• Bass Voice

• Bass Clarinet
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• Tenor Trombone

• Glockenspiel

• Trumpet

• Tenor Voice

• Harp

• Bass Trombone

• Piccolo

• English Horn

• Bass Drum

• Soprano Voice

• Alto Trombone

• Wagner Tuba

• Flute

• Cymbals

• Triangle

5. mp

A total of 7 basis functions corresponding to the following instruments

• Violin

• Bassoon

• Bass Clarinet

• Oboe

• French Horn

• Clarinet

• Trumpet

6. mf

A total of 23 basis functions corresponding to the following instruments

• Sleigh Bells

• Bass Trombone

• English Horn

• Alto Trombone

• Violin

• Cymbals

• Soprano Voice

• Bassoon

• Bass Clarinet

• Contrabass

• Viola

• Tam-Tam

• Timpani

• Oboe

• Bass Drum

• Trumpet

• Flute

• Cello

• Contrabass Tuba

• Wagner Tuba

• French Horn

• Clarinet

• Triangle

7. f

A total of 32 basis functions corresponding to the following instruments:
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• Timpani

• Bassoon

• Sleigh Bells

• Violin

• Trombone

• Baritone Voice

• Alto Voice

• Clarinet

• Contrabass Tuba

• Contrabass

• Contrabassoon

• French Horn

• Cello

• Oboe

• Viola

• Bass Voice

• Bass Clarinet

• Tenor Trombone

• Glockenspiel

• Trumpet

• Tenor Voice

• Cymbals

• Harp

• Bass Trombone

• Piccolo

• English Horn

• Bass Drum

• Soprano Voice

• Alto Trombone

• Wagner Tuba

• Flute

• Triangle

8. ff

A total of 31 basis functions corresponding to the following instruments:

• Contrabassoon

• Contrabass Tuba

• Cello

• Trumpet

• Glockenspiel

• Wagner Tuba

• French Horn

• Harp

• Cymbals

• Flute

• Clarinet

• English Horn

• Trombone

• Violin

• Alto Trombone

• Tenor Voice

• Triangle

• Piccolo

• Bass Clarinet

• Bass Voice

• Bass Trombone

• Oboe

• Alto Voice

• Tam-Tam

• Contrabass

• Baritone Voice

• Bassoon

• Soprano Voice

• Bass Drum

• Viola

• Timpani
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9. fff

A total of 16 basis functions corresponding to the following instruments:

• Wagner Tuba

• Flute

• Contrabass Tuba

• Bass Trombone

• Harp

• Timpani

• Contrabass

• Cello

• Bassoon

• Clarinet

• Oboe

• Trumpet

• French Horn

• Violin

• Alto Trombone

• Viola

10. fp

A total of 15 basis functions corresponding to the following instruments

• Oboe

• Cello

• French Horn

• Flute

• Clarinet

• English Horn

• Contrabassoon

• Violin

• Piccolo

• Viola

• Bass Trombone

• Trumpet

• Contrabass

• Bassoon

• Timpani

11. sf

A total of 22 basis functions corresponding to the following instruments

• Bassoon

• Baritone Voice

• French Horn

• Timpani

• Contrabass

• Tenor Voice

• Soprano Voice

• Contrabassoon

• Violin

• Oboe

• Bass Clarinet

• Bass Voice

• Alto Voice

• English Horn

• Flute

• Clarinet

• Cello

• Trumpet

• Piccolo

• Viola
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• Trombone • Harp

12. sfp

A total of 6 basis functions corresponding to the following instruments

• Bassoon

• Oboe

• Violin

• French Horn

• Viola

• Trumpet

13. crescendo

A total of 28 basis functions corresponding to the following instruments:

• Flute

• English Horn

• Alto Trombone

• Piccolo

• Contrabassoon

• Timpani

• Bass Voice

• Wagner Tuba

• Bassoon

• Cello

• Sleigh Bells

• Clarinet

• Bass Drum

• Oboe

• Bass Clarinet

• Baritone Voice

• Contrabass Tuba

• Triangle

• Soprano Voice

• Alto Voice

• Contrabass

• Trumpet

• Violin

• Tenor Voice

• Bass Trombone

• Viola

• Harp

• French Horn

14. diminuendo

A total of 29 basis functions corresponding to the following instruments:

• Contrabass Tuba

• Bass Clarinet

• Trumpet

• Trombone

• Violin

• Oboe

• Viola

• Bass Voice

• Harp

• Cymbals

• Tenor Voice

• Timpani

• Alto Voice

• Clarinet
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• Sleigh Bells

• Cello

• Bass Drum

• Wagner Tuba

• Contrabass

• Soprano Voice

• Triangle

• Piccolo

• Baritone Voice

• Flute

• Bassoon

• Alto Trombone

• French Horn

• Bass Trombone

• English Horn

15. sotto voce

A total of 4 basis functions corresponding to the following instruments:

• Violin

• Cello

• Viola

• Contrabass

16. espressivo

A total of 6 basis functions corresponding to the following instruments:

• Violin

• Oboe

• Flute

• Bassoon

• Viola

• Clarinet

17. dolce

A total of 9 basis functions corresponding to the following instruments:

• Cello

• Violin

• Oboe

• Bassoon

• Flute

• French Horn

• Clarinet

• Viola

• Piccolo

Vertical Neighbor

1. Total neighbors

A Total of 33 Basis functions, each corresponding an instrument listed in Appendix A.3.
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A.3 Instrument List

This appendix provides a list of the instruments present in the RCO/Symphonic dataset.

Strings

• Violin

• Viola

• Violoncello

• Contrabass

Woodwinds

• Piccolo

• Flute

• Clarinet

• English Horn

• Oboe

• Bass Clarinet

• Bassoon

• Contrabassoon

Brass

• Trumpet

• French Horn

• Trombone

• Alto Trombone

• Tenor Trombone

• Bass Trombone

• Wagner Tuba

• Contrabass Tuba

Pitched and Unpitched Percussion

• Triangle

• Sleigh Bells

• Glockenspiel

• Cymbals

• Timpani

• Tam-Tam

• Bass Drum

Plucked Strings

• Harp

Voice

• Soprano

• Alto

• Tenor

• Baritone

• Bass
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B Towards a Perceptually Plausibly Description
of Expressive Tempo

This appendix describes an alternative method for computing expressive tempo, captured by
the local beat period (BP), to the one described in performance codecs C1.0 and C2.0 defined in
Sections 3.3.1 and 4.3.2, respectively. This alternative definition of the tempo conceptualizes
expressive parameters in a way that is more aligned with the way humans perceive music.

As discussed in Sections 3.3.1 and 4.3.2, the BP can be computed by dividing the inter-onset
interval (IOI) between two score positions by the nominal score duration of that interval (for
instance, if a half-note interval between two onsets in a quarter-beat piece is found to correspond
to an interval of 1s in a performance, the BP of the performance at that position would be 0.5s).
However, there are several factors that complicate the computation of meaningful local tempo
values from the note events in the performance.

First, this computation can lead to erratic jumps of consecutive BP values, especially when the
IOIs are relatively small. Second, there is evidence that perceived beat times do not always
coincide with the onset time of a note event at that beat: listeners prefer a beat grid that is
slightly smoother than implied by the literal note onsets (Dixon et al., 2006).

A way to address these issues is not to use the performed note onset times directly to compute
the BP values, but rather, use a cubic spline approximation of the performed note onset times,
with a regularization term to obtain a slight smoothing effect. Additionally, we use a weighting
scheme in the spline approximation that penalizes IOIs that are shorter than the median IOI of
the piece, reducing the noise in BP values caused by small IOI values.

We can extend the idea described above to define a new version of the parameters capturing
aspects of tempo, timing and articulation. In order to distinguish between the original definition
of these parameters and the definition presented below, we will use performance codec v. 1.5
(C1.5) to refer to a modified version of performance codec C1.0 that substitutes the tempo-related
parameters (log BPR, timing and log articulation) with a more cognitively plausible version, as
described below. Likewise, we use performance codec v. 2.5 (C2.5) to refer to a modified version of
performance codec C2.0 that substitutes the tempo-related parameters with a more cognitively
plausible version. These cognitively plausible expressive parameters for tempo, timing and
articulation are defined as follows:

• log BPR. We use the cubic spline interpolation of the onset times described above (which

we denote as sinterp(·)) to compute the estimated performed onset time ôperfi of a score
position oi (instead of using the average onset time as in Section 3.3.1), as

ôperfi = sinterp(onset(oi) | operf ,X ) (B.1)

where operf = {onsetperf (ni) | ni ∈ X} is the set of performed onset times for each note in
the score. The beat period for a note ni is then given by

BP(ni) =
IOIperfo(ni)

IOIscoreo(ni)

, (B.2)
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Figure B.1: Excerpt of a matched MIDI performance PS (as a piano-roll where the x axis
denotes time and the y axis denotes MIDI velocity) and its corresponding score S
showcasing elements for computing the cognitively motivated expressive parameters
relating to tempo, timing and articulation.

where IOIperfo(ni)
and IOIscoreo(ni)

are the (spline interpolated) performed and notated IOIs cor-
responding to note ni, respectively, computed as

IOIperfi = ôperfi+1 − ô
perf
i and IOIscore = onset(oi+1)− onset(oi) (B.3)

Note that we choose to define parameter log BPR, such that the value of BP at the score
onset oi describes the local tempo between onsets oi and oi+1 (rather than between oi−1

and oi). This definition of the IOI is illustrated in Figure B.1 with IOIscore0 and IOIscore1

(in pink) representing score IOIs corresponding to score onsets o0 and o1, respectively.
Finally, the log BPR is given by

ylog bpr(ni) = log2

BP(ni)

BPave
, (B.4)

where BPave is the average beat period.

Figure B.2 shows a comparison of the values of log BPR computed using the performance
codec v. 1.0 defined in Section 3.3.1 and the smoothed version discussed here for the first
5 bars of Chopin’s Nocturne Op. 9 No. 1 in B[ minor. This plot showcases the issues with
the previous version of the codec, which can result in artifacts for the tuples in bars 2 and
3.
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Figure B.2: Comparison of log BPR computed using performance codecs v. 1.0 and 1.5 for the
first bars of Chopin’s Nocturne Op. 9 No. 1 in B[ minor performed by Nikita Ma-
galoff. The red vertical dotted lines denote barlines. The excerpt from the score
comes from Schirmer’s Edition (Chopin, 1915a).

• Timing. This parameter is simply expressed as

ytim(ni) = ôperfi − operf (ni), (B.5)

where ôperfi is computed as in Equation (B.1). Figure B.1 illustrates this concept of
timing for notes n0, n1 and n2, n3 and n4 (∆t(n0), ∆t(n1), ∆t(n2), ∆t(n3) and ∆t(n3) in
violet). In contrast to the timing parameter in performance codecs C1.0 and C2.0, the above
definition of beat period implies that the timing for score onsets consisting of a single note
(as is the case of o1 and o2 in our running example) is no longer zero, as illustrated in

Figure B.1 for n3 and n4 (ôperf1 and ôperf2 in indigo).

• log Articulation. We can compute this expressive parameter as

ylog art(ni) = log2

durationperf (ni)

duration(ni)BP(ni)
, (B.6)

where BP(ni) is computed using Equation (B.2). By durationperf , we denote the performed
duration of a note, illustrated in Figure B.1 in burgundy for n0.
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C Modeling Joint Interactions of Expressive
Parameters

C.1 Introduction

Through what is called expressive interpretation, the performance of a musical piece by a skilled
musician can convey a variety of information to a listener, ranging from a particular mood
to the elucidation of particular structural aspects of the music (voicing, phrasing, rhythm).
In Western piano music of the common practice era, especially that of the Romantic period,
expressive interpretation is characterized by a particularly free shaping of expressive parameters
such as local tempo and dynamics, but also the timing and articulation of individual notes. A
plausible assumption is that a performer uses such degrees of freedom jointly to realize a single
expressive intention (even if this intention itself may be composed of several ideas), not least
because a fully independent use of expressive parameters would imply a considerable cognitive
burden on both the performer and the listener.

