
JOINT BEAT AND DOWNBEAT TRACKING WITH RECURRENT
NEURAL NETWORKS

Sebastian Böck, Florian Krebs, and Gerhard Widmer
Department of Computational Perception
Johannes Kepler University Linz, Austria

sebastian.boeck@jku.at

ABSTRACT

In this paper we present a novel method for jointly extract-
ing beats and downbeats from audio signals. A recurrent
neural network operating directly on magnitude spectro-
grams is used to model the metrical structure of the audio
signals at multiple levels and provides an output feature
that clearly distinguishes between beats and downbeats.
A dynamic Bayesian network is then used to model bars
of variable length and align the predicted beat and down-
beat positions to the global best solution. We find that the
proposed model achieves state-of-the-art performance on a
wide range of different musical genres and styles.

1. INTRODUCTION

Music is generally organised in a hierarchical way. The
lower levels of this hierarchy are defined by the beats and
downbeats which define the metrical structure of a musi-
cal piece. While considerable amount of research focused
on finding the beats in music, far less effort has been made
to track the downbeats, although this information is cru-
cial for a lot of higher level tasks such as structural seg-
mentation and music analysis and applications like auto-
mated DJ mixing. In western music, the downbeats often
coincide with chord changes or harmonic cues, whereas in
non-western music the start of a measure is often defined
by the boundaries of rhythmic patterns. Therefore, many
algorithms exploit one or both of these features to track the
downbeats.

Klapuri et al. [18] proposed a system which jointly anal-
yses a musical piece at three time scales: the tatum, tactus,
and measure level. The signal is split into multiple bands
and then combined into four accent bands before being fed
into a bank of resonating comb filters. Their temporal evo-
lution and the relation of the different time scales are mod-
elled with a probabilistic framework to report the final po-
sition of the downbeats.

The system of Davies and Plumbley [5] first tracks the
beats and then calculates the Kullback-Leibler divergence
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between two consecutive band-limited beat synchronous
spectral difference frames to detect the downbeats, exploit-
ing the fact that lower frequency bands are perceptually
more important.

Papadopoulos and Peeters [24] jointly track chords and
downbeats by decoding a sequence of (pre-computed) beat
synchronous chroma vectors with a hidden Markov model
(HMM). Two time signatures are modelled. In a later pa-
per, the same authors [25] jointly model beat phase and
downbeats while the tempo is assumed to be given. Beat
and downbeat times are decoded using a HMM from three
input features: the correlation of the local energy with a
beat-template, chroma vector variation, and the spectral
balance between high and low frequency content.

The system proposed by Khadkevich et al. [17] uses im-
pulsive and harmonic components of a reassigned spectro-
gram together with chroma variations as observation fea-
tures for a HMM. The system is based on the assump-
tion that downbeats mostly occur at location with harmonic
changes.

Hockman et al. [14] present a method designed specif-
ically for hardcore, jungle, and drum and bass music,
that often employ breakbeats. The system exploits on-
set features and periodicity information from a beat track-
ing stage, as well as information from a regression model
trained on the breakbeats specific to the musical genre.

Durand et al. [10] first estimates the time signature by
examining the similarity of the frames at the beat level –
with the beat positions given as input. The downbeats are
then selected by a linear support vector machine (SVM)
model using a bag of complementary features, compris-
ing chord changes, harmonic balance, melodic accents and
pattern changes. In consecutive works [8, 9] they lifted the
requirement of the beat positions to be given and enhanced
their system considerably by replacing the SVM feature se-
lection stage by several deep neural networks which learn
higher level representations from which the final downbeat
positions are selected by means of Viterbi decoding.

Krebs et al. [20] jointly model bar position, tempo,
and rhythmic patterns with a dynamic Bayesian network
(DBN) and apply their system to a dataset of ballroom
dance music. Based on their work, [16] developed a uni-
fied model for metrical analysis of Turkish, Carnatic, and
Cretan music. Both models were later refined by using a
more sophisticated state space [21].
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The same state space has also been successfully applied
to the beat tracking system proposed by Böck et al. [2].
The system uses a recurrent neural network (RNN) similar
to the one proposed in [3] to discriminate between beats an
non-beats at a frame level. A DBN then models the tempo
and the phase of the beat sequence.

In this paper, we extend the RNN-based beat tracking
system in order to jointly track the whole metrical cy-
cle, including beats and downbeats. The proposed model
avoids hand-crafted features such as harmonic change de-
tection [8–10,17,24], or rhythmic patterns [14,16,20], but
rather learns the relevant features directly from the spectro-
gram. We believe that this is an important step towards sys-
tems without cultural bias, as postulated by the “Roadmap
for Music Information Research” [26].

