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ABSTRACT

In this paper we present a new beat tracking algorithm
which extends an existing state-of-the-art system with a
multi-model approach to represent different music styles.
The system uses multiple recurrent neural networks, which
are specialised on certain musical styles, to estimate possi-
ble beat positions. It chooses the model with the most ap-
propriate beat activation function for the input signal and
jointly models the tempo and phase of the beats from this
activation function with a dynamic Bayesian network. We
test our system on three big datasets of various styles and
report performance gains of up to 27% over existing state-
of-the-art methods. Under certain conditions the system is
able to match even human tapping performance.

1. INTRODUCTION AND RELATED WORK

The automatic inference of the metrical structure in mu-
sic is a fundamental problem in the music information re-
trieval field. In this line, beat tracking deals with finding
the most salient level of this metrical grid, the beat. The
beat consists of a sequence of regular time instants which
usually invokes human reactions like foot tapping. During
the last years, beat tracking algorithms have considerably
improved in performance. But still they are far from being
considered on par with human beat tracking abilities – es-
pecially for music styles which do not have simple metrical
and rhythmic structures.

Most methods for beat tracking extract some features
from the audio signal as a first step. As features, com-
monly low-level features such as amplitude envelopes [20]
or spectral features [2], mid-level features like onsets ei-
ther in discretised [8,12] or continuous form [6,10,16,18],
chord changes [12,18] or combinations thereof with higher
level features such as rhythmic patterns [17] or metrical
relations [11] are used. The feature extraction is usually
followed by a stage that determines periodicities within
the extracted features sequences. Autocorrelation [2,9,12]
and comb filters [6, 20] are commonly used techniques for
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Gerhard Widmer. “A Multi-Model Approach to Beat Tracking Consid-
ering Heterogeneous Music Styles”, 15th International Society for Music
Information Retrieval Conference, 2014.

this task. Most systems then determine the most predom-
inant tempo from these periodicities and subsequently de-
termine the beat times using multiple agents approaches
[8,12], dynamic programming [6,10], hidden Markov mod-
els (HMM) [7,16,18], or recurrent neural networks (RNN)
[2]. Other systems operate directly on the input features
and jointly determine the tempo and phase of the beats us-
ing dynamic Bayesian networks (DBN) [3, 14, 17, 21].

One of the most common problems of beat tracking
systems are “octave errors”, meaning that a system de-
tects beats at double or half the rate of the ground truth
tempo. For human tappers this generally does not consti-
tute a problem, as can be seen when comparing beat track-
ing results at different metrical levels [6]. Hainsworth and
Macleod stated that beat tracking systems will have to be
style specific in the future in order to improve the state-of-
the-art [14]. This is consistent with the finding of Krebs et
al. [17] who showed on a dataset of Ballroom music that
the beat tracking performance can be improved by incor-
porating style-specific knowledge, especially by resolving
the octave error. While approaches have been proposed
which combined multiple existing features for beat track-
ing [22], no one has so far combined several models spe-
cialised on different musical styles to improve the overall
performance.

In this paper, we propose a multi-model approach to
fuse information of different models that have been spe-
cialised on heterogeneous music styles. The model is based
on the recurrent neural network (RNN) beat tracking sys-
tem proposed in [2] and can be easily adapted to any mu-
sic style without further parameter tweaking, only by pro-
viding a corresponding beat-annotated dataset. Further,
we propose an additional dynamic Bayesian network stage
based on the work of Whiteley et al. [21] which jointly in-
fers the tempo and the beat phase from the beat activations
of the RNN stage.

2. PROPOSED METHOD

The new beat tracking algorithm is based on the state-of-
the-art approach presented by Böck and Schedl in [2]. We
extend their system to be able to better deal with heteroge-
neous music styles and combine it with a dynamic Bayesian
network similar to the ones presented in [21] and [17].

