
Submitted by
Sebastian Böck

Submitted at
Department of
Computational
Perception

Supervisor and
First Examiner
Gerhard Widmer

Second Examiner
Geoffroy Peeters

November 2016

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Event Detection in
Musical Audio:
Beyond simple feature design

Doctoral Thesis

to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

S TAT U T O RY D E C L A R AT I O N

I hereby declare that the thesis submitted is my own unaided work,
that I have not used other than the sources indicated, and that all direct
and indirect sources are acknowledged as references. This printed
thesis is identical with the electronic version submitted.

A B S T R A C T

This thesis is about the automatic detection and classification of sound
events (e.g. notes or percussive sounds) in musical audio. It deals with
four different sub-aspects, namely (i) the detection of the timing of
these events (onset detection), (ii) their position inside the metrical
grid (beat and downbeat tracking), (iii) the estimation of the dominant
periodicity (tempo estimation), as well as (iv) identifying the frequency
of the played notes (note onset transcription).

Historically, beat tracking, tempo estimation, and note transcription
systems were built upon onset detection algorithms. Most of them
incorporated hand-crafted features, designed specifically for the given
task, certain sounds or music styles. Unlike previous approaches, we
avoid hand-crafted features almost entirely, but rather learn them
directly from audio. We present several algorithms addressing the
before mentioned tasks to detect and classify the sound events. All
proposed methods perform state-of-the-art in their respective field over
a wide range of sounds and music styles, and show the superiority
of learned features both in regard to overall performance as well as
generalisation capabilities.

Reference implementations of the algorithms developed in this
thesis are released as an open-source audio processing and music
information retrieval (MIR) library written in Python. Additionally,
we make the data used to develop and train the algorithms publicly
available, stimulating further research and development in this area.

iii

Z U S A M M E N FA S S U N G

Ziel dieser Dissertation ist die automatische Erkennung und Klassi-
fizierung von musikalischen Klangereignissen (z.B. Noten oder per-
kussiven Klängen). Dabei werden vier Aspekte genauer beleuchtet:
(i) die genaue Erkennung der Anfangspositionen dieser Ereignisse,
(ii) ob das Ereignis auf einem Beat (Taktschlag) innerhalb des Metrums
oder – im Speziellen – auf dem ersten Schlag liegt, (iii) das daraus
abzuleitende Tempo, und (iv) – mit Einschränkungen – die Tonhöhe
des Klanges.

Frühere System arbeiteten vor allem hierarchisch, d.h. zuerst werden
die Anfangspositionen aller Klänge ermittelt und darauf basierend
dann entschieden, ob es sich z.B. um Taktschläge handelt, oder mit
welcher Tonhöhe ein Klang erklingt. Die meisten Systeme extrahieren
dabei aus dem Signal von Hand definierte Merkmale, die oft nur für
eine bestimme Musikrichtung oder spezielle Anwendung entworfen
wurden und daher in ihrem Anwendungsbereich limitiert sind. Im
Gegensatz dazu wird in den hier vorgestellten Algorithmen diese ex-
plizite Modellierung der Merkmale weitestgehend vermieden, indem
stattdessen mittels maschinellen Lernalgorithmen relevante Merkmale
direkt aus dem Musiksignal erlernt werden. Die hier vorgestellten
Algorithmen sind in ihrem jeweiligen Bereich führend – unabhängig
vom Musikstil.

Zu sämtlichen Algorithmen werden Referenzimplementierungen
in Form von freier Software zur Verfügung gestellt, gebündelt in
einer einfach zu installierenden und erweiterbaren Softwarebibliothek.
Darüber hinaus werden außerdem alle Daten die in dieser Dissertation
verwendet wurden frei zugänglich zur Verfügung gestellt.

v

A C K N O W L E D G M E N T S

First of all, I would like to thank my family for everything. Thanks to
my supervisor Gerhard Widmer for making this thesis possible and
my second examiner Geoffroy Peeters for reviewing it. Big thanks to
all my co-authors and colleagues at the Department of Computational
Perception in Linz and at the OFAI in Vienna. It is a great pleasure
working with you. Peter Knees deserves explicit mention for acquiring
the GiantSteps project, allowing me to work on music I also like to
listen to. Furthermore, I would like to thank all authors who shared
their source code, datasets, annotations, and algorithm outputs or
made it publicly available, and last but not least all the anonymous
reviewers who helped to improve the papers before being published.

This research was supported by the Austrian Science Funds (FWF)
through the P22856-N23 project and the European Union Seventh
Framework Programme FP7 / 2007-2013 through the Phenicx and
GiantSteps projects (grant agreements no. 601166 and 610591, respec-
tively).

vii

C O N T E N T S

List of Figures xi
List of Tables xii
1 introduction 1

1.1 Outline . 3

1.2 Contributions . 3

1.3 Main publications . 5

1.4 Related publications . 6

i onset detection 9

2 online real-time onset detection 11

2.1 Introduction . 12

2.2 System description . 12

2.3 Data . 16

2.4 Results and discussion 17

2.5 Conclusions . 19

3 online onset detection evaluation 23

3.1 Introduction and related work 24

3.2 Compared methods . 25

3.3 Experiments . 30

3.4 Results and discussion 32

3.5 Conclusions . 34

4 vibrato suppression for onset detection 37

4.1 Introduction and related work 38

4.2 Proposed method . 40

4.3 Evaluation . 45

4.4 Conclusions . 51

ii beat and downbeat tracking 53

5 beat tracking 55

5.1 Introduction . 56

5.2 Related work . 56

5.3 Neural networks . 57

5.4 Algorithm description 58

5.5 Evaluation . 64

5.6 Conclusions . 65

6 multi-model beat tracking 69

6.1 Introduction and related work 70

6.2 Proposed method . 71

6.3 Evaluation . 76

6.4 Conclusions . 80

7 joint beat and downbeat tracking 83

7.1 Introduction . 84

ix

x contents

7.2 Related work . 84

7.3 Algorithm description 85

7.4 Evaluation . 90

7.5 Conclusions . 96

iii tempo estimation 97

8 tempo estimation 99

8.1 Introduction . 100

8.2 Related work . 100

8.3 Algorithm description 102

8.4 Evaluation . 107

8.5 Conclusions . 111

iv note transcription 113

9 piano transcription 115

9.1 Introduction . 116

9.2 System description . 117

9.3 Data . 120

9.4 Results . 121

9.5 Conclusions . 123

v software 125

10 madmom 127

10.1 Introduction . 128

10.2 Library description . 130

10.3 Conclusions . 137

bibliography 139

L I S T O F F I G U R E S

Figure 2.1 Online real-time onset detection system 13

Figure 2.2 Window functions applied to audio signal . . 14

Figure 2.3 Onset activation function 15

Figure 2.4 Spectrogram of a piano chord 17

Figure 3.1 Basic onset detection workflow. 24

Figure 3.2 Peak detection process. 27

Figure 3.3 Performance of online onset detection methods
at different attenuation levels 34

Figure 4.1 Spectral flux calculation for vibrato signals . . 40

Figure 4.2 SuperFlux computation for a violin recording
containing vibrato 42

Figure 5.1 Basic beat tracking workflow 57

Figure 5.2 LSTM unit . 58

Figure 5.3 Proposed beat tracking system 59

Figure 5.4 Signal representations for the beat tracker . . . 62

Figure 6.1 Multi-model beat tracking system 71

Figure 6.2 Model selection 73

Figure 7.1 Activations of the hidden layers of the down-
beat tracking RNN model 87

Figure 7.2 Downbeat tracking performance comparison
with different bar lengths 95

Figure 8.1 Tempo estimation system 102

Figure 8.2 Signal propagation through the resonating comb
filter bank . 103

Figure 9.1 Piano transcription system 117

xi

L I S T O F TA B L E S

Table 2.1 Online real-time onset detection performance
comparison . 18

Table 2.2 Online real-time onset detection performance
with different evaluation windows 19

Table 2.3 MIREX onset detection evaluation 21

Table 3.1 Online onset detection evaluation dataset . . . 31

Table 3.2 Online onset detection performance comparison 33

Table 3.3 MIREX onset detection evaluation 35

Table 4.1 Onset detection performance comparison on
the complete set 48

Table 4.2 Onset detection performance comparison on
the strings subset 49

Table 4.3 Onset detection performance comparison on
the violin set . 50

Table 4.4 Onset detection performance comparison on
the opera set . 51

Table 4.5 MIREX performance comparison 52

Table 5.1 Beat tracking performance comparison on the
MIREX McKinney set 65

Table 5.2 Beat tracking performance comparison on the
MIREX Mazurka set 66

Table 5.3 MIREX performance comparison 67

Table 6.1 Beat tracking performance of the individual
models of the multi-model approach 74

Table 6.2 Beat tracking performance comparison 78

Table 6.3 Beat tracking performance comparison (cont.) 79

Table 6.4 MIREX performance comparison 82

Table 7.1 Downbeat datasets 91

Table 7.2 Beat and downbeat tracking performance com-
parison on the test sets 92

Table 7.3 Beat and downbeat tracking performance com-
parison on western music 93

Table 7.4 Beat and downbeat tracking performance com-
parison on non-western music 94

Table 8.1 Tempo estimation datasets 109

Table 8.2 Tempo estimation performance comparison . . 110

Table 8.3 Tempo estimation performance comparison on
the MIREX McKinney dataset 111

Table 8.4 MIREX performance comparison 112

Table 9.1 Piano note transcription datasets 120

Table 9.2 Note transcription performance comparison . 121

xii

List of Tables xiii

Table 9.3 Note transcription performance with different
evaluation windows 123

Table 9.4 MIREX performance comparison 124

Table 10.1 Programs included in madmom 136

1
I N T R O D U C T I O N

Music information retrieval (MIR) is the research field aiming at ex-
tracting musically meaningful features from music – ideally enabling
computers to ‘listen to’ and ‘understand’ music like humans do. In
order to achieve this goal, MIR encompasses many fields such as
acoustics, musicology, electrical engineering, computer science, and –
recently more and more – artificial intelligence. The features extracted
range from low-level descriptors (e.g. the energy of a signal or spectral
description of it), to musically more descriptive mid-level representa-
tions (e.g. note onsets or beat positions), to high-level characteristics
such as the key or genre of a musical piece.

This thesis puts the focus on mid-level features – more specifically,
on onsets, beats, downbeats, and tempo – and how they can be derived
automatically from musical audio. The process of extracting these
features can be formulated as the following MIR tasks:

onset detection

Onset detection aims to identify the starting points of all musical
events in an audio signal, the onsets. Based on their characteris-
tics, onsets can be broadly categorised into three groups: pitched
(e.g. hummed voice, bowed strings, or wind instruments), per-
cussive (e.g. drums or hand claps), and pitched-percussive onsets
(e.g. strung instruments such as piano or guitar). The difficulty
of this task lies in the fact that these characteristics differ a
lot and music comprises all types of onsets which can occur
simultaneously, at different volume levels, or in various modi-
fied way. Some of the most common modifications are effects,
which can be either of artistic nature (e.g. vibrato or tremolo)
or generated synthetically by digital audio effects. These effects
do not constitute onsets, but are often falsely identified as such.
Onset detection is often used as a first processing step towards
note transcription, beat tracking, and tempo estimation. These
methods can either work on a series of discrete onsets or on a
continuous onset detection function.

beat and downbeat tracking

The metrical structure of a musical piece is generally organised
in a hierarchical way, with beats defining the most salient level,
and downbeats the first beat inside a bar. Every bar consists
of a certain number of beats, defined by the meter or time
signature. Beats can be captured intuitively by humans. Most
people are able to clap their hands or nod their head to the beats.

1

2 introduction

Downbeats, however, usually require some musical training to
be identified correctly. In western music, the downbeats often
coincide with harmonic changes, whereas in non-western music
the start of a bar is often defined by the boundaries of rhythmic
patterns.

tempo estimation

This task deals with the problem of how to accurately determine
the tempo of a musical piece. The tempo corresponds to the
frequency of the beats. Although the tempo can theoretically be
derived directly from the beats, this approach is not as straight
forward as it seems, since good beat tracking algorithms in turn
rely on a good tempo hypothesis. Thus, a common strategy is to
first estimate the periodicities based on the signal’s envelope or
a continuous onset detection function, often split into multiple
frequency bands.

note transcription

The ‘ultimate’ goal of this task is to obtain a complete transcrip-
tion (i.e. score) of a musical piece, however, currently this is
infeasible. Research therefore concentrates on smaller subtasks,
such as identifying the instruments or notes being played, of-
ten limited to monophonic signals or music played by a solo
instrument. Still, these steps lead to solving real world problems,
such as score following or the discovery of repeated patterns.
Within the scope of this thesis we focus on obtaining a tran-
scription of the note onsets for piano music renditions. This
requires the simultaneous detection of the onset timings and
pitch information.

In the past, most algorithms addressed these tasks using hand-crafted
features exploiting special characteristics often present only in certain
music styles. To lift this limitation, we avoid hand-crafted features
almost entirely, but rather learn the relevant features directly from
spectral representations of the audio signals. As training material, we
use large datasets comprising very diverse music, leading to algo-
rithms that generalise well on all kinds of music.

The algorithms proposed are not only relevant to the scientific
community, but also have practical real-world applications. These
include audio software (e.g. digital audio workstations), which can
analyse the music automatically to slice it into loop-able parts, align
the beats to a fixed grid by dynamically time-stretching it, or sync
audio effects to the tempo of the piece. Other common applications
are DJ-mixing software and hardware products. These tools aid the
DJ in analysing the tempo of the piece or even aligning two musical
pieces to be beat- and – more importantly – downbeat-synchronous.
Within the GiantSteps project,1 which provides the frame of this thesis,

1 http://www.giantsteps-project.eu

http://www.giantsteps-project.eu

1.1 outline 3

we investigated how users of such tools could benefit from MIR
algorithms in creating music or performing live [81]. The demand for
this technology is reflected in one typical quote:

“Onset detection, beat detection, tempo detection and harmony
detection is pretty much all we need.”

To provide these, reference implementations of all methods developed
in this thesis are bundled in an open-source software library that can
be used by developers, music application hackers, and musicians with
a background in music programming to support them in their specific
tasks.

1.1 outline

This thesis is a dissertation by publication, i.e. Chapters 2 to 10 have
the same content as the published peer-reviewed papers. Minor errors
such as typos have been corrected without mentioning. If the paper
contained errors, these were addressed accordingly and mentioned
explicitly as errata in the preface of the respective chapter. All pub-
lications have been reformatted to get a uniform style throughout
the thesis, which might imply a rearrangement of table columns and
splitting of large tables into multiple smaller ones. All references have
been renumbered and collected in the shared bibliography at the end
of the thesis.

The individual chapters are grouped into parts, each defined by the
task identified in the previous section. Each chapter is succeeded by
an addendum, which outlines further developments of the algorithms
and how it was adopted and subsequently used by the scientific
community.

1.2 contributions

The main contributions of this thesis can be summarised as follows:

define state of the art in the respective field

The systems and algorithms proposed in this thesis define the
state of the art in the respective field at the time of publication.
All systems were constantly improved over time and – except for
the piano note transcription system described in Part iv – still
define the current state of the art in onset detection (Part i), beat
and downbeat tracking (Part ii), and tempo estimation (Part iii).

More specifically, we contributed to these areas by:

1. Proposing an online, real-time onset detection algorithm
build upon a recurrent neural network (RNN) capable of
reporting the onsets with almost no delay (Chapter 2).

4 introduction

2. Evaluating existing onset detection algorithms regarding
their online capabilities and modifying them for online real-
time applications, achieving performance comparable to
offline algorithms (Chapter 3).

3. Enhancing spectral flux-based onset detection algorithms
with an additional vibrato-suppression stage based on a
simple, yet very effective trajectory tracking with maximum
filters which can reduce the number of false positive detec-
tions by up to 60% (Chapter 4).

4. Proposing a beat tracking system which models the tem-
poral context a beat occurs in with an RNN incorporating
long short-term memory (LSTM) units to predict beats on a
frame-by-frame basis, using autocorrelation to determine
the predominant tempo and the phase of the beats (Chap-
ter 5).

5. Extending the system with a multi-model approach which
considers heterogeneous music styles and replacing the
autocorrelation function with a more powerful dynamic
Bayesian network (DBN) for the globally best decoding of
the beat sequence (Chapter 6).

6. Further extending the system to report both beats and
downbeats. The system features an RNN which models the
metrical structure of the music at multiple levels and a DBN
being able to model bars of arbitrary length, inferring jointly
the tempo, meter, beat and downbeat positions (Chapter 7).

7. Proposing an algorithm which accurately estimates the
tempo of a musical piece by using an intermediate beat-
level representation obtained by an RNN as input to a bank
of resonating comb filters (Chapter 8).

8. Introducing a system for polyphonic piano note transcrip-
tion utilising an RNN with a regression output layer, lower-
ing the number of erroneous note detections considerably
due to its ability to model simultaneously played notes
(Chapter 9).

define a general-purpose audio feature

We define a universally applicable, well-performing audio signal
processing pipeline which can be used either directly (Chapter 3

and 4), or as a pre-processing step for (recurrent) neural networks
(Chapter 6, 7, 8, and 9).

provide a comprehensive open-source software library

Reference implementations for all algorithms developed through-
out this thesis are bundled in an open-source software library
written in Python (Chapter 10).

1.3 main publications 5

provide a large set of audio data annotations

We do not only provide software, but also release all the data
used within this thesis. Due to copyright reasons, we provide
only ground-truth annotations for all datasets, not the audio
itself. The data is organised in a central Git repository which can
be accessed at http://phd.minimoog.org.

1.3 main publications

The following peer-reviewed publications constitute the individual
chapters of this thesis.

• Sebastian Böck and Markus Schedl. “Enhanced Beat Tracking
with Context-Aware Neural Networks”. In: Proceedings of the
14th International Conference on Digital Audio Effects (DAFx). Paris,
France, 2011

• Sebastian Böck and Markus Schedl. “Polyphonic Piano Note
Transcription with Recurrent Neural Networks”. In: Proceedings
of the 37th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Kyoto, Japan, 2012

• Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl.
“Online Real-time Onset Detection with Recurrent Neural Net-
works”. In: Proceedings of the 15th International Conference on Digi-
tal Audio Effects (DAFx). York, UK, 2012

• Sebastian Böck, Florian Krebs, and Markus Schedl. “Evaluating
the Online Capabilities of Onset Detection Methods”. In: Proceed-
ings of the 13th International Society for Music Information Retrieval
Conference (ISMIR). Porto, Portugal, 2012

• Sebastian Böck and Gerhard Widmer. “Maximum Filter Vibrato
Suppression for Onset Detection”. In: Proceedings of the 16th
International Conference on Digital Audio Effects (DAFx). Maynooth,
Ireland, 2013

• Sebastian Böck, Florian Krebs, and Gerhard Widmer. “A multi-
model approach to beat tracking considering heterogeneous
music styles”. In: Proceedings of the 15th International Society for
Music Information Retrieval Conference (ISMIR). Taipei, Taiwan,
2014

• Sebastian Böck, Florian Krebs, and Gerhard Widmer. “Accurate
Tempo Estimation based on Recurrent Neural Networks and
Resonating Comb Filters”. In: Proceedings of the 16th International
Society for Music Information Retrieval Conference (ISMIR). Malaga,
Spain, 2015

http://phd.minimoog.org

6 introduction

• Sebastian Böck, Florian Krebs, and Gerhard Widmer. “Joint Beat
and Downbeat Tracking with Recurrent Neural Networks”. In:
Proceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR). New York, NY, USA, 2016

• Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs,
and Gerhard Widmer. “madmom: a new Python Audio and
Music Signal Processing Library”. In: Proceedings of the 24th
ACM International Conference on Multimedia. Amsterdam, The
Netherlands, 2016

1.4 related publications

In addition to the before mentioned publications, the author con-
tributed to the following peer-reviewed papers as the first author or
as a co-author.