2. ALGORITHM DESCRIPTION

The proposed method consists of a recurrent neural net-
work (RNN) similar to the ones proposed in [2, 3], and is
trained to jointly detect the beats and downbeats of an au-
dio signal in a supervised classification task. A dynamic
Bayesian network is used as a post-processing step to de-
termine the globally best sequence through the state-space
by jointly inferring the meter, tempo, and phase of the
(down-)beat sequence.

2.1 Signal Pre-Processing

The audio signal is split into overlapping frames and
weighted with a Hann window of same length before be-
ing transferred to a time-frequency representation with
the Short-time Fourier Transform (STFT). Two adjacent
frames are located 10 ms apart, which corresponds to a rate
of 100 fps (frames per second). We omit the phase por-
tion of the complex spectrogram and use only the magni-
tudes for further processing. To enable the network to cap-
ture features which are precise both in time and frequency,
we use three different magnitude spectrograms with STFT
lengths of 1024, 2048, and 4096 samples (at a signal sam-
ple rate of 44.1 kHz). To reduce the dimensionality of the
features, we limit the frequencies range to [30, 17000] Hz
and process the spectrograms with logarithmically spaced
filters. A filter with 12 bands per octave corresponds to
semitone resolution, which is desirable if the harmonic
content of the spectrogram should be captured. However,
using the same number of bands per octave for all spectro-
grams would result in an input feature of undesirable size.
We therefor use filters with 3, 6, and 12 bands per octave
for the three spectrograms obtained with 1024, 2028, and
4096 samples, respectively, accounting for a total of 157
bands. To better match human perception of loudness, we
scale the resulting frequency bands logarithmically. To aid
the network during training, we add the first order differ-
ences of the spectrograms to our input features. Hence, the
final input dimension of the neural network is 314. Figure
1a shows the part of the input features obtained with 12
bands per octave.

2.2 Neural Network Processing

As a network we chose a system similar to the one pre-
sented in [3], which is also the basis for the current state-
of-the-art in beat tracking [2, 19].

2.2.1 Network topology

The network consists of three fully connected bidirec-
tional recurrent layers with 25 Long Short-Term Memory
(LSTM) units each. Figures 1b to 1d show the output acti-
vations of the forward (i.e. half of the bidirectional) hidden
layers. A softmax classification layer with three units is
used to model the beat, downbeat, and non-beat classes.
A frame can only be classified as downbeat or beat but
not both at the same time, enabling the following dynamic
Bayesian network to infer the meter and downbeat posi-
tions more easily. The output of the neural network are
three activation functions bk, dk, and nok, which repre-
sents the probability of a frame k being a beat but no down-
beat, downbeat or non-beat position. Figure 1e shows bk
and dk for an audio example.

2.2.2 Network training

We train the network on the datasets described in Sec-
tion 3.1 — except the ones marked with an asterisk (*)
which are used for testing only — with 8-fold cross val-
idation based on a random splits. We initialise the net-
work weights and biases with a uniform random distribu-
tion with range [-0.1, 0.1] and train it with stochastic gradi-
ent decent minimising the cross entropy error with a learn-
ing rate of 10-5 and 0.9 momentum. We stop training if no
improvement on the validation set can be observed for 20
epochs. We then reduce the learning rate by a factor of ten
and retrain the previously best model with the same early
stopping criterion.

2.2.3 Network output thresholding

We experienced that the very low activations at the begin-
ning and end of a musical excerpt can hurt the tracking
performance of the system. This is often the case if a song
starts with a (musically irrelevant) intro or has a long fade
out at the end. We thus threshold the activations and use
only the activations between the first and last time they ex-
ceed the threshold. We empirically found a threshold value
θ = 0.05 to perform well without harming pieces with over-
all low activations (e.g. choral works).

