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ABSTRACT

We present a new onset detection algorithm which operates online
in real time without delay. Our method incorporates a recurrent
neural network to model the sequence of onsets based solely on
causal audio signal information. Comparative performance against
existing state-of-the-art online and offline algorithms was evalu-
ated using a very large database. The new method – despite being
an online algorithm – shows performance only slightly short of
the best existing offline methods while outperforming standard ap-
proaches.

1. INTRODUCTION

Onset detection is the process of locating events in an audio signal
(e.g., a singing voice, a played note, or any other sounds). Various
methods have been proposed over the years, but most of them work
only in offline mode. [1] and [2] give good overviews of standard
methods, and [3] propose enhancements to several of these. Tra-
ditional onset detection methods usually incorporate only spectral
and/or phase information of the signal. However, unlike current
top-performance algorithms, they neither employ machine learn-
ing techniques nor use probabilistic information. For example, the
approaches presented in [4, 5] use neural networks and that in [6] a
Hidden Markov model. They all have in common, that they usually
work only in offline mode because the peak-picking methods used
rely on future information to determine the location of an onset.

Only few algorithms have been designed specifically for on-
line scenarios [7], where the aim is to minimize the delay between
the occurrence of the onset in the audio signal and its reporting.
Instantaneously detected onsets are a prerequisite for all kinds of
real-time applications, ranging from beat-tracking and tempo esti-
mation methods to look-ahead compressors for live audio process-
ing.

2. SYSTEM DESCRIPTION

The proposed system is based on the state-of-the-art onset detec-
tion algorithm that won the last two years’ MIREX onset detection
contests [8, 9]. The system was originally proposed in [5] and has
since been modified and enhanced considerably, as the improve-
ments in the MIREX results show. In the next sections, we present
the modifications and enhancements made in order to enable the
system to work in real-time online scenarios.

The system is structured as depicted in Figure 1 and comprises
three main processing steps: signal pre-processing, neural network
onset prediction, and peak post-processing. As input, the system
takes a discretely sampled audio signal and transfers it to the fre-
quency domain via three parallel Short-Time Fourier Transforms

(STFT) with different window lengths. The information obtained
is then fed into the recurrent neural network to detect the next oc-
curring onset in the audio stream. Finally, simple post-processing
is used to report the onsets instantaneously while minimizing the
number of false detections.

STFT & 
Difference

STFT & 
Difference

Recurrent
Neural 

Network
Post-

ProcessingSignal Onsets

STFT & 
Difference

Figure 1: Online real-time onset detection system overview.

2.1. Audio signal pre-processing

The system processes the audio signal frame-wise with adjacent
frames 10 ms apart (i.e., the resulting frame rate is 100 frames per
second). The audio signal is transformed to the frequency do-
main with the Short Time Fourier Transform (STFT). Three paral-
lel STFTs with different window lengths are used to capture both
very recent and also ‘older’ information. The right edges of Hann
windows are aligned at the current position of the audio signal and
the windows are normalized to have equal area (cf. Figure 2). The
sizes used are 512, 1024, and 2048 samples, which corresponds
to periods of 11.61, 23.22, and 46.44 ms, respectively, at a sample
rate of 44,100 Hz.

The linear magnitude spectrogram of each STFT is then fil-
tered to obtain a compressed representation. We investigated var-
ious strategies to reduce the dimensionality of the input vector for
the neural network. Using a filterbank with frequencies aligned to
the Bark scale yielded a good compromise between performance
and size of the neutral network input vector. The edge frequencies
of the bins correspond to the frequencies of the 24 critical bands
of the Bark scale, and triangular filters (with an area normalized
to one) are used to sum the multiple frequency bins of the STFT
to a single one. To transform the values to a range better suited
to the downstream neural network step, we chose a logarithmic
representation of the Bark spectrograms.

