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ABSTRACT

In this paper, we evaluate various onset detection algo-
rithms in terms of their online capabilities. Most meth-
ods use some kind of normalization over time, which ren-
ders them unusable for online tasks. We modified existing
methods to enable online application and evaluated their
performance on a large dataset consisting of 27,774 an-
notated onsets. We focus particularly on the incorporated
preprocessing and peak detection methods. We show that,
with the right choice of parameters, the maximum achiev-
able performance is in the same range as that of offline
algorithms, and that preprocessing can improve the results
considerably. Furthermore, we propose a new onset detec-
tion method based on the common spectral flux and a new
peak-picking method which outperforms traditional meth-
ods both online and offline and works with audio signals
of various volume levels.

1. INTRODUCTION AND RELATED WORK

Onset detection, the task of finding musically meaningful
events in audio signals, is fundamental to many applica-
tions: Real-time applications such as automatic score fol-
lowers [7] can be enhanced by incorporating (online) onset
detectors that look for note onsets in a live performance,
while (offline) onset detection is used increasingly to im-
prove digital audio workstations with a view to event-wise
audio processing.

Many different methods of solving this task have been
proposed and evaluated over the years. Comprehensive
overviews of onset detection methods were presented by
Bello et al. in [2] and Collins in [6] (with special empha-
sis on psychoacoustically motivated methods in the latter).
Dixon proposed enhancements to several of these in [9].
All methods were evaluated in an offline setting, using a
normalization over the whole length of the signal or apply-
ing averaging techniques which require future information.

For online onset detection, only few evaluations have
been carried out: Brossier et al. [5] compared four on-
set functions based on spectral features and proposed a
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method for dynamic thresholding in online scenarios, us-
ing a dataset of 1,066 onsets for evaluation. Stowell and
Plumbley [18] proposed adaptive whitening as an improve-
ment to short-time Fourier transform (STFT) based onset
detection methods and evaluated eight detection functions
using a dataset of 9,333 onsets. Glover at al. [12] applied
linear prediction and sinusoidal modeling to online onset
detection, but used a relatively small dataset of approxi-
mately 500 onsets for evaluation.

These traditional onset detection methods usually incor-
porate only spectral and/or phase information of the sig-
nal, are easy to implement, and have modest computational
cost. In contrast, methods based on machine learning tech-
niques (e.g., neural networks in [11,15]) or on probabilistic
information (e.g., Hidden Markov models in [8]) depend
on large datasets for training and are in general computa-
tionally more demanding, which makes them unsuited for
online processing.

The onset detection process is usually divided into three
parts (as shown in Figure 1): signal preprocessing, compu-
tation of the actual onset detection function (ODF), and
peak detection.

ODF Peak detectionSignal OnsetsPreprocessing

Figure 1. Basic onset detection workflow.

There are generally two normalization steps that require
special attention in an online context: The first can be
found in the preprocessing step where many implementa-
tions normalize the audio input prior to further processing.

The second and more widespread use of normalization
is in the peak detection stage, where the whole ODF is
normalized before being processed further. An exception
to this rule are some machine learning approaches like the
neural network-based methods, since their detection func-
tion can be considered as a probability function which al-
ready has the range [0..1]. Furthermore, most offline meth-
ods use smoothing or averaging over (future) time to com-
pute dynamic thresholds for the final peak-picking.

This paper is structured as follows: We combine the
ODFs described in Section 2.2 with different preprocessing
methods from Section 2.1 and evaluate them on the dataset
described in Section 3.1 using the peak-picking method
given in Section 2.3.4. In Section 4 we discuss the results,



and we give conclusions in Section 5.

2. COMPARED METHODS

Previously, onset detection algorithms used to work di-
rectly with the time signal x(t). However, all current onset
detection algorithms use a frequency representation of the
signal. We used frames of 23 ms length (2048 samples at a
sample rate of 44.1 kHz) that are filtered with a Hann win-
dow before transfer into the frequency domain by means of
STFT. The hopsize between two consecutive frames was
set to 10 ms, which results in a frame rate of 100 frames
per second. The resulting spectrogram X(n, k) (n denot-
ing the frame and k the frequency bin number) was then
processed further by the individual preprocessing and on-
set detection algorithms.

2.1 Preprocessing

2.1.1 Filtering

Scheirer [17] stated that, in onset detection, it is advanta-
geous if the system divides the frequency range into fewer
sub-bands as done by the human auditory system. Filter-
ing has been applied by many authors (e.g. [6,14,17]), and
neural network based approaches also use filter banks to
reduce the dimensionality of the STFT spectrogram [11].