2.3 Dynamic Bayesian Network

We use the output of the neural network as observations
of a dynamic Bayesian network (DBN) which jointly infers
the meter, tempo, and phase of a (down-)beat sequence.
The DBN is very good at dealing with ambiguous RNN
observations and finds the global best state sequence given
these observations. 1 We use the state-space proposed in
[21] to model a whole bar with an arbitrary number of

1 The average performance gain of the DBN compared to simple
thresholding and peak-picking of the RNN activations is about 15% F-
measure on the validation set.
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(b) Activations of the first hidden layer
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(e) Activations of the softmax output layer

Figure 1: Signal propagation of a 6 second song excerpt in 4/4
time signature through the network: (a) part of the input features,
(b) the first hidden layer shows activations at onset positions, (c)
the second models mostly faster metrical levels (e.g. 1/8th notes
at neuron 3), (d) the third layer models multiple metrical levels
(e.g. neuron 8 firing at beat positions and neuron 16 around down-
beat positions), (e) the softmax output layer finally models the re-
lation of the different metrical levels resulting in clear downbeat
(black) and beat (green, flipped for better visualisation) activa-
tions. Downbeat positions are marked with vertical dashed lines,
beats as dotted lines.

beats per bar. We do not allow meter changes through-
out a musical piece, thus we can model different meters
with individual, independent state spaces. All parameters
of the DBN are tuned to maximise the downbeat tracking
performance on the validation set.

2.3.1 State Space

We divide the state space into discrete states s to make
inference feasible. These states s(φ, φ̇, r) lie in a three-
dimensional space indexed by the bar position state φ ∈
{1..Φ}, the tempo state φ̇ ∈ {1..Φ̇}, and the time signature
state r (e.g. r ∈ {3/4, 4/4}). States that fall on a downbeat
position (φ = 1) constitute the set of downbeat states D,
all states that fall on a beat position define the set of beat
states B. The number of bar-position states of a tempo φ̇ is
proportional to its corresponding beat period 1/φ̇, and the
number of tempo states depends on the tempo ranges that
the model accounts for. For generality, we assume equal
tempo ranges for all time signatures in this paper but this
could easily changed to adapt the model towards specific
styles. In line with [21] we find that by distributing the
tempo states logarithmically across the beat intervals, the
size of the state space can be reduced efficiently without
affecting the performance too much. Empirically we found
that using N = 60 tempo states is a good compromise
between computation time and performance.

2.3.2 Transition Model

Tempo transitions are only allowed at the beats and follow
the same exponential distribution proposed in [21]. We
investigated “peephole” transitions from the end of every
beat back to the beginning of the bar, but found them to
harm performance. Thus, we assume that there are no tran-
sitions between time signatures in this paper.

2.3.3 Observation Model

We adapted the observation model of the DBN from [2] to
not only predict beats, but also downbeats. Since the ac-
tivation functions (d, b) produced by the neural network
are limited to the range [0, 1] and show high values at
beat/downbeat positions and low values at non-beat posi-
tions (cf. Figure 1e), the activations can be converted into
state-conditional observation distributions P (ok|sk) by

P (ok|sk) =


dk sk ∈ D
bk sk ∈ B
nk

λo−1 , otherwise
(1)

where D and B are the sets of downbeat and beat
states respectively, and the observation lambda λo ∈
[ Φ
Φ−1 ,Φ] is a parameter that controls the propor-

tion of the beat/downbeat interval which is consid-
ered as beat/downbeat and non-beat locations inside one
beat/downbeat period. On our validation set we achieved
the best results with the value λo = 16. We found it to be
advantageous to use both bk and dk as provided by the neu-
ral network instead of splitting the probability of bk among
the N beat positions of the transition model.



2.3.4 Initial State Distribution

The initial state distribution can be used to incorporate any
prior knowledge about the hidden states, such as meter and
tempo distributions. In this paper, we use a uniform distri-
bution over all states.

2.3.5 Inference

We are interested in the sequence of hidden states s1:K ,
that maximise the posterior probability of the hidden states
given the observations (activations of the network). We
obtain the maximum a-posteriori state sequence s∗1:K by

s∗1:K = arg max
s1:K

p(s1:K |o1:K) (2)

which can be computed efficiently using the well-known
Viterbi algorithm.

2.3.6 Beat and Downbeat Selection

The sequence of beat B and downbeat times D are deter-
mined by the set of time frames k which were assigned to
a beat or downbeat state:

B = {k : s∗k ∈ B} (3)

D = {k : s∗k ∈ D} (4)

After having decided on the sequences of beat and down-
beat times we further refine them by looking for the
highest beat/downbeat activation value inside a window
of size Φ/λo, i.e. the beat/downbeat range of the whole
beat/downbeat period of the observation model (Sec-
tion 2.3.3).

3. EVALUATION

In line with almost all other publications on the topic of
downbeat tracking, we report the F-measure (F1) with a
tolerance window of ±70 ms.