In this appendix we present an exploratory study on the joint interactions of expressive param-
eters, measured from recordings of classical piano performances by professional pianists. Our
contribution consists of two parts. In the first part, we investigate the degree to which the
measured data conveys monotonic, though possibly non-linear, pairwise interactions between
expressive parameters (e.g. interactions between dynamics and tempo, timing vs articulation,
etc.). Although we find some clear indications of these interactions, the results also show that the
presence or absence of such interactions varies from piece to piece, and possibly from performer
to performer.

In the second part, we report an experiment in which we use the non-linear basis function models
(NBMs) described in Section 4.2 to test whether joint modeling of the expressive parameters im-
proves the predictive accuracy of the model1. We do so by optimizing the accuracy of both joint
and disjoint models for the expressive parameters in an extensive grid search over model hyper-
parameters. We find that for some of the expressive parameters, highest accuracy is achieved
by joint models, whereas other expressive parameters can be better modeled individually.

The rest of this appendix is structured as follows. In Section C.2, we discuss evidence and theories
for interactions between expressive parameters from the music psychological literature, as well
as prior computational modeling approaches that involve joint modeling of several expressive
parameters. Section C.3 provides an analysis of interactions between the expressive parameters,
as measured from the data. The computational modeling setup and experiments are described in
Section C.4. We discuss the results of both the empirical analysis and the modeling experiment
in Section C.4.3, Finally, conclusions are presented in Section C.5.

1The experimental results reported in this appendix were conducted in early 2016, before the use of the RNN-
based sequential models described in Section 4.3.
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C.2 Evidence for Interactions from Music Psychology

Musicians’ expressive manipulations of tempo, timing, dynamics, and articulation have been
studied from a cognitive perspective, both individually and in combination, to determine how
they shape listeners’ perceptions of expressively performed music. A number of studies have
sought to identify interactions between pairs of expressive parameters. In some such studies,
listeners are presented with musical stimuli that vary on two dimensions (e.g. timing and dy-
namics), while all other parameters are held constant. The listeners are asked to judge one target
dimension while ignoring the other. If the non-target dimension still affects listeners’ responses,
then the two parameters likely interact at some stage of perception, and this interaction cannot
be avoided by channeling attention towards one parameter (Tekman, 2002).

Relationships have been observed between tempo and dynamics: for example, listeners perceive
a faster tempo when melodies are played with a crescendo than when the same melodies are
played with a decrescendo, even when the actual performed tempi are the same (Boltz, 2011).
Timing and dynamics also interact in the context of accents, with interonset intervals perceived
as longer when they precede loud notes than when they precede soft notes (Tekman, 2002).
Tempo has been shown to relate to articulation as well; for instance, in one study, staccato
passages were perceived as faster than legato passages (Geringer et al., 2006).

Other studies, rather than evaluating listeners’ perceptions of specific expressive parameters,
have investigated perceptions of musical expression more generally; for instance, by evaluating
perceived emotion. The communication of emotion (including felt emotions that are induced by
the music, and perceived emotions that are conveyed by the music but not felt by the listener) is
recognized as a main component of musical expression (Juslin, 2003). Predictable combinations
of expressive parameters have been shown to underlie the perception of specific emotional states.
When listeners are asked to assign emotion labels to melodies, for example, the melodies they
identify as ‘sad’ tend to be quiet and played with a legato articulation, while the melodies they
identify as ‘angry’ tend to be loud and played with staccato articulation (Juslin and Laukka,
2003).

The relationships observed between particular parameter combinations and perceived emotions
are not unique to music. In many cases, the same relationships are observed in speech (Juslin
and Laukka, 2003). Parallels are also observed in nonverbal human behavior, suggesting that
strategies for communicating emotion through music may have an origin in the way these emo-
tions are communicated behaviorally (Eitan and Granot, 2006). Thus, interactions between
expressive parameters in music could be partly attributable to the emotional qualities that a
performer intends to communicate. To communicate a specific emotion, parameters must be
jointly manipulated in particular ways.

Underlying listeners’ perceptions of emotional expression in music is the build up, confirmation,
and violation of their expectations (Ockelford, 2006). To an extent, listeners’ expectations derive
from fixed aspects of the musical structure (i.e. the tonal and temporal frameworks that constrain
performers’ expressive manipulations), but performers can also shape listeners’ expectations by
emphasizing or clarifying particular structural features.

Listener expectations are often investigated with tasks that require temporal synchronization of
body movements with a sounded music performance. Listeners whose expectations align closely
with a performer’s intentions should be better able to synchronize their own movements with
the sounded performance than would be the case for listeners who do not predict the performer’s
intentions as accurately (Keller et al., 2007). Research testing how precisely listeners synchro-
nize their body movements (e.g. finger-taps, instrumental playing, or dance movements) with
sounded music has shown that clear cues from performers indicating what they intend to play
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next improves synchronization substantially (Goebl and Palmer, 2009). When performers can
manipulate multiple expressive parameters simultaneously to emphasize a particular structural
feature, their interpretation and intentions should become clearer, enabling listeners to construct
more accurate expectations. It could be that performers who use predictable combinations of
expressive parameters more consistently are easier to synchronize with and more successful at
communicating expression; however, such a possibility has not yet been empirically tested.

While the music psychology literature provides some indication of how listeners expect pairs of
expressive parameters to relate in certain (simplistic) contexts, it remains unclear whether these
relationships are upheld during normal music performance, when the underlying piece structure
is complex and many expressive parameters must be manipulated in parallel. We do know that
in some cases, performers will manipulate two parameters in different ways during the course
of a single piece to achieve different expressive goals (e.g. slowing down while simultaneously
getting softer, then elsewhere slowing down while getting louder). Whether the consistent use
of particular parameter relationships relates to the aesthetic quality of a performance, increases
its predictability, or makes the communication of expression more successful likewise requires
further study.

C.3 Empirical Analysis of Recorded Piano Performances

In this section, we present some empirical evidence for (pairwise) interactions between expressive
parameters, as extracted from the Magaloff/Chopin and Zeilinger/Beethoven datasets using
performance codec C1.5 defined in Appendix B. This performance codec consists of four expressive
parameters that describe aspects of a performance in a note-wise fashion (i.e. there is a value
of the expressive parameters for each note in the score). The parameters in this performance
codec are MIDI velocity, which captures aspects of dynamics; log BPR, which captures local
tempo; timing, which captures the temporal shifting of the individual notes from the implied
metrical grid defined by the local tempo; and log articulation, which captures the articulation
of individual notes. For a more detailed description of these parameters see Section 3.3.1 and
Appendix B.

Figure C.1 shows a boxplot of Spearman’s ρ rank correlation between expressive parameters
for all performed pieces by each pianist. For each piece in a dataset, we estimate Spearman’s
ρ for each pairwise combination of expressive parameters (e.g. MIDI velocity and log BPR,
MIDI velocity and timing, MIDI velocity and log articulation, etc.). Spearman’s ρ provides
some evidence of the inter-interactions between the expressive parameters, by measuring how
well the relationship between two expressive parameters can be described using a (non-linear)
monotonic function. Here it is possible to see that the pairwise correlations tend to be stronger
and more consistent for the Zeilinger/Beethoven dataset, with larger absolute values for the mean
values and smaller variances. From a musical perspective this is somewhat expected, since the
Magaloff/Chopin corpus contains pieces from a wider variety of musical forms (preludes, waltzes,
etudes, etc.) while the Zeilinger/Beethoven corpus is restricted to piano sonatas. Nevertheless,
both pianists follow similar trends, with expressive dynamics tending to be negatively correlated
with BPRs, but positively correlated with articulation and timing. In Zeilinger’s case, there is
a rather weak correlation between BPR and timing, which for Magaloff is effectively zero, and
both present a similar correlation between timing and articulation. These results suggest the
existence of general principles of expressive performance that are independent of the pianist or
of the style.
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Figure C.1: Spearman’s ρ between expressive targets, measured from the Magaloff/Chopin cor-
pus (top), and the Zeilinger/Beethoven corpus (bottom)

C.4 Joint Modeling of Expressive Parameters

In this section we describe a preliminary study that aimed to determine whether computational
models of expression benefit from explicitly modeling expressive parameters jointly.

The BMs described in Chapters 3 and 4 focus on modeling expressive parameters independently
of each other. Nevertheless, evidence from the music psychology literature, as well as the
empirical analysis of the performance data described above in Section C.3, suggest that there
performers shape expressive performances through deliberate interactions between expressive
parameters.

In this section we describe a series of quantitative experiments that aimed to determine whether
modeling expressive parameters jointly or in an independent fashion leads to better predictions.
More specifically, we conducted a series of cross-validation experiments that compared the pre-
dictive accuracy of NBMs which model parameters independently to that of NBMs which model
parameters jointly.

The rest of this section is structured as follows: Section C.4.1 describes how to adapt the NBMs
to jointly model expressive parameters. In Section C.4.2 we describe how the cross-validation
experiments were conducted. Section C.4.3 discusses the results of this evaluation.
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C.4.1 Joint Modeling of Expressive Parameters Using Non-linear Basis Models

In this section, we describe a simple extension of the NBMs described in Section 4.2.2 to allow for
modeling expressive parameters jointly. As discussed before, NBMs are models that use FFNNs
to model the relationship between score properties (captured in terms of the basis functions)
and the expressive parameters.

Instead of having an FFNN modeling each expressive parameter, we can define a single FFNN
describing all (or a combination of) parameters. The main difference is that instead of having
an output layer with a single unit, the output layer of an FFNN modeling parameters jointly
has a unit for each expressive parameter. We can write the output of such a network (with L
layers) which models Ny parameters for score note ni as

f
(joint)
nbm (ni) = σ(L)

(
w(L)h

(L−1)
i + w

(L)
0

)
, (C.1)

where h
(L−1)
i ∈ RDL−1 is the vector of (hidden) activations of the L− 1 layer for score note ni,

w(L) ∈ RNy×DL−1 is a matrix of weights connecting the hidden activations of the L − 1 layer

with layer L, w
(L)
0 ∈ RNy is a bias vector, and σ(L) is an element-wise activation function. The

rest of the network has the same form as discussed in Section 4.2.2. Since we treat the modeling
of expressive parameters as a regression problem, we use a linear activation for the output layer
(i.e. σ(L)(ξ) = ξ).

C.4.2 Experiments

In this section, we describe the cross-validation experiments conducted to assess whether NBMs
benefit from modeling expressive parameters jointly. For these experiments, we use the Ma-
galoff/Chopin and the Zeilinger/Beethoven datasets. As in the case of the empirical analysis
presented in Section C.3, we describe the performances in terms of the four expressive parameters
defined in performance codec C1.5, namely MIDI velocity, log BPR, timing and log articulation.
In this section, we will refer to a joint model as a model that predicts all expressive parameters
jointly, and to an independent model as a model that predicts a single expressive parame-
ter.

Several 5-fold cross-validations were conducted for each modeling approach (joint and indepen-
dent), dataset (Magaloff/Chopin and Zeilinger/Beethoven) and FFNN architecture combination
(21 architectures, see description below). The score information in the datasets was represented
using basis functions from the groups described in Sections 3.3.2 and 4.2.1. The cross-validations
were conducted as follows: We defined training and test sets randomly for each of the 5 par-
titions for each dataset, such that each piece in a dataset occurred exactly once per test set.
The training set for each partition contained 80% of the pieces in the dataset, and the test set
contained the remaining 20%. For each of these partitions, we trained joint and independent
models for each architecture on the training set and then used the trained models to predict
the expressive parameters for each piece in the test set. We use the coefficient of determination
(R2) and Pearson’s correlation coefficient (r) to characterize the accuracy of the learned models.
R2 is a measure of the variance explained by the model, when a linear relationship between
the predictions and the targets exists. Note that R2 can be negative in cases where the model
residual has a larger variance than the signal itself, implying a poor fit of the model to the data.
We rank our results according to R2, since it is a more robust measure of the performance of a
model.