Since onsets are characterized by a rise in energy in their at-
tack phase, the differences relative to preceding frames are also
included in the input vector. The exact delay τ for calculating the
difference is determined according to the STFT length such that
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Figure 2: Window functions applied to audio signal before STFT,
with the current position of the audio signal indicated by a vertical
line.

the overlap of the two frames is 0.5. This results in τ values of
1, 2, and 4 for the STFT window lengths of 512, 1024, and 2048
samples. Although technically speaking it is a quotient because
it is calculated using logarithmic representations, we use the term
“difference” between two frames. The three parallel Bark-filtered
spectrograms and the differences make up the 144-dimensional in-
put vector for the neural network.

2.2. Neural Network

To work in a real-time online scenario, the neural network of the
offline approach [5] had to be changed considerably. Since bidi-
rectional neural networks violate causality, they are not suitable
for this task and were replaced by a unidirectional one. Also, the
Long Short-Term Memory (LSTM) units used in the hidden layer
were replaced by standard units with a hyperbolic tangent activa-
tion function. This reduces the connections in the recurrent hidden
layers by a factor of four, because the standard units do not require
the gates of the LSTM units to be connected. Although LSTM
units are able to model a wider temporal context, normal units per-
form similarly well because the temporal context for onset detec-
tion is limited to only a few frames. The overall topology of the
network, consisting of three fully connected recurrent hidden lay-
ers with 20 units each, is retained. The modifications listed reduce
the computational complexity of the system and make it suitable
for real-time processing.

2.2.1. Network Training

The network was trained as a classifier with supervised learning
and early stopping on a 75% portion of the complete dataset de-
scribed in Section 3. Each audio sequence was pre-processed as
described above and presented to the network for learning. The
network weights were initialized with random values following
a Gaussian distribution with mean 0 and standard deviation 0.1.
Standard gradient descent with backpropagation of the errors was
used to train the network. To avoid over-fitting, the performance
was evaluated after each training iteration on a separate validation
set (a disjoint 15% of the training set chosen at random). If no im-
provement was observed for 20 epochs, training was stopped, and
the network state with the best performance on the validation set
was subsequently used.

When training a neural network to detect an upcoming on-
set, various strategies for target placement are possible: placing
them at the real ground-truth positions and training the classifier
as in an offline scenario, or displacing the targets forward or back
by one frame. Although neural networks can adapt to a target
displacement, the method of training with correctly located tar-
gets in combination with the post-processing described in Sec-
tion 2.3 yielded the best classification results. Thus, only the post-
processing method had to be modified for an online scenario.

2.2.2. Network Testing

The output of the network is an onset activation function with val-
ues in the range of [0 . . . 1] which represent the probabilities of
onsets at given positions. Figure 3 shows a typical onset activation
function with clearly visible peaks at the annotated positions.

2.3. Post-processing

Since no future values are available in online mode, the traditional
approach of finding local maxima in the thresholded onset activa-
tion function cannot be applied here. Instead, the onset is predicted
at the center of the first frame that follows the activation function
exceeding a given threshold, determined on the validation sets by
8-fold cross-validation.
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Figure 3: Onset activation function (output of the neural network)
of the system for a 1-second-excerpt of a pop song shown as a
solid black line. Annotated onsets are indicated by vertical red
lines and the normalized detection function obtained with spectral
flux is plotted as a black dotted line.

Compared to simple signal-based onset detection methods, the
main advantage of using a neural network is that its onset activa-
tion function has a very low noise floor with high peaks at the onset
positions (see Figure 3, solid black line). Thus, a very low thresh-
old can be used to detect the onsets as early as possible without
risking many false detections. To prevent repeated reporting of an
onset (and thus producing numerous false positive detections), an
onset is only reported if no onsets have been detected in the previ-
ous two frames (20 ms).