• Andreas Arzt, Sebastian Böck, and Gerhard Widmer. “Fast Identi-
fication of Piece and Score Position via Symbolic Fingerprinting”.
In: Proceedings of the 13th International Society for Music Information
Retrieval Conference (ISMIR). Porto, Portugal, 2012

• Andreas Arzt, Gerhard Widmer, Sebastian Böck, Reinhard Sonn-
leitner, and Harald Frostel. “Towards a Complete Classical Music
Companion”. In: Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI). Montpellier, France, 2012

• Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, and Gerhard Widmer. “The complete
classical music companion v0.9”. In: Proceedings of the Audio
Engineering Society 53rd International Conference on Semantic Audio.
London, UK, 2014

• Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald Fros-
tel, Martin Gasser, Cynthia C. S. Liem, and Gerhard Widmer.
“The Piano Music Companion”. In: Proceedings of the 21th Eu-
ropean Conference on Artificial Intelligence (ECAI). Prague, Czech
Republic, 2014

• Sebastian Böck and Gerhard Widmer. “Local Group Delay based
Vibrato and Tremolo Suppression for Onset Detection”. In: Pro-
ceedings of the 14th International Society for Music Information Re-
trieval Conference (ISMIR). Curitiba, Brazil, 2013

• Sebastian Böck, Jan Schlüter, and Gerhard Widmer. “Enhanced
peak picking for onset detection with recurrent neural networks”.
In: Proceedings of the 6th International Workshop on Machine Learn-
ing and Music (MML). Prague, Czech Republic, 2013

1.4 related publications 7

• Tom Collins, Sebastian Böck, Florian Krebs, and Gerhard Wid-
mer. “Bridging the Audio-Symbolic Gap: The Discovery of Re-
peated Note Content Directly from Polyphonic Music Audio”.
In: Proceedings of the Audio Engineering Society 53rd International
Conference on Semantic Audio. London, UK, 2014

• Matthew E. P. Davies and Sebastian Böck. “Evaluating the Eval-
uation Measures for Beat Tracking”. In: Proceedings of the 15th
International Society for Music Information Retrieval Conference (IS-
MIR). Taipei, Taiwan, 2014

• Bruno Di Giorgi, Massimiliano Zanoni, Sebastian Böck, and
Augusto Sarti. “Multipath Beat Tracking”. In: Journal of the Audio
Engineering Society 64.7 (2016)

• Florian Eyben, Sebastian Böck, Björn Schuller, and Alex Graves.
“Universal Onset Detection with Bidirectional Long Short-Term
Memory Neural Networks”. In: Proceedings of the 11th Interna-
tional Society for Music Information Retrieval Conference (ISMIR).
Utrecht, The Netherlands, 2010

• Florian Hörschläger, Richard Vogl, Sebastian Böck, and Peter
Knees. “Addressing tempo estimation octave errors in elec-
tronic music by incorporating style information extracted from
Wikipedia”. In: Proceedings of the 12th Sound and Music Conference
(SMC). Maynooth, Ireland, 2015

• Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck,
Andreas Arzt, and Gerhard Widmer. “On the Potential of Simple
Framewise Approaches to Piano Transcription”. In: Proceedings
of the 17th International Society for Music Information Retrieval
Conference (ISMIR). New York, NY, USA, 2016

• Peter Knees, Ángel Faraldo, Perfecto Herrera, Richard Vogl,
Sebastian Böck, Florian Hörschläger, and Mickael Le Goff. “Two
data sets for tempo estimation and key detection in electronic
dance music annotated from user corrections”. In: Proceedings
of the 16th International Society for Music Information Retrieval
Conference (ISMIR). Malaga, Spain, 2015

• Filip Korzeniowski, Sebastian Böck, and Gerhard Widmer. “Prob-
abilistic extraction of beat positions from a beat activation func-
tion”. In: Proceedings of the 15th International Society for Music
Information Retrieval Conference (ISMIR). Taipei, Taiwan, 2014

• Florian Krebs, Sebastian Böck, and Gerhard Widmer. “Rhythmic
Pattern Modeling for Beat and Downbeat Tracking in Musical
Audio”. In: Proceedings of the 14th International Society for Music
Information Retrieval Conference (ISMIR). Curitiba, Brazil, 2013

8 introduction

• Florian Krebs, Sebastian Böck, and Gerhard Widmer. “An Effi-
cient State Space Model for Joint Tempo and Meter Tracking”. In:
Proceedings of the 16th International Society for Music Information
Retrieval Conference (ISMIR). Malaga, Spain, 2015

• Florian Krebs, Sebastian Böck, Matthias Dorfer, and Gerhard
Widmer. “Downbeat Tracking using Beat-Synchronous Features
and Recurrent Neural Networks”. In: Proceedings of the 17th Inter-
national Society for Music Information Retrieval Conference (ISMIR).
New York, NY, USA, 2016

• Bernhard Lehner, Gerhard Widmer, and Sebastian Böck. “A
low-latency, real-time-capable singing voice detection method
with LSTM recurrent neural networks”. In: Proceedings of the 23rd
European Signal Processing Conference (EUSIPCO). Nice, France,
2015

• Bernhard Niedermayer, Sebastian Böck, and Gerhard Widmer.
“On the Importance of “Real” Audio Data for MIR Algorithm
Evaluation at the Note-Level - A Comparative Study”. In: Proceed-
ings of the 12th International Society for Music Information Retrieval
Conference (ISMIR). Miami, FL, USA, 2011

• Markus Schedl, Peter Knees, and Sebastian Böck. “Investigating
the Similarity Space of Music Artists on the Micro-Blogosphere”.
In: Proceedings of the 12th International Society for Music Information
Retrieval Conference (ISMIR). Miami, FL, USA, 2011

• Jan Schlüter and Sebastian Böck. “Musical Onset Detection with
Convolutional Neural Networks”. In: Proceedings of the 6th Inter-
national Workshop on Machine Learning and Music (MML). Prague,
Czech Republic, 2013

• Jan Schlüter and Sebastian Böck. “Improved Musical Onset De-
tection with Convolutional Neural Networks”. In: Proceedings
of the 39th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Florence, Italy, 2014

Part I

O N S E T D E T E C T I O N

2
O N L I N E R E A L - T I M E O N S E T D E T E C T I O N

title

Online Real-time Onset Detection with Recurrent Neural Networks.

authors

Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl.

published

In Proceedings of the 15th International Conference on Digital Audio
Effects (DAFx), September 2012, York, United Kingdom.

contribution

Idea, reference implementation, and experiments were conceived and
carried out by me. Andreas Arzt contributed a real-time implementa-
tion working on live audio signals. Florian Krebs and Markus Schedl
provided valuable input.

errata

The original paper includes an error in Section 2.2.2, second paragraph:
The targets of the training examples were shifted one frame (i.e. 10 ms)
into the future. Given the fact that the delayed reporting (as outlined
in Section 2.2.3) is not needed, this results in an extra shift of roughly
5 ms in Table 2.2. The performance reported in Table 2.1 is not affected.
We corrected this error and updated this chapter accordingly.

abstract

We present a new onset detection algorithm which operates online in
real time with minimal delay. Our method incorporates a recurrent
neural network to model the sequence of onsets based solely on causal
audio signal information. Comparative performance against existing
state-of-the-art online and offline algorithms was evaluated using
a very large database. The new method – despite being an online
algorithm – shows performance only slightly short of the best existing
offline methods while outperforming standard approaches.

11

12 online real-time onset detection

2.1 introduction

Onset detection is the process of locating events in an audio signal (e.g.
a singing voice, a played note, or any other sounds). Various methods
have been proposed over the years, but most of them work only in
offline mode. Bello et al. [6] and Collins [27] give good overviews of
standard methods, and Dixon [43] proposes enhancements to several
of these. Traditional onset detection methods usually incorporate only
spectral and/or phase information of the signal. However, unlike
current top-performance algorithms, they neither employ machine
learning techniques nor use probabilistic information. For example,
the approaches presented in [55, 91] use neural networks and that
in [36] a Hidden Markov model. They all have in common, that they
usually work only in offline mode because the peak-picking methods
used rely on future information to determine the location of an onset.

Only few algorithms have been designed specifically for online
scenarios [127], where the aim is to minimise the delay between
the occurrence of the onset in the audio signal and its reporting.
Instantaneously detected onsets are a prerequisite for all kinds of real-
time applications, ranging from beat-tracking and tempo estimation
methods to look-ahead compressors for live audio processing.

2.2 system description

The proposed system is based on the state-of-the-art onset detection
algorithm that won the last two years’ MIREX onset detection eval-
uations.12. The system was originally proposed by Eyben et al. [55]
and has since then been modified and enhanced considerably, as the
improvements in the MIREX results show. In the next sections, we
present the modifications and enhancements made in order to enable
the system to work in real-time online scenarios.

The system is structured as depicted in Figure 2.1 and comprises
three main processing steps: signal pre-processing, neural network
onset prediction, and peak post-processing. As input, the system takes
a discretely sampled audio signal and transfers it to the frequency
domain via three parallel short-time Fourier transforms (STFT) with
different window lengths. The information obtained is then fed into
the recurrent neural network to detect the next occurring onset in
the audio stream. Finally, simple post-processing is used to report
the onsets instantaneously while minimising the number of false
detections.

1 http://nema.lis.illinois.edu/nema_out/mirex2010/results/aod/

2 http://nema.lis.illinois.edu/nema_out/mirex2011/results/aod/

http://nema.lis.illinois.edu/nema_out/mirex2010/results/aod/
http://nema.lis.illinois.edu/nema_out/mirex2011/results/aod/

2.2 system description 13

STFT &
Difference

STFT &
Difference

Recurrent
Neural

Network
Post-

ProcessingSignal Onsets

STFT &
Difference

Figure 2.1: Online real-time onset detection system overview.

2.2.1 Audio signal pre-processing

The system processes the audio signal frame-wise with adjacent frames
10 ms apart (i.e. the resulting frame rate is 100 frames per second). The
audio signal is transformed to the frequency domain with the short-
time Fourier transform (STFT). Three parallel STFTs with different
window lengths are used to capture both very recent and also ‘older’
information. The right edges of Hann windows are aligned at the
current position of the audio signal and the windows are normalised to
have equal area (cf. Figure 2.2). The sizes used are 512, 1024, and 2048

samples, which corresponds to periods of 11.61, 23.22, and 46.44 ms,
respectively, at a sample rate of 44,100 Hz.

The linear magnitude spectrogram of each STFT is then filtered to
obtain a compressed representation. We investigated various strategies
to reduce the dimensionality of the input vector for the neural network.
Using a filterbank with frequencies aligned to the Bark scale yielded
a good compromise between performance and size of the neutral
network input vector. The edge frequencies of the bins correspond
to the frequencies of the 24 critical bands of the Bark scale [57], and
triangular filters (with an area normalised to one) are used to sum the
multiple frequency bins of the STFT to a single one. To transform the
values to a range better suited to the downstream neural network step,
we chose a logarithmic representation of the Bark spectrograms.

Since onsets are characterised by a rise in energy in their attack
phase, the differences relative to preceding frames are also included
in the input vector. The exact delay τ for calculating the difference is
determined according to the STFT length such that the overlap of the
two frames is 0.5. This results in τ values of 1, 2, and 4 for the STFT
window lengths of 512, 1024, and 2048 samples. Although technically
speaking it is a quotient because it is calculated using logarithmic
representations, we use the term “difference” between two frames.
The three parallel Bark-filtered spectrograms and the differences make
up the 144-dimensional input vector for the neural network.

14 online real-time onset detection

-2048 -1024 -512 0
samples

0

0.25

0.5

0.75

1

m
a
g
n
it

u
d
e

Figure 2.2: Window functions applied to audio signal before STFT, with the
current position of the audio signal indicated by a vertical line.

2.2.2 Neural network

To work in a real-time online scenario, the neural network of the offline
approach [55] had to be changed considerably. Since bidirectional
neural networks violate causality, they are not suitable for this task
and were replaced by a unidirectional one. Also, the Long Short-Term
Memory (LSTM) units used in the hidden layer were replaced by
standard units with a hyperbolic tangent activation function. This
reduces the connections in the recurrent hidden layers by a factor
of four, because the standard units do not require the gates of the
LSTM units to be connected. Although LSTM units are able to model a
wider temporal context, normal units perform similarly well because
the temporal context for onset detection is limited to only a few
frames. The overall topology of the network, consisting of three fully
connected recurrent hidden layers with 20 units each, is retained.
The modifications listed reduce the computational complexity of the
system and make it suitable for real-time processing.

Network training

The network was trained as a classifier with supervised learning and
early stopping on a 75% portion of the complete dataset described
in Section 2.3. Each audio sequence was pre-processed as described
above and presented to the network for learning. The network weights
were initialised with random values following a Gaussian distribution
with mean 0 and standard deviation 0.1. Standard gradient descent
with backpropagation of the errors was used to train the network. To
avoid over-fitting, the performance was evaluated after each training
iteration on a separate validation set (a disjoint 15% of the training set
chosen at random). If no improvement was observed for 20 epochs,
training was stopped, and the network state with the best performance
on the validation set was subsequently used.

2.2 system description 15

When training a neural network to detect an upcoming onset, vari-
ous strategies for target placement are possible: placing them at the
real ground-truth positions and training the classifier as in an offline
scenario, or displacing the targets into the “future”. Although intro-
ducing some delay, training with targets shifted one frame into the
future yielded the best classification results.

Network testing

The output of the network is an onset activation function with values
in the range of [0 . . . 1] which represent the probabilities of onsets at
given positions. Figure 2.3 shows a typical onset activation function
with clearly visible peaks at the annotated positions.

2.2.3 Post-processing

Since no future values are available in online mode, the traditional
approach of finding local maxima in the thresholded onset activation
function cannot be applied here. Instead, the onset is predicted as soon
as the activation function exceeding a given threshold, determined on
the validation set by 8-fold cross-validation.

0 20 40 60 80 100
frame

0.0

0.2

0.4

0.6

0.8

1.0

o
n
se

t
a
ct

iv
a
ti

o
n

Figure 2.3: Onset activation function (output of the neural network) of the
system for a 1-second-excerpt of a pop song shown as a solid
black line. Annotated onsets are indicated by vertical lines and
the normalised detection function obtained with spectral flux is
plotted as a black dotted line.

Compared to simple signal-based onset detection methods, the
main advantage of using a neural network is that its onset activation
function has a very low noise floor with high peaks at the onset
positions (see Figure 2.3, solid black line). Thus, a very low threshold
can be used to detect the onsets as early as possible without risking
many false detections. To prevent repeated reporting of an onset (and
thus producing numerous false positive detections), an onset is only
reported if no onsets have been detected in the previous two frames
(20 ms).

16 online real-time onset detection

In the rare case of a slowly rising onset activation function (which
exceeds the threshold), this peak-picking method could lead to some
early false positive detections. To give an estimate of the penalty,
we also evaluated our new algorithm with an offline peak picking
algorithm which uses only local maxima after thresholding of the
onset activation function.

2.3 data

In online real-time processing, the definition of onsets is crucial. An
onset is usually defined as the exact time a note or instrument starts
sounding after being played. However, this timing is difficult to deter-
mine, and it is therefore impossible to annotate the real onset timing
in complex audio recordings with multiple instruments, voices, and
effects.

The most commonly used method for onset annotation is marking
the earliest time point at which a sound is audible to humans. This
instant cannot be defined by pure measures (e.g. minimum increase of
volume or sound pressure), but is a complex mixture of various factors.
All annotations of the dataset try to match the onset time as accurately
as possible. Compared to synthesised sounds generated from MIDI,
this generally leads to a delay in the range of a few milliseconds
(determined by manual correction of a piece of synthesised piano
music to match the style of other annotations).

The annotation process is very time-consuming because it is per-
formed in multiple passes. First, onsets are annotated manually during
slowed-down playback. In the second pass, visualisation support is
used to refine the onset positions. Spectrograms obtained with dif-
ferent STFT lengths are used together to capture the precise timing
of an onset without missing any onsets due to insufficient frequency
resolution. This multi-resolution procedure seems to be a good ap-
proach since the best onset detection algorithms also use it internally.
If multiple onsets are located in close vicinity, they are annotated
as multiple onsets. For reference, Figure 2.4 shows a piano chord in
which the individual notes were not played perfectly simultaneously
with two individual annotations.

The dataset consists of 327 audio excerpts taken from different
sources. 87 tracks were taken from the dataset used in [55], 23 from
[6], and 92 from [74]. All annotations were manually checked and
corrected where needed. The remaining 125 files were newly anno-
tated during the evolutionary process of the offline OnsetDetector. The
complete set contains 28,067 onsets according to the annotation style
outlined above. Although musically correct, the precise annotations
do not necessarily represent the human perception of onsets. Thus,
all onsets within 30 ms are combined into a single one located at the

2.4 results and discussion 17

Figure 2.4: Zoomed-in spectrogram of a piano chord with two notes played
4 ms apart. The pictures show a period of 50 ms (identical to the
detection window used for evaluation) taken with an STFT length
of 512 samples and 86% overlap.

arithmetic mean of the positions, which results in 26,223 combined
onsets used for evaluation.

2.4 results and discussion

We used 8-fold cross-validation with the standard measures precision,
recall, and F-measure to evaluate our approach. An onset is considered
correctly detected if there is a ground-truth annotation within ±25 ms
around the predicted position. We refer to this region as detection
window. We chose this relatively strict evaluation method (also used in
[55] and [27] for percussive sounds) because it gives more meaningful
results – especially for the task of online onset detection – than the
detection window of ±50 ms used in [6, 43, 127]. All annotated onsets
can only be matched once: two detections within the detection window
of a single annotated onset are counted as one true positive and one
false positive detection.

2.4.1 Performance comparison

Table 2.1 lists the results for the complete dataset described in Sec-
tion 2.3. The new online algorithm OnsetDetector.LL 3 is compared
to its offline variant and also to all detection methods implemented
by aubio.4 Our new online algorithm was evaluated by 8-fold cross-
validation with disjoint training, validation, and test sets. Since the
offline variants of OnsetDetector were trained with audio material
originating from the same dataset, we took particular care to avoid
using the same audio excerpts for both training and testing. The pa-
rameters of the aubio results were optimised on the complete dataset

3 The onset detector is named after Lucky Luke, the cowboy known to“shoot faster
than his shadow”, because it is able to detect an onset before a human can hear it.

4 http://aubio.org/ version 0.3.2

http://aubio.org/

18 online real-time onset detection

(optimised threshold and shifting of the reported onsets to best match
the annotations), and hence represent the maximum achievable per-
formance by traditional algorithms when perfectly adapted to the test
set.

It should be noted that the upper part of Table 2.1 lists offline
algorithms which incorporate future information for onset detection,
while our new algorithm solely relies on past information to detect
upcoming onsets.

offline precision recall f-measure

OnsetDetector.2010 0.857 0.796 0.826

OnsetDetector.2011 0.906 0.830 0.866

aubio default * 0.718 0.690 0.704

aubio specdiff * 0.653 0.650 0.652

aubio phase * 0.516 0.600 0.555

aubio complexdomain * 0.700 0.690 0.695

aubio hfc * 0.750 0.733 0.742

aubio energy * 0.608 0.572 0.590

aubio kl * 0.672 0.670 0.671

aubio mkl * 0.647 0.599 0.622

online

NEW OnsetDetector.LL 0.850 0.787 0.817

NEW OnsetDetector.LL † 0.897 0.789 0.840

Table 2.1: Comparison of performance results using the complete dataset
with a detection window of ±25 ms. All algorithms in the upper
part operate offline, while only the new one works in online mode.
Asterisks mark results obtained with parameters optimised on the
complete dataset. The last result, denoted with † was obtained
with an offline peak-picking method.

As expected, the new OnsetDetector.LL falls short of the performance
of state of the art offline onset detection algorithms (i.e. the offline
version of OnsetDetector) but clearly outperforms other onset detec-
tion methods such as Spectral Flux, Complex Domain, High Frequency
Content, and combinations thereof (as reflected by the result obtained
with the aubio algorithm), even when they were perfectly adapted to
the test set. This shows the strength of the new online onset detection
algorithm.

As mentioned in Section 2.2.3, the chosen online peak-picking
method can lead to false positive detections. The last line of Table 2.1
shows the performance obtained with an offline peak-picking method,
which yields a reduced number of false positive detections as re-
flected by absolute increase in precision of almost 5%. Comparison

2.5 conclusions 19

of this result with the offline OnsetDetector suggests that using future
information is advantageous for onset detection.

2.4.2 Detailed evaluation

Table 2.2 presents the performance results of the new algorithm evalu-
ated on the complete data set with various detection window sizes. It
exhibits remarkable performance down to a window size of ±25 ms
around the ground-truth positions of the onsets. Only when evalu-
ated with smaller window sizes, the performance drops considerably.
Although a detection window of ±15 ms is close to the accuracy of a
manual annotation (which is typically around ±2 ms for percussive
sounds and up to ±10 ms for soft onsets generated by instruments
such as string or woodwind instruments), the algorithm continues to
identify some of onsets correctly.

window precision recall f-measure error

±50 ms 0.885 0.786 0.833 4.9±8.5 ms

±35 ms 0.839 0.753 0.794 5.0±7.2 ms

±30 ms 0.808 0.725 0.765 4.9±6.8 ms

±25 ms 0.738 0.662 0.698 4.6±6.1 ms

±20 ms 0.586 0.526 0.554 3.9±5.4 ms

±15 ms 0.368 0.331 0.348 1.8±3.9 ms

Table 2.2: Performance results of the new algorithm on the complete dataset
with different evaluation windows. Additionally, the mean and
standard deviation error of all correctly detected onsets relative to
their ground-truth annotations are given.

2.4.3 Computational cost

The system works on a frame-by-frame basis with a hop-size of 10 ms.
For each audio frame, pre-processing, computing the output acti-
vations of the neural network, and post-processing take a constant
amount of time and are easily done in real time on a single core of a
2.26 GHz Intel Core 2 Duo CPU.

2.5 conclusions

We have presented a new onset detection algorithm specifically de-
signed for real-time online detection of musical onsets in audio signals.
It achieves performance close to current state-of-the-art offline onset
detection algorithms while introducing a minimal delay between the

20 online real-time onset detection

audio signal and the reporting of an onset. On modern hardware, the
computational processing can easily be achieved in real time.

2.5 conclusions 21

addendum

The signal pre-processing was later adapted to the findings of this
thesis. Instead of Bark-filtering (cf. Section 2.2.1), a logarithmically
spaced filterbank with 6 bands per octave as in Section 3.2.5 is used.
The implementation included in madmom (Chapter 10) reflects this
change.

The dataset used contains 6 files which were later removed, because
they were duplicates (2 files also contained in the set of others) or
were near-duplicates (4 files recorded at different attenuation levels).
Chapter 3 and 4 use the corrected dataset.

MIREX evaluation

The system presented was submitted and evaluated during MIREX
2012 and ranked second, after the offline variant OnsetDetector (an im-
proved version of the system proposed by Eyben et al. [55]). Although
OnsetDetectorLL operates in online mode, it outperforms all previously
submitted offline algorithms.

The 2015 submission uses the altered signal pre-processing param-
eters outlined above. Furthermore it uses multiple neural network
models trained on a larger training set and averages the predictions
of these individual models. This version shows the highest online
performance reported ever.

The submission with the highest ever reported score, the CNNOnset-
Detector refers to the algorithm presented by Schlüter and Böck [119,
120]. It incorporates the knowledge and findings obtained during the
course of this thesis and defines the current state-of-the-art in onset
detection.

online precision recall f-measure

OnsetDetectorLL (2012) 0.845 0.848 0.831

OnsetDetectorLL (2015) 0.874 0.856 0.851

offline

OnsetDetector (2013) 0.869 0.888 0.867

CNNOnsetDetector (2016) 0.860 0.899 0.873

Table 2.3: Performance of the presented OnsetDetectorLL algorithm in MIREX
evaluations compared to state-of-the-art online and offline onset
detection algorithms. The names reflect the names of the executable
programs of the madmom package (cf. Section 10.2.2).

3
O N L I N E O N S E T D E T E C T I O N E VA L U AT I O N

title

Evaluating the Online Capabilities of Onset Detection Methods.

authors

Sebastian Böck, Florian Krebs, and Markus Schedl.

published

In Proceedings of the 13th International Society for Music Information
Retrieval Conference (ISMIR), October 2012, Porto, Portugal.

contribution

Main idea and reference implementation were conceived and carried
out by me. Florian Krebs ran most of the experiments and designed
the peak detection (cf. Section 3.2.3). Markus Schedl provided valuable
input.

abstract

In this paper, we evaluate various onset detection algorithms in terms
of their online capabilities. Most methods use some kind of normal-
ization over time, which renders them unusable for online tasks. We
modified existing methods to enable online application and evaluated
their performance on a large dataset consisting of 27,774 annotated on-
sets. We focus particularly on the incorporated preprocessing and peak
detection methods. We show that, with the right choice of parameters,
the maximum achievable performance is in the same range as that
of offline algorithms, and that preprocessing can improve the results
considerably. Furthermore, we propose a new onset detection method
based on the common spectral flux and a new peak-picking method
which outperforms traditional methods both online and offline and
works with audio signals of various volume levels.