As mentioned above, we performed an extensive grid search over the network architecture, to
try to find the optimal settings which maximized the predictive accuracy for each joint and
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independent model. This search considered FFNNs with up to three hidden layers of different
sizes. All configurations were used for the modeling individual parameters, as well as for joint
modeling. For the first layer, the possible sizes were 20, 100 and 500 hidden units; while two-
layered models had an additional 5, 20 or 100 units in the second layer, and three layered models
had an additional 5 or 20 units in the third layer. All of the hidden layers had rectified linear
units, and the output layer had linear units. In the following discussion, we will denote these
architectures as (D1, D2, D3), where D1, D2 and D3 are the number of units in the first, second
and third hidden layers, respectively.

All models were trained by minimizing the squared error between the predictions and the expres-
sive parameters using RMSProp, using a learning rate of 10−5 and a gradient decay parameter
of 0.9. We used 80% of the pieces in the training set for updating the parameters and 20% as
a validation set. In order to avoid overfitting, we used dropout (with pdropout = 0.5), l2-norm
weight regularization (with regularization coefficient of 10−3) and early stopping after 100 epochs
without improvement in the loss of the validation set. The weights of the layers are randomly
initialized as proposed by Glorot and Bengio (2010), and the biases were initialized to zero. All
models were trained for a maximum of 2000 epochs.

C.4.3 Results and Discussion

The results of the grid search of the 5-fold cross-validations are presented in Tables C.1, C.2, C.3
and C.4 for MIDI velocity, log BPR, timing and log articulation, respectively. In these tables,
the results correspond to the R2 and r averaged across all pieces in the test set. In these tables,
the R2 values in boldface in the columns “Independent” and “Joint” for each dataset correspond
to the best results (the highest R2) for each expressive parameter.

We are interested in whether modeling parameters independently versus jointly has an effect on
predictive accuracy. For this purpose we made two kinds of comparisons: First, we tested for
an overall effect across network architectures of modeling parameters independently or jointly;
second, we compared the best architectures achieved from modeling parameters independently
with the best architectures achieved from modeling parameters jointly.

For the first comparison, we conducted an independent samples two-tailed t-test at the p < 0.01
level to evaluate the difference in R2 between all architectures modeling expressive parameters
independently and all architectures modeling expressive parameters jointly, for each expressive
parameter/dataset combination (for a total of 4 parameters × 2 datasets = 8 tests). The results
of these comparisons are summarized as follows:

• For MIDI velocity and log articulation, we found no significant differences in R2 for either
the Magaloff/Chopin or Zeilinger/Beethoven datasets.

• For log BPR in architectures trained on the Magaloff/Chopin dataset, R2 was significantly
higher for architectures modeling parameters independently (mean = 0.012, std = 0.005)
than for architectures modeling parameters jointly (mean = 0.006, std = 0.007, t(40) =
2.83, p = 0.007, Cohen’s d = 0.87). On the other hand, no significant difference was found
for the Zeilinger/Beethoven dataset.

• For timing, we found no significant difference in R2 for the Magaloff/Chopin dataset.
On the other hand, for architectures trained on the Zeilinger/Beethoven dataset, R2 was
significantly higher for architectures modeling parameters jointly (mean = 0.003, std =
0.003) than for architectures modeling parameters independently (mean < 0.001, std =
0.005, t(38) = 3.93, p < 0.001,Cohen’s d = 1.24).

213



C Modeling Joint Interactions of Expressive Parameters

Magaloff/Chopin Zeilinger/Beethoven
Independent Joint Independent Joint

Architecture R2 r R2 r R2 r R2 r

(20, 0, 0) 0.167 0.458 0.168 0.453 0.194 0.543 0.193 0.519
(20, 5, 0) 0.167 0.458 0.161 0.460 0.165 0.438 0.130 0.464
(20, 5, 5) 0.141 0.457 0.124 0.444 0.139 0.516 0.016 0.135
(20, 5, 20) 0.155 0.445 0.113 0.431 0.105 0.303 0.033 0.111
(20, 20, 0) 0.168 0.451 0.167 0.456 0.193 0.526 0.189 0.514
(20, 20, 5) 0.002 0.074 0.083 0.331 0.000 0.054 0.025 0.186
(20, 20, 20) 0.157 0.435 0.150 0.428 0.075 0.213 0.152 0.475
(20, 100, 0) 0.161 0.448 0.165 0.451 0.192 0.518 0.200 0.523
(20, 100, 5) 0.141 0.455 0.149 0.443 0.004 0.097 0.022 0.090
(20, 100, 20) 0.165 0.446 0.150 0.442 0.196 0.517 0.185 0.515
(100, 0, 0) 0.164 0.457 0.165 0.449 0.201 0.550 0.203 0.533
(100, 5, 0) 0.152 0.417 0.155 0.441 0.178 0.479 0.075 0.282
(100, 5, 5) 0.162 0.453 0.053 0.363 0.145 0.421 0.077 0.357
(100, 5, 20) 0.034 0.116 0.071 0.271 0.202 0.539 0.124 0.397
(100, 20, 0) 0.174 0.460 0.179 0.463 0.211 0.546 0.222 0.545
(100, 100, 0) 0.168 0.457 0.174 0.460 0.195 0.538 0.205 0.528
(100, 100, 5) 0.176 0.458 0.151 0.415 0.126 0.367 -0.003 -0.017
(100, 100, 20) 0.176 0.459 0.170 0.452 0.208 0.541 0.117 0.347
(500, 0, 0) 0.163 0.459 0.166 0.459 0.207 0.556 0.212 0.546
(500, 5, 5) 0.138 0.418 0.110 0.407 0.185 0.537 0.096 0.344
(500, 100, 20) 0.175 0.456 0.177 0.457 0.226 0.554 0.228 0.546

Table C.1: Predictive results for MIDI velocity for each architecture, averaged over a 5-fold
cross-validation on the Magaloff/Chopin and Zeilinger/Beethoven piano performance
corpora. A larger R2 and r means better performance. The numbers in bold represent
the best architecture (in terms of R2) for each condition (Independent or Joint). See
text for description of the neural architectures.

For the second comparison, we conducted a paired-samples two-tailed t-test at the p < 0.01
level to evaluate the differences in R2 between the best architectures modeling parameters inde-
pendently and the best architectures modeling parameters jointly, for each expressive parame-
ter/dataset combination (for a total of 4 parameters × 2 datasets = 8 tests). According to these
t-tests, none of the differences was statistically significant.

The results of these experiments are inconclusive: there seems to be no modeling strategy that
consistently leads to better predictions. Nevertheless, these negative results do not necessarily
imply there is no benefit in modeling parameters jointly: A possible reason for these results
might be that the FFNNs described in Section C.4.1 do not allow for explicitly modeling the
interactions between expressive parameters (e.g. explicitly capturing the correlations between
expressive parameters). Furthermore, these models do not take multiple expressive parameters
as input when predicting a given expressive parameter (e.g. do not consider the log BPR, timing
or log articulation of a note for predicting the MIDI velocity of that note). Given the complex
nature of the interactions between expressive parameters, models that explicitly account for
these interactions may prove more successful than models that consider individual parameters
in isolation.
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Magaloff/Chopin Zeilinger/Beethoven
Independent Joint Independent Joint

Architecture R2 r R2 r R2 r R2 r

(20, 0, 0) 0.016 0.137 0.019 0.167 0.010 0.151 0.007 0.204
(20, 5, 0) 0.006 0.072 0.003 0.071 0.016 0.132 0.002 0.050
(20, 5, 5) 0.007 0.082 0.000 0.028 0.004 0.061 -0.002 -0.040
(20, 5, 20) 0.004 0.068 0.001 0.046 0.004 0.034 0.001 0.044
(20, 20, 0) 0.023 0.162 0.012 0.133 0.000 0.106 0.000 0.169
(20, 20, 5) 0.010 0.097 0.000 0.011 0.011 0.102 -0.002 0.010
(20, 20, 20) 0.011 0.108 0.000 0.033 0.006 0.101 0.012 0.167
(20, 100, 0) 0.016 0.134 0.017 0.156 0.013 0.169 0.006 0.192
(20, 100, 5) 0.005 0.064 0.000 0.022 0.005 0.078 0.000 0.030
(20, 100, 20) 0.007 0.088 0.004 0.075 0.014 0.147 0.016 0.180
(100, 0, 0) 0.018 0.161 0.015 0.151 0.006 0.143 0.003 0.165
(100, 5, 0) 0.009 0.112 0.003 0.073 0.012 0.161 0.002 0.084
(100, 5, 5) 0.017 0.155 0.000 0.031 0.007 0.079 -0.001 -0.008
(100, 5, 20) 0.004 0.052 0.000 0.013 0.001 0.021 0.006 0.113
(100, 20, 0) 0.017 0.145 0.016 0.148 0.021 0.177 0.008 0.192
(100, 100, 0) 0.015 0.141 0.015 0.145 0.005 0.124 0.008 0.200
(100, 100, 5) 0.017 0.151 -0.001 0.001 0.018 0.185 0.002 0.050
(100, 100, 20) 0.017 0.150 0.010 0.107 0.010 0.119 0.004 0.093
(500, 0, 0) 0.011 0.140 0.014 0.164 -0.004 0.118 0.001 0.206
(500, 5, 5) 0.011 0.119 0.002 0.056 0.025 0.176 0.012 0.115
(500, 100, 20) 0.014 0.134 0.012 0.124 0.006 0.154 0.016 0.199

Table C.2: Predictive results for log BPR for each architecture, averaged over a 5-fold cross-
validation on the Magaloff/Chopin and Zeilinger/Beethoven piano performance cor-
pora. A larger R2 and r means better performance. The numbers in bold represent
the best architecture (in terms of R2) for each condition (Independent or Joint). See
text for description of the neural architectures.

C.5 Conclusions

In this appendix we presented preliminary work studying the joint interactions of dimensions
describing aspects of expressive performances. The empirical analysis of piano performances
described in Section C.3 shows some evidence supporting the intuition that different aspects of
musical expression are not independent from each other. This has also been confirmed by the
music psychology literature.

In this appendix we conducted experiments using NBMs to compare joint and independent
modeling of expressive parameters on two corpora of performances of piano music from the
classical and romantic periods. Analysis of the performances show some evidence supporting
the intuition that different aspects of musical expression are not independent from each other.
Nevertheless, the results of the cross-validation experiments testing whether modeling param-
eters independently or jointly led to better predictive models are inconclusive: it is not clear
if the models would benefit from joint modeling. Future work will include an in-depth quanti-
tative evaluation of the predictive accuracy of models describing expressive parameters jointly
vs. models describing parameters independently.
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Magaloff/Chopin Zeilinger/Beethoven
Independent Joint Independent Joint

Architecture R2 r R2 r R2 r R2 r

(20, 0, 0) 0.007 0.077 0.010 0.104 -0.002 0.054 0.008 0.105
(20, 5, 0) 0.008 0.094 0.005 0.084 -0.002 0.007 0.000 0.026
(20, 5, 5) 0.008 0.106 0.004 0.080 0.000 0.006 0.000 0.027
(20, 5, 20) 0.007 0.090 0.003 0.077 -0.001 0.007 0.001 0.028
(20, 20, 0) 0.005 0.072 0.006 0.089 -0.001 0.038 0.004 0.080
(20, 20, 5) 0.008 0.099 0.002 0.064 0.000 0.004 -0.002 0.022
(20, 20, 20) 0.005 0.077 0.005 0.078 0.001 0.043 0.002 0.055
(20, 100, 0) 0.006 0.080 0.007 0.090 0.000 0.029 0.003 0.083
(20, 100, 5) 0.009 0.103 0.004 0.075 0.001 0.035 0.000 0.020
(20, 100, 20) 0.003 0.063 0.005 0.083 -0.002 0.054 0.004 0.080
(100, 0, 0) 0.016 0.133 0.008 0.089 -0.002 0.063 0.008 0.109
(100, 5, 0) 0.005 0.068 0.006 0.090 0.001 0.054 0.003 0.051
(100, 5, 5) 0.008 0.105 0.002 0.072 0.000 0.037 0.001 0.017
(100, 5, 20) 0.010 0.116 0.002 0.046 0.000 0.010 0.003 0.063
(100, 20, 0) 0.011 0.107 0.008 0.098 -0.002 0.034 0.009 0.110
(100, 100, 0) 0.004 0.090 0.009 0.097 0.000 0.056 0.006 0.097
(100, 100, 5) 0.008 0.093 0.005 0.084 0.000 0.027 -0.002 0.011
(100, 100, 20) 0.008 0.099 0.006 0.085 0.002 0.078 0.003 0.052
(500, 0, 0) 0.006 0.098 0.010 0.102 -0.001 0.071 0.007 0.112
(500, 5, 5) 0.004 0.067 0.004 0.078 0.003 0.062 0.005 0.071
(500, 100, 20) 0.006 0.100 0.007 0.095 0.002 0.053 0.008 0.100