The basic structure is depicted in Figure 1 and consists
of the following elements: first the audio signal is pre-
processed and fed into multiple neural network beat track-

http://www.cp.jku.at/
mailto:sebastian.boeck@jku.at?subject=your%20ISMIR%202014%20paper


ing modules. Each of the modules is trained on different
audio material and outputs a different beat activation func-
tion when activated with a musical signal. These functions
are then fed into a module which chooses the most appro-
priate model and passes its activation function to a dynamic
Bayesian network to infer the actual beat positions.
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Figure 1. Overview of the new multi-model beat tracking
system.

Theoretically, a single network large enough should be
able to model all the different music styles simultaneously,
but unfortunately this optimal solution is hardly achiev-
able. The main reason for this is the difficulty to choose an
absolutely balanced training set with an evenly distributed
set of beats over all the different dimensions relevant for
detecting beats. These include rhythmic patterns [17, 20],
harmonic aspects and many other features. To overcome
this limitation, we split the available training data into mul-
tiple parts. Each part should represent a more homoge-
neous subset than the whole set so that the networks are
able to specialise on the dominant aspects of this subset.

It seems reasonable to assume that humans do some-
thing similar when tracking beats [4]. Depending on the
style of the music, the rhythmic patterns present, the in-
strumentation, the timbre, they apply their musical knowl-
edge to chose one of their “learned” models and then de-
cide which musical events are beats or not. Our approach
mimics this behaviour by learning multiple distinct mod-
els.

2.1 Signal pre-processing

All neural networks share the same signal pre-processing
step, which is very similar to the work in [2]. As inputs
to the different neural networks, the logarithmically fil-
tered and scaled spectrograms of three parallel Short Time
Fourier Transforms (STFT) obtained for different window
lengths and their positive first order differences are used.
The system works with a constant frame rate fr of 100
frames per second. Window lengths of 23.2 ms, 46.4 ms
and 92.9 ms are used and the resulting spectrogram bins
of the discrete Fourier transforms are filtered with over-
lapping triangular filters to have a frequency resolution of
three bands per octave. To put all resulting magnitude val-
ues into a positive range we add 1 before taking the loga-
rithm.

2.2 Multiple parallel neural networks

At the core of the new approach, multiple neural networks
are used to determine possible beat locations in the audio
signal. As outlined previously, these networks are trained
on material with different music styles to be able to better
detect the beats in heterogeneous music styles.

As networks we chose the same recurrent neural net-
work (RNN) topology as in [2] with three bidirectional hid-
den layers with 25 long short-term memory (LSTM) units
per layer. For training of the networks, standard gradient
descent with error backpropagation and a learning rate of
1e−4 is used. We initialise the network weights with a
Gaussian distribution with mean 0 and standard deviation
of 0.1. We use early stopping with a disjoint validation set
to stop training if no improvement over 20 epochs can be
observed.

One reference network is trained on the complete dataset
until the stopping criterion is reached for the first time. We
use this point during the training phase to diverge the spe-
cialised models from the reference network.

Afterwards, all networks are fine-tuned with a reduced
learning rate of 1e−5 on either the complete set or the indi-
vidual subsets (cf. Section 3.1) with the above mentioned
stopping criterion. Given N subsets, N + 1 models are
generated.

The output functions of the network models represent
the beat probability at each time frame. Instead of tracking
the beats with an autocorrelation function as described in
the original work, the beat activation functions of the dif-
ferent models are fed into the next model-selection stage.

2.3 Model selection

The purpose of this stage is to select a model which outputs
a better beat activation function than the reference model
when activated with a signal. Compared to the reference
model, the specialised models produce better predictions
on input data which is similar to that used for fine-tuning,
but worse predictions on signals dissimilar to the training
data. This behaviour can be seen in Figure 2, where the
specialised model produces higher beat activation values
at the beat locations and lower values elsewhere.

Table 1 illustrates the impact on the Ballroom subset,
where the relative gain of the best specialised model com-
pared to the reference model (+1.7%) is lower than the
penalties of the other models (−2.3% to −6.3%). The
fact that the performance degradation of the unsuitable spe-
cialised models is greater than the gain of the most suitable
model allows us to use a very simple but effective method
to choose the best model.