3.1 Datasets

For training and evaluation we use diverse datasets as
shown in Table 1. Musical styles range from pop and rock
music, over ballroom dances, modern electronic dance mu-
sic, to classical and non-western music.

We do not report scores for all sets used for train-
ing, since comparisons with other works are often
not possible due to different evaluation metrics and/or
datasets. Results for all datasets, including additional
metrics can be found online at the supplementary website
http://www.cp.jku.at/people/Boeck/ISMIR2016.html

which also includes an open source implementation of the
algorithm.

Downbeat tracking dataset # files length

Ballroom [12, 20] 2 685 5 h 57 m
Beatles [4] 180 8 h 09 m
Hainsworth [13] 222 3 h 19 m
HJDB [14] 235 3 h 19 m
RWC Popular [11] 100 6 h 47 m
Robbie Williams [7] 65 4 h 31 m
Rock [6] 200 12 h 53 m
Carnatic [28] 176 16 h 38 m
Cretan [16] 42 2 h 20 m
Turkish [27] 93 1 h 33 m
GTZAN [23, 29] * 999 8 h 20 m
Klapuri [18] 3 * 320 4 h 54 m
Beat tracking datasets

SMC [15] * 217 2 h 25 m
Klapuri [18] 3 * 474 7 h 22 m

Table 1: Overview of the datasets used for training and evalua-
tion of the algorithm. Sets marked with asterisks (*) are held-out
datasets for testing only.

3.2 Results & Discussion

Table 2 to 4 list the results obtained by the proposed
method compared to current and previous state-of-the-art
algorithms on various datasets. We group the datasets
into different tables for clarity, based on whether they are
used for testing only, cover western, or non-western music.
Since our system jointly tracks beats and downbeats, we
compare with both downbeat and beat tracking algorithms.

First of all, we evaluate on completely unseen data. We
use the recently published beat and downbeat annotations
for the GTZAN dataset, the Klapuri, and the SMC set (built
specifically to comprise hard-to-track musical pieces) for
evaluation. Results are given in Table 2. Since these re-
sults are directly comparable (the only exception being the
results of Durand et al. on the Klapuri set 4 and of Böck
et al. on the SMC set 5 ), we perform statistical significance
tests on them. We use Wilcoxon’s signed-rank test with a
p-value of 0.01.

Additionally, we report the performance on other sets
commonly used in the literature, comprising both western
and non-western music. For western music, we give results
on the Ballroom, Beatles, Hainsworth, and RWC Popular
sets in Table 3. For non-western music we use the Car-
natic, Cretan, and Turkish datasets and group the results
in Table 4. Since these sets were also used during develop-
ment and training of our system, we report results obtained
with 8-fold cross validation. Please note that the results
given in Table 3 and 4 are not directly comparable because
they were either obtained via cross validation, leave-one-
dataset-out evaluation, with overlapping train and test sets,
or tested on unseen data. However, we still consider them

2 We removed the 13 duplicates identified by Bob Sturm:
http://media.aau.dk/null space pursuits/2014/01/ballroom-dataset.html

3 The beat and downbeat annotations of this set were made indepen-
dently, thus the positions do not necessarily match each other.

4 40 out of the 320 tracks were used for training.
5 The complete set was used for training.

http://www.cp.jku.at/people/Boeck/ISMIR2016.html
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html


Test datasets F1 beat F1 downbeat

GTZAN
new (bar lengths: 3, 4) * 0.856 0.640
Durand et al. [9] * - 0.624
Böck et al. [2] * 0.864 -
Davies et al. [5] * 0.806 0.462
Klapuri et al. [18] * 0.706 0.309
Klapuri
new (bar lengths: 3, 4) * 0.811 0.745
Durand et al. [9] ‡ - 0.689
Böck et al. [2] * 0.798 -
Davies et al. [5] * 0.698 0.528
Klapuri et al. [18] ‡ 0.704 0.483
SMC
new (bar lengths: 3, 4) * 0.516
Böck et al. [2] § 0.529
Davies et al. [5] * 0.337
Klapuri et al. [18] * 0.352

Table 2: Beat and downbeat tracking F-measure comparison
with state-of-the-art algorithms on the test datasets. ‡ denotes
overlapping train and test sets, § cross validation, and * testing
only.

to be a good indicator for the overall performance and ca-
pabilities of the systems. For the music with non-western
rhythms and meters (e.g. Carnatic art music contains 5/4
and 7/4 meters) we compare only with algorithms spe-
cialised on this type of music, since other systems typically
fail completely on them.