23

24 online onset detection evaluation

3.1 introduction and related work

Onset detection, the task of finding musically meaningful events in
audio signals, is fundamental to many applications: Real-time appli-
cations such as automatic score followers [31] can be enhanced by
incorporating (online) onset detectors that look for note onsets in a
live performance, while (offline) onset detection is used increasingly
to improve digital audio workstations with a view to event-wise audio
processing.

Many different methods of solving this task have been proposed
and evaluated over the years. Comprehensive overviews of onset
detection methods were presented by Bello et al. [6] and Collins [27]
(with special emphasis on psychoacoustically motivated methods in
the latter). Dixon [43] proposed enhancements to several of these. All
methods were evaluated in an offline setting, using a normalisation
over the whole length of the signal or applying averaging techniques
which require future information.

For online onset detection, only few evaluations have been carried
out: Brossier et al. [24] compared four onset functions based on spec-
tral features and proposed a method for dynamic thresholding in
online scenarios, using a dataset of 1,066 onsets for evaluation. Stowell
and Plumbley [127] proposed adaptive whitening as an improvement
to short-time Fourier transform (STFT) based onset detection meth-
ods and evaluated eight detection functions using a dataset of 9,333

onsets. Glover et al. [61] applied linear prediction and sinusoidal mod-
elling to online onset detection, but used a relatively small dataset of
approximately 500 onsets for evaluation.

These traditional onset detection methods usually incorporate only
spectral and/or phase information of the signal, are easy to implement,
and have modest computational cost. In contrast, methods based on
machine learning techniques (e.g. neural networks [55, 91]) or on
probabilistic information (e.g. hidden Markov models [36]) depend on
large datasets for training and are in general computationally more
demanding, which makes them unsuited for online processing.

The onset detection process is usually divided into three parts (as
shown in Figure 3.1): signal preprocessing, computation of the actual
onset detection function (ODF), and peak detection.

ODF Peak detectionSignal OnsetsPreprocessing

Figure 3.1: Basic onset detection workflow.

There are generally two normalisation steps that require special
attention in an online context: The first can be found in the prepro-

3.2 compared methods 25

cessing step where many implementations normalise the audio input
prior to further processing.

The second and more widespread use of normalisation is in the
peak detection stage, where the whole ODF is normalised before
being processed further. An exception to this rule are some machine
learning approaches like the neural network-based methods, since
their detection function can be considered as a probability function
which already has the range [0..1]. Furthermore, most offline methods
use smoothing or averaging over (future) time to compute dynamic
thresholds for the final peak-picking.

This paper is structured as follows: We combine the ODFs de-
scribed in Section 3.2.2 with different preprocessing methods from Sec-
tion 3.2.1 and evaluate them on the dataset described in Section 3.3.1
using the peak-picking method given in Section 3.2.3. In Section 3.4
we discuss the results, and we give conclusions in Section 3.5.

3.2 compared methods

Previously, onset detection algorithms used to work directly with the
time signal x(t). However, all current onset detection algorithms use a
frequency representation of the signal. We used frames of 23 ms length
(2048 samples at a sample rate of 44.1 kHz) that are filtered with a
Hann window before transfer into the frequency domain by means of
STFT. The hopsize between two consecutive frames was set to 10 ms,
which results in a frame rate of 100 frames per second. The resulting
spectrogram X(n, k) (n denoting the frame and k the frequency bin
number) was then processed further by the individual preprocessing
and onset detection algorithms.

3.2.1 Pre-processing

Filtering

Scheirer [117] stated that, in onset detection, it is advantageous if the
system divides the frequency range into fewer sub-bands as done
by the human auditory system. Filtering has been applied by many
authors (e.g. [27, 79, 117]), and neural network based approaches also
use filter banks to reduce the dimensionality of the STFT spectrogram
[55].

Logarithmic magnitude

Using the logarithmic magnitude instead of the linear representation
was found to yield better results in many cases, independently of the
ODF used [55, 79]. λ is a compression parameter and was adjusted for

26 online onset detection evaluation

each method separately. Adding a constant value of 1 results in only
positive values:

Xlog(n, k) = log(λ · X(n, k) + 1) (3.1)

Adaptive whitening

Stowell and Plumbley [127] proposed adaptive whitening, which nor-
malises the magnitudes |X(n, k)| of each frequency bin separately
by past peak values. The iterative algorithm (with r being a floor
parameter and m the memory coefficient) is given as follows:

Pn,k =

max(|X(n, k)|, r, m · Pn−1,k) if n ≥ 1

max(|X(n, k)|, r) otherwise

|X(n, k)| ←− |X(n, k)|
Pn,k

(3.2)

3.2.2 Onset detection functions

We have chose to omit other common methods such as phase devia-
tion (PD) [8], high frequency content (HFC) [98] or rectified complex
domain (RCD) [43], since they exhibited inferior performance in our
tests.

Spectral flux

The spectral flux (SF) [98] describes the temporal evolution of the
magnitude spectrogram by computing the difference between two con-
secutive short-time spectra. This difference is determined separately
for each frequency bin, and all positive differences are then summed
to yield the detection function.

SF(n) =
k= N

2

∑
k=1

H(|X(n, k)| − |X(n− 1, k)|) (3.3)

with H(x) = x+|x|
2 being the half-wave rectifier function. Variants of

this method use the L2-norm instead of the L1-norm or the logarithmic
magnitude [79] (cf. Section 3.2.1).

Weighted phase deviation

Another class of detection function utilises the phase of the signal
[8, 43]. The change in the instantaneous frequency (the second order

3.2 compared methods 27

derivative of the phase ϕ(n, k)) is an indicator of a possible onset. [43]
proposed an improvement to the phase deviation ODF called weighted
phase deviation (WPD). The WPD function weights each frequency
bin of the phase deviation function with its magnitude.

WPD(n) =
2
N

k= N
2

∑
k=1
|X(n, k) · ϕ′′(n, k)| (3.4)

Another way to incorporate both magnitude and phase information
(as in the WPD detection function) was proposed by Duxbury et al.
[48]. First, the expected target amplitude and phase XT(n, k) for the
current frame are estimated based on the values of the two previous
frames assuming constant amplitude and rate of phase change. The
complex domain (CD) ODF is then defined as:

CD(n) =
k= N

2

∑
k=1
|X(n, k)− XT(n, k)| (3.5)

3.2.3 Peak detection

Illustrated in Figure 3.2 and common to all onset detection methods is
the final thresholding and peak-picking step to detect the onsets in the
ODF. Various methods have been proposed in the literature; we give
an overview of the different components and modifications needed to
make them suitable for online processing.

Preprocessing Thresholding
Onset

detection
function

OnsetsPeak-picking

Figure 3.2: Peak detection process.

Pre-processing

The preprocessing stage of the peak detection process consists mainly
of two components: smoothing of the peaky ODF and normalisation.
Both of them cannot be used in an online scenario. Instead, moving
average techniques as outlined in Section 3.2.3 are applied to nor-
malise the ODF locally. To prevent detecting many false positives
due to a peaky ODF, the effect of smoothing can be approximated by
introducing a minimal distance from the last onset w5 as proposed in
Section 3.2.3.

28 online onset detection evaluation

Thresholding

Before picking the final onsets from the ODF, thresholding is per-
formed to discard the non-onset peaks. Most methods use dynamic
thresholding to take into account the loudness variations of a music
piece. Mean [43], median[8, 55, 127] or combinations [24, 61] are com-
monly used to filter the ODF. If only information about the present or
past is used, the thresholding function is suitable for online processing.

Peak-picking

Two peak-picking methods are commonly used for final detection
of onsets. One selects all local maxima in the thresholded detection
function as the final onset positions. Since detecting a local maxi-
mum requires both past and future information, this method is only
applicable to offline processing.

The other method selects all values above the previously calculated
threshold as onsets and is also suitable for online processing. The
downside of this approach is its relatively high false positive rate
because the threshold parameter must be set to a very low level to
detect the onsets reliably.

Proposed peak detection

We use a modified version of the peak picking method proposed by
Dixon [43] to also satisfy the constraints for online onset peak detection.
A frame n is selected as an onset if the corresponding ODF(n) fullfils
the following three conditions:

1. ODF(n) = max(ODF(n− w1 : n + w2))

2. ODF(n) ≥ mean(ODF(n− w3 : n + w4)) + δ

3. n− nlast onset > w5

where δ is a fixed threshold and w1..w5 are tuneable peak-picking
parameters. For online detection, we set w2 = w4 = 0. Our online
experiments experiments showed that, on average, onsets are detected
one frame earlier than annotated in the dataset (using the values
specified in Section 3.3.3). As we want to find the perceptual onset
times (as annotated), we report the onset one frame later than detected.
Note that this does not mean that we predict the onset, it only means
that the onset can be recognised in the signal before it is perceived.

Unlike in previous studies [24, 61, 127] we do not use the same
thresholding parameters for all ODFs. This is mainly because some
of the ODFs have fewer peaks and hence need less averaging in the
thresholding stage than others.

3.2 compared methods 29

3.2.4 Neural network based methods

For reference, we compare the presented methods with two state-
of-the-art algorithms, the OnsetDetector [55] and its online variant
OnsetDetector.LL [11]:

OnsetDetector uses a bidirectional neural network which processes
the signal both in a forward and backward manner, making it an
offline algorithm. The algorithms showed exceptional performance
compared to other algorithms independently of the type of onsets in
the audio material, especially in its latest version tested during the
2011 MIREX onset detection evaluation.1

OnsetDetector.LL incorporates a unidirectional neural network to
model the sequence of onsets based solely on causal audio signal
information.

Since these methods show very sharp peaks (representing the prob-
ability of an onset) at the actual onset positions, the before mentioned
peak detection method is not applied, and a simple thresholding is
used instead.

3.2.5 New method

We propose a new onset detection method which is based on the
spectral flux (cf. Section 3.2.2), drawing on various other author’s
ideas.

As a first step, we filter the linear magnitude spectrogram |X(n, k)|
with a filterbank. We investigated different types of filterbanks (Mel,
Bark, Constant-Q) and found that they all outperform the standard
spectral flux. Since they all perform approximately equally well when
using a similar number of filter bands, we chose a pseudo Constant-Q,
where the frequencies are aligned according to the frequencies of
the semitones of the western music scale over the frequency range
from 27.5 Hz to 16 kHz, but using a fixed window length for the STFT.
Overlapping triangular filters sum all STFT bins belonging to one
filter bin (similarly to Mel filtering). The resulting filterbank F(k, b) has
B = 82 frequency bins with b denoting the bin number of the filter and
k the bin number of the linear spectrogram. The filters have not been
normalised, resulting in an emphasis of the higher frequencies, similar
to the HFC method. The resulting filtered spectrogram X f ilt(n, b) is
given by:

X f ilt(n, b) = |X(n, k)| · F(k, b) (3.6)

Applying Equation 3.1 to the filtered linear magnitude spectrogram
X f ilt(n, b) yields the logarithmic filtered spectrogram Xlog

f ilt(n, b).

1 http://nema.lis.illinois.edu/nema_out/mirex2011/results/aod/

http://nema.lis.illinois.edu/nema_out/mirex2011/results/aod/

30 online onset detection evaluation

The final ODF O is then given by:

O(n) =
k= N

2

∑
k=1

H
(∣∣∣Xlog

f ilt(n, b)
∣∣∣− ∣∣∣Xlog

f ilt(n− 1, b)
∣∣∣) (3.7)

where H is the half-wave rectifier function defined in Section 3.2.2.

3.3 experiments

To evaluate the methods described, we conducted three experiments:
First, the methods were evaluated under online conditions: no fu-
ture information was used to decide whether there is an onset at the
current time point. Second, the same methods were evaluated under
offline conditions (enabling prior data normalisation or computing
averages that incorporate future information) to determine the maxi-
mum performance achievable by each method. Third, we attenuated
the volume of the audio data to an increasing degree to test the online
methods’ abilities to cope with signals of different volume without
access to normalisation.

3.3.1 Dataset

To evaluate the presented onset detection and peak-picking methods
we use a dataset of real world recordings.

An onset is usually defined as the exact time a note or instrument
starts sounding after being played. However, this timing is hard to
determine, and thus it is impossible to annotate the real onset timing
in complex audio recordings with multiple instruments, voices, and
effects. Thus, the most commonly used method for onset annotation is
marking the earliest time point at which a sound is audible by humans.
This instant cannot be defined in pure terms (e.g. minimum increase of
volume or sound pressure), but is a rather complex mixture of various
factors.

The annotation process is very time-consuming because it is per-
formed in multiple passes. First, onsets are annotated manually during
slowed down playback. In the second pass, visualisation support is
used to refine the onset positions. Spectrograms obtained with dif-
ferent STFT lengths are used in combination to capture the precise
timing of an onset without missing any onset due to insufficient
frequency resolution. This multi-resolution procedure seems to be a
good approach since the best onset detection algorithms also use this
mechanism. If multiple onsets are located in close vicinity, they are
annotated as multiple onsets.

The dataset contains 321 audio excerpts taken from various sources.
87 tracks were taken from the dataset used in [55], 23 from [6], and
92 from [74]. All annotations were manually checked and corrected

3.3 experiments 31

to match the annotation style outlined above. The remaining 119 files
were newly annotated and contain the vast majority of the 27,774

onsets of the complete set.
Although musically correct, the precise annotations (raw onsets)

do not necessarily represent human perceptions of onsets. Thus, all
onsets within 30 ms were combined into a single one located at the
arithmetic mean of the positions,2 which resulted in 25,966 combined
onsets used for evaluation. The dataset can be roughly divided into
six main groups (Table 3.1).

type of audio files raw onsets combined

Complex mixtures 193 21,091 19,492

Pitched percussive 60 2,981 2,795

Non-pitched percussive 17 1,390 1,376

Wind instruments 25 822 820

Bowed strings 23 1,180 1,177

Vocal 3 310 306

ALL 321 27,774 25,966

Table 3.1: Description of the used dataset: Pitched percussive (e.g. piano or
guitar), non-pitched percussive (e.g. percussion), wind instruments
(e.g. sax or trumpet), bowed string instruments (e.g. violin or
kemence), monophonic vocal music and complex mixtures (e.g.
jazz, pop, or classical music).

3.3.2 Measures

For evaluation, the standard measures precision, recall, and F-measure
were used. An onset is considered to be correctly detected if there is a
ground truth annotation within ±25 ms around the predicted position.
This rather strict evaluation method (also used in [55] and [27] for
percussive sounds) was chosen because it gives more meaningful
results - especially in online onset detection - than an evaluation
window of ±50 ms as used in [6, 43, 127].

An important factor in the evaluation is how false positives and
negatives are counted. Let us assume that two onsets are detected
inside the detection window around a single annotation. If tolerant
counting is used, no false positives are counted. Every single detection
is considered a true positive, since there is an annotated onset within
the detection window. This is often referred to as merged onsets. If

2 To better predict the perceived position of an onset, psychoacoustical knowledge
must be applied. Since the masking effects involved depend on both loudness and
frequency of an onset, they are not applied here. For the evaluation of onset detection
methods as in this paper, the selected method of combination is adequate.

32 online onset detection evaluation

counted in a strict way, all annotated onsets can only be matched once,
i.e. two detections within the detection window of a single onset are
counted as one true positive and one false positive detection.

Since many papers do not explicitly describe the criteria, it must be
assumed that the results were obtained with the first method (usually
yielding better results). In this paper, we evaluated the stricter way,
but with combined annotated onsets (not to be confused with merged
onsets). The combining of onsets leads to less false negative detections
if the algorithm reports only a single onset where multiple ones are
annotated. Since most of the algorithms are not capable reporting
multiple consecutive onsets, this results in a more fair comparison.

3.3.3 Parameter selection

The peak-picking parameters w1...w5 and the fixed threshold δ in-
troduced in Section 3.2.3 were optimised by a grid search over the
whole set for each method separately. As in [6, 43], we report the best
performance for each method using the optimised global parameter
set. For online detection (w2 = w4 = 0), the optimal values for w3 were
found to be between 4 and 12, w1 = 3, and w5 = 3. For the offline
case, w2 = 3, w4 = 1 and w5 = 0 yielded the best results (w1 and
w3 were left unchanged). The adaptive whitening parameters m = 10
and r = 0.005 were found to be generally good settings and were
used for all ODFs in the experiments. The compression parameter
λ (Section 3.2.1) was chosen to be between 0.01 and 20. The neural
networks are trained and evaluated using 8-fold cross validation on
disjoint training, validation, and test sets.

All parameters were optimised on the dataset and left unchanged
for the unnormalised penalty task.

3.4 results and discussion

3.4.1 Comparison of different ODFs

Table 3.2 lists the results for all algorithms working in online mode on
the complete dataset using the peak detection method described in
Section 3.2.3. It shows that application of adaptive whitening and use
of a logarithmic magnitude both outperform the traditional methods
without any preprocessing. Both preprocessing methods compress
the magnitude and hence emphasise higher frequency bands that are
important for detecting percussive onsets. Furthermore, our proposed
method (SF log filtered) clearly outperforms all the other methods (apart
from the reference OnsetDetector.LL). In particular, it is characterised
by a high precision value due to the reduced number of false positives
compared to the other methods. We believe that the filtering process
reduces the spectrum to the most relevant components for onset

3.4 results and discussion 33

detection. This may facilitate better distinction between signal changes
that are arising from an onset and spurious, non-onset-related changes.

algorithm precision recall f-measure

SF 0.763 0.728 0.745

SF aw 0.780 0.734 0.757

SF log 0.783 0.740 0.761

SF log filtered 0.883 0.735 0.803

CD 0.724 0.698 0.711

CD aw 0.764 0.751 0.758

CD log 0.774 0.711 0.741

WPD 0.688 0.706 0.697

WPD aw 0.708 0.720 0.714

WPD log 0.746 0.675 0.709

OnsetDetectorLL [11] 0.850 0.787 0.817

Table 3.2: Precision, Recall, and F-measure of different onset detection al-
gorithms using online peak-picking, where aw denotes adaptive
whitening, log denotes the use of a logarithmic magnitude and SF
log filtered is the method proposed in Section 3.2.5.

Our tests showed that - if the parameters are properly chosen -
the offline results are in the same range as the online results.3 We
deem this is a remarkable finding and think that the reasons for this
behaviour are the following: First, the audio tracks of the dataset
have similar volume levels, which renders the normalisation step less
important. Second, when looking only at single independent frames,
it seems reasonable that frames after the current onset frame do not
carry much additional information. However, the superior results of
the offline OnsetDetector (F-measure 86.6, Precision 90.6, Recall 83.0)
suggest that using both past and future information contained in the
magnitude spectrogram can be valuable to detect also the “harder”
onsets (as reflected by the much higher recall value of this method).

3.4.2 Unnormalised penalty

When dealing with unnormalised data, the investigated onset de-
tection methods experience different levels of performance loss. As
shown in Figure 3.3, our proposed onset detection method exhibits
superior performance at all attenuation levels and is only beaten by
the OnsetDetector.LL, that is unaffected by any volume changes. This
shows the power of machine learning techniques that do not depend

3 We observed an average gain in F-measure of 0.25% in offline mode

34 online onset detection evaluation

on predefined peak-picking thresholds. The methods using adaptive
whitening score third, which seems reasonable as these methods in-
clude an implicit normalisation using past frames. Computing the
difference of two adjacent frames of the logarithmic spectrum (SF
log) has the effect of dividing the magnitude at frame n by that at
frame n− 1, resulting in the relative magnitude change rather than
the absolute difference. This makes the spectral flux obtained with
logarithmic magnitudes more robust against absolute volume changes,
compared to the standard variant (SF).

Finally, methods using the logarithmic magnitude spectrum per-
formed better at lower volume levels when using a high value of the
compression parameter λ.

−15−10−50
0

10

20

30

40

50

60

70

80

90

Attenuation [dB]

F−
m
ea

su
re

[%
]

SF
SF aw
SF log
SF log filt.
CD
CD aw
CD log
WPD
WPD aw
WPD log
OnsetDetector.LL

Figure 3.3: Performance of the online methods at different attenuation levels.

3.4.3 Remarks

In this paper, we give only results for the complete dataset. Results
for subsets (organised by author) and a BSD licensed Python imple-
mentation of the newly proposed algorithm can be found online at
http://www.cp.jku.at/people/boeck/ISMIR2012.html.

3.5 conclusions

In this paper we have evaluated various onset detection algorithms in
terms of their suitability for online use, focusing on the preprocessing
and peak detection algorithms. We have shown that using logarithmic
magnitudes or adaptive whitening as a preprocessing step results
in improved performance in all methods investigated. When the pa-

http://www.cp.jku.at/people/boeck/ISMIR2012.html

3.5 conclusions 35

rameters for peak detection are chosen carefully, online methods can
achieve results in the same range as those of offline methods.

Further, we have introduced a new algorithm which outperforms
other preprocessing methods. It copes better with audio signals of
various volume levels, which is of major importance for onset detection
in real-time scenarios.

Apart from that, machine learning techniques like neural network
based methods are much more robust against volume changes in
online scenarios and are the methods of choice if enough training data
is available.

addendum

The features, i.e. the logarithmically filtered and scaled differences
of a magnitude spectrogram, developed in this paper were found to
perform well for different MIR tasks and were successfully deployed
in many systems, e.g. [73, 87–90].

MIREX evaluation

The newly introduced onset detection algorithm was submitted and
evaluated during MIREX 2012 in both online and offline setting. In
2015 it was tuned for better offline performance. It shows performance
close to the current state-of-the-art without the added complexity of
the neural network-based systems.

online precision recall f-measure

LogFiltSpecFlux (2012) 0.817 0.857 0.822

OnsetDetectorLL (2015) 0.874 0.856 0.851

offline

LogFiltSpecFlux (2012) 0.817 0.848 0.818

LogFiltSpecFlux (2015) 0.841 0.855 0.837

OnsetDetector (2013) 0.869 0.888 0.867

CNNOnsetDetector (2016) 0.860 0.899 0.873

Table 3.3: Performance of the presented LogFiltSpecFlux algorithm in MIREX
evaluations compared to state-of-the-art online and offline onset
detection algorithms. The names reflect the names of the executable
programs of the madmom package (cf. Section 10.2.2).