To select the best performing model, all network out-
puts of the fine-tuned networks are compared with the out-
put of the reference network (which was trained on the
whole training set) and the one yielding the lowest mean
squared difference is selected as the final one and its out-
put is fed into the final beat tracking stage.



0 50 100 150 200 250 300 350 400
time [frames]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

b
e
a
t 

a
ct

iv
a
ti

o
n

Figure 2. Example beat activations for a 4 seconds ball-
room snippet. Red is the reference network’s activations,
black the selected model and blue a discarded one. Green
dashed vertical lines denote the annotated beat positions.

F-measure Cemgil AMLc AMLt
SMC * 0.834 0.807 0.664 0.767
Hainsworth * 0.867 0.839 0.694 0.793
Ballroom * 0.904 0.872 0.777 0.853
Reference 0.887 0.855 0.748 0.831
Multi-model 0.897 0.866 0.759 0.841

Table 1. Performance of differently specialised mod-
els (marked with asterisks, fine-tuned on the SMC,
Hainsworth and Ballroom subsets) on the Ballroom subset
compared to the reference model and the network selected
by the multi-model selection stage.

2.4 Dynamic Bayesian network

Independent of whether only one or multiple neural net-
works are used, the approach of Böck and Schedl [2] has
a fundamental shortcoming: the final peak-picking stage
does not try to find a global optimum when selecting the
final locations of the beats. It rather determines the dom-
inant tempo of the piece (or a segment of certain length)
and then aligns the beat positions according to this tempo
by simply choosing the best start position and then pro-
gressively locating the beats at positions with the highest
activation function values in a certain region around the
pre-determined position. To allow a greater responsiveness
to tempo changes, this chosen region must not be too small.
However, this also introduces a weakness to the algorithm,
because the tracking stage can easily get distracted by a
few misaligned beats and needs some time to recover from
this fault. The activation function depicted in Figure 2 has
two of these spurious detections around frames 100 and
200.

To circumvent this problem, we feed the output of the
chosen neural network model into a dynamic Bayesian net-
work (DBN) which jointly infers tempo and phase of a beat
sequence. Another advantage of this new method is that
we are able to model both beat and non-beat states, which
was shown to perform superior to the case where only beat
states are modelled [7].

The DBN we use is closely related to the one proposed
in [21], adapted to our specific needs. Instead of mod-
elling whole bars, we only model one beat period which re-
duces the size of the search space. Additionally we do not
model rhythmic patterns explicitly and leave this higher
level analysis to the neural networks. This finally leads to
a DBN which consists of two hidden variables, the tempo
ω and the position φ inside a beat period. In order to in-
fer the hidden variables from an audio signal, we have to
specify three entities: A transition model which describes
the transitions between the hidden variables, an observa-
tion model which takes the beat activations from the neural
network and transforms them into probabilities suitable for
the DBN, and the initial distribution which encodes prior
knowledge about the hidden variables. For computational
ease we discretise the tempo-beat space to be able to use
standard hidden Markov model (HMM) [19] algorithms
for inference.

2.4.1 Transition model

The beat period is discretised into Φ = 640 equidistant
cells and φ ∈ {1, ...,Φ}. We refer to the unit of the variable
φ (position inside a beat period) as pib. φk at audio frame
k is then computed by

φk = (φk−1 + ωk−1 − 1) mod Φ + 1. (1)

The tempo space is discretised into Ω = 23 equidistant
cells, which cover the tempo range up to 215 beats per
minute (BPM). The unit of the tempo variable ω is pib per
audio frame. As we want to restrict ω to integer values (to
stay within the φ grid at transitions), we need a high reso-
lution of φ in order to get a high resolution of ω. Based on
experiments with the training set, we set the tempo space
to ω ∈ {6, ...,Ω}, where ω = 6 is equivalent to a minimum
tempo of 6 × 60 × fr/Φ ≈ 56 BPM. As in [21] we only
allow for three tempo transitions at time frame k: It stays
constant, it accelerates, or it decelerates.