In the rare case of a slowly rising onset activation function
(which exceeds the threshold), this peak-picking method could
lead to some early false positive detections. To give an estimate
of the penalty, we also evaluated our new algorithm with an of-
fline peak picking algorithm which uses only local maxima after
thresholding of the onset activation function.
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3. DATA

In online real-time processing, the definition of onsets is crucial.
An onset is usually defined as the exact time a note or instrument
starts sounding after being played. However, this timing is difficult
to determine, and it is therefore impossible to annotate the real on-
set timing in complex audio recordings with multiple instruments,
voices, and effects.

The most commonly used method for onset annotation is mark-
ing the earliest time point at which a sound is audible to humans.
This instant cannot be defined by pure measures (e.g., minimum
increase of volume or sound pressure), but is a complex mixture of
various factors. All annotations of the dataset try to match the on-
set time as accurately as possible. Compared to synthesized sounds
generated from MIDI, this generally leads to a delay in the range of
a few milliseconds (determined by manual correction of a piece of
synthesized piano music to match the style of other annotations).

The annotation process is very time-consuming because it is
performed in multiple passes. First, onsets are annotated manually
during slowed-down playback. In the second pass, visualization
support is used to refine the onset positions. Spectrograms ob-
tained with different STFT lengths are used together to capture
the precise timing of an onset without missing any onsets due to
insufficient frequency resolution. This multi-resolution procedure
seems to be a good approach since the best onset detection algo-
rithms also use it internally. If multiple onsets are located in close
vicinity, they are annotated as multiple onsets. For reference, Fig-
ure 4 shows a piano chord in which the individual notes were not
played perfectly simultaneously with two individual annotations.

Figure 4: Zoomed-in spectrogram of a piano chord with two notes
played 4 ms apart. The pictures show a period of 50 ms (identical
to the detection window used for evaluation) taken with an STFT
length of 512 samples and 86% overlap.

The dataset consists of 327 audio excerpts taken from different
sources. 87 tracks were taken from the dataset used in [5], 23 from
[1], and 92 from [10]. All annotations were manually checked
and corrected where needed. The remaining 125 files were newly
annotated during the evolutionary process of the offline OnsetDe-
tector [9]. The complete set contains 28,067 onsets according to
the annotation style outlined above. Although musically correct,
the precise annotations do not necessarily represent the human per-
ception of onsets. Thus, all onsets within 30 ms are combined into
a single one located at the arithmetic mean of the positions, which
results in 26,223 combined onsets used for evaluation.

4. RESULTS AND DISCUSSION

We used 8-fold cross-validation with the standard measures preci-
sion, recall, and F-measure to evaluate our approach. An onset is
considered correctly detected if there is a ground-truth annotation
within ±25ms around the predicted position. We refer to this re-
gion as detection window. We chose this relatively strict evaluation
method (also used in [5] and [2] for percussive sounds) because
it gives more meaningful results – especially for the task of on-
line onset detection – than the detection window of ±50ms used
in [1, 3, 7]. All annotated onsets can only be matched once: two
detections within the detection window of a single annotated onset
are counted as one true positive and one false positive detection.

4.1. Performance Comparison

Table 1 lists the results for the complete dataset described in Sec-
tion 3. The new online algorithm OnsetDetector.LL1 is compared
to its offline variant and also to all detection methods implemented
by aubio2. Our new online algorithm was evaluated by 8-fold
cross-validation with disjoint training, validation, and test sets.
Since the offline variants of OnsetDetector [8, 9] were trained with
audio material originating from the same dataset, we took partic-
ular care to avoid using the same audio excerpts for both train-
ing and testing. The parameters of the aubio results were opti-
mized on the complete dataset (optimized threshold and shifting
of the reported onsets to best match the annotations), and hence
represent the maximum achievable performance by traditional al-
gorithms when perfectly adapted to the test set.

It should be noted that the upper part of Table 1 lists offline al-
gorithms which incorporate future information for onset detection,
while our new algorithm solely relies on past information to detect
upcoming onsets.