2.1.2 Logarithmic magnitude

Using the logarithmic magnitude instead of the linear re-
presentation was found to yield better results in many cases,
independently of the ODF used [11,14]. λ is a compression
parameter and was adjusted for each method separately.
Adding a constant value of 1 results in only positive val-
ues:

X log(n, k) = log(λ ·X(n, k) + 1) (1)

2.1.3 Adaptive whitening

Proposed in [18], adaptive whitening normalizes the mag-
nitudes |X(n, k)| of each frequency bin separately by past
peak values. The iterative algorithm (with r being a floor
parameter and m the memory coefficient) is given as fol-
lows:

Pn,k =

{
max(|X(n, k)|, r,m · Pn−1,k) if n ≥ 1

max(|X(n, k)|, r) otherwise

|X(n, k)| ←− |X(n, k)|
Pn,k

(2)

2.2 Onset detection functions

We have chose to omit other common methods such as
phase deviation (PD) [3], high frequency content (HFC)
[16] or rectified complex domain (RCD) [9], since they
exhibited inferior performance in our tests.

2.2.1 Spectral Flux

The spectral flux (SF) [16] describes the temporal evolu-
tion of the magnitude spectrogram by computing the dif-
ference between two consecutive short-time spectra. This
difference is determined separately for each frequency bin,
and all positive differences are then summed to yield the
detection function.

SF (n) =

k=N
2∑

k=1

H(|X(n, k)| − |X(n− 1, k)|) (3)

with H(x) = x+|x|
2 being the half-wave rectifier function.

Variants of this method use the L2-norm instead of the
L1-norm or the logarithmic magnitude [14] (cf. Section
2.1.2).

2.2.2 Weighted Phase Deviation

Another class of detection function utilizes the phase of the
signal [3, 9]. The change in the instantaneous frequency
(the second order derivative of the phase ϕ(n, k)) is an
indicator of a possible onset. In [9], an improvement to
the phase deviation ODF called weighted phase deviation
(WPD) was proposed. The WPD function weights each
frequency bin of the phase deviation function with its mag-
nitude.

WPD(n) =
2

N

k=N
2∑

k=1

|X(n, k) · ϕ′′(n, k)| (4)

2.2.3 Complex Domain

Another way to incorporate both magnitude and phase in-
formation (as in the WPD detection function) was pro-
posed in [10]. First, the expected target amplitude and
phase XT (n, k) for the current frame are estimated based
on the values of the two previous frames assuming constant
amplitude and rate of phase change. The complex domain
(CD) ODF is then defined as:

CD(n) =

k=N
2∑

k=1

|X(n, k)−XT (n, k)| (5)

2.3 Peak detection

Illustrated in Figure 2 and common to all onset detection
methods is the final thresholding and peak-picking step to
detect the onsets in the ODF. Various methods have been
proposed in the literature; we give an overview of the dif-
ferent components and modifications needed to make them
suitable for online processing.

Preprocessing Thresholding
Onset

detection
function

OnsetsPeak-picking

Figure 2. Peak detection process.



2.3.1 Preprocessing

The preprocessing stage of the peak detection process con-
sists mainly of two components: smoothing of the peaky
ODF and normalization. Both of them cannot be used in
an online scenario. Instead, moving average techniques as
outlined in Section 2.3.2 are applied to normalize the ODF
locally. To prevent detecting many false positives due to a
peaky ODF, the effect of smoothing can be approximated
by introducing a minimal distance from the last onset w5

as proposed in Section 2.3.4.

2.3.2 Thresholding

Before picking the final onsets from the ODF, thresholding
is performed to discard the non-onset peaks. Most methods
use dynamic thresholding to take into account the loudness
variations of a music piece. Mean [9], median [3,11,18] or
combinations [5, 12] are commonly used to filter the ODF.
If only information about the present or past is used, the
thresholding function is suitable for online processing.

2.3.3 Peak-picking

Two peak-picking methods are commonly used for final
detection of onsets. One selects all local maxima in the
thresholded detection function as the final onset positions.
Since detecting a local maximum requires both past and
future information, this method is only applicable to offline
processing.

The other method selects all values above the previously
calculated threshold as onsets and is also suitable for on-
line processing. The downside of this approach is its rel-
atively high false positive rate because the threshold pa-
rameter must be set to a very low level to detect the onsets
reliably.