ωk =

 ωk−1, P (ωk|ωk−1) = 1− pω
ωk−1 + 1, P (ωk|ωk−1) = pω

2
ωk−1 − 1, P (ωk|ωk−1) = pω

2

(2)

Transitions to tempi outside of the allowed range are not
allowed by setting the corresponding transition probabili-
ties to zero. The probability of a tempo change pω was set
to 0.002.

2.4.2 Observation model

Since the beat activation function a produced by the neural
network is limited to the range [0, 1] and shows high val-
ues at beat positions and low values at non-beat positions,
we use the activation function directly as state-conditional
observation distributions (similar to [7]). We define the ob-
servation likelihood as

P (ak|φk) =

{
ak, 1 ≤ φk ≤ Φ

λ
1−ak
λ−1 , otherwise.

(3)

λ ∈ [ Φ
Φ−1 ,Φ] is a parameter that controls the proportion of

the beat interval which is considered as beat and non-beat



location. Smaller values of λ (a higher proportion of beat
locations and a smaller proportion of non-beat locations)
are especially important for higher tempi, as the DBN vis-
its only a few position states of a beat interval and could
possibly miss the beginning of a beat. On the other hand,
higher values of λ (a smaller proportion of beat locations)
lead to less accurate beat tracking, as the activations are
blurred in the state domain of the DBN. On our training
set we achieved the best results with the value λ = 16.

2.4.3 Initial state distribution

The initial state distribution is normally used to incorporate
any prior knowledge about the hidden states, such as tempo
distributions. In this paper, we use a uniform distribution
over all states, for simplicity and ease of generalisation.

2.4.4 Inference

We are interested in the sequence of hidden variables φ1:K

and ω1:K , that maximise the posterior probability of the
hidden variables given the observations (activations a1:K).
Combining the discrete states of φ and ω into one state
vector xk = [φk, ωk], we can compute the maximum a-
posteriori state sequence x∗

1:K by

x∗
1:K = arg max

x1:K

p(x1:K |a1:K). (4)

Equation 4 can be computed efficiently using the well-
known Viterbi algorithm [19]. Finally the set of beat times
B are determined by the set of time frames k which were
assigned to a beat position (B = {k : φk < φk−1}). In our
experiments we found that the beat detection becomes less
accurate if the part of the beat interval which is considered
as beat-state is too large (i.e. smaller values of λ). There-
fore we determine the final beat times by looking for the
highest beat activation value inside the beat-state window
W = {k : φk ≤ Φ

λ }.

3. EVALUATION

For the development and evaluation of the algorithm we
used some well-known datasets. This allows for highest
comparability with previously published results of state-
of-the-art algorithms.

3.1 Datasets

As training material for our system, the datasets introduced
in [13–15] are used. They are called Ballroom, Hainsworth
and SMC respectively. To show the ability of our new al-
gorithm to adapt to various music styles, a very simple ap-
proach of splitting the complete dataset into multiple sub-
sets according to the original source was chosen. Although
far from optimal – both the SMC and Hainsworth datasets
contain heterogeneous music styles – we still consider this
a valid choice, since any “better” splitting would allow
the system to adapt even further to heterogeneous styles
and in turn lead to better results. At least the three sets
have a somehow different focus regarding the music styles
present.

3.2 Performance measures

In line with almost all other publications on the topic of
beat tracking, we report the following scores:

F-measure : counts the number of true positive (correctly
located beats within a tolerance window of±70 ms), false
positive and negative detections;

P-score : measures the tracking accuracy by the correla-
tion of the detections and the annotations, considering
deviations within 20% of the annotated beat interval as
correct;

Cemgil : places a Gaussian function with a standard de-
viation of 40 ms around the annotations and then mea-
sures the tracking accuracy by summing up the scores of
the detected beats on this function normalising it by the
overall length of the annotations or detections, whichever
is greater;