Algorithm Precision Recall F-measure
OnsetDetector.2010 0.857 0.796 0.826
OnsetDetector.2011 0.906 0.830 0.866
aubio default * 0.718 0.690 0.704
aubio specdiff * 0.653 0.650 0.652
aubio phase * 0.516 0.600 0.555
aubio complexdomain * 0.700 0.690 0.695
aubio hfc * 0.750 0.733 0.742
aubio energy * 0.608 0.572 0.590
aubio kl * 0.672 0.670 0.671
aubio mkl * 0.647 0.599 0.622
NEW OnsetDetector.LL 0.850 0.787 0.817
NEW OnsetDetector.LL † 0.897 0.789 0.840

Table 1: Comparison of performance results using the complete
dataset with a detection window of ±25 ms. All algorithms in the
upper part operate offline, while only the new one works in online
mode. Asterisks mark results obtained with parameters optimized
on the complete dataset. The last result, denoted with † was ob-
tained with an offline peak-picking method.

1The onset detector is named after Lucky Luke, the cowboy known to
"shoot faster than his shadow", because it is able to detect an onset before
a human can hear it.

2http://aubio.org/ version 0.3.2
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As expected, the new OnsetDetector.LL falls short of the per-
formance of state-of-the-art offline onset detection algorithms (i.e.,
the offline version of OnsetDetector) but clearly outperforms other
onset detection methods such as spectral flux, complex domain,
high frequency content, and combinations thereof (as reflected by
the result obtained with the aubio algorithm), even when they
were perfectly adapted to the test set. This shows the strength of
the new online onset detection algorithm.

As mentioned in Section 2.3, the chosen online peak-picking
method can lead to false positive detections. The last line of Ta-
ble 1 shows the performance obtained with an offline peak-picking
method, which yields a reduced number of false positive detections
as reflected by absolute increase in precision of almost 5%. Com-
parison of this result with the offline OnsetDetector suggests that
using future information is advantageous for onset detection.

4.2. Detailed Evaluation

Table 2 presents the performance results of the new algorithm
evaluated on the complete data set with various detection window
sizes. It exhibits remarkable and stable performance down to a
window size of ±25 ms around the ground-truth positions of the
onsets, regardless of the quality measure used. Only when evalu-
ated with smaller window sizes does the performance drops con-
siderably. Although a detection window of ±10 ms is close to the
accuracy of a manual annotation (which is typically around±2 ms
for percussive sounds and up to ±10 ms for soft onsets generated
by instruments such as string or woodwind instruments), the algo-
rithm continues to identify the majority of onsets correctly.

Window Precision Recall F-measure Error
±50 ms 0.885 0.786 0.833 0.1±11.4 ms
±35 ms 0.880 0.781 0.828 0.2±9.1 ms
±30 ms 0.876 0.778 0.824 0.2±8.6 ms
±25 ms 0.870 0.772 0.818 0.3±7.9 ms
±20 ms 0.852 0.757 0.802 0.5±7.2 ms
±15 ms 0.811 0.720 0.763 0.6±5.9 ms
±10 ms 0.722 0.642 0.680 0.5±4.7 ms

Table 2: Performance results of the new algorithm on the complete
dataset with different detection windows. Additionally, the mean
and standard deviation error of all correctly detected onsets relative
to their ground-truth annotations are given.

4.3. Computational Cost

The system works on a frame-by-frame basis with a hop-size of
10 ms. For each audio frame, pre-processing, computing the out-
put activations of the neural network, and post-processing take a
constant amount of time and are easily done in real time on a single
core of a 2.26 GHz Intel Core 2 Duo CPU.

5. CONCLUSIONS

We have presented a new onset detection algorithm specifically
designed for real-time online detection of musical onsets in audio
signals. It achieves performance close to current state-of-the-art
offline onset detection algorithms while introducing zero delay be-
tween the audio signal and the reporting of an onset. On modern

hardware, the computational processing can easily be achieved in
real time.
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