2.3.4 Proposed peak detection

We use a modified version of the peak picking method pro-
posed in [9] to also satisfy the constraints for online onset
peak detection. A frame n is selected as an onset if the
corresponding ODF (n) fulfills the following three condi-
tions:

1. ODF (n) = max(ODF (n− w1 : n+ w2)

2. ODF (n) ≥ mean(ODF (n− w3 : n+ w4)) + δ

3. n− nlast onset > w5

where δ is a fixed threshold and w1..w5 are tunable
peak-picking parameters. For online detection, we setw2 =
w4 = 0. Our online experiments experiments showed that,
on average, onsets are detected one frame earlier than an-
notated in the dataset (using the values specified in Section
3.3). As we want to find the perceptual onset times (as an-
notated), we report the onset one frame later than detected.
Note that this does not mean that we predict the onset, it
only means that the onset can be recognized in the signal
before it is perceived.

Unlike in previous studies [5, 12, 18] we do not use the
same thresholding parameters for all ODFs. This is mainly
because some of the ODFs have fewer peaks and hence
need less averaging in the thresholding stage than others.

2.4 Neural network based methods

For reference, we compare the presented methods with two
state-of-the-art algorithms, the OnsetDetector [11] and its
online variant OnsetDetector.LL [4]:

OnsetDetector uses a bidirectional neural network which
processes the signal both in a forward and backward man-
ner, making it an offline algorithm. The algorithms showed
exceptional performance compared to other algorithms in-
dependently of the type of onsets in the audio material,
especially in its latest version tested during the MIREX
contest in 2011 [1].

OnsetDetector.LL incorporates a unidirectional neural
network to model the sequence of onsets based solely on
causal audio signal information.

Since these methods show very sharp peaks (represent-
ing the propability of an onset) at the actual onset positions,
the before mentioned peak detection method is not applied,
and a simple thresholding is used instead.

2.5 New method

We propose a new onset detection method which is based
on the spectral flux (cf. Section 2.2.1), drawing on various
other author’s ideas.

As a first step, we filter the linear magnitude spectro-
gram |X(n, k)| with a filter bank. We investigated dif-
ferent types of filter banks (Mel, Bark, Constant-Q) and
found that they all outperform the standard spectral flux.
Since they all perform approximately equally well when
using a similar number of filter bands, we chose a pseudo
Constant-Q, where the frequencies are aligned according
to the frequencies of the semitones of the western music
scale over the frequency range from 27.5 Hz to 16 kHz, but
using a fixed window length for the STFT. Overlapping
triangular filters sum all STFT bins belonging to one filter
bin (similarly to Mel filtering). The resulting filter bank
F (k, b) hasB = 82 frequency bins with b denoting the bin
number of the filter and k the bin number of the linear spec-
trogram. The filters have not been normalized, resulting in
an emphasis of the higher frequencies, similar to the HFC
method. The resulting filtered spectrogram Xfilt(n, b) is
given by:

Xfilt(n, b) = |X(n, k)| · F (k, b) (6)

Applying Equation 1 to the filtered linear magnitude spec-
trogram Xfilt(n, b) yields the logarithmic filtered spectro-
gram X log

filt(n, b). The final ODF O is then given by:

O(n) =

k=N
2∑

k=1

H
(∣∣∣X log

filt(n, b)
∣∣∣− ∣∣∣X log

filt(n− 1, b)
∣∣∣) (7)

where H is the half-wave rectifier function defined in Sec-
tion 2.2.1.

3. EXPERIMENTS

To evaluate the methods described, we conducted three ex-
periments: First, the methods were evaluated under on-
line conditions: no future information was used to decide



whether there is an onset at the current time point. Second,
the same methods were evaluated under offline conditions
(enabling prior data normalization or computing averages
that incorporate future information) to determine the max-
imum performance achievable by each method. Third, we
attenuated the volume of the audio data to an increasing
degree to test the online methods’ abilities to cope with
signals of different volume without access to normaliza-
tion.

3.1 Dataset

To evaluate the presented onset detection and peak-picking
methods we use a dataset of real world recordings.

An onset is usually defined as the exact time a note or
instrument starts sounding after being played. However,
this timing is hard to determine, and thus it is impossible
to annotate the real onset timing in complex audio record-
ings with multiple instruments, voices, and effects. Thus,
the most commonly used method for onset annotation is
marking the earliest time point at which a sound is audible
by humans. This instant cannot be defined in pure terms
(e.g., minimum increase of volume or sound pressure), but
is a rather complex mixture of various factors.