4
V I B R AT O S U P P R E S S I O N F O R O N S E T D E T E C T I O N

title

Maximum Filter Vibrato Suppression for Onset Detection.

authors

Sebastian Böck and Gerhard Widmer.

published

In Proceedings of the 16th International Conference on Digital Audio
Effects (DAFx), September 2013, Maynooth, Ireland.

contribution

All work was carried out by me. Gerhard Widmer provided very
valuable input.

abstract

We present SuperFlux - a new onset detection algorithm with vibrato
suppression. It is an enhanced version of the universal spectral flux
onset detection algorithm, and reduces the number of false positive
detections considerably by tracking spectral trajectories with a maxi-
mum filter. Especially for music with heavy use of vibrato (e.g. sung
operas or string performances), the number of false positive detections
can be reduced by up to 60% without missing any additional events.
Algorithm performance was evaluated and compared to state-of-the-
art methods on the basis of three different datasets comprising mixed
audio material (25,927 onsets), violin recordings (7,677 onsets) and op-
eratic solo voice recordings (1,448 onsets). Due to its causal nature, the
algorithm is applicable in both offline and online real-time scenarios.

37

38 vibrato suppression for onset detection

4.1 introduction and related work

Onset detection is the process of finding the starting points of all
musically relevant events in an audio performance. While the detection
of percussive onsets can be considered a solved problem,1 softer
onsets, vibrato and tremolo still constitute major challenges for existing
algorithms.

Since soft onsets (e.g. of woodwind or bowed string instruments)
have a long attack phase with a slow rise in energy, energy- and
magnitude-based approaches are not the best choice for detecting them.
To overcome the shortcomings of these approaches, specific algorithms
that solve the soft onset problem by additionally incorporating phase
[6, 8, 43] or pitch information [28, 118, 140] or a combination thereof
[74] have been proposed. However, magnitude-based methods [13]
have advanced and perform on par with the above methods and
outperform them on all kinds of percussive audio material.

The current state-of-the-art methods for online [11] and offline [55]
onset detection are based on a probabilistic model and incorporate
a recurrent neural network with the spectral magnitude and its first
time derivative as input features. In particular the offline variant
OnsetDetector shows superior performance on all sorts of signals in the
MIREX 2012 onset detection evaluation.2 Because of its bidirectional
architecture, it is able to model the context of an onset in order to both
detect hard do discover onsets in complex mixes (e.g. a soft note onset
of relatively low volume) and suppress events which are erroneously
considered onsets by other algorithms, such as the sound of stopped
strings.

Vibrato is an artistic effect commonly used in classical music and can
be sung or played by instruments. It reflects a quasi-periodic change
in the frequency of a played or sung note. Vibrato is characterised
technically by the amount of pitch variation (e.g. ± a semitone for
string instruments and up to a complete tone in operas) and the
frequency with which the pitch changes over time (e.g. 6 Hz). It is
sometimes used synonymously as a combination with another effect:
the tremolo, which describes changes in the volume of a note. As it
is technically difficult for a human musician to play pure vibrato or
tremolo, both effects are usually performed simultaneously. Because
of the resulting fluctuations in loudness and frequency, it is very hard
for onset detection algorithms to correctly distinguish between new
note onsets and an intended variation of the note.

So far only very few publications have addressed the problem of
spuriously detected onsets in vibrato music. Collins [28] uses a vibrato
suppression stage in his pitch-based onset detection method that first

1 State of the art detection algorithms achieve F-measure values greater than 0.95 on
percussive sounds in the annual MIREX evaluation.

2 http://nema.lis.illinois.edu/nema_out/mirex2012/results/aod/

http://nema.lis.illinois.edu/nema_out/mirex2012/results/aod/

4.1 introduction and related work 39

identifies vibrato regions which fluctuate by at most one semitone
around the center frequency and collects the extrema in a list. The
region is then expanded gradually in time to cover the whole duration
of the vibrato. After having identified the complete extent of the
vibrato, all values within this window are replaced by the mean of the
extrema list. The onset detection function is based on the concept of
stable pitches and uses the changes in pitches as cues for new onsets.

Schleusing et al. [118] deploy a system based on the inverse corre-
lation of N consecutive spectral frames centred around the current
location. Regions of stable pitch lead to low inverse correlation val-
ues, and pitch changes result in peaks in the detection function. To
suppress vibrato, they use a warp compensation which cancels out
small pitch changes within the window under consideration, leaving
the changes due to onsets mostly untouched.

Both systems work only in offline mode because they require
future information to reliably detect the vibrato and apply their
counter-measures. Furthermore, they can be used only for pitched
non-percussive music and are unsuitable for all other kinds of audio
material. Glover et al. [61] described a linear prediction post-processing
technique that can be applied to existing online onset detection al-
gorithms and is not limited to pitched instruments. Although not
designed specifically for vibratos, it is related because it improves
mostly the recall performance of the investigated onset detection
algorithms.

In this paper, we concentrate on vibrato suppression methods which
can be applied both to online (i.e. real-time processing of a continuous
audio stream with minimal latency) and offline onset detection scenar-
ios. As a basis for our research we chose the LogFiltSpecFlux method
proposed by Böck et al. [13], which is the current non-probabilistic
state-of-the-art onset detection method.3 It operates in the spectral do-
main; more specifically, it only considers the magnitude spectrogram
without incorporating any phase information. Like the common Spec-
tral Flux algorithm [98] it relies on the detection of positive changes in
the energy over time, but instead of calculating the difference from the
same bin of a previous frame (see Figure 4.1a), it includes a special
trajectory-tracking stage. A general approach to trajectory tracking
is shown in Figure 4.1b and illustrates the ability of this method
to suppress spurious positive energy fragments (which are falsely
detected as new onsets by the spectral flux algorithm) because it
calculates the difference along the trajectory path. The new method
incorporates a maximum filter (Figure 4.1c) to track the trajectory in a
computationally efficient and simple but effective way.

3 http://nema.lis.illinois.edu/nema_out/mirex2012/results/aod/

http://nema.lis.illinois.edu/nema_out/mirex2012/results/aod/

40 vibrato suppression for onset detection

t

(a) Classical bin-wise difference calcula-
tion

t

(b) Trajectory tracking-based difference
calculation

t

(c) Maximum filter-based difference calcu-
lation

Figure 4.1: (a) the problem of difference calculation in vibrato signals in-
herent in spectral flux-based methods, (b) a general trajectory
tracking-based solution, and (c) the proposed maximum filter-
based method. Arrows indicate the positions used for difference
calculation, with the tails indicating the positions of the minuends
and the heads those of the subtrahends. The grey lines in (c) mark
the frequency bounds of the regions which are assigned the same
magnitude value via the maximum filter.

4.2 proposed method

Our method adds a spectral trajectory-tracking stage to the common
spectral flux (SF) [98] algorithm. The system processes the signal in
a frame-wise manner. Thus the signal is divided into overlapping
chunks of length N = 2048 samples, and each frame is weighted with
a Hann window of the same length before being transformed to the
spectral domain via the discrete Fourier transform (DFT).

The original spectral flux implementation uses the temporal evolu-
tion of the magnitude spectrogram |X(n, k)| by calculating the bin-wise

4.2 proposed method 41

difference between two consecutive short-time spectra and then sums
all positive deviations [98]:

SF(n) =
k= N

2

∑
k=1

H (|X(n, k)| − |X(n− 1, k)|) (4.1)

with H(x) = x+|x|
2 being the half-wave rectifier function, n the frame

number and k the frequency bin index.
The problem of the difference calculation in signals containing

vibrato can be seen in Figure 4.2b. Many spectral peaks appear if the
difference between a frequency bin and the same frequency bin k of
the previous frame n− 1 is calculated. The result of our maximum
filter-based trajectory-tracking approach is illustrated in Figure 4.1c
and described below.

4.2.1 Pre-processing

To facilitate trajectory tracking, some pre-processing measures are
taken. In general, it is desirable to have a much finer temporal res-
olution than the standard frame-rate of fr = 100 fps used for onset
detection. We thus chose to double the frame-rate so that we can report
onsets with 5 ms accuracy. An increased frame rate has the advantage
that the quantised magnitude spectrogram features much smoother
trajectories, which simplifies tracking. However (in addition to the
higher computational cost) is has the disadvantage that the individual
differences (on which the onset detection function is based) are much
smaller due to greater overlapping of the windows. Thus, instead of
calculating the difference between consecutive frames, we use frames
that are further apart, the offset determined by the parameter µ:

µ = max (1, b(N/2−min{n|w(n) > r}) /h + 0.5c) (4.2)

with r being a parameter which defines the height ratio of the window
function w(n) with length N, and the hop-size h between two frames.
The hop-size can be calculated by dividing the sample-rate of the
audio signal fs by the frame-rate fr. The spectral flux onset detection
function with the improved difference calculation is given by:

SF′(n) =
k= N

2

∑
k=1

H (|X(n, k)| − |X(n− µ, k)|) (4.3)

with µ ≥ 1. The main advantage of this measure is that the difference
values are greater since the overlap of the two windows considered
is smaller (because they are located further apart). Values of r = 0.5,
resulting in µ = 2, were found to yield the best performance for a

42 vibrato suppression for onset detection

0 100 200 300 400 500 600 700
t [frames]

0

20

40

60

80

100

120

f
[b

in
s]

(a) Magnitude spectrogram

0 100 200 300 400 500 600 700
t [frames]

0

20

40

60

80

100

120
f

[b
in

s]

(b) Classical bin-wise positive difference

0 100 200 300 400 500 600 700
t [frames]

0

20

40

60

80

100

120

f
[b

in
s]

(c) Positive difference with maximum-filtering trajectory tracking

0 100 200 300 400 500 600 700 800
t [frames]

0

5

10

15

20

25

30

35

40

45

on
se

t
d
et

ec
ti

on
 f

u
n
ct

io
n

(d) Sum of differences

Figure 4.2: (a) logarithmic magnitude spectrogram of a 4 s violin recording
featuring vibrato, and filtered with a quarter-tone filterbank, (b)
the positive differences calculated by taking the bin-wise differ-
ence between two consecutive spectrogram frames, and (c) with
the proposed maximum-filtering trajectory tracking. (d) shows
the sum of all positive differences, the dotted line representing the
sum of the differences given in (b) (i.e. the method proposed in
[13]) and the solid line the sum with the maximum filter applied
shown in (c).

4.2 proposed method 43

frame-rate fr = 200 fps and the standard sample-rate fs = 44.1 kHz
of the audio signal. Additionally, the peaks of the resulting onset
detection function are much closer to the actual onset positions, which
renders lag compensation in the final peak-picking unnecessary.

To simplify trajectory tracking, the linear magnitude spectrogram is
filtered with a filterbank F(k, m) with M = 138 triangular filters with
center frequencies aligned on the western music scale and separated
by a quarter-tone from each other, covering a frequency range of
[27.5, 000]Hz. Operating on a logarithmic frequency scale has the
advantage that a constant frequency shift (e.g. by a semi-tone) always
results in a shift by the same number of frequency bins (2 if quarter-
tone filters are used) independent of the fundamental frequency of
a sounding note. Thus, the search range for trajectory tracking is
constant, independently of the starting frequency bin m.

It has been found to be advantageous (i) to filter the spectrogram
first and then take the logarithm of the summed (filtered) magnitude
as in [13] (using the same trick of adding 1 before taking the logarithm)
and (ii) not to normalise the filters of the filterbank to have equal areas.
The logarithmic filtered spectrogram is given by:

Xlog, f ilt(n, m) = log10 (|X(n, k)| · F(k, m) + 1) (4.4)

with m being the frequency bin index on the quarter-tone frequency
scale used.

4.2.2 Trajectory tracking

The frequency deviation of vibrato in string music is usually ±1
semitone with an alternation frequency of up to 10 Hz. In operatic
singing, the frequency deviation can be much greater, but the alterna-
tion frequency is lower, which results in a very similar search space
for the tracking of the magnitude trajectories. For the given setting of
fr = 200 fps and a quarter-tone filtered spectrogram, a search space of
m = ±1 frequency bins over µ = 2 consecutive time frames covers the
expected fluctuations.

Below we present two methods we investigated. They are super-
seded by our maximum filter-based approach, described subsequently,
which performs as well or better but has a much lower computational
complexity.

First we investigated an approach which uses the cross-correlation
of two frames to determine the shift in frequency needed to achieve
the highest similarity between the two frames. Based on this frequency
shift, we calculated the bin-wise differences from the µ-th preceding
frame shifted by exactly this lag. The method is similar to that used
in [118]. There, the correlation between two consecutive frames of the
linearly scaled spectrogram is used to formulate a detection function,

44 vibrato suppression for onset detection

but a special warping method is needed to compensate for the greater
frequency spreading at higher frequencies. Using a logarithmic fre-
quency scale as described in the previous section and incorporated
in the approach in [124] renders warping for proper cross-correlation
calculation between two frames unnecessary. Because both methods
use the level of correlation directly as a feature (in [118] weighted
by the energy of the signal), they only use frequencies up to 8000 Hz
[118] and 3000 Hz [124], respectively, to achieve higher correlation
values. Since we use the cross-correlation values only to choose the
shift needed for maximum correlation, the frequency range need not
be limited.

While this method works perfectly for monophonic pitched non-
percussive music, it shows inferior performance when used for mixed
audio signals where high energy portions of the signal can impede
the vibrato detection based on correlation. Thus, we implemented a
more universal approach which works on all kinds of musical signals.
A simple trajectory tracking approach was chosen which follows the
magnitude trajectory of each frequency bin m backwards in time in µ

individual time-steps. The difference for each bin is then calculated
with respect to the magnitude along the trajectory path, as can be
seen in Figure 4.1b. Since this approach is computationally expensive,
methods with lower complexity were investigated.

A very simple method which performs as well as (or better than) the
two aforementioned approaches – independently of the audio material
used – incorporates a maximum filter. Maximum filters are commonly
used in computer vision and set the value at a given position to the
maximum value in its neighbourhood, which is defined by the shape
of the filter. We chose the filter shape such that the current frequency
bin and its direct neighbours on the logarithmically scaled filtered
spectrogram Xlog, f ilt(n, m) are covered, but limited to the current time
frame. The effect of this maximum filter is a widened trajectory (on the
frequency axis), and is shown in Figure 4.1c. The maximum filtered
spectrogram is then given by:

Xmax
log, f ilt(n, m) = max

(
Xlog, f ilt(n, m− 1 : m + 1)

)
(4.5)

In the final SuperFlux detection function, the difference is then
calculated with respect to this maximum-filtered spectrogram:

SF∗(n) =
m=M

∑
m=1

H
(

Xlog, f ilt(n, m)− Xmax
log, f ilt(n− µ, m)

)
(4.6)

The effect of the measures described above is clearly visible in Fig-
ure 4.2c, which plots the positive difference (calculated to the next to
last frame) with maximum-filtering trajectory tracking of the 4-second
recording of a violin played with vibrato shown in Figure 4.2a. Com-
pared to the standard spectral flux difference calculation approach

4.3 evaluation 45

(Figure 4.2b), it clearly shows fewer positive energy components in
the regions played with vibrato. Figure 4.2d plots the sums of the
two difference calculation approaches shown above. The solid line
represents the SuperFlux detection function according to Equation 4.6,
the dotted line the standard spectral flux algorithm (applied to the
filtered logarithmic spectrogram given in Equation 4.4). This approach
is described in [13] and serves as a state-of-the-art spectral flux im-
plementation for evaluation in Section 4.3. Although the peaks of the
SuperFlux detection function are sometimes a bit lower if the new notes
are played slurred (e.g. onsets around frame numbers 430 and 580),
the overall detection function has a much lower noise floor caused by
vibrato. The remaining ripple is mostly due to variations in loudness,
for instance effects intended by the player (e.g. tremolo) or a natural
loudness fluctuation while playing vibrato.

4.2.3 Peak-picking

We use the peak-picking method described in [13] to select the final
onsets of the SuperFlux detection function. This method is simple
and suitable for both offline and online settings. In online mode (i.e.
when reading an incoming audio stream) no future information is
available, and thus only past information can be used. A frame n of
the SuperFlux onset detection function SF∗(n) is selected as an onset
if it fullfils the following three conditions:

1. SF∗(n) = max (SF∗(n− pre_max : n + post_max)),

2. SF∗(n) ≥ mean(SF∗(n− pre_avg : n + post_avg)) + δ,

3. n− nprevious onset > combination_width,

where δ is the tuneable threshold. The other parameters were chosen
to yield the best performance on the complete dataset. Specifically,
pre_max = 30 ms, post_max = 30 ms, pre_avg = 100 ms, post_avg =

70 ms, and combination_width = 30 ms achieved good overall results.
Parameter values must first be converted into frames depending on
the frame-rate fr used. For peak picking in online mode, post_max
and post_avg are set to 0.

4.3 evaluation

We used a variety of datasets and settings in our evaluation to max-
imise comparability with published methods.

4.3.1 Datasets

The biggest dataset used for evaluation is that described in [13], which
consists mostly of mixed audio material covering different types of

46 vibrato suppression for onset detection

musical genres, performed on various instruments. It includes the
sets used in [6], [74], and [55]. The 321 files have a total length of
approximately 102 minutes and have 27,774 annotated onsets (25,927

if all onsets within 30 ms are combined). The main purpose of this set
is to show how the new SuperFlux algorithm performs on a general-
purpose dataset. This dataset is hereafter referred to as Böck. Based on
this set, we built a subset covering only the violin and cello recordings
played with vibrato. These 16 files have 849 onsets.

To compare with the current state-of-the-art algorithm for pitched
non-percussive music presented in [118], we use the authors’ dataset.
However, not all sound files and annotations could be used for eval-
uation, since the authors could provide only part of this set. As the
available dataset contains 75% of the original dataset (7,677 instead
of 9,717 onsets) and an identical distribution of the different playing
styles (50% contain vibrato, some staccato etc.), we are confident that
the results obtained are nonetheless comparable. We call this the Wang
dataset.

To investigate our algorithm’s ability to suppress the vibrato in
operatic singing, a third dataset (called the Opera dataset) consisting
of solo singing rehearsal recordings of a Haydn opera was used. The
recordings were made at the Ars Electronica Future Lab in Linz, Austria.
The set covers both male and female singers and has a total length of
10 minutes, containing 1,448 onsets.

4.3.2 Performance measures and evaluation settings

The performance of onset detection methods is commonly evaluated
by means of Precision, Recall, and F-measure. If a detected onset is
within the evaluation window around an annotated ground truth
onset location, it is considered to be correct. However, every detected
onset can only match once, and thus any detected onset within the
evaluation window of two different annotated onsets counts as one
true positive and one false negative (a missed onset). The same applies
to annotations: all additionally reported onsets within the evaluation
window of an annotation are counted as false positive detections.
For better comparability with other results, we match the evaluation
parameters as follows:

Our standard setting is that used in [13], which combines all an-
notated onsets within 30 ms to a single onset and uses an evaluation
window of ± 25 ms to identify correctly detected onsets. Thus, the
combination_width parameter of our peak-picking is also set to 30 ms.

The second set of parameters (used for the evaluation of the Wang
dataset) uses the same settings as in [118], where all onsets within
50 ms are combined (i.e. combination_width = 50 ms) and an evalua-
tion window of ± 70 ms is used.

4.3 evaluation 47

Unless otherwise noted, all results were obtained by swiping the
threshold parameter δ of the peak-picking stage and choosing the
value that maximises the F-measure on the respective dataset.

4.3.3 Results and discussion

In order to demonstrate that the SuperFlux algorithm is a good all-
round performer which not only suppresses false positive onsets in
music with vibrato, but also performs on the same level as state-of-
the-art methods, we tested it against various other onset detection
algorithms.

Competitors

For comparison, we chose the four best-performing online and offline
onset detection methods among those submitted to MIREX 2012.4 We
consider these submissions the state of the art, since they achieved the
highest ever F-measures in the MIREX evaluation. OnsetDetector.2012
is an improved version of the method originally proposed in [55],
which shows superior performance in offline scenarios. Together with
its online variant, OnsetDetectorLL [11], it belongs to the group of
probabilistic approaches. Since both were trained on the complete
Böck dataset (cf. Section 4.3.1), results given for these algorithms were
obtained with 8-fold cross-validation and parameter tuning on the
training subset. The LogFiltSpecFlux [13] algorithm uses no probabilis-
tic information and thus is much less computationally demanding. It
can be used both in online and offline scenarios and marks the upper
bound of performance “simple” algorithms are able to achieve to date.

Böck set

The results for the full Böck dataset are given in Table 4.1. In online
mode, the new SuperFlux algorithm clearly outperforms the LogFilt-
SpecFlux method [13] on which it is based, and it closes the gap to the
reference OnsetDetectorLL neural network-based approach [11].

An important aspect of the results is the shift of the new method
towards higher recall values (and thus a more balanced ratio with
respect to precision). Although the algorithm does not detect more
onsets per se, suppressing spurious onsets has the very favourable
side effect of allowing a lower overall threshold to be chosen for the
peak-picking stage, which leads, in turn, to a higher recall rate without
too many additional false positives.

In offline mode, the overall picture is very similar: all methods
performed slightly better than in online mode with the exception of the
OnsetDetector.2012 algorithm, which exhibited superior performance.
This is mainly due to the algorithm’s ability to model the context

4 http://nema.lis.illinois.edu/nema_out/mirex2012/results/aod/

http://nema.lis.illinois.edu/nema_out/mirex2012/results/aod/

48 vibrato suppression for onset detection

online precision recall f-measure

OnsetDetectorLL [11] 0.863 0.783 0.821

LogFiltSpecFlux [13] 0.854 0.753 0.801

SuperFlux 0.855 0.787 0.820

offline

OnsetDetector.2012 [55] 0.892 0.855 0.873

LogFiltSpecFlux [13] 0.877 0.756 0.812

SuperFlux 0.883 0.793 0.836

Table 4.1: Precision, Recall, and F-measure of different onset detection al-
gorithms using online (upper half) and offline (lower half) set-
tings on the Böck dataset. Results for the OnsetDetectorLL [11]
and OnsetDetector.2012 [55] algorithms were obtained with 8-fold
cross-validation and parameters selected solely on the training set.

of an onset and thus to detect “more difficult” onsets that cannot
be found by other methods. Detailed investigations of the remaining
false positive detections revealed that OnsetDetector.2012 recognises
the sound of a stopped string and thus does not report an onset in
such situations, which results in a higher precision rate. However, this
is only possible if future information is available (i.e. only in offline
mode) and exploited by the algorithm – which is not the case for the
SuperFlux since its trajectory tracking is strictly causal, and the offline
mode only differs in the peak-picking settings.