CMLc & CMLt : measure the longest continuously seg-
ment (CMLc) or all correctly tracked beats (CMLt) at the
correct metrical level. A beat is considered correct if it is
reported within a 17.5% tempo and phase tolerance, and
the same applies for the previously detected beat;

AMLc & AMLt : like CMLc & CMLt, but additionally
allow offbeat and double/half as well as triple/third tempo
variations of the annotated beats;

D & Dg : the information gain (D) and global information
gain (Dg) are phase agnostic measures comparing the an-
notations with the detections (and vice-versa) building a
error histogram and then calculating the Kullback-Leibler
divergence w.r.t. a uniform histogram.

A more detailed description of the evaluation methods can
be found in [5]. However, since we only investigate of-
fline algorithms, we do not skip the first five seconds for
evaluation.

3.3 Results & Discussion

Table 2 lists the performance results of the reference imple-
mentation, Böck’s BeatTracker.2013, and the various ex-
tensions proposed in this paper for all datasets. All results
are obtained with 8-fold cross validation with previously
defined splittings, ensuring that no pieces are used both for
training or parameter tuning and testing purposes. Addi-
tionally, we compare our new approach to published stat-
of-the-art results on the Hainsworth and Ballroom datasets.

3.3.1 Multi-model extension

As can be seen, the use of the multi-model extension al-
most always improves the results over the implementation
it is based on, especially on the SMC set. The gain in per-
formance on the Ballroom set was expected, since Krebs et
al. already showed that modelling rhythmic patterns helps
to increase the overall detection accuracy [17]. Although
we did not split the set according to the individual rhythmic
patterns, the overall style of ballroom music can be con-
sidered unique enough to be distinct from the other music



F-measure P-score Cemgil CMLc CMLt AMLc AMLt D Dg
Ballroom
BeatTracker.2013 [1, 2] 0.887 0.863 0.855 0.719 0.795 0.748 0.831 3.404 2.596
— Multi-Model 0.897 0.875 0.866 0.740 0.814 0.759 0.841 3.480 2.674
— DBN 0.903 0.876 0.838 0.792 0.825 0.873 0.915 3.427 2.275
— Multi-Model + DBN 0.910 0.881 0.845 0.800 0.830 0.885 0.924 3.469 2.352
Krebs et al. [17] 0.855 0.839 0.772 0.745 0.786 0.818 0.865 2.499 1.681
Zapata et al. [22] † 0.767 0.735 0.672 0.586 0.607 0.824 0.860 2.750 1.187
Hainsworth
BeatTracker.2013 [1, 2] 0.832 0.843 0.712 0.618 0.756 0.655 0.807 2.167 1.468
— Multi-Model 0.832 0.847 0.716 0.617 0.761 0.652 0.809 2.171 1.490
— DBN 0.843 0.867 0.711 0.696 0.808 0.759 0.883 2.251 1.481
— Multi-Model + DBN 0.840 0.865 0.707 0.696 0.803 0.760 0.881 2.268 1.466
Zapata et al. [22] † 0.710 0.732 0.589 0.569 0.642 0.709 0.824 2.057 0.880
Davies et al. [6] - - - 0.548 0.612 0.681 0.789 - -
Peeters & Papadopoulos [18] - - - 0.547 0.628 0.703 0.831 - -
Degara et al. [7] - - - 0.561 0.629 0.719 0.815 - -
Human tapper [6] ‡ - - - 0.528 0.812 0.575 0.874 - -
SMC
BeatTracker.2013 [1, 2] 0.497 0.598 0.402 0.238 0.360 0.279 0.436 1.263 0.416
— Multi-Model 0.514 0.617 0.415 0.257 0.389 0.296 0.467 1.324 0.467
— DBN 0.516 0.622 0.404 0.294 0.415 0.378 0.550 1.426 0.504
— Multi-Model + DBN 0.529 0.630 0.415 0.296 0.428 0.383 0.567 1.460 0.531
Zapata et al. [22] † 0.369 0.460 0.285 0.115 0.158 0.239 0.397 0.879 0.126

Table 2. Performance of the proposed algorithm on the Ballroom [13], Hainsworth [14] and SMC [15] datasets. Beat-
Tracker is the reference implementation our Multi-Model and dynamic Bayesian network (DBN) extensions are built on.
The results marked with † are obtained with Essentia’s implementation of the multi-feature beat tracker. 1 ‡ denotes causal
(i.e. online) processing, all listed algorithms use non-causal analysis (i.e. offline processing) with the best results in bold.

styles present in the other sets and the salient features can
be exploited successfully by the multi-model approach.