The annotation process is very time-consuming because
it is performed in multiple passes. First, onsets are an-
notated manually during slowed down playback. In the
second pass, visualization support is used to refine the on-
set positions. Spectrograms obtained with different STFT
lengths are used in combination to capture the precise tim-
ing of an onset without missing any onset due to insuf-
ficient frequency resolution. This multi-resolution proce-
dure seems to be a good approach since the best onset de-
tection algorithms also use this mechanism. If multiple
onsets are located in close vicinity, they are annotated as
multiple onsets.

The dataset contains 321 audio excerpts taken from var-
ious sources. 87 tracks were taken from the dataset used in
[11], 23 from [2], and 92 from [13]. All annotations were
manually checked and corrected to match the annotation
style outlined above. The remaining 119 files were newly
annotated and contain the vast majority of the 27,774 on-
sets of the complete set.

Although musically correct, the precise annotations (raw
onsets) do not necessarily represent human perceptions of
onsets. Thus, all onsets within 30 ms were combined into a
single one located at the arithmetic mean of the positions 1 ,
which resulted in 25,966 combined onsets used for evalu-
ation. The dataset can be roughly divided into six main
groups (Table 3.1).

3.2 Measures

For evaluation, the standard measures precision, recall, and
F-measure were used. An onset is considered to be cor-
rectly detected if there is a ground truth annotation within

1 To better predict the perceived position of an onset, psychoacoustical
knowledge must be applied. Since the masking effects involved depend
on both loudness and frequency of an onset, they are not applied here.
For the evaluation of onset detection methods as in this paper, the selected
method of combination is adequate.

Type of audio Files Raw onsets Combined
Complex mixtures 193 21,091 19,492
Pitched percussive 60 2,981 2,795
Non-pitched perc. 17 1,390 1,376
Wind instruments 25 822 820
Bowed strings 23 1,180 1,177
Vocal 3 310 306
ALL 321 27,774 25,966

Table 1. Description of the used dataset: Pitched per-
cussive (e.g., piano, guitar), non-pitched percussive (e.g.,
percussion), wind instruments (e.g., sax, trumpet), bowed
string instruments (e.g., violin, kemence), monophonic vo-
cal music and complex mixtures (e.g., jazz, pop, classical
music)

±25ms around the predicted position. This rather strict
evaluation method (also used in [11] and [6] for percus-
sive sounds) was chosen because it gives more meaningful
results - especially in online onset detection - than an eval-
uation window of ±50ms as used in [2, 9, 18].

An important factor in the evaluation is how false pos-
itives and negatives are counted. Let us assume that two
onsets are detected inside the detection window around a
single annotation. If tolerant counting is used, no false pos-
itives are counted. Every single detection is considered a
true positive, since there is an annotated onset within the
detection window. This is often referred to as merged on-
sets. If counted in a strict way, all annotated onsets can
only be matched once, i.e., two detections within the de-
tection window of a single onset are counted as one true
positive and one false positive detection.

Since many papers do not explicitly describe the crite-
ria, it must be assumed that the results were obtained with
the first method (usually yielding better results). In this
paper, we evaluated the stricter way, but with combined
annotated onsets (not to be confused with merged onsets).
The combining of onsets leads to less false negative de-
tections if the algorithm reports only a single onset where
multiple ones are annotated. Since most of the algorithms
are not capable reporting multiple consecutive onsets, this
results in a more fair comparison.

3.3 Parameter selection

The peak-picking parameters w1...w5 and the fixed thresh-
hold δ introduced in Section 2.3.3 were optimized by a grid
search over the whole set for each method separately. As
in [2, 9], we report the best performance for each method
using the optimized global parameter set. For online de-
tection (w2 = w4 = 0), the optimal values for w3 were
found to be between 4 and 12, w1 = 3, and w5 = 3. For
the offline case, w2 = 3, w4 = 1 and w5 = 0 yielded the
best results (w1 andw3 were left unchanged). The adaptive
whitening parameters m = 10 and r = 0.005 were found
to be generally good settings and were used for all ODFs
in the experiments. The compression parameter λ (Section
2.1.2) was chosen to be between 0.01 and 20. The neu-



ral networks are trained and evaluated using 8-fold cross
validation on disjoint training, validation, and test sets.