Western music F1 beat F1 downbeat

Ballroom
new (bar lengths: 3, 4) § 0.938 0.863
Durand et al. [9] †/‡ - 0.778 / 0.797
Krebs et al. [21] § 0.919 -
Böck et al. [2] § 0.910 -
Beatles
new (bar lengths: 3, 4) § 0.918 0.832
Durand et al. [9] †/‡ - 0.815 / 0.842
Böck et al. [2] * 0.880 -
Hainsworth
new (bar lengths: 3, 4) § 0.867 0.684
Durand et al. [9] †/‡ - 0.657 / 0.664
Böck et al. [2] § 0.843 -
Peeters et al. [25] 0.630
RWC Popular
new (bar lengths: 3, 4) § 0.943 0.861
Durand et al. [9] †/‡ - 0.860 / 0.879
Böck et al. [2] * 0.877 -
Peeters et al. [25] 0.840 0.800

Table 3: Beat and downbeat tracking F-measure comparison
with state-of-the-art algorithms on western music datasets. † de-
notes leave-one-set-out evaluation, ‡ overlapping train and test
sets, § cross validation, and * testing only.

Non-western music F1 beat F1 downbeat

Carnatic
new (bar lengths: 3, 4) § 0.804 0.365
—– (bar lengths: 3, 5, 7, 8) § 0.792 0.593
Krebs et al. [21] § 0.805 0.472
Cretan
new (bar lengths: 3, 4) § 0.982 0.605
—– (bar lengths: 2, 3, 4) § 0.981 0.818
—– (bar lengths: 2) § 0.980 0.909
Krebs et al. [21] § 0.912 0.774
Turkish
new (bar lengths: 3, 4) § 0.740 0.495
—– (bar lengths: 4, 8, 9, 10) § 0.777 0.631
—– (tempo: 55..300 bpm) § 0.818 0.683
Krebs et al. [21] § 0.826 0.639

Table 4: Beat and downbeat tracking F-measure comparison
with state-of-the-art algorithms on non-western music datasets.
—– denotes the same system as the line above with altered pa-
rameters in parentheses, § cross validation.

3.2.1 Beat tracking

Compared to the current state-of-the-art [2], the new sys-
tem performs on par or outperforms this dedicated beat
tracking algorithm. It only falls a bit behind on the GTZAN
and SMC sets. However, the results on the latter might be a
bit biased, since [2] obtained their results with 8-fold cross
validation. Although the new system performs better on
the Klapuri set, the difference is not statistically signifi-
cant. All results compared to those of other beat tracking
algorithms on the test datasets in Table 2 are statistically
significant.

Although the new algorithm and [2] have a very similar
architecture and were trained on almost the same develop-
ment sets (the new one plus those sets given in Table 1,
except the SMC dataset), it is hard to conclude whether the
new algorithm performs better sometimes because of the
additional – more diverse – training material or due to the
joint modelling of beats and downbeats. Future investiga-
tions with the same training sets should shed some light on
this question, but it is safe to conclude that the joint train-
ing on beats and downbeats does not harm the beat tracking
performance at all.

On non-western music the results are in the same range
as the ones obtained by the method of Krebs et al. [21], an
enhanced version of the algorithm proposed by Holzapfel
et al. [16]. Our system shows almost perfect beat tracking
results on the Cretan lap dances while performing a bit
worse on the Turkish music.

3.2.2 Downbeat tracking

From Table 2 to 4, it can be seen that the proposed system
not only does well for beat tracking, but also shows state-
of-the-art performance in downbeat tracking. We outper-
form all other methods on all datasets – except Beatles and
RWC Popular when comparing to the overfitted results ob-
tained by the system of Durand et al. [9] – even the sys-



tems designed specifically for non-western music. We find
this striking, since our new system is not designed specif-
ically for a certain music style or genre. The results of
our method w.r.t. the other systems on the test datasets in
Table 2 are all statistically significant.

It should be noted however, that the dynamic Bayesian
network must model the needed bar lengths for the respec-
tive music in order to achieve this performance. Espe-
cially when dealing with non-western music, this is cru-
cial. However, we do not consider this a drawback, since
the system is able to chose the correct bar length reliably
by itself.

3.2.3 Meter selection

As mentioned above, for best performance the DBN must
model measures with the correct number of beats per bar.
Per default, our system works for 3/4 and 4/4 time signa-
tures, but since the parameters of the DBN are not learnt,
this can be changed during runtime in order to model any
time signature and tempo range.