Table 4.2 compares SuperFlux and LogFiltSpecFlux on the basis of the
string pieces of the dataset, and highlights the ability of our SuperFlux
algorithm to successfully suppress false positive detections originating
mostly from vibrato. Especially in online mode, the number of false
detections decreases from 185 to 118, which is a reduction by 36%. At
the same time SuperFlux misses fewer notes (263 compared to 294)
because of the lower threshold chosen. In offline mode, the number
of false positive detections cannot be reduced any further, but a few
additional correctly identified onsets lead to slightly improved results
compared to the online mode.

For the results in Table 4.2 the parameters were not optimised to
give the best F-measure performance on the strings subset; rather,
the settings used to obtain the results in Table 4.1 were retained to
demonstrate our algorithm’s ability to outperform existing approaches
on both a general-purpose dataset and string recordings with vibrato
without altering settings.

4.3 evaluation 49

online precision recall f-measure

OnsetDetectorLL [11] 0.822 0.676 0.742

LogFiltSpecFlux [13] 0.750 0.654 0.699

SuperFlux 0.832 0.690 0.755

offline

OnsetDetector.2012 [55] 0.834 0.820 0.827

LogFiltSpecFlux [13] 0.786 0.684 0.732

SuperFlux 0.836 0.701 0.762

Table 4.2: Precision, Recall, and F-measure of different onset detection algo-
rithms using online (upper half) and offline (lower half) settings
on the strings subset of the Böck dataset using the same parameters
as used for the results in Table 4.1.

Wang set

Table 4.3 shows the performance on violin music on the basis of the
Wang dataset. The SuperFlux method outperforms all other algorithms
in terms of false positive detections both in online and offline mode.
In comparison to the LogFiltSpecFlux method, a reduction in false
positives by 61% in online mode and 58% in offline mode can be
achieved.

Compared to the algorithm described in [118], which is tuned specif-
ically for pitched non-percussive signals with vibrato, SuperFlux is
able to achieve the same low level of false positive detections, but
increases the number of correctly reported onsets by 3.8%. Since the
method of Schleusing et al. [118] works only in offline mode, no results
for online mode can be given. Because the results of the SuperFlux
algorithm performing in online mode are on the same level as this
highly specialised algorithm for pitched non-percussive instruments
(in offline mode), it can be considered a more universal approach for
onset detection.

Interestingly, the methods without any dedicated vibrato suppres-
sion (LogFiltSpecFlux and OnsetDetector) outperform the one proposed
by Collins [28], which does include a vibrato suppression stage and is
also tuned specifically towards pitched instruments.

Since the recordings in the Wang dataset are exclusively solo record-
ings made in a sound-absorbing room and contain only very few
polyphonic parts, we consider the results given in Table 4.2 a much
better approximation to real-world examples since they also feature
accompanying instruments, which make vibrato tracking and suppres-
sion harder. Also, the evaluation criteria chosen are very lax compared
to those used for all other results. With the stricter evaluation, the new

50 vibrato suppression for onset detection

online true positives false positives

OnsetDetectorLL [11] 92.3% 20.8%

LogFiltSpecFlux [13] 97.1% 20.7%

SuperFlux 92.7% 9.6%

offline

Collins [28] 62.4% 24.4%

OnsetDetector.2012 [55] 96.5% 15.5%

LogFiltSpecFlux [13] 97.0% 17.8%

Schleusing et al. [118] 91.2% 9.2%

SuperFlux 94.7% 9.1%

Table 4.3: True and false positive rates of different onset detection algo-
rithms using online (upper half) and offline (lower half) settings
on the Wang dataset. Results for the methods of Collins [28] and
Schleusing et al. [118] algorithms were taken from [118]. For evalu-
ation, the same settings as in [118] are used (cf. Section 4.3.2).

SuperFlux algorithm achieves true and false positive rates of 89.7% and
22.8% respectively (0.772 Precision, 0.897 Recall, and 0.830 F-measure).

Opera set

The last dataset for performance evaluation was the newly created
dataset with male and female opera rehearsal recordings. In line with
the other results, our method dramatically outperforms the LogFilt-
SpecFlux algorithm and thus closes the gap to probabilistic methods.
In the case of online peak picking, the number of false detections
decreased from 1198 to 498, which is a reduction by 58%. In offline
mode, the false positive rate was reduced by 55%. The recalls of both
algorithms are almost identical in both cases.

Note that no opera material was used to train the two neural
network-based methods. Only the threshold values for peak pick-
ing were adapted to yield the best overall performance. This explains
the imbalance of the recall and precision values compared to those of
our new method, which exhibits a much better balance.

4.3.4 Runtime

The new SuperFlux algorithm has almost the same low computational
complexity as the LogFiltSpecFlux method [13] on which it is based. On
a single 2.26 GHz core of an Intel Core 2 Duo MacBook Pro, processing
of a 60-second audio piece takes 2 seconds (30 times real-time) com-
pared to 1.7 seconds of the same algorithm without any maximum
filtering trajectory tracking. This is extremely fast compared to neural

4.4 conclusions 51

online precision recall f-measure

OnsetDetectorLL [11] 0.588 0.744 0.657

LogFiltSpecFlux [13] 0.435 0.638 0.518

SuperFlux 0.649 0.637 0.643

offline

OnsetDetector.2012 [55] 0.576 0.777 0.662

LogFiltSpecFlux [13] 0.480 0.632 0.546

SuperFlux 0.672 0.635 0.653

Table 4.4: Precision, Recall, and F-measure of different onset detection algo-
rithms using online (upper half) and offline (lower half) settings
on the Opera dataset.

network-based approaches, which take approximately 14 and 20 sec-
onds (online- and offline-mode). Additionally, they require annotated
audio material for training, which takes several hours.

4.4 conclusions

This paper has presented a new method for vibrato suppression with
maximum filtering. Our SuperFlux onset detection algorithm is based
on the common spectral flux method and is able to reduce the number
of false positive detections originating from vibrato by up to 60% com-
pared to current state-of-the-art implementations. It does so without
missing any onsets otherwise detected.

In comparison to highly specialised vibrato suppression mecha-
nisms for monophonic pitched music, our method achieves the same
precision rate but improves the recall rate by 4%. The same rise in re-
call rate can be observed on complex polyphonic mixed audio signals.
This underlines the universal suitability of the new algorithm.

Since our method’s vibrato suppression mechanism is based solely
on past information, it can be used in online real-time applications
without any fundamental modifications. In online scenarios, it closes
the performance gap to the best neural network-based approach but
has the advantage of a much lower computational complexity. Because
of this low processing demands it can be considered the first choice
for a universal onset detection method suitable for all kinds of music.
An open-source (BSD-licensed) reference Python implementation of
the method can be found at https://github.com/CPJKU/SuperFlux/.

https://github.com/CPJKU/SuperFlux/

52 vibrato suppression for onset detection

addendum

The SuperFlux algorithm currently acts as the de facto standard for
simple onset detection and was adopted by many authors. For instance,
it is used in other work as a pre-processing step, as a dedicated onset
detection stage, or as the basis for further enhancements [19, 20, 112,
128, 129, 139].

An updated software implementation of this algorithm can be found
in the madmom package, which is described in Chapter 10.

MIREX evaluation

The SuperFlux onset detection algorithm was submitted and evaluated
during MIREX 2013. It was then constantly improved by adjusting
the peak-picking parameters based on additionally annotated musical
excerpts. These improvements are reflected by the 2014 and 2015

MIREX submissions. With its latest parametrisation, SuperFlux shows
performance close to the current state-of-the-art without the added
complexity of the neural network-based systems.

algorithm precision recall f-measure

SuperFlux (2013) 0.883 0.787 0.812

SuperFlux (2014) 0.834 0.861 0.834

SuperFlux (2015) 0.854 0.856 0.839

OnsetDetector (2013) 0.869 0.888 0.867

CNNOnsetDetector (2016) 0.860 0.899 0.873

Table 4.5: Performance of the presented SuperFlux algorithm in MIREX eval-
uations compared to state-of-the-art offline onset detection algo-
rithms. The names reflect the names of the executable programs of
the madmom package (cf. Section 10.2.2).

Part II

B E AT A N D D O W N B E AT T R A C K I N G

5
B E AT T R A C K I N G

title

Enhanced Beat Tracking with Context-Aware Neural Networks.

authors

Sebastian Böck and Markus Schedl.

published

In Proceedings of the 14th International Conference on Digital Audio
Effects (DAFx), September 2011, Paris, France.

contribution

All work was carried out by me. Markus Schedl provided valuable
input.

abstract

We present two new beat tracking algorithms based on the autocor-
relation analysis, which showed state-of-the-art performance in the
MIREX 2010 beat tracking contest. Unlike the traditional approach
of processing a list of onsets, we propose to use a bidirectional Long
Short-Term Memory recurrent neural network to perform a frame by
frame beat classification of the signal. As inputs to the network the
spectral features of the audio signal and their relative differences are
used. The network transforms the signal directly into a beat activation
function. An autocorrelation function is then used to determine the
predominant tempo to eliminate the erroneously detected – or com-
plement the missing – beats. The first algorithm is tuned for music
with constant tempo, whereas the second algorithm is further capable
to follow changes in tempo and time signature.

55

56 beat tracking

5.1 introduction

For humans, tracking the beat is an almost natural task. We tap our foot
or nod our head to the beat of the music. Even if the beat changes, hu-
mans can follow it almost instantaneously. Nonetheless, for machines
the task of beat tracking is much harder, especially when dealing with
varying tempi, as the numerous publications by different authors on
this subject suggest.

Locating the beats precisely opens new possibilities for a wide range
of music applications, such as automatic manipulation of rhythm,
time-stretching of audio loops, beat accurate automatic DJ mixing or
self-adapting digital audio effects. Beats are also crucial for analysing
the rhythmic structure, and the genre of songs. In addition they help
identifying cover songs or estimating the similarity of music pieces.

The remainder of this paper is structured as follows: Section 5.2
gives a short overview over existing methods for beat tracking. Sec-
tion 5.3 briefly introduces the concept and different types of neural
networks with a special emphasis on bidirectional Long Short-Term
Memory recurrent neural networks, which are used in the proposed
algorithms. Section 5.4 details all aspects of the newly proposed beat
tracking algorithms. Results and discussion are given in Section 5.5
and the final section presents conclusions and an outlook to further
works.

5.2 related work

Most methods for beat tracking of audio signals have a working
scheme like the one shown in Figure 5.1. After extracting features from
the audio signal, they try to determine the periodicity of the signal
(the tempo) and the phase of the periodic signal (the beat locations).
The features can be for example onsets, chord changes, amplitude
envelopes, or spectral features. The choice of a particular feature
mostly depends on the subsequent periodicity estimation and phase
detection stages. For periodicity estimation, autocorrelation, comb
filter, histogram, and multiple agent based induction methods are
widely used. Some methods also produce phase information during
periodicity estimation, and therefore do not need a phase detection
stage to determine the exact position of the beat pulses. Gouyon and
Dixon [64] gives a good overview on the subject.

Most of todays top performing beat tracking algorithms rely on
onsets as features [35, 50, 106]. Since music signals contain much more
onsets than beats, additional processing is needed to locate the beats
within the onsets. By transferring this determination of beats into a
neural network, less complex post-processing is needed to achieve
comparable or better results.

5.3 neural networks 57

Periodicity
estimation

Phase
detectionSignal BeatsFeature

extraction

Tempo

Figure 5.1: Basic workflow of traditional beat tracking methods.

5.3 neural networks

Neural networks have been around for decades and are successfully
used for all kind of machine learning tasks.

The most basic approach is the multilayer perceptron (MLP) forming
a feed forward neural network (FNN). It has a minimum of three layers
where the input values are fed through one or more hidden layers
consisting of neurons with non-linear activation functions. The output
values of the last hidden layer are finally gathered in the output nodes.
This type of network is a strictly causal one, where the output is
calculated directly from the input values.

If cyclic connections in the hidden layers are allowed recurrent neural
networks (RNN) are formed. They are theoretically able to remember
any past value. In practice however, RNNs suffer from the vanishing
gradient problem, i.e. input values decay or blow up exponentially
over time.

Hochreiter and Schmidhuber [70] proposed the use of Long Short-
Term Memory (LSTM) units to overcome this problem. Each LSTM unit
(depicted in Figure 5.2) has a recurrent connection with weight 1.0
which enables the block to act as a memory cell. Input, output, and
forget gates control the content of the memory cell through multiplica-
tive units and are connected to other neurons as usual. If LSTM blocks
are used, the network has access to all previous input values.

If not only the past, but also the future context of the input is
necessary to determine the output, a number of different strategies
can be applied. One is to add a fixed time window to the input,
another solution is to add a delay between the input values and the
output targets. Both measures have their downsides as they either
increase the input vector size considerably or the input values and
output targets are displaced from each other.

Bidirectional recurrent neural networks (BRNN) [121] offer a more
elegant solution to the problem by doubling the number of hidden
layers. The input values to the newly created set of hidden layers are
presented to the network in reverse temporal order. This offers the
advantage that the network not only has access to past input values
but can also ’look into the future’.

If bidirectional recurrent networks are used in conjunction with
LSTM neurons, a bidirectional Long Short-Term Memory (BLSTM) recur-

58 beat tracking

Forget
Gate

Output
Gate

Input

Input
Gate•

•

•

1.0

Output

Memory
Cell

Figure 5.2: LSTM block with memory cell

rent neural network is build. It has the ability to model any temporal
context around a given input value. BLSTM networks performed
very well in areas like phoneme and handwriting recognition and are
described more detailed in [67].

5.4 algorithm description

This section describes our algorithm for beat detection in audio sig-
nals. It is based on bidirectional Long Short-Term Memory (BLSTM)
recurrent neural networks. Due to their ability to model the temporal
context of the input data [67], they perfectly fit into the domain of beat
detection. Inspired by the good results for musical onset detection
Eyben et al. [55], the approach of this work is used as a basis and
extended to suit the needs for audio beat detection by modifying the
input representation and adding an advanced peak detection stage.

Figure 5.3 shows the basic signal flow of the proposed system. The
audio data is transformed to the frequency domain via three parallel
short-time Fourier transforms (STFT) with different window lengths.
The obtained magnitude spectra and their first order differences are
used as inputs to the BLSTM network, which produces a beat activa-
tion function. In the peak detection stage, first the periodicity within
this activation function is detected with the autocorrelation function
to determine the most dominant tempo. The beats are then aligned
according to the previously computed beat interval. We propose two
different peak detection algorithms, one tuned for music with constant
tempo and beats (BeatDetector) and a second one which is able to track
tempo changes (BeatTracker). The individual blocks are described in
more detail in the following sections.

5.4 algorithm description 59

STFT &
Difference

STFT &
Difference

BLSTM
Network

Peak
detectionSignal Beats

STFT &
Difference

Figure 5.3: Basic signal flow of the presented beat detector / tracker

5.4.1 Feature extraction

As input, the raw pulse code modulated (PCM) audio signal with
a sampling rate of fs = 44.1 kHz is used. To reduce the computa-
tional complexity, stereo signals are converted to a monaural signal by
averaging both channels. The discrete input audio signal x(n) is seg-
mented into overlapping frames of W samples length. The windows
with lengths of 23.2 ms, 46.4 ms, and 92.8 ms (1024, 2048, and 4096

samples respectively) are sampled every 10 ms, resulting in a frame
rate fr = 100 fps. A standard Hamming window w(l) of the same
length is applied to the frames before the STFT is used to compute the
complex spectrogram X(n, k)

X(n, k) =
W
2 −1

∑
l=−W

2

w(l) · x(l + nh) · e−2π jlk/W (5.1)

with n being the frame index, k the frequency bin index, and h the hop
size or time shift in samples between adjacent frames. The complex
spectrogram is converted to the power spectrogram S(n, k) by omitting
the phase portion of the spectrogram by

S(n, k) = |X(n, k)|2 . (5.2)

Psychoacoustic knowledge is used to reduce the dimensionality
of the resulting magnitude spectra. To this end, a filterbank with 20

triangular filters located equidistantly on the Mel scale is used to
transform the spectrogram S(n, k) to the Mel spectrogram M(n, m).
To better match the human perception of loudness, a logarithmic
representation is chosen (cf. Figure 5.4a):

M(n, m) = log
(

S(n, k) · F(m, k)T + 1.0
)

(5.3)

If large window lengths are used for the STFT, the raise of the
magnitude values in the spectrogram occurs early compared to the

60 beat tracking

actual beat location (cf. Figure 5.4b). Instead of calculating the simple
positive first order difference as in [55], a more advanced method is
used to overcome this displacement of the actual beat locations com-
pared to the positive first order difference. First a median spectrogram
Mmedian(n, m) is obtained according to

Mmedian(n, m) = median{M(n− l∗, m), . . . , M(n, m)} (5.4)

with l∗ being the length for which the median is calculated. This length
depends on the used window size W for the STFT, and is computed
as: l∗ = bW/100c. Both the use of the median and the length of the
window were empirically determined during preliminary studies. The
positive first order median difference D+(n, m) is then calculated as

D+(n, m) = H (M(n, m)−Mmedian(n, m)) (5.5)

with H(x) being the half-wave rectifier function H(x) = x+|x|
2 (cf.

Figure 5.4c). Using only the positive differences as additional inputs
to the neural network gave better performance than omitting the
differences at all or including both the positive and negative values.

5.4.2 Neural network

For the neural network stage, a bidirectional recurrent neural net-
work with LSTM units is used. As inputs to the neural network three
logarithmic Mel-spectrograms M23(n, m), M46(n, m) and M93(n, m)

(computed with window sizes of 23.2 ms, 46.4 ms, and 92.8 ms, respec-
tively) and their corresponding positive first order median differences
D+

23(n, m), D+
46(n, m), and D+

93(n, m) are used, resulting in 120 input
units. The fully connected network has three hidden layers in each
direction, with 25 LSTM units each (6 layers with 150 units in total).
The output layer has two units, representing the two classes ‘beat’ and
‘no beat’. Thus the network can be trained as a classifier with the cross
entropy error function. The outputs use the softmax activation func-
tion, i.e. the output of each unit is mapped to the range [0, 1] and their
sum is always 1. The output nodes thus represent the probabilities for
the two classes.

Network training

The network is trained as a classifier with supervised learning and
early stopping. The used training set consists of 88 audio excerpts
taken from the ISMIR 2004 tempo induction contest 1 (also known as
the “Ballroom set”) with lengths of 10 seconds each, the 26 training

1 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html

http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html

5.4 algorithm description 61

and bonus files from the MIREX 2006 beat tracking evaluation 2 with
lengths of 30 seconds, and 6 musical pieces of the set introduced by
Bello et al. [6] with lengths from 3 to 15 seconds. Each musical piece is
manually beat annotated, marking every quarter note in case of time
signature with a denominator of four (i.e. 2/4, 3/4, and 4/4), and the
eighth note for all pieces (or parts of pieces) with a time signature of
5/8 or 7/8. The 120 files have a total length of 28.5 minutes and 3,595

annotated beats.
Each audio sequence is preprocessed as described above and pre-

sented to the network for learning. The network weights are initialised
with random values following a Gaussian distribution with mean
0 and standard deviation 0.1. Standard gradient descent with back-
propagation of the errors is used to train the network. To prevent
over-fitting, the performance is evaluated after each training iteration
on a separate validation set (a 15% randomly chosen disjoint part of
the training set). If no improvement is observed for 20 epochs, the
training is stopped and the network state with the best performance
on the validation set is used onwards.

Network testing

Since the network weights were initialised randomly, five different
networks were trained on different sets of the training data. The beat
activation functions of the ‘beat’ output nodes are then averaged and
used as input to the following stage (cf. Figure 5.4d). For the evaluation
the preprocessed music excerpts are presented to these five previously
trained networks.

5.4.3 Peak detection

The averaged beat activation function (cf. Figure 5.4d) gives the prob-
ability of a beat at each frame. Similar to [55], the function could be
used directly to determine the beats by applying a simple threshold.
However, a more sophisticated algorithm for peak picking is applied
here. It is able to reduce the relatively high number of false posi-
tives and negatives even further. This method yields an F-measure
value of 0.88 for a 5-fold cross validation on the complete training set,
compared to 0.81 achieved using a simple threshold.

If constant tempo is assumed for (a part of) the musical piece, the
predominant tempo can be used to eliminate false positive beats, or
complement missing false negative ones. The two different proposed
peak detection techniques differ only in the length for which a con-
stant tempo is assumed. The BeatDetector assumes a constant tempo
throughout the whole musical piece, whereas the BeatTracker consid-

2 http://www.music-ir.org/mirex/wiki/2006:Audio_Beat_Tracking

http://www.music-ir.org/mirex/wiki/2006:Audio_Beat_Tracking

62 beat tracking

0 50 100 150 200 250 300 350 400
Time [frames]

0

5

10

15

20

M
e
l
fr

e
q
u
e
n
cy

 b
a
n
d

(a) Logarithmic Mel spectrogram with an STFT window of 92.8 ms

0 50 100 150 200 250 300 350 400
Time [frames]

0

5

10

15

20

M
e
l
fr

e
q
u
e
n
cy

 b
a
n
d

(b) Positive first order difference to the preceding frame

0 50 100 150 200 250 300 350 400
Time [frames]

0

5

10

15

20

M
e
l
fr

e
q
u
e
n
cy

 b
a
n
d

(c) Positive first order difference to the median of the last 0.41 s

(d) Beat activation function (output of the neural network stage)

Figure 5.4: Evolution of the signal through the processing steps of the algo-
rithm. It shows a 4 s excerpt from ‘Basement Jaxx - Rendez-Vu’. Beat
positions are marked with dashed/dotted vertical lines.