Table C.3: Predictive results for timing for each architecture, averaged over a 5-fold cross-
validation on the Magaloff/Chopin and Zeilinger/Beethoven piano performance cor-
pora. A larger R2 and r means better performance. The numbers in bold represent
the best architecture (in terms of R2) for each condition (Independent or Joint). See
text for description of the neural architectures.
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C.5 Conclusions

Magaloff/Chopin Zeilinger/Beethoven
Independent Joint Independent Joint

Architecture R2 r R2 r R2 r R2 r

(20, 0, 0) 0.065 0.278 0.073 0.284 0.065 0.274 0.089 0.315
(20, 5, 0) 0.068 0.284 0.042 0.234 0.065 0.211 0.045 0.263
(20, 5, 5) 0.043 0.216 0.023 0.189 0.048 0.244 0.001 0.032
(20, 5, 20) 0.051 0.233 0.02 0.178 0.023 0.112 0.007 0.072
(20, 20, 0) 0.069 0.282 0.066 0.279 0.051 0.216 0.087 0.323
(20, 20, 5) 0.012 0.061 0.015 0.132 0.017 0.096 0.002 0.042
(20, 20, 20) 0.063 0.276 0.029 0.188 0.001 0.046 0.028 0.224
(20, 100, 0) 0.067 0.279 0.066 0.278 0.065 0.264 0.085 0.311
(20, 100, 5) 0.063 0.287 0.025 0.179 0.001 0.049 0.004 0.023
(20, 100, 20) 0.062 0.278 0.044 0.24 0.075 0.268 0.057 0.271
(100, 0, 0) 0.067 0.284 0.068 0.279 0.080 0.298 0.074 0.269
(100, 5, 0) 0.058 0.257 0.046 0.249 0.102 0.331 0.028 0.138
(100, 5, 5) 0.064 0.279 0.017 0.207 0.078 0.28 0.016 0.167
(100, 5, 20) 0.010 0.081 0.012 0.104 0.080 0.300 0.034 0.223
(100, 20, 0) 0.070 0.280 0.071 0.28 0.079 0.306 0.105 0.34
(100, 100, 0) 0.068 0.282 0.075 0.289 0.082 0.294 0.107 0.338
(100, 100, 5) 0.068 0.281 0.033 0.196 0.024 0.113 0.002 0.06
(100, 100, 20) 0.068 0.281 0.066 0.276 0.065 0.227 0.061 0.226
(500, 0, 0) 0.064 0.281 0.072 0.292 0.073 0.29 0.104 0.353
(500, 5, 5) 0.059 0.264 0.027 0.194 0.100 0.367 0.019 0.182
(500, 100, 20) 0.070 0.286 0.068 0.278 0.087 0.326 0.101 0.343

Table C.4: Predictive results for log articulation for each architecture, averaged over a 5-fold
cross-validation on the Magaloff/Chopin and Zeilinger/Beethoven piano performance
corpora. A larger R2 and r means better performance. The numbers in bold represent
the best architecture (in terms of R2) for each condition (Independent or Joint). See
text for description of the neural architectures.
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D Probabilistic Non-linear Basis Models Using
Gaussian Mixture Density Networks

D.1 Introduction

The linear and non-linear variants of the BMs described in the main text model only a single
global performance strategy: the models can only represent a performance that is the “average”
of all performance strategies. For example, the “average” performance of such a model might
not be good enough to reproduce the specific timing patterns of a waltz from a mazurka (both of
which are in 3

4). A musically plausible assumption is that instead of a single global performance
strategy there are many local performance strategies. A performer then shapes an expressive
performance by moving (i.e. selecting) among these performance strategies. From a proba-
bilistic perspective, we can think of the approach of modeling global performance strategies as
describing performances through unimodal distributions. On the other hand, modeling the local
performance strategies can be embedded into the semantics of multimodal distributions, where
each of the modes correspond to the characteristics of a (local) performance strategy.

In this appendix we present a probabilistic extension to the neural networks discussed in Chapter
4, using the framework of Mixture Density Networks (MDNs) (Bishop, 1994). This framework
combines the descriptive power of mixture models, which are probabilistic models that allow
for representing multimodal data through a (generally additive) mixture of probability distribu-
tions, with the approximation power and flexibility of neural networks. In a nutshell, an MDN
is a neural network whose outputs parametrize a multimodal conditional probability distribu-
tion.

Below, we discuss how to use Gaussian MDNs (GMDNs) to parametrize the conditional prob-
ability distribution of the expressive parameters given the input score information, represented
through basis functions. As their name suggests, GMDNs are neural networks that parametrize
Gaussian mixture models (GMMs), i.e. that parametrize a mixture of Gaussian distributions.
The main motivation for using these networks is to address two issues with the predictive models
described in the main text:

1. GMDNs relax the restriction of the predictions of the models being unimodal (explicitly
made by the linear models described in Chapter 3 and implicitly made by the neural
networks described in Chapters 4); and

2. if used to jointly model expressive parameters, GMDNs describe the correlation between
expressive parameters (see discussion in Appendix C.4.3).

In this appendix we present a mathematical description of GMDNs, as well as an experimental
evaluation focusing on the first issue described above, namely, exploring whether the predictive
accuracy of the models benefits from explicitly describing expressive parameters using multi-
modal distributions.

Following the notation established in Chapters 3 and 4 (in particular, Sections 3.2, 4.2 and 4.3),
elements of a score S are denoted as x (these elements can be single notes or onsets, denoted
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D.2 Model Description

as n and o, respectively); Y(xi) = ti ∈ RNy is a vector whose components represent expressive
parameters for score element xi; and F(xi) = ϕ(xi) ∈ RM is vector whose components are the
value of the basis functions representing score element xi.

The rest of this appendix is structured as follows: Section D.2 presents a mathematical descrip-
tion of GMDNs. Section D.3 describes an experimental evaluation of GMDNs for predicting
expressive dynamics. Section D.4 discusses the results of the experimental evaluation. Sec-
tion D.5 discusses how to use GMDNs to visualize interactions between expressive parameters.
Finally, Section D.6 concludes the appendix.

D.2 Model Description

In this section, we provide a mathematical description of GMDNs. In this discussion, we focus
on the more general case of GMDNs modeling expressive parameters jointly (i.e. where the
MDNs parametrize a mixture of multivariate Gaussian distributions), since the univariate case
can be derived from the multivariate case in a straightforward way. We can use GMDNs to
describe the conditional probability distribution of the expressive parameters ti given the input
basis functions ϕ(xi) as

p(ti | ϕ(xi)) =
K∑

k=1

ρk (ϕ(xi))N (ti | µk (ϕ(xi)) ,Σk (ϕ(xi))) (D.1)

where K is the number of components of the mixture; and ρk (ϕ(xi)), µk (ϕ(xi)) and Σk (ϕ(xi))
are the mixture coefficient, the mean and covariance matrix of the k-th component for score
element xi, respectively and N (· | µ,Σ) represents the multivariate Gaussian distribution. In

this case, the output of the neural network for ϕ(xi), denoted as yi ∈ R
K
2 (2+3Ny+N2

y) has K

units determining the mixture coefficients, KNy units determining the means and KNy
(Ny+1)

2
determining the elements of the covariances matrices1 for a total of K

2

(
2 + 3Ny +N2

y

)
units.

To unclutter notation, in the following discussion we will write µik = µk (ϕ(xi)) and Σik =
Σk (ϕ(xi)).

The mixture coefficients and means are given using the following parametrization of the output
of the neural network

ρk (ϕ(xi)) =
exp

(
yρk,i

)

∑K
j=1 exp

(
yρj,i

) (D.2)

µkq (ϕ(xi)) = yµkq,i, (D.3)

where yρq,i represents the activation of the q-th unit of the subset of units determining the mixture
coefficients for the i-th score element xi, µkq (ϕ(xi)) is the q-th element of the mean of the k-th
component at the i-th score element and yµkq,i is the activation of the q-th unit corresponding to
the subset of units determining the k-th mean.

Parametrizing the covariance matrices is trickier, since covariance matrices must be positive
(semi) definite. Following (Williams, 1996), we use the Cholesky factorization of the inverse of
the covariance matrix of the k-th component as

Σk (ϕ(xi))
−1 = UT

kiUki, (D.4)

1Since covariance matrices are symmetrical instead of N2
y different elements, we only need Ny elements for

representing the diagonal and
Ny(Ny−1)

2
for representing the non-diagonal elements.
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D Probabilistic Non-linear BMs using GMDNs

where Uki ∈ RNy×Ny is an upper triangular matrix. The elements in the diagonal of this matrix
are denoted ukqq,i. These elements must be positive to ensure that the covariance matrix is
positive semidefinite. The non-zero non-diagonal elements are denoted by ukqj,i. These elements
can be expressed in terms of the outputs of the network as follows:

ukqq,i = exp
(
yΣd
kqq,i

)
(D.5)

ukqj,i = yΣnd
kqj,i, (D.6)

where yΣd
kqq,t and yΣnd

kqj,t are the activations of the subset of units determining the qq (diagonal) and
qj (non-zero non-diagonal) elements of the upper triangular matrix resulting of the Cholesky
factorization of the inverse covariance matrix of the k-th component, respectively. It is important
to note that by using this parametrization we do not have to compute the Cholesky factorization
of any covariance matrix, as the model learns the factorization by itself. In the case of a
univariate distribution, the covariance is simply a scalar, which is given by Equation (D.5)
(i.e. there are no non-diagonal elements).

A GMDN provides a joint probability distribution over the values of the expressive parameters
instead of an estimate of these parameters. Therefore, to define predictive functions f (r)nbmgmd

,

we require a method for generating estimates from the conditional probability distribution2.
Two ways to generate such an estimate are:

1. Taking the expected value of the distribution, i.e.,

f (r)nbmgmd
(xi) = E {p(ti | ϕ(xi))} =

K∑

k=1

ρk (ϕ(xi)) · µk (ϕ(xi)) (D.7)

2. Taking the mean value of the largest component, i.e.,

f (r)nbmgmd
(xi) = µk∗ (ϕ(xi)) , (D.8)

were k∗ = argmaxk ρk(ϕ(xi)) is the component with the largest mixing coefficient.

Training

Given a training set T , a GMDN can be trained by maximizing the log-likelihood given by

Lll(θ) = log p(tT | ΦT ,θ) (D.9)

=
∑

ti∈T
log

{
K∑

k=1

ρtkN (ti | µik,Σik)

}

which can be done using stochastic gradient descent (SGD).

D.3 Experiments

In this section, we describe a quantitative evaluation of the predictive accuracy of GMDNs
to predict expressive dynamics, as captured by the (normalized) MIDI velocity of each note,

2Note that the formalism of GMDNs can be used for both FFNNs and RNNs, and therefore we write a single
predictive function, meant to represent both cases, which is denoted with the (r)nbm subscript.
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D.4 Results and Discussion

described in the performance codec C1.0 defined in Section 3.3.1 (see Equation (3.3)). Since
performance codec C1.0 describes expressive parameters in a note-wise fashion, we used non-
linear BMs (NBMs) where the predictive function is an FFNN-based GMDNs, which we will
refer to as GMDFFNNs, to model the conditional probability distribution of the MIDI velocity
of each note given the representation of that note through basis functions.