3.3.2 Dynamic Bayesian network extension

As already indicated in the original paper [2] (and described
earlier in Section 2.4), the original BeatTracker can be eas-
ily distracted by some misaligned beats and then needs
some time to recover from any failure. The newly adapted
dynamic Bayesian network beat tracking stage does not
suffer from this shortcoming by searching for the glob-
ally best beat locations. The use of the DBN boosts the
performance on all datasets for almost all evaluation mea-
sures. Interestingly, the Cemgil accuracy is degraded by
using the DBN stage. This might be explained by the fact
that the discretisation grid of the beat period beat posi-
tions becomes too coarse for low tempi (cf. Section 2.4.4)
and therefore yields inaccurate beat detections, which es-
pecially affect the Cemgil accuracy. This is one of the is-
sues that needs to be resolved in the future, especially for
lower tempi where the penalty is the highest.

3.3.3 Comparison with other methods

Our new system set side by side with other state-of-the-art
algorithms draws a clear picture. It outperforms all of them
considerably – independently of the dataset and evaluation
measure chosen. Especially the high performance boosts
of the CMLc and CMLt scores on the Hainworth dataset
highlight the ability to track the beats at the correct metri-
cal level significantly more often than any other method.

Davies et al. [6] also list performance results of a hu-
man tapper on the same dataset. However it must be noted
that these were obtained by online real-time tapping, hence
they cannot be compared directly to the system presented.
However, the system of Davies et al. can also be switched
to causal mode (and thus being comparable to a human
tapper). In this mode it achieved performance reduced by
approximately 10% [6]. Adding the same amount to the
reported tapping results of 0.528 CMLc and 0.575 AMlc
suggests that our system is capable of performing as good
as humans when continuous tapping is required.

On the Ballroom set we achieve higher results than the
particularly specialised system of Krebs et al. [17]. Since
our DBN approach is a simplified variant of their model, it
can be assumed that the relatively low scores of the Cemgil
accuracy and the information gain are due to the same rea-
son – the coarse discretisation of the beat or bar states.
Nonetheless, comparing the continuity scores (which have
higher tolerance thresholds) we can still report an average
increase in performance of more than 5%.

4. CONCLUSIONS & OUTLOOK

In this paper we have presented a new beat tracking system
which is able to improve over existing algorithms by incor-
porating multiple models which were trained on different
music styles and combining it with a dynamic Bayesian
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network for the final inference of the beats. The combina-
tion of these two extensions yields a performance boost –
depending on the dataset and evaluation measures chosen
– of up to 27% relative, matching human tapping results
under certain conditions. It outperforms other state-of-the-
art algorithms in tracking the beats at the correct metrical
level by 20%.

We showed that the specialisation on a certain musical
style helps to improve the overall performance, although
the method for splitting the available data into sets of dif-
ferent styles and then selecting the most appropriate model
is rather simple. For the future we will investigate more ad-
vanced techniques for the selection of suitable data for the
creation of the specialised models, e.g. splitting the datasets
according to dance styles as performed by Krebs et al. [17]
or applying unsupervised clustering techniques. We also
expect better results from more advanced model selection
methods. One possible approach could be to feed the indi-
vidual model activations to the dynamic Bayesian network
and let it choose among them.

Finally, the Bayesian network could be tuned towards
using a finer beat positions grid and thus reporting the beats
at more appropriate times than just selecting the position
of the highest activation reported by the neural network
model.
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