All parameters were optimized on the dataset and left
unchanged for the unnormalized penalty task.

4. RESULTS AND DISCUSSION

4.1 Comparison of different ODFs

Table 2 lists the results for all algorithms working in on-
line mode on the complete dataset using the peak detection
method described in Section 2.3.4. It shows that applica-
tion of adaptive whitening and use of a logarithmic magni-
tude both outperform the traditional methods without any
preprocessing. Both preprocessing methods compress the
magnitude and hence emphasize higher frequency bands
that are important for detecting percussive onsets. Further-
more, our proposed method (SF log filtered) clearly out-
performs all the other methods (apart from the reference
OnsetDetector.LL). In particular, it is characterized by a
high precision value due to the reduced number of false
positives compared to the other methods. We believe that
the filtering process reduces the spectrum to the most rel-
evant components for onset detection. This may facilitate
better distinction between signal changes that are arising
from an onset and spurious, non-onset-related changes.

Online algorithm % F-meas. % Prec. % Rec.
SF 74.5 76.3 72.8
SF aw 75.7 78.0 73.4
SF log 76.1 78.3 74.0
SF log filtered 80.3 88.3 73.5
CD 71.1 72.4 69.8
CD aw 75.8 76.4 75.1
CD log 74.1 77.4 71.1
WPD 69.7 68.8 70.6
WPD aw 71.4 70.8 72.0
WPD log 70.9 74.6 67.5
OnsetDetector.LL [4] 81.7 85.0 78.7

Table 2. F-measure, precision and recall of different on-
set detection algorithms using online peak-picking, where
aw denotes adaptive whitening, log denotes the use of a
logarithmic magnitude and SF log filtered is the method
proposed in Section 2.5

.

Our tests showed that - if the parameters are properly
chosen - the offline results are in the same range as the
online results 2 . We deem this is a remarkable finding
and think that the reasons for this behavior are the fol-
lowing: First, the audio tracks of the dataset have similar
volume levels, which renders the normalization step less
important. Second, when looking only at single indepen-
dent frames, it seems reasonable that frames after the cur-
rent onset frame do not carry much additional information.
However, the superior results of the offline OnsetDetec-
tor (F-measure 86.6, precision 90.6, recall 83.0 ) suggest

2 We observed an average gain in F-measure of 0.25% in offline mode

that using both past and future information contained in
the magnitude spectrogram can be valuable to detect also
the “harder” onsets (as reflected by the much higher recall
value of this method).

4.2 Unnormalized penalty

When dealing with unnormalized data, the investigated on-
set detection methods experience different levels of perfor-
mance loss. As shown in Figure 3, our proposed onset de-
tection method exhibits superior performance at all attenu-
ation levels and is only beaten by the OnsetDetector.LL,
that is unaffected by any volume changes. This shows the
power of machine learning techniques that do not depend
on predefined peak-picking threshholds. The methods us-
ing adaptive whitening score third, which seems reason-
able as these methods include an implicit normalization us-
ing past frames. Computing the difference of two adjacent
frames of the logarithmic spectrum (SF log) has the effect
of dividing the magnitude at frame n by that at frame n−1,
resulting in the relative magnitude change rather than the
absolute difference. This makes the spectral flux obtained
with logarithmic magnitudes more robust against absolute
volume changes, compared to the standard variant (SF ).

Finally, methods using the logarithmic magnitude spec-
trum performed better at lower volume levels when using
a high value of the compression parameter λ.
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Figure 3. Performance of the online methods at different
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4.3 Remarks

In this paper, we give only results for the complete dataset.
Results for subsets (organized by audio type and author)
obtained with different detection window sizes can be found
online at http://www.cp.jku.at/people/boeck/
ISMIR2012.html.

5. CONCLUSIONS

In this paper we have evaluated various onset detection al-
gorithms in terms of their suitability for online use, focus-



ing on the preprocessing and peak detection algorithms.
We have shown that using logarithmic magnitudes or adap-
tive whitening as a preprocessing step results in improved
performance in all methods investigated. When the param-
eters for peak detection are chosen carefully, online meth-
ods can achieve results in the same range as those of offline
methods.

Further, we have introduced a new algorithm which out-
performs other preprocessing methods. It copes better with
audio signals of various volume levels, which is of major
importance for onset detection in real-time scenarios.

Apart from that, machine learning techniques like neu-
ral network based methods are much more robust against
volume changes in online scenarios and are the methods of
choice if enough training data is available.
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