To investigate the system’s ability to automatically de-
cide on which bar length to select, we performed an exper-
iment and limited the DBN to model only bars with lengths
of three or four beats, both time signatures simultaneously
(the default setting), or bar lengths of up to eight beats.

3 4 3,4 3...5 3...6 3...7 3...8

modelled bar lengths by the DBN [beats/bar]

0.4
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Figure 2: Downbeat tracking performance of the new sys-
tem with different bar lengths on the Ballroom set.

Figure 2 shows this exemplarily for the Ballroom set,
which comprises four times as many pieces in 4/4 as in
3/4 time signature. The performance is relatively low if
the system is limited to model bars with only three or
four beats per bar. When being able to model both time
signatures present in the music, the system achieves it’s
maximum performance. The performance then slightly de-
creases if the DBN models bars with a length up to eight
beats per bar, but remains on a relatively high performance
level. This shows the system’s ability to select the correct
bar length automatically.

4. CONCLUSION

In this paper we presented a novel method for jointly track-
ing beats and downbeats with a recurrent neural network
(RNN) in conjunction with a dynamic Bayesian network
(DBN). The RNN is responsible for modelling the metrical
structure of the musical piece at multiple interrelated lev-
els and classifies each audio frame as being either a beat,
downbeat, or no beat. The DBN then post-processes the
probability functions of the RNN to align the beats and
downbeats to the global best solution by jointly inferring
the meter, tempo, and phase of the sequence. The sys-
tem shows state-of-the-art beat and downbeat tracking per-
formance on a wide range of different musical genres and
styles. It does so by avoiding hand-crafted features such as
harmonic changes, or rhythmic patterns, but rather learns
the relevant features directly from audio. We believe that
this is an important step towards systems without any cul-
tural bias. We provide a reference implementation of the
algorithm as part of the open-source madmom [1] frame-
work.

Future work should address the limitation of the system
of not being able to perform time signature changes within
a musical piece. Due to the large state space needed this
is intractable right now, but particle filters as used in [22]
should be able to resolve this issue.
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[21] F. Krebs, S. Böck, and G. Widmer. An Efficient State
Space Model for Joint Tempo and Meter Tracking. In
Proc. of the 16th Int. Society for Music Information Re-
trieval Conference (ISMIR), 2015.

[22] F. Krebs, A. Holzapfel, A. T. Cemgil, and G. Widmer.
Inferring metrical structure in music using particle fil-
ters. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(5):817–827, 2015.

[23] U. Marchand and G. Peeters. Swing ratio estimation.
In Proc. of the 18th Int. Conference on Digital Audio
Effects (DAFx), 2015.

[24] H. Papadopoulos and G. Peeters. Joint estimation of
chords and downbeats from an audio signal. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 19(1), 2011.

[25] G. Peeters and H. Papadopoulos. Simultaneous beat
and downbeat-tracking using a probabilistic frame-
work: Theory and large-scale evaluation. IEEE Trans-
actions on Audio, Speech, and Language Processing,
19(6), 2011.

[26] X. Serra et al. Roadmap for Music Information Re-
Search. Creative Commons BY-NC-ND 3.0 license,
ISBN: 978-2-9540351-1-6, 2013.

[27] A. Srinivasamurthy, A. Holzapfel, and X. Serra. In
search of automatic rhythm analysis methods for turk-
ish and indian art music. Journal of New Music Re-
search, 43(1), 2014.

[28] A. Srinivasamurthy and X. Serra. A supervised ap-
proach to hierarchical metrical cycle tracking from au-
dio music recordings. In Proc. of the IEEE Int. Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), 2014.

[29] G. Tzanetakis and P. Cook. Musical genre classifica-
tion of audio signals. IEEE Transactions on Speech and
Audio Processing, 10(5), 2002.


	 1. Introduction
	 2. Algorithm Description
	2.1 Signal Pre-Processing
	2.2 Neural Network Processing
	2.2.1 Network topology
	2.2.2 Network training
	2.2.3 Network output thresholding

	2.3 Dynamic Bayesian Network
	2.3.1 State Space
	2.3.2 Transition Model
	2.3.3 Observation Model
	2.3.4 Initial State Distribution
	2.3.5 Inference
	2.3.6 Beat and Downbeat Selection


	 3. Evaluation
	3.1 Datasets
	3.2 Results & Discussion
	3.2.1 Beat tracking
	3.2.2 Downbeat tracking
	3.2.3 Meter selection


	 4. Conclusion
	 5. Acknowledgments
	 6. References