5.4 algorithm description 63

ers only a moving window which covers the next 6 seconds. This
modification enables the BeatTracker to follow tempo changes.

Autocorrelation function

Both proposed algorithms first determine the tempo for the musical
piece. The BeatDetector uses the entire input signal for calculation,
whereas the BeatTracker only uses the next 6 seconds relative to the
actual starting point. The most dominant beat interval of this segment
is used to estimate the tempo. The autocorrelation function (ACF) is
calculated on the beat activation function ab(n) as follows:

A(τ) = ∑
n

ab(n + τ) · ab(n) (5.6)

The algorithm constrains the possible tempo range of the audio
signal from Tmin = 40 to Tmax = 220 given in beats per minute. Thus
only values of A(τ) corresponding to the range from τmin = 273 ms
to τmax = 1.5 s are used for calculation. Since music tends to slightly
vary in tempo and beats sometimes occur early or late relative to
the absolute position of the dominant tempo, the resulting inter beat
intervals vary as well. Therefore a smoothing function s is applied to
the result of the autocorrelation function A(τ). A Hamming window
with a size of τt = 150 ms is used. The size of this window is not
crucial, as long as it is wide enough to cover all possible interval
fluctuations and remains shorter than the smallest delay τmin used
for the autocorrelation. This results in the smoothed autocorrelation
function A∗(τ):

A∗(τ) = A(τ) ? s (τt) (5.7)

Beat phase detection

The dominant tempo corresponds to the highest peak of the smoothed
autocorrelation function A∗(τ) at index τ∗. This delay τ∗ is used
as the beat interval i. The phase of the beat p∗ is computed as the
highest value of the beat activation function’s sum at the possible beat
positions for the given interval i:

p∗ = max
p=0...i

∑
k

ab(p + k · i) (5.8)

Peak-picking

Finally, the beats are represented by the local maxima of the beat
activation function. Thus, we use a standard peak search around
the locations given by nk = p∗ + k · i calculated with the previously

64 beat tracking

determined p∗. To allow for small timing fluctuations, a deviation
factor d = 0.1 · i is introduced and the final beat function b(n) is given
by:

b(n) =

1 for ab(nk − d) ≤ ab(nk) ≥ ab(nk + d),

0 otherwise.
(5.9)

The BeatDetector determines all beats in this manner. The BeatTracker
only detects the next beat and moves the beginning of the lookahead
window to that beat. Then the dominant tempo estimation and all
consecutive steps (Section 5.4.3 to 5.4.3) are performed on the new
section of the beat activation function.

5.5 evaluation

Beat tracking performance was evaluated during the MIREX 2010

beat tracking contest with two different datasets.3 The first set, the
McKinney collection (MCK set) [102] has rather stable tempo. The
second collection (MAZ set) consists of Chopin Mazurkas, which are
in 3/4 time signature and contain tempo changes.

Both described algorithms outperformed all other contributions
on the MCK set. The BeatDetector shows a small overall advantage
over the BeatTracker. Depending on the used performance measure
the relative performance gain compared to the next best algorithm
is up to 5.7% (F-measure with a detection window of ±70 ms), 6.9%
(Cemgil: accuracy based on a Gaussian error function with 40 ms
std. dev.), 8.2% (Goto: binary decision based on statistical properties
of a beat error sequence), and 4.7 (P-Score: McKinney’s impulse train
cross-correlation method). Table 5.1 summarizes the results and also
includes the best result ever achieved in the MIREX competition by
any algorithm as a reference to the state-of-the-art. It can be seen that
our BeatTracker algorithm performs better or close to it (depending on
the used performance measure). This shows the future potential of
this approach compared to other signal based ones, given the fact that
the actual peak picking algorithm is a rather simple one.

The tempo changes of the MAZ set are the main reason for the Beat-
Detector not performing better (see Table 5.2), as it assumes a constant
tempo throughout the whole musical piece. Nonetheless the algorithm
performs still reasonably well. As expected, the more flexible Beat-
Tracker performs better and ranks second according to F-measure and
first according to Cemgil’s performance measure. However, the most
mentionable aspect is that the neural networks were trained solely
on ballroom dance and other kinds of western pop music. Neither a

3 Evaluation measures described at http://www.music-ir.org/mirex/wiki/2010:

Audio_Beat_Tracking

http://www.music-ir.org/mirex/wiki/2010:Audio_Beat_Tracking
http://www.music-ir.org/mirex/wiki/2010:Audio_Beat_Tracking

5.6 conclusions 65

algorithm f-measure cemgil goto p-score

BeatTracker 0.540 0.413 0.089 0.592

BeatDetector 0.532 0.403 0.226 0.577

GP3 [106] 0.503 0.372 0.209 0.565

LGG2 [104] 0.500 0.377 0.179 0.550

TL2 * 0.420 0.299 0.025 0.506

NW1 [133] 0.356 0.258 0.058 0.457

MRVCC1 [99] 0.257 0.183 0.001 0.384

ZTC1 [141] 0.246 0.186 0.004 0.261

GP1 (2009) [106] 0.548 0.410 0.222 0.590

Table 5.1: Results for the MIREX 2010 beat tracking evaluation on the McK-
inney (MCK) set. Only the best performing algorithm of other
participants are shown; GP1 & GP3: Peeters [106], LGG2: Oliveira
et al. [104], TL2: Lee, NW1: Wack and Aylon [133], MRVCC1:
Mata-Campos et al. [99], ZTC1: Zhu et al. [141]. Asterisks mark
submissions for which no description is available.

classical piece nor piano music was used for training. Furthermore,
only one training example actually contained tempo changes. This
suggest that even better performance can be expected when trained
on music which has properties similar to the MAZ data set.

5.6 conclusions

This paper presented two novel beat tracking algorithms which per-
form state-of-the-art although they use a relatively simple and straight
forward approach. The BeatTracker outperformed all other algorithms
in the MIREX 2010 beat tracking contest for the McKinney dataset.
Although no classical music was used for training and the training set
had less then 3.5 minutes of material with a time signature of 3/4 the
new BeatTracker performed still reasonably well on the Mazurka test
set (all excerpts are in 3/4 time signature). This shows the aptitude
of the BLSTM neural network for correctly modelling the temporal
context and directly classifying beats. Since the BeatTracker shows su-
perior performance over the more simple BeatDetector even for musical
excerpts with constant tempo, future development will concentrate on
this algorithm.

Besides training with a more comprehensive training set, future
work should also investigate a possible performance boost by imple-
menting some more advanced beat tracking algorithms in the peak
detection stage. Kalman filters [123], particle filters [68], a multiple
agents architecture [44] and dynamic programming [50] seem promis-

66 beat tracking

algorithm f-measure cemgil goto p-score

TL2 * 0.685 0.404 0.000 0.722

BeatTracker 0.587 0.518 0.000 0.579

MRVCC2 [99] 0.493 0.395 0.003 0.512

GP4 [106] 0.483 0.367 0.003 0.501

BeatDetector 0.473 0.382 0.000 0.459

LGG2 [104] 0.415 0.307 0.000 0.435

NW1 [133] 0.276 0.198 0.000 0.314

ZTC1 [141] 0.012 0.009 0.000 0.009

Table 5.2: Results for the MIREX 2010 beat tracking evaluation on the
Mazurka (MAZ) set. Only the best performing algorithm of other
participants are shown; TL2: Lee, MRVCC2: Mata-Campos et al.
[99], GP4: Peeters [106], LGG2: Oliveira et al. [104], NW1: Wack and
Aylon [133], ZTC1: Zhu et al. [141]. Asterisks mark submissions
for which no description is available.

ing choices. Another possibility is the inclusion of other input features
which haven proven to be effective for identifying beats [66].

5.6 conclusions 67

addendum

All consecutive beat tracking chapters use this work as a basis. How-
ever, almost every part has been modified by now, reflecting the
findings of this thesis. The signal pre-processing uses a logarithmically
spaced filterbank as in Section 3.2.5 instead of Mel-filtering (cf. Equa-
tion 5.3). Also, the median filtering in the difference calculation step
(Equation 5.4) was removed completely. The output layer of the neural
network (as described in Section 5.4.2) is now modelled as a single
sigmoid unit instead of the softmax output layer with two units.4 All
these changes are reflected in the 2013 MIREX submissions. The 2014

submissions replace the old autocorrelation-based tempo model with
the new comb filter-based tempo estimation algorithm described in
Chapter 8. The 2015 submissions use neural network models trained
on a larger training set. The implementation included in madmom
incorporates all these modifications.

MIREX evaluation

Table 5.3 lists the results of the presented algorithm in MIREX beat
tracking evaluations on the MCK both in its original version and with
all the improvements described above. It defines the current state of
the art on this test set.

algorithm f-measure cemgil amlc amlt

BeatTracker (2010) 0.545 0.413 0.317 0.493

BeatTracker (2013) 0.590 0.449 0.442 0.618

BeatTracker (2014) 0.608 0.464 0.474 0.655

BeatTracker (2015) 0.639 0.488 0.538 0.705

BeatDetector (2010) 0.532 0.402 0.511 0.650

BeatDetector (2013) 0.582 0.442 0.529 0.701

BeatDetector (2014) 0.613 0.467 0.525 0.716

BeatDetector (2015) 0.638 0.487 0.587 0.750

Table 5.3: Performance of the presented algorithm in MIREX beat tracking
evaluations on the MCK set. The results represent the current state
of the art in beat tracking on this dataset. The names reflect the
names of the executable programs of the madmom package (cf.
Section 10.2.2).

4 This change does not influence the performance at all, it is just an implementation
detail.

6
M U LT I - M O D E L B E AT T R A C K I N G

title

A Multi-Model Approach to Beat Tracking Considering Heterogeneous
Music Styles.

authors

Sebastian Böck, Florian Krebs, and Gerhard Widmer.

published

In Proceedings of the 15th International Society for Music Information
Retrieval Conference (ISMIR), October 2014, Taipei, Taiwan.

contribution

Main idea, implementation, and experiments were conceived and
carried out by me. Florian Krebs contributed the dynamic Bayesian
network related part (Section 6.2.4). Gerhard Widmer provided valu-
able input.

abstract

In this paper we present a new beat tracking algorithm which extends
an existing state-of-the-art system with a multi-model approach to
represent different music styles. The system uses multiple recurrent
neural networks, which are specialised on certain musical styles, to
estimate possible beat positions. It chooses the model with the most
appropriate beat activation function for the input signal and jointly
models the tempo and phase of the beats from this activation function
with a dynamic Bayesian network. We test our system on three big
datasets of various styles and report performance gains of up to 27%
over existing state-of-the-art methods. Under certain conditions the
system is able to match even human tapping performance.

69

70 multi-model beat tracking

6.1 introduction and related work

The automatic inference of the metrical structure in music is a funda-
mental problem in the music information retrieval field. In this line,
beat tracking deals with finding the most salient level of this metrical
grid, the beat. The beat consists of a sequence of regular time instants
which usually invokes human reactions like foot tapping. During the
last years, beat tracking algorithms have considerably improved in
performance. But still they are far from being considered on par with
human beat tracking abilities – especially for music styles which do
not have simple metrical and rhythmic structures.

Most methods for beat tracking extract some features from the audio
signal as a first step. As features, commonly low-level features such as
amplitude envelopes [117] or spectral features [17], mid-level features
like onsets either in discretised [42, 63] or continuous form [35, 51,
80, 108], chord changes [63, 108] or combinations thereof with higher
level features such as rhythmic patterns [87] or metrical relations
[60] are used. The feature extraction is usually followed by a stage
that determines periodicities within the extracted features sequences.
Autocorrelation [17, 49, 63] and comb filters [35, 117] are commonly
used techniques for this task. Most systems then determine the most
predominant tempo from these periodicities and subsequently deter-
mine the beat times using multiple agents approaches [42, 63], dynamic
programming [35, 51], hidden Markov models (HMM) [37, 80, 108], or
recurrent neural networks (RNN) [17]. Other systems operate directly on
the input features and jointly determine the tempo and phase of the
beats using dynamic Bayesian networks (DBN) [25, 68, 87, 135].

One of the most common problems of beat tracking systems are
“octave errors”, meaning that a system detects beats at double or half
the rate of the ground truth tempo. For human tappers this gener-
ally does not constitute a problem, as can be seen when comparing
beat tracking results at different metrical levels [35]. Hainsworth and
Macleod [68] stated that beat tracking systems will have to be style
specific in the future in order to improve the state-of-the-art. This
is consistent with the finding of Krebs et al. [87] who showed on a
dataset of Ballroom music that the beat tracking performance can be
improved by incorporating style-specific knowledge, especially by re-
solving the octave error. While approaches have been proposed which
combined multiple existing features for beat tracking [137], no one
has so far combined several models specialised on different musical
styles to improve the overall performance.

In this paper, we propose a multi-model approach to fuse informa-
tion of different models that have been specialised on heterogeneous
music styles. The model is based on the recurrent neural network (RNN)
beat tracking system proposed in [17] and can be easily adapted to any
music style without further parameter tweaking, only by providing a

6.2 proposed method 71

corresponding beat-annotated dataset. Further, we propose an addi-
tional dynamic Bayesian network stage based on the work of Whiteley
et al. [135] which jointly infers the tempo and the beat phase from the
beat activations of the RNN stage.

6.2 proposed method

The new beat tracking algorithm is based on the state-of-the-art ap-
proach presented by Böck and Schedl [17]. We extend their system to
be able to better deal with heterogeneous music styles and combine
it with a dynamic Bayesian network similar to the ones presented in
[135] and [87].

The basic structure is depicted in Figure 6.1 and consists of the
following elements: first the audio signal is pre-processed and fed into
multiple neural network beat tracking modules. Each of the modules is
trained on different audio material and outputs a different beat activa-
tion function when activated with a musical signal. These functions
are then fed into a module which chooses the most appropriate model
and passes its activation function to a dynamic Bayesian network to infer
the actual beat positions.

Model 2

Model N

Model
Switcher

Signal Beats

Model 1

Pre-
processing

•
•
•

Reference
Network

Dynamic
Bayesian
Network

Figure 6.1: Overview of the new multi-model beat tracking system.

Theoretically, a single network large enough should be able to model
all the different music styles simultaneously, but unfortunately this
optimal solution is hardly achievable. The main reason for this is the
difficulty to choose an absolutely balanced training set with an evenly
distributed set of beats over all the different dimensions relevant for
detecting beats. These include rhythmic patterns [87, 117], harmonic
aspects and many other features. To overcome this limitation, we
split the available training data into multiple parts. Each part should
represent a more homogeneous subset than the whole set so that the
networks are able to specialise on the dominant aspects of this subset.

It seems reasonable to assume that humans do something similar
when tracking beats [29]. Depending on the style of the music, the
rhythmic patterns present, the instrumentation, the timbre, they apply

72 multi-model beat tracking

their musical knowledge to chose one of their “learned” models and
then decide which musical events are beats or not. Our approach
mimics this behaviour by learning multiple distinct models.

6.2.1 Signal pre-processing

All neural networks share the same signal pre-processing step, which
is very similar to the work in [17]. As inputs to the different neural
networks, the logarithmically filtered and scaled spectrograms of three
parallel short-time Fourier transforms (STFT) obtained with different
window lengths and their positive first order differences are used.
The system works with a constant frame rate fr of 100 frames per
second. Window lengths of 23.2 ms, 46.4 ms and 92.9 ms are used
and the resulting spectrogram bins of the discrete Fourier transforms
are filtered with overlapping triangular filters to have a frequency
resolution of three bands per octave. To put all resulting magnitude
values into a positive range we add 1 before taking the logarithm.

6.2.2 Multiple parallel neural networks

At the core of the new approach, multiple neural networks are used
to determine possible beat locations in the audio signal. As outlined
previously, these networks are trained on material with different music
styles to be able to better detect the beats in heterogeneous music
styles.

As networks we chose the same recurrent neural network (RNN)
topology as in [17] with three bidirectional hidden layers with 25

long short-term memory (LSTM) units per layer. For training of the
networks, standard gradient descent with error backpropagation and
a learning rate of 1e−4 is used. We initialise the network weights with
a Gaussian distribution with mean 0 and standard deviation of 0.1.
We use early stopping with a disjoint validation set to stop training if
no improvement over 20 epochs can be observed.

One reference network is trained on the complete dataset until
the stopping criterion is reached for the first time. We use this point
during the training phase to diverge the specialised models from the
reference network.

Afterwards, all networks are fine-tuned with a reduced learning
rate of 1e−5 on either the complete set or the individual subsets (cf.
Section 6.3.1) with the above mentioned stopping criterion. Given N
subsets, N + 1 models are generated.

The output functions of the network models represent the beat
probability at each time frame. Instead of tracking the beats with
an autocorrelation function as described in the original work, the
beat activation functions of the different models are fed into the next
model-selection stage.

6.2 proposed method 73

6.2.3 Model selection

The purpose of this stage is to select a model which outputs a better
beat activation function than the reference model when activated with
a signal. Compared to the reference model, the specialised models
produce better predictions on input data which is similar to that used
for fine-tuning, but worse predictions on signals dissimilar to the
training data. This behaviour can be seen in Figure 6.2, where the
specialised model produces higher beat activation values at the beat
locations and lower values elsewhere.

0 50 100 150 200 250 300 350 400
time [frames]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

b
e
a
t

a
ct

iv
a
ti

o
n

Figure 6.2: Example beat activations for a 4 seconds ballroom snippet. Red
is the reference network’s activations, black the selected model
and blue a discarded one. Green dashed vertical lines denote the
annotated beat positions.

Table 6.1 illustrates the impact on the Ballroom subset, where the
relative gain of the best specialised model compared to the reference
model (+1.7%) is lower than the penalties of the other models (−2.3%
to −6.3%). The fact that the performance degradation of the unsuitable
specialised models is greater than the gain of the most suitable model
allows us to use a very simple but effective method to choose the best
model.

To select the best performing model, all network outputs of the
fine-tuned networks are compared with the output of the reference
network (which was trained on the whole training set) and the one
yielding the lowest mean squared difference is selected as the final one
and its output is fed into the final beat tracking stage.

6.2.4 Dynamic Bayesian network

Independent of whether only one or multiple neural networks are
used, the approach of Böck and Schedl [17] has a fundamental short-
coming: the final peak-picking stage does not try to find a global

74 multi-model beat tracking

f-measure cemgil amlc amlt

SMC * 0.834 0.807 0.664 0.767

Hainsworth * 0.867 0.839 0.694 0.793

Ballroom * 0.904 0.872 0.777 0.853

Reference 0.887 0.855 0.748 0.831

Multi-model 0.897 0.866 0.759 0.841

Table 6.1: Performance of differently specialised models (marked with aster-
isks, fine-tuned on the SMC, Hainsworth and Ballroom subsets, re-
spectively) on the Ballroom subset compared to the reference model
and the network selected by the multi-model selection stage.

optimum when selecting the final locations of the beats. It rather de-
termines the dominant tempo of the piece (or a segment of certain
length) and then aligns the beat positions according to this tempo by
simply choosing the best start position and then progressively locating
the beats at positions with the highest activation function values in a
certain region around the pre-determined position. To allow a greater
responsiveness to tempo changes, this chosen region must not be too
small. However, this also introduces a weakness to the algorithm, be-
cause the tracking stage can easily get distracted by a few misaligned
beats and needs some time to recover from this fault. The activation
function depicted in Figure 6.2 has two of these spurious detections
around frames 100 and 200.

To circumvent this problem, we feed the output of the chosen neural
network model into a dynamic Bayesian network (DBN) which jointly
infers tempo and phase of a beat sequence. Another advantage of
this new method is that we are able to model both beat and non-beat
states, which was shown to perform superior to the case where only
beat states are modelled [37].

The DBN we use is closely related to the one proposed by White-
ley et al. [135], adapted to our specific needs. Instead of modelling
whole bars, we only model one beat period which reduces the size
of the search space. Additionally we do not model rhythmic patterns
explicitly and leave this higher level analysis to the neural networks.
This finally leads to a DBN which consists of two hidden variables,
the tempo ω and the position φ inside a beat period. In order to infer
the hidden variables from an audio signal, we have to specify three
entities: A transition model which describes the transitions between
the hidden variables, an observation model which takes the beat activa-
tions from the neural network and transforms them into probabilities
suitable for the DBN, and the initial distribution which encodes prior
knowledge about the hidden variables. For computational ease we
discretise the tempo-beat space to be able to use standard hidden
Markov model (HMM) [113] algorithms for inference.

6.2 proposed method 75

Transition model

The beat period is discretised into Φ = 640 equidistant cells and
φ ∈ {1, ..., Φ}. We refer to the unit of the variable φ (position inside a
beat period) as pib. φk at audio frame k is then computed by

φk = (φk−1 + ωk−1 − 1) mod Φ + 1. (6.1)

The tempo space is discretised into Ω = 23 equidistant cells, which
cover the tempo range up to 215 beats per minute (BPM). The unit
of the tempo variable ω is pib per audio frame. As we want to restrict
ω to integer values (to stay within the φ grid at transitions), we
need a high resolution of φ in order to get a high resolution of ω.
Based on experiments with the training set, we set the tempo space
to ω ∈ {6, ..., Ω}, where ω = 6 is equivalent to a minimum tempo
of 6 × 60 × fr/Φ ≈ 56 BPM. As in [135] we only allow for three
tempo transitions at time frame k: It stays constant, it accelerates, or it
decelerates.

ωk =


ωk−1, P(ωk|ωk−1) = 1− pω

ωk−1 + 1, P(ωk|ωk−1) =
pω

2

ωk−1 − 1, P(ωk|ωk−1) =
pω

2

(6.2)

Transitions to tempi outside of the allowed range are not allowed
by setting the corresponding transition probabilities to zero. The prob-
ability of a tempo change pω was set to 0.002.

Observation model

Since the beat activation function a produced by the neural network
is limited to the range [0, 1] and shows high values at beat positions
and low values at non-beat positions, we use the activation function
directly as state-conditional observation distributions, similar to [37].
We define the observation likelihood as

P(ak|φk) =

{
ak, 1 ≤ φk ≤ Φ

λ
1−ak
λ−1 , otherwise.