The main objective of this evaluation was to determine whether using more than one component
improves the predictive accuracy of the models. As a secondary objective, we investigated which
of two strategies for generating predictions of the MDNs worked best – taking the expected value
or the mean of the maximal component of the mixture.

We performed six 5-fold cross-validations using the Magaloff/Chopin and Zeilinger/Beethoven
datasets for GMDFFNNs with 1, 2 and 5 components (2 datasets × 3 GMDFFNN architectures
(with 1, 2 or 5 components) = 6 cross-validations). The score information in the datasets
was represented using basis functions from the groups described in Sections 3.3.2 and 4.2.1.
Training and tests sets were randomly defined for each of the 5 partitions for each dataset, so
that each piece in a dataset occurred exactly once per test set. The training set for each partition
contained 80% of the pieces in the dataset, and the test set contained the remaining 20%. For
each partition, we trained a GMDFFNN for maximizing the log-likelihood of the observed MIDI
velocity of each note given the representation through basis functions of that note. As discussed
above, MDNs do not directly provide predictions of the MIDI velocity, instead, we generated
model predictions using the two methods described above in Section D.2 (i.e. by taking the
expected value, which we denote in the following discussion as “Expected Value”, or the mean
of the maximal component of the mixture, which we denote as “Max. Component”). This
means that each trained GMDFFNN generates two sets of predictions, We use the coefficient of
determination (R2) and Pearson’s correlation coefficient (r) to characterize the accuracy of the
learned models.

D.3.1 Model Architectures and Training

The architecture of each GMDN consisted of two hidden layers with 100 and 20 rectified linear
units each, and a output layer parametrizing a GMM with 1, 2 and 5 components, respec-
tively.

These networks were trained using RMSProp, a variant of SGD where the step size is adaptively
updated by a running average of the magnitude of the gradient, using a learning rate of 10−5 and
a gradient decay parameter of 0.9. We used 80% of the pieces in the training set for updating
the parameters and 20% as a validation set. In order to avoid overfitting, we used dropout (with
pdropout = 0.5), l2-norm weight regularization (with regularization coefficient of 10−3) and early
stopping after 200 epochs without improvement in the loss of the validation set. The weights
of the layers are randomly initialized as proposed by Glorot and Bengio (2010), and the biases
were initialized to zero. All models were trained for a maximum of 10000 epochs.

D.4 Results and Discussion

Table D.1 show the results of the cross-validation experiments. This table shows the R2 and r
averaged across all pieces for each dataset/GMDN architecture combination.

To test whether using a multimodal distribution improves the predictive accuracy of the models,
we conducted a one-way ANOVA to compare the differences in R2 for GMDFFNNs generating
predictions by taking the expected value of the distribution with 1, 2 and 5 components for
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D Probabilistic Non-linear BMs using GMDNs

Magaloff/Chopin
Expected Value Max. Component

Components R2 r R2 r

1 0.170 0.446 0.170 0.446
2 0.204 0.483 0.191 0.469
5 0.211 0.489 0.034 0.432

Zeilinger/Beethoven
Expected Value Max. Component

Components R2 r R2 r

1 0.209 0.529 0.209 0.529
2 0.208 0.529 0.205 0.531
5 0.215 0.532 0.215 0.535

Table D.1: Predictive accuracy for MIDI velocity for GMDFFNNs with different number of
components, averaged over a 5-fold cross-validation on the Magaloff/Chopin (top)
and Zeilinger/Beethoven (bottom). A larger R2 and r means better performance.

each dataset. We found a significant difference for the Magaloff/Chopin dataset (F(2, 450) =
6.21, p = 0.002, η2 = 0.027). On the other hand, we found no significant difference for the
Zeilinger/Beethoven dataset (F(2, 87) = 0.04, p = 0.958, η2 = 0.001). We conducted a pairwise
comparison of the models trained on the Magaloff/Chopin dataset by running three paired-
samples two-tailed t-tests (i.e. 5 vs. 1, 2 vs. 1 and 5 vs. 2 components) at the p = 0.01 level (we
used the Bonferroni correction for multiple comparisons). These results suggested that there
was a significant difference for all three cases (t(150) = 11.301, p < 0.0001, Cohen’s d = 0.381 for
5 vs. 1; t(150) = 11.986, p < 0.0001, Cohen’s d = 0.322 for 2 vs. 1; t(150) = 4.505, p < 0.0001,
Cohen’s d = 0.064 for 5 vs. 2).

To determine which of the two methods for generating predictions of the MDNs was more
successful, we conducted paired-samples two-tailed t-tests at the p = 0.01 level, comparing
the differences in R2 for predictions generated by taking the expected value, and predictions
generated by taking the maximal component of the mixture for each dataset. We found a
significant difference for the Magaloff/Chopin dataset (t(452) = 12.833, p < 0.0001, Cohen’s d =
0.454). On the other hand, we found no difference for the Zeilinger/Beethoven dataset (t(89) =
0.301, p = 0.764, Cohen’s d = 0.009).

These results offer some evidence that the predictive accuracy of models with more than one com-
ponent may be higher than the predictive accuracy of unimodal models. This finding supports
the hypothesis that models of expressive performance might benefit from describing expressive
parameters through multimodal distributions. However, this finding is not consistent across
datasets. Still, it is likely that the number of components considered in this evaluation may not
be adequate to capture the different performance strategies in the Zeilinger/Beethoven dataset.
Furthermore, preliminary experiments while training the GMDNs revealed that, given the larger
number of parameters when compared to deterministic neural networks, they might be more af-
fected by changes in the architecture or the selection of hyper-parameters for training.
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D.5 Visualizing Interactions Between Expressive Parameters

D.5 Visualizing Interactions Between Expressive Parameters

In this section, we present a qualitative example of how to use GMDNs to visualize the in-
teractions (i.e. the correlations) between expressive parameters. As mentioned in Section D.1,
GMDNs can be used to jointly model expressive parameters and explicitly define the correlations
between expressive parameters.

Once a GMDN is trained, it is possible to visualize the interactions learned by the model by
plotting the probability density function parametrized by the GMDN. Figure D.1 presents an
example of the joint interactions between expressive parameters for an excerpt of Chopin’s Pre-
lude Op. 28 No. 7 in A major. In contrast to the non-sequential NBMs used in the experiments
described above in Section D.3, in this example, we consider a recurrent NBM (RNBM, see
Section 4.3), which uses performance codec C2.5, described in Appendix B. This performance
codec describes a performance using 5 expressive parameters: two onset-wise parameters de-
noting the maximal MIDI velocity per each onset (referred to as MIDI velocity trend) and
the logarithm of the beat period ratio for each score onset (referred to as log BPR); and three
note-wise parameters describing timing deviations (referred to as timing), deviations in MIDI
velocity (referred to as MIDI velocity trend) and the logarithm of the articulation ratio (referred
to as log articulation). These plots were generated using GMDNs with two components trained
on the Magaloff/Chopin and Beethoven datasets: An GMDFFNN for modeling note-wise ex-
pressive parameters and a recurrent GMDNs, denoted as GMDRNN, for modeling onset-wise
parameters. In this figure, each color box displays the plots for the distributions comparing
pairs of expressive parameters corresponding to the note marked in the score with the same
color. These plots showcase an example of describing expressive parameters using multimodal
distributions. This is particularly visible in the plots of timing vs. MIDI velocity deviations
and log articulation vs. MIDI velocity deviations (see the bimodal distributions for A5 and C]6,
highlighted in yellow and red, respectively)

Figure D.2 presents an example of the interactions of expressive parameters for the last phrase of
the same Prelude. Each of the plots in this figure corresponds to the distribution of the expressive
parameters for the score onset highlighted with the same color in the score. In these plots we can
see the tendency of tempo to decrease and dynamics to increase over the course of the phrase,
marked by the gradual increase of log BPR (the mode of the distribution moves upwards with
increasing score onsets from left to right) and the increase of MIDI velocity trend (the mode
of the distribution moves to the left with each consecutive score onset). These plots support
the hypothesis that there is an arch in dynamics and timing at the end of a piece, like those
described by Todd (1992). An interesting observation is that the spread of the distributions
tends to increase in both tempo and dynamics with each consecutive onset3, suggesting an
increase of the model’s expressive freedom: the range of potential values of log BPR and MIDI
velocity trend is larger towards the end of the piece (this is particularly noticeable with the last
chord, highlighted in red).

Note that these examples were hand picked, and only attempt to illustrate the ability of GMDNs
to capture the multimodal distribution of expressive parameters and the correlations between
parameters. Future work might include a proper (quantitative) evaluation of the predictive
accuracy of modeling parameters jointly or independently using GMDNs.

3This effect is more pronounced for log BPR than for MIDI velocity trend.
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Figure D.1: Visualization of the probability density function for a GMDN modeling note-wise
parameters for an excerpt of Chopin’s Prelude Op. 28 No. 7 in A major. Each
color box denotes the distribution for a single note (indicated with the same color
in the score). The excerpt from the score is taken from Schirmer’s Edition (Chopin,
1915b).

D.6 Conclusions

This appendix presented a probabilistic extension to the NBM and RNBMs discussed in Chap-
ter 4 using MDNs. An important feature of these networks is that they allow for modeling
multimodal distributions of the expressive parameters.

Our preliminary experimental evaluation suggests that using models with more than one com-
ponent improves the predictive accuracy. These results support the idea that the unimodal
assumptions implicitly made by the deterministic neural networks discussed in Chapter 4, as
well as the linear BMs discussed in Chapter 3, might be an oversimplification. An interesting
future research direction could include a more extensive evaluation of the distributions (and
number of components) for modeling the parameters.

Furthermore, it would be interesting to evaluate the predictive accuracy of these models in the
scenario of modeling expressive parameters jointly and independently.

An interesting direction for rendering performances would be through the use of a sampling
procedure. A possible way to do so would be by combining the MDNs into Markov chain Monte
Carlo sampling methods such as particle filtering.
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Figure D.2: Visualization of the probability density function for a GMDN modeling onset-wise
parameters for the last two bars of Chopin’s Prelude Op. 28 No. 7 in A major. Each
color box denotes the distribution for a single onset (indicated with the same color
in the score). Thin grey horizontal and vertical gridlines were added to the plots
of the distributions to better compare the location of the mode of the distribution.
The excerpt from the score is taken from Schirmer’s Edition (Chopin, 1915b).
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E Constructing and Training Linear Models

In this appendix we provide some theoretical results and derivations for constructing and training
the linear models described in Chapter 3.

E.1 Standard Least Squares

In this appendix, a detailed derivation of the weights for linear regression in the least squares (LS)
sense, discussed in Section 3.3.3 as the basis for the linear basis model (LBM), is provided. To
unclutter notation, we drop the subscript T from tT and ΦT defined in Equation (3.21).

The weights computed in the LS sense are given by

wls = argmin
w

Lse(w), (E.1)

where Lse, the squared error, is written as

Lse(w) = ‖t−Φw‖2

= (t−Φw)T(t−Φw). (E.2)

Computing the gradient of the cost function with respect to the weights results in

∂

∂w
Lse(w) = −2ΦTt + 2ΦTΦw. (E.3)

The weights that minimize the cost function are given by the solutions to ∂
∂wLse(w) = 0, i.e.

wls = Φ†t, (E.4)

where

Φ† =
(
ΦTΦ

)−1
ΦT (E.5)

is the Moore-Penrose pseudo-inverse of the matrix Φ.

Under the assumption of a Gaussian conditional distribution of t given w (as in Equation
(3.26)), the LS regression is analytically equivalent to ML estimation of w. The conditional
log-likelihood of t given w is given by

log p(t | w) =
N

2
log(β)− N

2
log(2π)− β

2
(t−Φw)T(t−Φw). (E.6)

The gradient of the above log-likelihood is proportional to the gradient of the LS cost function,
i.e.

∂

∂w
log p(t | w) = βΦTt− βΦTΦw = −β

2

∂

∂w
Lse(w). (E.7)
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E.2 Regularized Least Squares

Therefore, computing the solution that maximizes the conditional log-likelihood is equivalent to
computing the solution that minimizes the squared error. Hence, the weights computed using
ML are given by

wml = wls = Φ†t. (E.8)

E.2 Regularized Least Squares

In this appendix, we provide a detailed derivation of the weights for the regularized linear
regression using a quadratic regularization term.