(6.3)

λ ∈ [Φ
Φ−1 , Φ] is a parameter that controls the proportion of the beat

interval which is considered as beat and non-beat location. Smaller
values of λ (a higher proportion of beat locations and a smaller propor-
tion of non-beat locations) are especially important for higher tempi,
as the DBN visits only a few position states of a beat interval and
could possibly miss the beginning of a beat. On the other hand, higher
values of λ (a smaller proportion of beat locations) lead to less accurate
beat tracking, as the activations are blurred in the state domain of the
DBN. On our training set we achieved the best results with the value
λ = 16.

76 multi-model beat tracking

Initial state distribution

The initial state distribution is normally used to incorporate any prior
knowledge about the hidden states, such as tempo distributions. In
this paper, we use a uniform distribution over all states, for simplicity
and ease of generalisation.

Inference

We are interested in the sequence of hidden variables φ1:K and ω1:K,
that maximise the posterior probability of the hidden variables given
the observations (activations a1:K). Combining the discrete states of
φ and ω into one state vector xk = [φk, ωk], we can compute the
maximum a-posteriori state sequence x∗1:K by

x∗1:K = arg max
x1:K

p(x1:K|a1:K). (6.4)

Equation 6.4 can be computed efficiently using the well-known
Viterbi algorithm [113]. Finally the set of beat times B are determined
by the set of time frames k which were assigned to a beat position
(B = {k : φk < φk−1}). In our experiments we found that the beat
detection becomes less accurate if the part of the beat interval which is
considered as beat-state is too large (i.e. smaller values of λ). Therefore
we determine the final beat times by looking for the highest beat
activation value inside the beat-state windowW = {k : φk ≤ Φ

λ }.

6.3 evaluation

For the development and evaluation of the algorithm we used some
well-known datasets. This allows for highest comparability with previ-
ously published results of state-of-the-art algorithms.

6.3.1 Datasets

As training material for our system, the datasets introduced in [65, 68,
72] are used. They are called Ballroom, Hainsworth and SMC respec-
tively. To show the ability of our new algorithm to adapt to various
music styles, a very simple approach of splitting the complete dataset
into multiple subsets according to the original source was chosen.
Although far from optimal – both the SMC and Hainsworth datasets
contain heterogeneous music styles – we still consider this a valid
choice, since any “better” splitting would allow the system to adapt
even further to heterogeneous styles and in turn lead to better results.
At least the three sets have a somehow different focus regarding the
music styles present.

6.3 evaluation 77

6.3.2 Performance measures

In line with almost all other publications on the topic of beat tracking,
we report the following scores:

f-measure

Counts the number of true positive (correctly located beats
within a tolerance window of ±70 ms), false positive and nega-
tive detections.

p-score

Measures the tracking accuracy by the correlation of the detec-
tions and the annotations, considering deviations within 20% of
the annotated beat interval as correct.

cemgil

Places a Gaussian function with a standard deviation of 40 ms
around the annotations and then measures the tracking accuracy
by summing up the scores of the detected beats on this func-
tion normalising it by the overall length of the annotations or
detections, whichever is greater.

cmlc & cmlt

Measure the longest continuous segment (CMLc) or all correctly
tracked beats (CMLt) at the correct metrical level. A beat is
considered correct if it is reported within a 17.5% tempo and
phase tolerance, and the same applies for the previously detected
beat.

amlc & amlt

Same calculation as CMLc and CMLt, but additionally allow
offbeat and double/half as well as triple/third tempo variations
of the annotated beats.

d & dg

The information gain (D) and global information gain (Dg) are
phase agnostic measures comparing the annotations with the
detections (and vice-versa) building a error histogram and then
calculating the Kullback-Leibler divergence w.r.t. a uniform his-
togram.

A more detailed description of the evaluation methods can be found
in [33]. Since we only investigate offline algorithms, we do not skip
the first five seconds for evaluation.

6.3.3 Results and discussion

Table 6.2 and 6.3 (continuity scores) list the performance results of
the reference implementation, Böck’s BeatTracker.2013, and the various

78 multi-model beat tracking

extensions proposed in this paper for all datasets. All results are ob-
tained with 8-fold cross validation with previously defined splittings,
ensuring that no pieces are used both for training or parameter tuning
and testing purposes. Additionally, we compare our new approach
to published stat-of-the-art results on the Hainsworth and Ballroom
datasets.

ballroom f1 p cem d dg

BeatTracker.2013 [17] 0.887 0.863 0.855 3.404 2.596

— Multi-Model 0.897 0.875 0.866 3.480 2.674

— DBN 0.903 0.876 0.838 3.427 2.275

— Multi-Model + DBN 0.910 0.881 0.845 3.469 2.352

Krebs et al. [87] 0.855 0.839 0.772 2.499 1.681

Zapata et al. [137] † 0.767 0.735 0.672 2.750 1.187

hainsworth

BeatTracker.2013[17] 0.832 0.843 0.712 2.167 1.468

— Multi-Model 0.832 0.847 0.716 2.171 1.490

— DBN 0.843 0.867 0.711 2.251 1.481

— Multi-Model + DBN 0.840 0.865 0.707 2.268 1.466

Zapata et al. [137] 0.710 0.732 0.589 2.057 0.880

smc

BeatTracker.2013 [17] 0.497 0.598 0.402 1.263 0.416

— Multi-Model 0.514 0.617 0.415 1.324 0.467

— DBN 0.516 0.622 0.404 1.426 0.504

— Multi-Model + DBN 0.529 0.630 0.415 1.460 0.531

Zapata et al. [137] † 0.369 0.460 0.285 0.879 0.126

Table 6.2: Performance of the proposed algorithm on the Ballroom [65],
Hainsworth [68] and SMC [72] datasets. BeatTracker is the refer-
ence implementation our Multi-Model and dynamic Bayesian network
(DBN) extensions are built on. The results marked with † are ob-
tained with Essentia’s implementation of the multi-feature beat
tracker.1 ‡ denotes causal (i.e. online) processing, all listed algo-
rithms use non-causal analysis (i.e. offline processing). Best results
in bold.

Multi-model extension

As can be seen, the use of the multi-model extension almost always
improves the results over the implementation it is based on, especially
on the SMC set. The gain in performance on the Ballroom set was
expected, since Krebs et al. already showed that modelling rhythmic

6.3 evaluation 79

ballroom cmlc cmlt amlc amlt

BeatTracker.2013 [17] 0.719 0.795 0.748 0.831

— Multi-Model 0.740 0.814 0.759 0.841

— DBN 0.792 0.825 0.873 0.915

— Multi-Model + DBN 0.800 0.830 0.885 0.924

Krebs et al. [87] 0.745 0.786 0.818 0.865

Zapata et al. [137] † 0.586 0.607 0.824 0.860

hainsworth

BeatTracker.2013[17] 0.618 0.756 0.655 0.807

— Multi-Model 0.617 0.761 0.652 0.809

— DBN 0.696 0.808 0.759 0.883

— Multi-Model + DBN 0.696 0.803 0.760 0.881

Zapata et al. [137] 0.569 0.642 0.709 0.824

Davies and Plumbley [35] 0.548 0.612 0.681 0.789

Peeters and Papadopoulos [108] 0.547 0.628 0.703 0.831

Degara et al. [37] 0.561 0.629 0.719 0.815

Human tapper [35] ‡ 0.528 0.812 0.575 0.874

smc

BeatTracker.2013 [17] 0.238 0.360 0.279 0.436

— Multi-Model 0.257 0.389 0.296 0.467

— DBN 0.294 0.415 0.378 0.550

— Multi-Model + DBN 0.296 0.428 0.383 0.567

Zapata et al. [137] † 0.115 0.158 0.239 0.397

Table 6.3: Continuity performance of the proposed algorithm on the Ballroom
[65], Hainsworth [68] and SMC [72] datasets. BeatTracker is the
reference implementation our Multi-Model and dynamic Bayesian
network (DBN) extensions are built on. The results marked with
† are obtained with Essentia’s implementation of the multi-feature
beat tracker.1 ‡ denotes causal (i.e. online) processing, all listed
algorithms use non-causal analysis (i.e. offline processing). Best
results in bold.

patterns helps to increase the overall detection accuracy [87]. Although
we did not split the set according to the individual rhythmic patterns,
the overall style of ballroom music can be considered unique enough
to be distinct from the other music styles present in the other sets and
the salient features can be exploited successfully by the multi-model
approach.

1 http://essentia.upf.edu, v2.0.1

http://essentia.upf.edu

80 multi-model beat tracking

Dynamic Bayesian network extension

As already indicated in the original paper [17] (and described earlier in
Section 6.2.4), the original BeatTracker can be easily distracted by some
misaligned beats and then needs some time to recover from any failure.
The newly adapted dynamic Bayesian network beat tracking stage
does not suffer from this shortcoming by searching for the globally
best beat locations. The use of the DBN boosts the performance on all
datasets for almost all evaluation measures. Interestingly, the Cemgil
accuracy is degraded by using the DBN stage. This might be explained
by the fact that the discretisation grid of the beat period beat positions
becomes too coarse for low tempi (cf. Section 6.2.4) and therefore
yields inaccurate beat detections, which especially affect the Cemgil
accuracy. This is one of the issues that needs to be resolved in the
future, especially for lower tempi where the penalty is the highest.

Comparison with other methods

Our new system set side by side with other state-of-the-art algorithms
draws a clear picture. It outperforms all of them considerably – inde-
pendently of the dataset and evaluation measure chosen. Especially
the high performance boosts of the CMLc and CMLt scores on the
Hainsworth dataset highlight the ability to track the beats at the correct
metrical level significantly more often than any other method.

Davies and Plumbley [35] also list performance results of a human
tapper on the same dataset. However it must be noted that these were
obtained by online real-time tapping, hence they cannot be compared
directly to the system presented. However, the system of Davies and
Plumbley [35] can also be switched to causal mode (and thus being
comparable to a human tapper). In this mode it achieved performance
reduced by approximately 10% [35]. Adding the same amount to
the reported tapping results of 0.528 CMLc and 0.575 AMlc suggests
that our system is capable of performing as good as humans when
continuous tapping is required.

On the Ballroom set we achieve higher results than the particularly
specialised system of Krebs et al. [87]. Since our DBN approach is
a simplified variant of their model, it can be assumed that the rela-
tively low scores of the Cemgil accuracy and the information gain
are due to the same reason – the coarse discretisation of the beat or
bar states. Nonetheless, comparing the continuity scores (which have
higher tolerance thresholds) we can still report an average increase in
performance of more than 5%.

6.4 conclusions

In this paper we have presented a new beat tracking system which is
able to improve over existing algorithms by incorporating multiple

6.4 conclusions 81

models which were trained on different music styles and combining
it with a dynamic Bayesian network for the final inference of the
beats. The combination of these two extensions yields a performance
boost – depending on the dataset and evaluation measures chosen –
of up to 27% relative, matching human tapping results under certain
conditions. It outperforms other state-of-the-art algorithms in tracking
the beats at the correct metrical level by 20%.

We showed that the specialisation on a certain musical style helps
to improve the overall performance, although the method for splitting
the available data into sets of different styles and then selecting the
most appropriate model is rather simple. For the future we will in-
vestigate more advanced techniques for the selection of suitable data
for the creation of the specialised models, e.g. splitting the datasets
according to dance styles as performed by Krebs et al. [87] or apply-
ing unsupervised clustering techniques. We also expect better results
from more advanced model selection methods. One possible approach
could be to feed the individual model activations to the dynamic
Bayesian network and let it choose among them.

Finally, the Bayesian network could be tuned towards using a finer
beat positions grid and thus reporting the beats at more appropriate
times than just selecting the position of the highest activation reported
by the neural network model.

82 multi-model beat tracking

addendum

The system presented shows its strengths especially on music with
hard-to-track beats, like the SMC set. Since it was also trained on this
set, the MIREX results for this set are biased and therefore we do not
show them here. Non-overfitted results can be found in the previous
chapter. It should be noted however, that we used the SMC set for
training before it was added as a test set for the MIREX evaluation. We
decided to keep it in the training set, since it adds valuable complexity
to the training set which is otherwise really scarce and hard to find.

Table 6.4 gives results for the easier-to-track MCK set, together with
the best results achieved so far (depending on the evaluation metric
used). It can be seen that the presented systems performs state-of-the-
art, although its strengths are not highlighted by the dataset. The 2015

submissions utilise the more efficient state space model proposed by
Krebs et al. [88] for the dynamic Bayesian network.

algorithm f-measure cemgil amlc amlt

MMBeatTracker (2014) 0.613 0.467 0.525 0.716

MMBeatTracker (2015) 0.620 0.472 0.543 0.728

DBNBeatTracker (2014) 2 - - - -

DBNBeatTracker (2015) 0.636 0.484 0.567 0.749

BeatTracker (2015) 0.639 0.488 0.538 0.705

BeatDetector (2015) 0.638 0.487 0.587 0.750

Table 6.4: Performance of the presented algorithm in MIREX evaluations
on the MCK set. The names reflect the names of the executable
programs of the madmom package (cf. Section 10.2.2).

The system of Krebs et al. [86] uses this beat tracker as its first
stage to determine the positions of the beats and to compute the
beat-synchronous features for the downbeat tracking stage.

2 Unfortunately, no MIREX evaluation was performed for this submission in 2014.

7
J O I N T B E AT A N D D O W N B E AT T R A C K I N G

title

Joint Beat and Downbeat Tracking with Recurrent Neural Networks.

authors

Sebastian Böck, Florian Krebs, and Gerhard Widmer.

published

In Proceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR), August 2016, New York, USA.

contribution

Main idea, implementation, and experiments were conceived and car-
ried out by me. Florian Krebs contributed the theoretical background
for the dynamic Bayesian network (Section 7.3.3). Gerhard Widmer
provided valuable input.

abstract

In this paper we present a novel method for jointly extracting beats and
downbeats from audio signals. A recurrent neural network operating
directly on magnitude spectrograms is used to model the metrical
structure of the audio signals at multiple levels and provides an output
feature that clearly distinguishes between beats and downbeats. A
dynamic Bayesian network is then used to model bars of variable
length and align the predicted beat and downbeat positions to the
global best solution. We find that the proposed model achieves state-
of-the-art performance on a wide range of different musical genres
and styles.

83

84 joint beat and downbeat tracking

7.1 introduction

Music is generally organised in a hierarchical way. The lower levels
of this hierarchy are defined by the beats and downbeats which define
the metrical structure of a musical piece. While considerable amount of
research focused on finding the beats in music, far less effort has been
made to track the downbeats, although this information is crucial for
a lot of higher level tasks such as structural segmentation and music
analysis and applications like automated DJ mixing. In western music,
the downbeats often coincide with chord changes or harmonic cues,
whereas in non-western music the start of a measure is often defined
by the boundaries of rhythmic patterns. Therefore, many algorithms
exploit one or both of these features to track the downbeats.

7.2 related work

Klapuri et al. [80] proposed a system which jointly analyses a musical
piece at three time scales: the tatum, tactus, and measure level. The
signal is split into multiple bands and then combined into four accent
bands before being fed into a bank of resonating comb filters. Their
temporal evolution and the relation of the different time scales are
modelled with a probabilistic framework to report the final position
of the downbeats.

The system of Davies and Plumbley [34] first tracks the beats and
then calculates the Kullback-Leibler divergence between two consec-
utive band-limited beat synchronous spectral difference frames to
detect the downbeats, exploiting the fact that lower frequency bands
are perceptually more important.

Papadopoulos and Peeters [105] jointly track chords and downbeats
by decoding a sequence of (pre-computed) beat synchronous chroma
vectors with a hidden Markov model (HMM). Two time signatures
are modelled. In a later paper, Peeters and Papadopoulos [108] jointly
model beat phase and downbeats while the tempo is assumed to be
given. Beat and downbeat times are decoded using a HMM from three
input features: the correlation of the local energy with a beat-template,
chroma vector variation, and the spectral balance between high and
low frequency content.

The system proposed by Khadkevich et al. [78] uses impulsive
and harmonic components of a reassigned spectrogram together with
chroma variations as observation features for a HMM. The system
is based on the assumption that downbeats mostly occur at location
with harmonic changes.

Hockman et al. [71] present a method designed specifically for hard-
core, jungle, and drum and bass music, that often employ breakbeats.
The system exploits onset features and periodicity information from a

7.3 algorithm description 85

beat tracking stage, as well as information from a regression model
trained on the breakbeats specific to the musical genre.

Durand et al. [47] first estimates the time signature by examining
the similarity of the frames at the beat level – with the beat positions
given as input. The downbeats are then selected by a linear support
vector machine (SVM) model using a bag of complementary features,
comprising chord changes, harmonic balance, melodic accents and
pattern changes. In consecutive works [45, 46] they lifted the require-
ment of the beat positions to be given and enhanced their system
considerably by replacing the SVM feature selection stage by several
deep neural networks which learn higher level representations from
which the final downbeat positions are selected by means of Viterbi
decoding.

Krebs et al. [87] jointly model bar position, tempo, and rhythmic
patterns with a dynamic Bayesian network (DBN) and apply their
system to a dataset of ballroom dance music. Based on their work,
Holzapfel et al. [73] developed a unified model for metrical analysis of
Turkish, Carnatic, and Cretan music. Both models were later refined
by using a more sophisticated state space proposed by Krebs et al.
[88].

The same state space has also been successfully applied to the
beat tracking system proposed by Böck et al. [14]. The system uses a
recurrent neural network (RNN) similar to the one proposed in [17] to
discriminate between beats an non-beats at a frame level. A DBN then
models the tempo and the phase of the beat sequence.

In this paper, we extend the RNN-based beat tracking system in
order to jointly track the whole metrical cycle, including beats and
downbeats. The proposed model avoids hand-crafted features such
as harmonic change detection [45–47, 78, 105], or rhythmic patterns
[71, 73, 87], but rather learns the relevant features directly from the
spectrogram. We believe that this is an important step towards sys-
tems without cultural bias, as postulated by the “Roadmap for Music
Information Research” [122].

7.3 algorithm description

The proposed method consists of a recurrent neural network (RNN)
similar to the ones proposed in [14, 17], and is trained to jointly
detect the beats and downbeats of an audio signal in a supervised
classification task. A dynamic Bayesian network is used as a post-
processing step to determine the globally best sequence through the
state-space by jointly inferring the meter, tempo, and phase of the
(down-)beat sequence.

86 joint beat and downbeat tracking

7.3.1 Signal pre-processing

The audio signal is split into overlapping frames and weighted with
a Hann window of same length before being transferred to a time-
frequency representation with the discrete Fourier transform (DFT).
Two adjacent frames are located 10 ms apart, which corresponds to
a rate of 100 fps (frames per second). We omit the phase portion of
the complex spectrogram and use only the magnitudes for further
processing. To enable the network to capture features which are pre-
cise both in time and frequency, we use three different magnitude
spectrograms with short-time Fourier transform (STFT) lengths of
1024, 2048, and 4096 samples (at a signal sample rate of 44.1 kHz). To
reduce the dimensionality of the features, we limit the frequencies
range to [30, 17000] Hz and process the spectrograms with logarithmi-
cally spaced filters. A filter with 12 bands per octave corresponds to
semitone resolution, which is desirable if the harmonic content of the
spectrogram should be captured. However, using the same number
of bands per octave for all spectrograms would result in an input
feature of undesirable size. We therefor use filters with 3, 6, and 12

bands per octave for the three spectrograms obtained with 1024, 2028,
and 4096 samples, respectively, accounting for a total of 157 bands.
To better match human perception of loudness, we scale the resulting
frequency bands logarithmically. To aid the network during training,
we add the first order differences of the spectrograms to our input
features. Hence, the final input dimension of the neural network is
314. Figure 7.1a shows the part of the input features obtained with 12

bands per octave.

7.3.2 Neural network processing

As a network we chose a system similar to the one presented in [17],
which is also the basis for the current state-of-the-art in beat tracking
[14, 83].

Network topology

The network consists of three fully connected bidirectional recurrent
layers with 25 Long Short-Term Memory (LSTM) units each. Fig-
ure 7.1b to 7.1d show the output activations of the forward (i.e. half
of the bidirectional) hidden layers. A softmax classification layer with
three units is used to model the beat, downbeat, and non-beat classes.
A frame can only be classified as downbeat or beat but not both at
the same time, enabling the following dynamic Bayesian network to
infer the meter and downbeat positions more easily. The output of the
neural network are three activation functions bk, dk, and nok, which
represents the probability of a frame k being a beat but no downbeat,

7.3 algorithm description 87

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

(a) Spectrogram of audio signal

0 1 2 3 4 5 6
0

5

10

15

20

(b) Activations of the first hidden layer

0 1 2 3 4 5 6
0

5

10

15

20

(c) Activations of the second hidden layer

0 1 2 3 4 5 6
0

5

10

15

20

(d) Activations of the third hidden layer

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

(e) Activations of the softmax output layer

Figure 7.1: Signal propagation of a 6 second song excerpt in 4/4 time signa-
ture through the network: (a) part of the neural network input,
(b) the first hidden layer shows activations at onset positions,
(c) the second hidden layer models mostly faster metrical levels
(e.g. 1/8th notes at neuron 3), (d) the third hidden layer models
multiple metrical levels (e.g. neuron 8 firing at beat positions and
neuron 16 around downbeat positions), (e) the softmax output
layer finally models the relation of the different metrical levels
resulting in clear downbeat (black) and beat (green, flipped for
better visualisation) activations.

88 joint beat and downbeat tracking

downbeat or non-beat position. Figure 7.1e shows bk and dk for an
audio example.

Network training

We train the network on the datasets described in Section 7.4.1 —
except the ones marked with an asterisk (*) which are used for testing
only — with 8-fold cross validation based on a random splits. We
initialise the network weights and biases with a uniform random
distribution with range [-0.1, 0.1] and train it with stochastic gradient
decent minimising the cross entropy error with a learning rate of
10

-5 and 0.9 momentum. We stop training if no improvement on the
validation set can be observed for 20 epochs. We then reduce the
learning rate by a factor of ten and retrain the previously best model
with the same early stopping criterion.

Network output thresholding

We experienced that the very low activations at the beginning and end
of a musical excerpt can hurt the tracking performance of the system.
This is often the case if a song starts with a (musically irrelevant) intro
or has a long fade out at the end. We thus threshold the activations and
use only the activations between the first and last time they exceed the
threshold. We empirically found a threshold value θ = 0.05 to perform
well without harming pieces with overall low activations (e.g. choral
works).