Using a quadratic regularization term, the regularized squared error Lse reg can be written
as

Lse reg(w) = ‖t−Φw‖2 + λl2‖w‖2, (E.9)

where λl2 ∈ R≥0 is called the l2-norm weight regularization coefficient (or simply regularization
coefficient).

Computing the gradient of the cost function with respect to the weights results in

∂

∂w
Lse reg(w) = −2ΦTt + 2ΦTΦw + 2λl2w. (E.10)

The weights that minimize the cost function are given by the solutions to ∂
∂wLls(w) = 0, which

can be written as

wls reg =
(
λl2I + ΦTΦ

)−1
ΦTt. (E.11)

Note that when λl2 → 0, the solution of regularized LS converges to the standard LS solution
from Equation (E.4).

E.3 Derivation of the Weights for Bayesian Linear Regression Using
a Gaussian Prior

In this appendix, we provide a detailed derivation of the weights for Bayesian linear regression
described in Section 3.4.2.

The joint probability distribution of the expressive parameters t and the weights w given by

p(t,w) = p(t | w)p(w), (E.12)

where p(w) is the conjugate prior distribution of the weights (Bishop, 2006). As previously
stated in Section 3.4.2, we assume this prior probability distribution to be Gaussian, i.e.

p(w) = N (w |m0,S0), (E.13)

where m0 is the prior mean and S0 is the prior covariance matrix.
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Using Bayes’ Theorem, the posterior probability distribution of w given t (in log-domain) is
given by

log p(w | t) = log p(t | w) + log p(w)− log

∫

w
p(t | w)p(w)dw.

︸ ︷︷ ︸
does not depend on w

(E.14)

The weights for Bayesian linear regression can be computed using MAP estimation, i.e.

wmap = argmax
w

(log p(w | t))

= argmax
w


log p(t | w) + log p(w)︸ ︷︷ ︸

Lmap(w)


 . (E.15)

Let us analyze every term of the cost function Lmap separately. The log-posterior probability of
the expressive parameter given the weights can be written as

log p(t | w) =
N

2
log(β)− N

2
log(2π)− β

2

(
tTt− 2tTΦw + wTΦTΦw

)
. (E.16)

The log-prior probability of the weights is given by

log p(w) = −M
2

log(2π)− 1

2
log(det(S0))− 1

2

(
(w −m0)TS−1

0 (w −m0)
)
. (E.17)

The gradient with respect to the weights of the log likelihood Lmap(w) results in

∂

∂w
Lmap(w) = βtTΦ− βΦTΦw − 1

2

(
S0 + S−1T

0

)
(w −m0)

= βtTΦ− βΦTΦw − S−1
0 (w −m0). (E.18)

The weights that maximize the cost function are the solution to ∂
∂wLmap(w) = 0, i.e.

wmap =
(
βΦTΦ + S−1

0

)−1 (
βΦTt + S−1

0 m0

)
. (E.19)

In case m0 = 0 and S0 = α−1I, the solution simplifies to

wmap =

(
α

β
I + ΦTΦ

)−1

ΦTt. (E.20)

E.4 Estimation of the Parameters of the Prior Distribution of p(w)
Using the Expectation-Maximization Algorithm

This appendix describes the estimation of the mean value m0 and covariance matrix S0 of the
prior distribution of the weights p(w) and the noise precision β of the conditional probability
distribution p(t | w) using the expectation-maximization (EM) algorithm.

For the expectation step (E-step) we need to compute the conditional expectation of the log-
likelihood Lmap, given as in Equation (E.15), with respect to the posterior probability of the
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weights w given the expressive parameter t. Using Bayes’ theorem, the posterior probability of
w given t is given by1

p(w | t) = N (w |mN ,SN ), (E.21)

where mN is the posterior mean and SN is the posterior covariance matrix, calculated as

mN = SN
(
S−1

0 m0 + βΦTt
)

and S−1
N = S−1

0 + βΦTΦ. (E.22)

The conditional expectation of the log-likelihood function results in

E {Lmap(w)} = E {log p(t | w)}+ E {log p(w)} (E.23)

Let us compute the conditional expected values from the above equation individually

E {log p(t | w)} =

∫

w
log p(t | w)p(w | t)dw

=
N

2
log(β)− N

2
log(2π)− β

2


tTt− 2tTΦE {w}︸ ︷︷ ︸

=mN

+E
{
wTΦTΦw

}
︸ ︷︷ ︸

∗∗


 .

(E.24)

In order to compute the term denoted as ∗∗, we consider the eigenvalue decomposition of ΦTΦ.
Since this product is a symmetric matrix, we can rewrite it as

ΦTΦ =
M∑

i=1

νiuiu
T
i , (E.25)

where νi is the i-th eigenvalue and ui the i-th eigenvector of ΦTΦ, respectively. Substituting
the above equation in ∗∗ results in

∗∗ = E
{
wTΦTΦw

}

= E

{
M∑

i=1

νiw
Tuiu

T
i w

}

= E

{
M∑

i=1

νiu
T
i wwTui

}

=
M∑

i=1

νiu
T
i E

{
wwT

}
︸ ︷︷ ︸

=mNmT
N+SN

ui

= mT
N

(
M∑

i=1

νiuiu
T
i

)
mN +

M∑

i=1

νiu
T
i SNui

= mT
NΦTΦmN +

M∑

i=1

νiu
T
i SNui.

︸ ︷︷ ︸
∗∗∗

(E.26)

1See Equation (H.4) in Appendix H.1.
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We can use properties of the trace2 to rewrite ∗ ∗ ∗ as

∗ ∗ ∗ =
M∑

i=1

νiu
T
i SNui

= Tr

(
M∑

i=1

νiu
T
i SNui

)

= Tr

(
M∑

i=1

νiSNuiu
T
i

)

= Tr

(
SN

M∑

i=1

νiuiu
T
i

)

= Tr
(
SNΦTΦ

)

= Tr
(
ΦTΦSN

)
. (E.27)

Substituting the above result in ∗∗, we get

∗∗ = mT
NΦTΦmN + Tr

(
ΦTΦSN

)
. (E.28)

Using the above equation, Equation (E.24) can be rewritten as

E {log p(t | w)} =
N

2
log(β)− N

2
log(2π)− β

2
tTt

+ βtTΦmN −
β

2

(
mNΦTΦmN + Tr

(
ΦTΦSN

))
. (E.29)

In a similar fashion, the conditional expectation of the prior probability is given by

E {log p(w)} =− M

2
log(2π)− 1

2
log(det(S0))

− 1

2


 E

{
wTS−1

0 w
}

︸ ︷︷ ︸
=mT

NS−1
0 mN+Tr(S−1

0 SN)

−mT
0

(
S−1

0
T

+ S−1
0

)
E {w}︸ ︷︷ ︸
=mN

+mT
0 S−1

0 m0




=− M

2
log(2π)− 1

2
log(det(S0))− 1

2
(mN −m0)TS−1

0 (mN −m0)

− 1

2
Tr
(
S−1

0 SN
)
. (E.30)

Substituting in Equation (E.29) and Equation (E.30) in Equation (E.23), the expectation of the
cost function Lmap results in

E {Lmap(w)} =
N

2
log(β)− N +M

2
log(2π)− 1

2
log(det(S0))

− β

2
tTt + βtTΦmN −

β

2
Tr(ΦTΦSN )− β

2
mT
NΦTΦmN

− 1

2
(mN −m0)TS−1

0 (mN −m0)− 1

2
Tr
(
S−1

0 SN
)
. (E.31)

2 See Equation (H.11) and Equation (H.12) in Appendix H.2.
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We can proceed to the maximization step (M-step). In order to avoid overfitting of the mean
value m0 caused by ‖S0‖ → 0 and β →∞, thus, rendering the priors non informative, we need
to introduce a constraint on S0. A natural bound for the estimated covariance is the Cramér-Rao
lower bound3

‖S0‖2 ≥
∥∥∥
(
βΦTΦ

)−1
∥∥∥

2
. (E.36)

Using the Frobenius norm4, we can express this constraint as

−g(β,S0) = Tr
(
S0S

T
0

)
− 1

β2
Tr

((
ΦTΦ

)−1 (
ΦTΦ

)−1T
)
≥ 0. (E.37)

We proceed to maximize E {Lmap} subject to the above constraint using the method of Lagrange
multipliers. The Lagrangian function is given by

Lem(β,m0,S0, κ) =
N

2
log(β)− N +M

2
log(2π)− 1

2
log (det(S0))

− β

2
tTt + βtTΦmN −

β

2
Tr
(
ΦTΦSN

)
− β

2
mT
NΦTΦmN

− 1

2
(mN −m0)T S−1

0 (mN −m0)− 1

2
Tr
(
S−1

0 SN
)

+ κ

(
Tr
(
S0S

T
0

)
− 1

β2
Tr

((
ΦTΦ

)−1 (
ΦTΦ

)−1T
))

. (E.38)

Since this optimization problem has an inequality constraint, we consider the Karush-Kuhn-
Tucker (KKT) conditions (Boyd and Vandenberghe, 2004). These conditions can be stated as
follows:

Stationarity:
∂

∂β
Lem = 0,

∂

∂m0
Lem = 0,

∂

∂S0
Lem = 0

Primal feasibility: g(β,S0) ≤ 0

Dual feasibility: κ ≥ 0

Complimentary slackness: κg(β,S0) = 0, (E.39)

3 According to the Cramér-Rao lower bound (CRLB) theorem, the covariance of w is bounded by

cov(w) ≥ FIM−1
w , (E.32)

where FIMw is the Fisher information matrix, given by

FIMw = −E
{
∂2

∂w2
log p(t | w)

}
. (E.33)

Using Equation (E.7), we can rewrite the above equation as

FIMw = −E
{
∂

∂w

(
βΦTt− βΦTΦ

)}
= −E

{
−βΦTΦ

}
= βΦTΦ. (E.34)

Therefore, the CRLB results in

cov(w) ≥
(
βΦTΦ

)−1

. (E.35)

4See Equation (H.17) in Appendix H.2.
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where κ is the KKT multiplier.

Since the covariance matrix S0 must be symmetric and positive definite5. Therefore we can
express S0 as

S0 = LLT, (E.40)

where L ∈ RK×K is an invertible matrix6. We can rewrite the cost function in terms of L
as

Lem(β,m0,L, κ) =
N

2
log(β)− N +M

2
log(2π)− 1

2
log(det(LLT))

− β

2
tTt + βtTΦmN −

β

2
Tr(ΦTΦSN )− β

2
mT
NΦTΦmN

− 1

2
(mN −m0)TL−1TL−1(mN −m0)− 1

2
Tr
(
L−1TL−1SN

)

+ κ

(
Tr
(
LLTLTL

)
− 1

β2
Tr

((
ΦTΦ

)−1 (
ΦTΦ

)−1T
))

(E.41)

The partial derivative of the cost function with respect to β is given by

∂Lem
∂β

=
N

2β
− 1

2
tTt + tTΦmN −

1

2
Tr
(
ΦTΦSN

)
− 1

2
mNΦTΦmN

+
2κ

β3
Tr

((
ΦTΦ

)−1 (
ΦTΦ

)−1T
)
. (E.42)

The gradient of the cost function with respect to m0 is given by

∂Lem
∂m0

= L−1TL−1(mN −m0). (E.43)

For the sake of clarity of the calculation of the gradient of the cost function with respect to L,
we compute individually the partial derivatives of every non constant term of the cost function

5By definition, covariance matrices are positive semi-definite. Furthermore, an invertible positive semidefinite
matrix is positive definite (Burden and Faires, 2001), and therefore, since we assume that S0 is invertible, S0

is positive definite.
6If L is a lower triangular matrix with non-negative elements in the diagonal, this is the Cholesky decomposition

(Burden and Faires, 2001), nevertheless a particular structure of matrix L is not required for S−1
0 to be positive

definite (See Section 9.6.6 in (Petersen and Pedersen, 2012)).
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that has a dependency in L:

∂

∂L
log(det(LLT)) =

∂

∂L
log(det(L) det(LT))

= 2
∂

∂L
log((det(L)))

= 2L−1T , (E.44)

∂

∂L
(mN −m0)T(LL)−1(mN −m0) = −(LLT)−1∂(mN −m0)TLLT(mN −m0)

∂L
(LLT)−1

= −2(mN −m0)T(mN −m0)(LLT)−1L(LLT)−1,
(E.45)

∂

∂L
Tr
((

LLT
)−1

SN

)
=

∂

∂L
Tr

(
SN
(
LLT

)−1T
)

=
∂

∂L
Tr
(
SN
(
LTL

)−1
)

=
∂

∂L
Tr
((

LTIL
)−1

SN

)

= −2
(
IL
(
LTIL

)−1
)

SN
(
LTIL

)−1

= −2L−1TSN
(
LTL

)−1
, (E.46)

∂

∂L
Tr
(
LLTLTL

)
=

∂

∂L
Tr
((

LLT
)T (

LTL
))

=
∂

∂L
Tr
(
ILTILLTILI

)

= ILLTILIIT + ILIITLTIL

+ ILIILTIL + ITLLTITLII

= 3LLTL. (E.47)

Using the above results, the partial derivative of the cost function with respect to L is given
by

∂Lem
∂L

=− L−1T + (mN −m0)T(mN −m0)(LLT)−1L(LLT)−1

+ L−1TSN
(
LTL

)−1
+ 3κLLTL (E.48)

Substituting Equations (E.42), (E.43) and (E.48) in the KKT conditions from Equation (E.39),
maximizing the cost function is equivalent to solve the following system of equations for β, m0,
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S0 and κ:

aβ3 −Nβ2 − 4κ
∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
= 0 (E.49)

L−1TL−1(mN −m0) = 0 (E.50)

−L−1T + L−1TSN
(
LTL

)−1
+ 3κLLTL− L−1T

+(mN −m0)T(mN −m0)(LLT)−1L(LLT)−1 = 0M (E.51)

κ

(
1

β2

∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
− Tr

(
LLTLTL

))
= 0 (E.52)

∥∥LLT
∥∥2 − 1

β2

∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
≥ 0 (E.53)

κ ≥ 0, (E.54)

where 0M represents the null matrix in RM×M , and a is constant factor given by

a = tTt− 2tTΦmN + Tr
(
ΦTΦSN

)
+ mT

NΦTΦmN . (E.55)

In order to satisfy the KKT constraints (Equation (E.53) and Equation (E.54)) we have two

alternatives, namely κ = 0 or κ > 0 and
∥∥LLT

∥∥2
= 1

β2

∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
. In the following, we

consider the two cases individually:

1. κ = 0

By substituting κ in the KKT conditions, it is easy to see that the parameters that
maximizes the cost function are given by

β =
N

a
(E.56)

m0 = mN (E.57)

LLT = SN . (E.58)

2. κ > 0.

Since Equation (E.49) is a cubic polynomial equation in β, we can find the roots using the
general formula (Spiegel and Liu, 1999) as

βk = − 1

3a

(
−N + ukC +

∆0

ukC

)
, (E.59)

where

u1 = 1, u2 =
−1 + j

√
3

2
, u3 =

−1− j
√

3

2
, (E.60)

234



E.4 Estimation of the Prior Parameters using the EM Algorithm

and

C =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, (E.61)

with

∆0 = N2

∆1 = −2N3 − 108a2κ
∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
. (E.62)

The discriminant for this polynomial equation is given as

∆ = −16κ
∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
(
N3 + 27a2κ

∥∥∥
(
ΦTΦ

)−1
∥∥∥

2
)
< 0, (E.63)

which means that there is only one real solution (Spiegel and Liu, 1999). Since β is the
precision of the noise ε, it must be real valued and positive. Therefore, the only meaningful
solution for β is taking u1, which results in

β =
1

3a

N +
N2 + 1

3

√
N3 + 54a2κ

∥∥∥(ΦTΦ
)−1
∥∥∥2 + 6

√
3

√
a2N3κ

∥∥∥(ΦTΦ
)−1
∥∥∥2 + 27a4κ2

∥∥∥(ΦTΦ
)−1
∥∥∥4
 (E.64)

From Equation (E.50), it follows that

m0 = mN . (E.65)

Substituting the above result in Equation (E.51), results in

LLT = SN + 3κLLTLLTLLT. (E.66)

Taking the trace of the above equation we can obtain κ as

Tr
(

3κ
(
LLT

)3)
= Tr

(
LLT − SN

)

3κTr
((

LLT
)3)

= Tr
(
LLT − SN

)

κ =
Tr
(
LLT − SN

)

3 Tr
(

(LLT)3
) . (E.67)

Using the Woodbury identity7 we can rewrite SN from Equation (E.22) as

SN = S0 − S0Φ
T

(
1

β
I + ΦS0Φ

T

)−1

ΦS0

= LLT − LLTΦT

(
1

β
I + ΦLLTΦT

)−1

ΦLLT. (E.68)

Substituting the above equation in Equation (E.67) we get

κ =

Tr

(
LLTΦT

(
1
β I + ΦLLTΦT

)−1
ΦLLT

)

3 Tr
(

(LLT)3
) , (E.69)

which is strictly positive, since LLTΦT
(

1
β I + ΦLLTΦT

)−1
ΦLLT is the product of posi-

tive definite matrices.
7 See Equation (H.18) in Appendix H.2
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Both solutions satisfy the KKT conditions, nevertheless, the solution for κ > 0 enforces that
the norm of the estimated covariance to attain the norm of the CRLB and bounds the value of
β.

Algorithm E.1 summarizes the computation of the parameters of the prior distribution of the
weights and the precision of the noise using the EM algorithm described in this appendix.
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Algorithm E.1: EM Algorithm for estimating m0, S0 and β

Input: Φ ∈ RN×K , t ∈ RN×1, ε ∈ R≥0: tolerance

1 Initialize m
(old)
0 , L(old) = Cholesky

(
S

(old)
0

)
, β(old), κ(old),

L(old) := Lem(β(old),m
(old)
0 ,L(old), κ(old)) ;

2 Set Convergence := False;
3 while Convergence is False do
4 Compute new parameters

SN :=

((
L
(old)

L
(old)T

)−1
+ β

(old)
Φ

T
Φ

)−1

(E.70)

mN := SN

((
L
(old)

L
(old)T

)−1
m

(old)
0 + β

(old)
Φ

T
t

)
(E.71)

a := t
T

t− 2t
T

ΦmN + Tr
(
Φ

T
ΦSN

)
+ m

T
NΦ

T
ΦmN (E.72)

m
(new)
0 := mN (E.73)

L
(new)

:= Cholesky

(
SN + κ

(old)
(

L
(old)

L
(old)T

)3)
(E.74)

β
(new)

:=
1

3a

N +
N2 + 1

3

√
N3 + 54a2κ(old)

∥∥∥(ΦTΦ
)−1

∥∥∥2 + 6
√
3

√
a2N3κ(old)

∥∥∥(ΦTΦ
)−1

∥∥∥2 + 27a4κ(old)2
∥∥∥(ΦTΦ

)−1
∥∥∥4

(E.75)

κ
(new)

:=

Tr

(
L(old)L(old)T − SN

)
3Tr

((
LLT

)3) (E.76)

L(new)
:= Lem(β

(new)
,m

(new)
0 ,S

(new)
0 , κ

(new)
) (E.77)

if |L(old) − L(new)| ≤ ε then
5 Set Convergence := True;
6 else
7 Update parameters

β
(old)

:= β
(new)

m
(old)
0 := m

(new)
0 L

(old)
:= L

(new)
κ
(old)

:= κ
(new) L(old)

:= L(new)

(E.78)

8 return

m0 = m
(new)
0 S0 = L(new)L(new)T β = β(new) (E.79)

237



F Building and Training Neural Network
Models

This appendix provides some details for training the neural network models described in Chapter
4, as well as details of the recurrent layers used in the experiments described in Chapters 4, 5,
6.

F.1 RMSProp

As described in Section 4.2.2, given the nonlinear activations of neural network models, it is not
generally possible to compute a closed form analytical solution to the model parameters θ that
minimize a loss function L (i.e. θ̂ = argminθ L(θ)) in the same way as described for the linear
models in Appendix E. Therefore, it is necessary to use numerical methods, such as variants of
the stochastic gradient descent (SGD) algorithm (Boyd and Vandenberghe, 2004; Nocedal and
Wright, 2006; Goodfellow et al., 2016).

In this work, we have made extensive use of RMSProp (Tieleman and Hinton, 2012), a variant
of SGD that adaptively change the value of the learning rate In this section we describe how to
compute the parameter updates using RMSProp.

The learning rate for update q (denoted as ηq) is adaptively computed as

ηq =
η√
rq + ε

(F.1)

where rq is a moving average estimation of the norm of the gradient of the loss function with
respect to the parameters, η is the initial learning rate, and ε is a small value (a machine epsilon)
added for numerical stability. In all experiments reported on this thesis, we use ε = 10−6. The
moving average estimation of the norm of the gradient of the loss function is computed as

rq = (1− γ)

∥∥∥∥∥
∂

∂θ
L(θ)

∣∣∣∣
θ=θq

∥∥∥∥∥

2

+ γ · rq−1, (F.2)

where γ ∈ [0, 1] is a decay factor for the computation of the moving average. A value of γ close
to 1 will decay the moving average slowly, and a value close to 0 will decay the moving average
fast. Finally, the updates of the parameters are computed as

θq+1 = θq − ηq
∂

∂θ
L(θ)

∣∣∣∣
θ=θq

. (F.3)
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F.2 Recurrent Layers Used in this Work

In this section, we describe the recurrent layers used for the experiments described in the main
text.

F.2.1 Vanilla Recurrent Layer

Let the l-th layer of a neural network be a vanilla recurrent layer. The output of such network
for the i-th time step of an input sequence is given as

h
(l)
i = σ(l)

(
w(l)
x h

(l−1)
i + w

(l)
h h

(l)
i−1 + w

(l)
0

)
. (F.4)

where w
(l)
x ∈ RDl×Dl−1 is a matrix of weights connecting the (l−1)-th layer h

(l)
i , w

(l)
h ∈ RDl×Dl−1

is a matrix of weights connecting the (i− 1)-th activation of h(l); and w
(l)
0 ∈ RDl are the matrix

of weights and the bias vector of the l-th layer. Dl is the number of units of layer h(l).

While it is theoretically possible for large enough vanilla RNNs to predict sequences of arbitrary
complexity, it has been shown that numerical limitations of training algorithms do not allow
them to properly model long temporal dependencies (Pascanu et al., 2013).

F.2.2 LSTM with Multiplicative Integration

Let the l-th layer of a neural network be a long short term memory layer (LSTM) with mul-
tiplicative integration (Wu et al., 2016). The output of such layer for the i-th time step of an
input sequence is given as

z
(l)
i = tanh(β

(l)
z,1 �U(l)

z h
(l)
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z h
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z �w(l)
z h

(l−1)
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z h
(l)
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z )

(F.5)
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c
(l)
i = j

(l)
i � z

(l)
i + f

(l)
i � c

(l)
i−1 (F.9)

h
(l)
i = o

(l)
i � tanh(ci

(l)), (F.10)

where � is the Hadamard product (i.e. the element-wise product), z
(l)
i ,h

(l)
i ∈ RDl are the l-th

block input and l-th output, respectively, c
(l)
i ∈ RDl is the l-th cell state and j

(l)
i ,f

(l)
i ,o

(l)
i ∈ RDl

are the l-th input, forget and output gates, respectively. The parameters of an MI-LSTM layer

are {w(l)
k | k ∈ {z, j, f, o}}, input-to-hidden weight matrices in RDl×Dl−1 , {U(l)

k | k ∈ {z, j, f, o}},
hidden-to-hidden weight matrices in RDl×Dl , {b(l)

k | k ∈ {z, j, f, o}}, bias vectors in RDl and

{αk(l),β
(l)
k,1,β

(l)
k,2 | k ∈ {z, j, f, o}}, gating bias vectors for multiplicative integration in RDl . σ(·)

and tanh(·) are the elementwise sigmoid and hyperbolic tangent functions, respectively.
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G Sampling from Generative Probabilistic
Models

G.1 Introduction

In this appendix, we describe methods for generating samples from the probabilistic BMs de-
scribed in the main text.

In Chapter 3 we developed a probabilistic extension of the linear BMs. Given a model trained
over a training set T , we can make predictions for a new score S represented by Φ. These
predictions can be expressed in terms of the predictive distribution over T, the value of the
expressive parameters, rather than simply a point estimate. The predictive distribution for tij ∈
T, the j-th expressive parameter for the i-th element in the score is obtained by marginalizing
with respect to the posterior distribution of the parameters of the predictive function θ, i.e.

p(tij | ϕ(xi),T ) =

∫
p(tij | ϕ(xi),θj)p(θ | T )dθj , (G.1)

where θj are the parameters for the predictive function for the j-th parameter; p(tij | ϕ(xi),θj)
is the conditional probability of the value of the expressive parameters given the model param-
eters and the input basis functions; and p(θj | T ) is the conditional distribution of the model
parameters given the training set.

We model conditional probability of the value of the expressive parameter tij given the model
parameters and the input basis functions as a Gaussian distribution with precision β−1

j centered

around the output of the predictive function f (j)(ϕ(xi) ; θj), i.e.,

p(tij | Φ,θj) = N (tij | f (j)(ϕ(xi) ; θj), β
−1
j ). (G.2)

Using Bayes’ theorem, we can compute the conditional distribution p(θj | T ) as

p(θj | T ) =
p(T | θj)p(θj)∫
p(T | θj)p(θj)dθj

, (G.3)

where p(θj) is the prior distribution of the parameters of the model for the j-th expressive
parameter.

To unclutter notation, in the following discussion we will write ϕ(xi) = ϕi and drop the subscript
j in all equations, since the derivation of the predictive distribution has the same form for all
expressive parameters.

G.2 Linear Basis Models

We can write the predictive distribution for the i-th expressive target as follows. Due to the
Gaussian assumptions on the prior distribution of the parameters (i.e. p(θ) = N (θ | m0,S0),
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G.3 (Recurrent) Non-linear Basis Models

and the linear dependency of the model parameters θ, the posterior probability p(θ | T ) is also
Gaussian given by1

p(θ | Φ,T ) = N (θ |mN ,SN ), (G.4)

where mN is the posterior mean and SN is the posterior covariance matrix, calculated using
Equation (3.29).

Substituting Equations (3.26) and (G.4) in Equation (G.1) results in the marginalization of a
Gaussian distribution, which is also Gaussian2. Therefore, we can write the predictive distribu-
tion for the value of the expressive parameter for the i-th element in the score as

p(ti | Φ,T ) = N (ti | flbm(ϕi ; θ̄), σ2
N ), (G.5)

where flbm is the predictive function, θ̄ are the parameters of this predictive function trained
on training set T 3, and σ2 is the variance of the distribution, given by

σ2
N =

1

β
+ϕT

i

(
S−1

0 + βΦT
T ΦT

)−1
ϕi. (G.6)

where ΦT is the matrix concatenating all score representations in the training set, given using
Equation (3.22).

G.3 (Recurrent) Non-linear Basis Models

For the both the FFNN-based non-sequential non-linear BM (NBM) described in Section 4.2 and
the RNN-based sequential BM described in Section 4.3 (RNBM), the integral in Equation (G.1)
is analytically intractable, due to the posterior probability of the parameters being non-Gaussian,
and due to the non-linear dependencies of the parameters in the conditional distribution of the
target variables. In order to solve this problem, we can take two alternatives:

1. Linear-Gaussian approximation. We can use the Laplace approximation (Bishop, 1995) to
find a Gaussian approximation to the posterior distribution as

p(θ | T ) ≈ q(θ | T ) = N
(
θ | θ̄,A−1

)
, (G.7)

where θ̄ are the parameters of the trained model and A is the matrix of second derivatives
of the negative log posterior distribution, given by

A = − ∂2

∂θ2 log p(θ | T ) = αI + βR, (G.8)

where R is the Hessian matrix of the squared error with respect to θ, i.e.

R =
∂2

∂θ2 ‖f(r)nbm(ϕi ; θ)− ti‖2, (G.9)

where f(r)nbm(ϕi ; θ) is the output of the predictive function (since this discussion applies
to both NBM and RNBM, f(r)nbm denotes the output of either model). We can further
approximate the inverse of A as4

A−1 ≈ 1

α
I− β

α2
R. (G.10)

1For a detailed derivation see Appendix E.3.
2See Section 2.3.3 in (Bishop, 2006) for a detailed derivation of this result.
3See Section 3.3.3 for a discussion of the training of the model
4This approximation holds if β � α. See (Petersen and Pedersen, 2012).
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G Sampling from Generative Probabilistic Models

Algorithm G.1: Approximation of the predictive distribution using importance sampling.

Input:
• T : training set
• S: score to be rendered
• q(θ | S,T ): proposal posterior distribution

1 Generate a set of L samples from the proposal distribution as

θ∗ = {θ∗1, . . . ,θ∗L | θ∗i ∼ q(θ | T ) ∀i ∈ [1, L]} (G.15)

2 Compute the set of importance weights as

r =

{
r1, . . . , rL | ri =

p̃(θ∗i | T )

q̃(θ∗i | T )
, ∀θ∗i ∈ θ∗

}
(G.16)

3 Compute the normalized importance weights as

w =

{
w1, . . . , wL | wi =

rl∑L
l=1 rl

, ∀ri ∈ r

}
(G.17)

4 return Predictive distribution

p(T | T ) ≈
L∑

l=1

wlp(T | θ∗l ) (G.18)

Using a Taylor expansion of the model output around the θ̄

f(r)nbm(ϕi,θ) ≈ µlin = f(r)nbm(ϕi ; θ̄) + (θ − θ̄)T ∂

∂θ
f(ϕi ; θ)

∣∣∣∣
θ=θ̄

, (G.11)

We can then write an approximation of the conditional probability p(ti | θ) that is Gaus-
sian, and whose mean is a linear function of θ as

p(ti | θ) ≈ N (ti | µlin, β−1). (G.12)

These two approximations allow us to approximate the integral in Equation (G.1) in a
similar way as in the linear case as

p(ti | T ) = N
(
ti | (ϕi ; θ̄), σ2

N

)
, (G.13)

with

σ2
N =

1

β
+

(
∂

∂θ
f(ϕi ; θ)

∣∣∣∣
θ=θ̄

)T( 1

α
I− β

α2
R|θ=θ̄

)(
∂

∂θ
f(ϕi ; θ)

∣∣∣∣
θ=θ̄

)
. (G.14)

From the above results it follows that the linear-Gaussian approximation to compute the
predictive distribution leads to a unimodal distribution.

2. Use Monte Carlo integration.

We can reformulate the computation of the predictive distribution from Equation (G.1) as
calculating the expectation value of the conditional probability of T given the parameters
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G.3 (Recurrent) Non-linear Basis Models

θ as

p(ti | T ) = E {p(ti | θ)} (G.19)

We can use importance sampling, a Monte Carlo technique for approximating expectation
values (Bishop, 2006). The posterior distribution p(θ | T ) can be rewritten as

p(θ | T ) =

p(T |θ)p(θ)︷ ︸︸ ︷
p̃(θ | T )

Zp︸︷︷︸∫
p(T |θ)p(θ)dθ

, (G.20)

where Zp is a normalization constant known as the partition function. Since generating
samples from p(θ | T ) is complicated, but evaluating p̃(θ | T ) is straightforward, we intro-
duce a proposal distribution q(θ | T ) from which it is easy to draw samples. A candidate
distribution for q(θ | T ) is given by the Laplace approximation in Equation (G.7). Fur-
thermore, we can rewrite this proposal distribution to match the form of Equation (G.20)
as

q(θ | T ) =
q̃(θ | T )

Zq
. (G.21)

Using this, we can rewrite the expectation in Equation (G.19) as

E {p(ti | θ)} =

∫
p(ti | θ)p(θ | T )dθ

=
Zq
Zp

∫
p(ti | θ)

p̃(θ | T )

q̃(θ | T )
q(θ | T )dθ (G.22)

By taking L samples from θ∗ ∼ q(θ | T ), we can approximate the above expectation as

E {p(T | θ)} ≈ Zq
Zp

1

L

L∑

l=1

rlp(T | θ∗l ), (G.23)

where rl is the l-th importance weight, given by

rl =
p̃(θ∗l | T )

q̃(θ∗l | T )
. (G.24)

Finally, we can approximate the ratio of partition functions
Zp
Zq

as

Zp
Zq
≈ 1

L

L∑

l=1

rl. (G.25)

The computation of the predictive distribution using importance sampling is summarized
in Algorithm G.1.
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H Mathematical Formulae and Identities

This appendix provides a brief summary of formulae and identities used in this work.

H.1 Probability Theory

The probability density function (pdf) of a D-dimensional multivariate Gaussian distribution is
given by

N (x |m,S) =
1

(2π)D
1√

det(S)
exp

{
−1

2
(x−m)TS−1(x−m)

}
, (H.1)

where x ∈ RD is a random vector, m ∈ RD is the mean vector and S ∈ RD×D is the covariance
matrix.

Given a conditional distribution for y given x and a marginal distribution for x in the form

p(y | x) = N
(
y | Ax + b,L−1

)
(H.2)

p(x) = N
(
x |m,Λ−1

)
, (H.3)

the conditional distribution of x given y and the marginal distribution of y are given by

p(x | y) = N
(
x | Σ

(
ATL(y − b) + Λm

)
,Σ
)

(H.4)

p(y) = N
(
y | Am + b,L−1 + AΛ−1AT

)
(H.5)

where

Σ =
(
Λ + ATLA

)−1
. (H.6)

For a detailed derivation of this result, see (Bishop, 2006, pp. 90-93).

H.2 Linear Algebra

For a more comprehensive list of linear algebra identities, we refer the reader to (Petersen and
Pedersen, 2012) and (Spiegel and Liu, 1999).

• Transposition.

(A + B)T = AT + BT (H.7)

(AB)T = BTAT (H.8)

A = AT if A is symmetric (H.9)
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H.3 Miscellaneous

• Traces.

Tr(A + B) = Tr(A) + Tr(B) (H.10)

Tr(ABC) = Tr(BCA) = Tr(CAB) (H.11)

Tr(a) = a ∀a ∈ C (H.12)

Tr(AT ) = Tr(A) (H.13)

• Determinant.

det(AB) = det(A) det(B) (H.14)

det(A−1) =
1

det(A)
(H.15)

det(AT ) = det(A) (H.16)

• The Frobenius norm.

‖A‖2 = Tr
(
AAT

)
(H.17)

• The Woodbury identity.

(
A + CBCT

)−1
= A−1 −A−1C

(
B−1 + CTA−1C

)−1
CTA−1 (H.18)

H.3 Miscellaneous

1. Iverson Bracket/ Indicator function.

1{A} =

{
1 if A is true
0 otherwise

(H.19)

Although this notation is more common to the normal definition of the indicator function,
we use the formulation of the Iverson bracket, which explicitly converts a logical proposition
into a binary representation.

2. Hyberbolic tangent

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(H.20)

The hyperbolic tangent is illustrated in Figure H.1 (in red).

3. Sigmoid

σ(x) =
exp(x)

exp(x) + 1
(H.21)

The sigmoid function is illustrated in Figure H.1 (in blue).

4. Rectifier

rectifier(x) =

{
x if x ≥ 0
0 otherwise

(H.22)

The rectifier function is illustrated in Figure H.1 (in green).
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Figure H.1: Comparison of the activation functions used in the neural networks described in the
main text.

5. Softplus

softplus(x) = log (1 + exp(x)) (H.23)

The softplus function can be thought as a smooth approximation to the rectifier. This
function is illustrated in Figure H.1 (in purple).
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