7.3.3 Dynamic Bayesian network

We use the output of the neural network as observations of a dynamic
Bayesian network (DBN) which jointly infers the meter, tempo, and
phase of a (down-)beat sequence. The DBN is very good at dealing
with ambiguous RNN observations and finds the global best state
sequence given these observations.1 We use the state-space proposed
in [88] to model a whole bar with an arbitrary number of beats per bar.
We do not allow meter changes throughout a musical piece, thus we
can model different meters with individual, independent state spaces.
All parameters of the DBN are tuned to maximise the downbeat
tracking performance on the validation set.

State space

We divide the state space into discrete states s to make inference feasi-
ble. These states s(φ, φ̇, r) lie in a three-dimensional space indexed by
the bar position state φ ∈ {1..Φ}, the tempo state φ̇ ∈ {1..Φ̇}, and the

1 The average performance gain of the DBN compared to simple thresholding and
peak-picking of the RNN activations is about 15% F-measure on the validation set.

7.3 algorithm description 89

time signature state r (e.g. r ∈ {3/4, 4/4}). States that fall on a down-
beat position (φ = 1) constitute the set of downbeat states D, all states
that fall on a beat position define the set of beat states B. The number
of bar-position states of a tempo φ̇ is proportional to its corresponding
beat period 1/φ̇, and the number of tempo states depends on the
tempo ranges that the model accounts for. For generality, we assume
equal tempo ranges for all time signatures in this paper but this could
easily changed to adapt the model towards specific styles. In line
with [88] we find that by distributing the tempo states logarithmically
across the beat intervals, the size of the state space can be reduced
efficiently without affecting the performance too much. Empirically we
found that using N = 60 tempo states is a good compromise between
computation time and performance.

Transition model

Tempo transitions are only allowed at the beats and follow the same
exponential distribution proposed in [88]. We investigated “peephole”
transitions from the end of every beat back to the beginning of the bar,
but found them to harm performance. Thus, we assume that there are
no transitions between time signatures in this paper.

Observation model

We adapted the observation model of the DBN from [14] to not only
predict beats, but also downbeats. Since the activation functions (d,
b) produced by the neural network are limited to the range [0, 1] and
show high values at beat/downbeat positions and low values at non-
beat positions (cf. Figure 7.1e), the activations can be converted into
state-conditional observation distributions P(ok|sk) by

P(ok|sk) =


dk sk ∈ D
bk sk ∈ B

nk
λo−1 , otherwise

(7.1)

where D and B are the sets of downbeat and beat states respectively,
and the observation lambda λo ∈ [Φ

Φ−1 , Φ] is a parameter that controls
the proportion of the beat/downbeat interval which is considered
as beat/downbeat and non-beat locations inside one beat/downbeat
period. On our validation set we achieved the best results with the
value λo = 16. We found it to be advantageous to use both bk and dk
as provided by the neural network instead of splitting the probability
of bk among the N beat positions of the transition model.

90 joint beat and downbeat tracking

Initial state distribution

The initial state distribution can be used to incorporate any prior
knowledge about the hidden states, such as meter and tempo distribu-
tions. In this paper, we use a uniform distribution over all states.

Inference

We are interested in the sequence of hidden states s1:K, that maximise
the posterior probability of the hidden states given the observations
(activations of the network). We obtain the maximum a-posteriori state
sequence s∗1:K by

s∗1:K = arg max
s1:K

p(s1:K|o1:K) (7.2)

which can be computed efficiently using the well-known Viterbi algo-
rithm.

Beat and downbeat selection

The sequence of beat B and downbeat times D are determined by the
set of time frames k which were assigned to a beat or downbeat state:

B = {k : s∗k ∈ B} (7.3)

D = {k : s∗k ∈ D} (7.4)

After having decided on the sequences of beat and downbeat times
we further refine them by looking for the highest beat/downbeat
activation value inside a window of size Φ/λo, i.e. the beat/downbeat
range of the whole beat/downbeat period of the observation model
(Section 7.3.3).

7.4 evaluation

In line with almost all other publications on the topic of downbeat
tracking, we report the F-measure (F1) with a tolerance window of
±70 ms.

7.4.1 Datasets

For training and evaluation we use diverse datasets as shown in
Table 7.1. Musical styles range from pop and rock music, over ballroom
dances, modern electronic dance music, to classical and non-western
music.

We do not report scores for all sets used for training, since com-
parisons with other works are often not possible due to different

7.4 evaluation 91

downbeat tracking datasets # files length

Ballroom [65, 87] 2
685 5 h 57 m

Beatles [33] 180 8 h 09 m

Hainsworth [68] 222 3 h 19 m

HJDB [71] 235 3 h 19 m

RWC Popular [62] 100 6 h 47 m

Robbie Williams [39] 65 4 h 31 m

Rock [26] 200 12 h 53 m

Carnatic [126] 176 16 h 38 m

Cretan [73] 42 2 h 20 m

Turkish [125] 93 1 h 33 m

GTZAN [96, 132] * 999 8 h 20 m

Klapuri [80] * 3
320 4 h 54 m

beat tracking datasets

SMC [72] * 217 2 h 25 m

Klapuri [80] * 3
474 7 h 22 m

Table 7.1: Overview of the datasets used for training and evaluation of the
algorithm. Sets marked with asterisks (*) are held-out datasets for
testing only.

evaluation metrics and/or datasets. Results for all datasets, including
additional metrics can be found online at the supplementary website
http://www.cp.jku.at/people/Boeck/ISMIR2016.html which also in-
cludes an open source implementation of the algorithm.

7.4.2 Results and Discussion

Table 7.2 to 7.4 list the results obtained by the proposed method com-
pared to current and previous state-of-the-art algorithms on various
datasets. We group the datasets into different tables for clarity, based
on whether they are used for testing only, cover western, or non-
western music. Since our system jointly tracks beats and downbeats,
we compare with both downbeat and beat tracking algorithms.

First of all, we evaluate on completely unseen data. We use the
recently published beat and downbeat annotations for the GTZAN
dataset, the Klapuri, and the SMC set (built specifically to comprise
hard-to-track musical pieces) for evaluation. Results are given in Ta-

2 We removed the 13 duplicates identified by Bob Sturm: http://media.aau.dk/null_
space_pursuits/2014/01/ballroom-dataset.html

3 The beat and downbeat annotations of this set were made independently, thus they
do not necessarily correspond to each other.

http://www.cp.jku.at/people/Boeck/ISMIR2016.html
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html

92 joint beat and downbeat tracking

ble 7.2. Since these results are directly comparable (the only exception
being the results of Durand et al. on the Klapuri set 4 and of Böck et al.
on the SMC set 5), we perform statistical significance tests on them.
We use Wilcoxon’s signed-rank test with a p-value of 0.01.

gtzan f1 beat f1 downbeat

NEW (bar lengths: 3, 4) * 0.856 0.640

Durand et al. [46] * - 0.624

Böck et al. [14] * 0.864 -

Davies and Plumbley [34] * 0.806 0.462

Klapuri et al. [80] * 0.706 0.309

klapuri

NEW (bar lengths: 3, 4) * 0.811 0.745

Durand et al. [46] ‡ - 0.689

Böck et al. [14] * 0.798 -

Davies and Plumbley [34] * 0.698 0.528

Klapuri et al. [80] ‡ 0.704 0.483

smc

NEW (bar lengths: 3, 4) * 0.516 n/a

Böck et al. [14] § 0.529 n/a

Davies and Plumbley [34] * 0.337 n/a

Klapuri et al. [80] * 0.352 n/a

Table 7.2: Beat and downbeat tracking F-measure comparison with state-of-
the-art algorithms on the test datasets. ‡ denotes overlapping train
and test sets, § cross validation, and * testing only.

Additionally, we report the performance on other sets commonly
used in the literature, comprising both western and non-western music.
For western music, we give results on the Ballroom, Beatles, Hainsworth,
and RWC Popular sets in Table 7.3. For non-western music we use the
Carnatic, Cretan, and Turkish datasets and group the results in Table 7.4.
Since these sets were also used during development and training of
our system, we report results obtained with 8-fold cross validation.
Please note that the results given in Table 7.3 and 7.4 are not directly
comparable because they were either obtained via cross validation,
leave-one-dataset-out evaluation, with overlapping train and test sets,
or tested on unseen data. However, we still consider them to be a good
indicator for the overall performance and capabilities of the systems.
For the music with non-western rhythms and meters (e.g. Carnatic art

4 40 out of the 320 tracks were used for training.
5 The complete set was used for training.

7.4 evaluation 93

music contains 5/4 and 7/4 meters) we compare only with algorithms
specialised on this type of music, since other systems typically fail
completely on them.

ballroom f1 beat f1 downbeat

NEW (bar lengths: 3, 4) § 0.938 0.863

Durand et al. [46] †/‡ - 0.778 / 0.797

Krebs et al. [88] § 0.919 -

Böck et al. [14] § 0.910 -

beatles

NEW (bar lengths: 3, 4) § 0.918 0.832

Durand et al. [46] †/‡ - 0.815 / 0.842

Böck et al. [14] * 0.880 -

hainsworth

NEW (bar lengths: 3, 4) § 0.867 0.684

Durand et al. [46] †/‡ - 0.657 / 0.664

Böck et al. [14] § 0.843 -

Peeters and Papadopoulos [108] 0.630

rwc popular

NEW (bar lengths: 3, 4) § 0.943 0.861

Durand et al. [46] †/‡ - 0.860 / 0.879

Böck et al. [14] * 0.877 -

Peeters and Papadopoulos [108] 0.840 0.800

Table 7.3: Beat and downbeat tracking F-measure comparison with state-
of-the-art algorithms on western music datasets. † denotes leave-
one-set-out evaluation, ‡ overlapping train and test sets, § cross
validation, and * testing only.

Beat tracking

Compared to the current state-of-the-art [14], the new system performs
on par or outperforms this dedicated beat tracking algorithm. It only
falls a bit behind on the GTZAN and SMC sets. However, the results
on the latter might be a bit biased, since Böck et al. [14] obtained their
results with 8-fold cross validation. Although the new system performs
better on the Klapuri set, the difference is not statistically significant.
All results compared to those of other beat tracking algorithms on the
test datasets in Table 7.2 are statistically significant.

Although the new algorithm and [14] have a very similar archi-
tecture and were trained on almost the same development sets (the

94 joint beat and downbeat tracking

carnatic f1 beat f1 downbeat

NEW (bar lengths: 3, 4) § 0.804 0.365

—— (bar lengths: 3, 5, 7, 8) § 0.792 0.593

Krebs et al. [88] § 0.805 0.472

cretan

NEW (bar lengths: 3, 4) § 0.982 0.605

—— (bar lengths: 2, 3, 4) § 0.981 0.818

—— (bar lengths: 2) § 0.980 0.909

Krebs et al. [88] § 0.912 0.774

turkish

NEW (bar lengths: 3, 4) § 0.740 0.495

—— (bar lengths: 4, 8, 9, 10) § 0.777 0.631

—— (tempo: 55..300 bpm) § 0.818 0.683

Krebs et al. [88] § 0.826 0.639

Table 7.4: Beat and downbeat tracking F-measure comparison with state-of-
the-art algorithms on non-western music datasets. —– denotes
the same system as the line above with altered parameters in
parentheses, § cross validation.

new one plus those sets given in Table 7.1, except the SMC dataset),
it is hard to conclude whether the new algorithm performs better
sometimes because of the additional – more diverse – training ma-
terial or due to the joint modelling of beats and downbeats. Future
investigations with the same training sets should shed some light on
this question, but it is safe to conclude that the joint training on beats
and downbeats does not harm the beat tracking performance at all.

On non-western music the results are in the same range as the ones
obtained by the method of Krebs et al. [88], an enhanced version of
the algorithm proposed by Holzapfel et al. [73]. Our system shows
almost perfect beat tracking results on the Cretan lap dances while
performing a bit worse on the Turkish music.

Downbeat tracking

From Table 7.2 to 7.4, it can be seen that the proposed system not only
does well for beat tracking, but also shows state-of-the-art performance
in downbeat tracking. We outperform all other methods on all datasets
– except Beatles and RWC Popular when comparing to the overfitted
results obtained by the system of Durand et al. [46] – even the systems
designed specifically for non-western music. We find this striking,
since our new system is not designed specifically for a certain music

7.4 evaluation 95

style or genre. The results of our method w.r.t. the other systems on
the test datasets in Table 7.2 are all statistically significant.

It should be noted however, that the dynamic Bayesian network must
model the needed bar lengths for the respective music in order to
achieve this performance. Especially when dealing with non-western
music, this is crucial. However, we do not consider this a drawback,
since the system is able to chose the correct bar length reliably by
itself.

Meter selection

As mentioned above, for best performance the DBN must model mea-
sures with the correct number of beats per bar. Per default, our system
works for 3/4 and 4/4 time signatures, but since the parameters of
the DBN are not learnt, this can be changed during runtime in order
to model any time signature and tempo range.

To investigate the system’s ability to automatically decide on which
bar length to select, we performed an experiment and limited the
DBN to model only bars with lengths of three or four beats, both time
signatures simultaneously (the default setting), or bar lengths of up to
eight beats.

3 4 3,4 3...5 3...6 3...7 3...8

modelled bar lengths by the DBN [beats/bar]

0.4

0.5

0.6

0.7

0.8

0.9

F-
m

e
a
su

re

Figure 7.2: Downbeat tracking performance of the new system with different
bar lengths on the Ballroom set.

Figure 7.2 shows this exemplarily for the Ballroom set, which com-
prises four times as many pieces in 4/4 as in 3/4 time signature. The
performance is relatively low if the system is limited to model bars
with only three or four beats per bar. When being able to model both
time signatures present in the music, the system achieves it’s max-
imum performance. The performance then slightly decreases if the
DBN models bars with a length up to eight beats per bar, but remains

96 joint beat and downbeat tracking

on a relatively high performance level. This shows the system’s ability
to select the correct bar length automatically.

7.5 conclusions

In this paper we presented a novel method for jointly tracking beats
and downbeats with a recurrent neural network (RNN) in conjunction
with a dynamic Bayesian network (DBN). The RNN is responsible for
modelling the metrical structure of the musical piece at multiple inter-
related levels and classifies each audio frame as being either a beat,
downbeat, or no beat. The DBN then post-processes the probability
functions of the RNN to align the beats and downbeats to the global
best solution by jointly inferring the meter, tempo, and phase of the se-
quence. The system shows state-of-the-art beat and downbeat tracking
performance on a wide range of different musical genres and styles. It
does so by avoiding hand-crafted features such as harmonic changes,
or rhythmic patterns, but rather learns the relevant features directly
from audio. We believe that this is an important step towards systems
without any cultural bias. We provide a reference implementation of
the algorithm as part of the open-source madmom [12] framework.

Future work should address the limitation of the system of not
being able to perform time signature changes within a musical piece.
Due to the large state space needed this is intractable right now, but
particle filters as used in [89] should be able to resolve this issue.

addendum

Since this algorithm was introduced just recently, no further improve-
ment can be reported so far. However, the results initiated working on
an online real-time capable version of the algorithm.

MIREX evaluation

The system was submitted to the 2016 MIREX downbeat estimation
evaluation.6 It achieved the highest F-measure scores on six out of
eight datasets with a margin as high as 19% absolute. It ranks 2nd on
the Beatles dataset after the system of Durand et al. [46] (0.865 vs. 0.872

F-measure) and the GTZAN dataset behind the system of Krebs et al.
[86] (0.638 vs. 0.647 F-measure) – which incorporates the beat tracking
algorithm described in the previous Chapter. It can thus safely be
concluded that it is the current state-of-the-art system for downbeat
tracking.

6 http://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_

Results

http://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results
http://www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results

Part III

T E M P O E S T I M AT I O N

8
T E M P O E S T I M AT I O N

title

Accurate Tempo Estimation based on Recurrent Neural Networks and
Resonating Comb Filters.

authors

Sebastian Böck, Florian Krebs, and Gerhard Widmer.

published

In Proceedings of the 16th International Society for Music Information
Retrieval Conference (ISMIR), October 2015, Malaga, Spain.

contribution

Main idea, implementation, and experiments were carried out by me.
Florian Krebs and Gerhard Widmer provided valuable input.

abstract

In this paper we present a new tempo estimation algorithm which
uses a bank of resonating comb filters to determine the dominant
periodicity of a musical excerpt. Unlike existing (comb filter based) ap-
proaches, we do not use handcrafted features derived from the audio
signal, but rather let a recurrent neural network learn an intermediate
beat-level representation of the signal and use this information as
input to the comb filter bank. While most approaches apply complex
post-processing to the output of the comb filter bank like tracking
multiple time scales, processing different accent bands, modelling
metrical relations, categorising the excerpts into slow / fast or any
other advanced processing, we achieve state-of-the-art performance
on nine of ten datasets by simply reporting the highest resonator’s
histogram peak.

99

100 tempo estimation

8.1 introduction

Tempo estimation is one of the most fundamental music information
retrieval (MIR) tasks. The tempo of music corresponds to the frequency
of the beats, i.e. the speed at which humans usually tap to the music.

In this paper, we only deal with global tempo estimation, i.e. re-
port a single tempo estimate for a given musical piece, and do not
consider the temporal evolution of tempo. Possible applications for
such algorithms include automatic DJ mixing, similarity estimation,
music recommendation, playlist generation, and tempo aware audio
effects. Finding the correct tempo is also vital for many beat tracking
algorithms which use a two-folded approach of first estimating the
tempo of the music and then aligning the beats accordingly.

Many different methods for tempo estimation have been proposed
in the past. While early approaches estimated the tempo based on dis-
crete time events (e.g. MIDI notes or a sequence of onsets) [42], almost
all of the recently proposed algorithms [35, 53, 58, 80, 104, 136] use
some kind of continuous input. Generally, they follow this procedure:
they transform the audio signal into a down-sampled feature, estimate
the periodicities and finally select one of the periodicities as tempo.

As a reduction function, the signal’s envelope [117], band pass
filters [58, 80, 136], onset detection functions [35, 58, 104, 136] or com-
binations thereof are commonly used. Popular choices for periodicity
detection include fast Fourier transform (FFT) based methods like tem-
pograms [25, 136], autocorrelation [42, 58, 104, 109] or comb filters [35,
80, 117]. Finally, post-processing is applied to chose the most promis-
ing periodicity as perceptual tempo estimate. These post-processing
methods range from simply selecting the highest periodicity peak to
more sophisticated (machine learning) techniques, e.g. hidden Markov
models (HMM) [80], Gaussian mixture model (GMM) regression [107]
or support vector machines (SVM) [60, 109].

In this paper, we propose to use a neural network to derive a
reduction function which makes complex post-processing redundant.
By simply selecting the comb filter with the highest summed output,
we achieve state-of-the-art performance on nine of ten datasets in the
Accuracy 2 evaluation metric.

8.2 related work

In the following, we briefly describe some important works in the field
of tempo estimation. Gouyon et al. [65] give an overview of the first
comparative algorithm evaluation which took place for ISMIR 2004,
followed by another study by Zapata and Gómez [138].

The work of Scheirer [117] was the first one to process the audio
signal continuously rather than working on a series of discrete time
events. He proposed the use of resonating comb filters, which are

8.2 related work 101

one of the main techniques used for periodicity estimation since then.
Periodicity analysis is performed on a number of band pass filtered
signals and then the outputs of this analysis are combined and a global
tempo is reported.

Dixon [42] uses discrete onsets gathered with the spectral flux
method to build clusters of inter onset intervals which are in turn
processed by a multiple agent system to find the most likely tempo.
Oliveira et al. [104] extend this approach to use a continuous input
signal instead of discrete time events and modified it to allow causal
processing.

Klapuri et al. [80] jointly analyse the musical piece at three time
scales: the tatum, tactus (which corresponds to the beat or tempo)
and measure level. The signal is split into multiple bands and then
combined into four accent bands before being fed into a bank of
resonating comb filters similar to [117]. Their temporal evolution
and the relation of the different time scales are modelled with a
probabilistic framework to report the final position of the beats. The
tempo is then calculated as the median of the beat intervals during
the second half of the signal.

Instead of a multi-band approach as used in [80, 117], Davies and
Plumbley [35] process an autocorrelated version of a complex domain
onset detection function with a shift invariant comb filter bank to get
the beat period. Although this method uses only a single dimensional
input feature, it performs almost as good as the competing algorithms
in [65] but has much lower computational complexity.

Gainza and Coyle [58] use a multi-band decomposition to split
the audio signal into three frequency bands and then perform a tran-
sient / onsets detection (with different onset detection methods). These
are transformed via autocorrelation into periodicity density functions,
combined, and weighted to extract the final tempo.

Gkiokas et al. [60] utilise harmonic/percussive source separation
on top of a constant-Q transformed signal in order to extract chroma
features and filter bank energies from the separated signal respectively.
Periodicity is estimated for both representations with a bank of res-
onating comb filters for overlapping windows of 8 seconds length and
the resulting features are combined before a metrical level analysis is
performed to report the final tempo. In a consecutive work Gkiokas
et al. [59] use a support vector machine (SVM) to classify the music
into tempo classes to better predict the tempo to be reported.

Elowsson et al. [53] also use harmonic / percussive source separation
to model the speed of music. They derive various features like onset
densities (for multiple frequency ranges) and strong onset clusters
and use a regression model to predict the tempo of the signal.

Percival and Tzanetakis [109] use a “traditional” approach by first
generating a spectral flux onset strength signal, followed by a stage
which detects the beat period in overlapping windows of approx-

102 tempo estimation

imately 6 seconds length (via generalised autocorrelation with har-
monic enhancement) and a final accumulating stage which gathers all
these tempo estimates and uses a support vector machine (SVM) to
decide which octave the tempo should be in.

Wu and Jang [136] first derive an unaltered and a low pass filtered
version of the input signal. Then they obtain a tempogram representa-
tion of a complex domain onset detection function for both signals to
obtain tempo pairs. A classifier is then used to report the final most
salient tempo.

8.3 algorithm description

Scheirer [117] found it beneficial to compute periodicities individually
on multiple frequency bands and then subsequently combine them
to estimate a single tempo. Klapuri et al. [80] followed this route but
Davies and Plumbley [35] argued that is is enough to have a single –
musically meaningful – feature to estimate the periodicity of a signal.

Given the fact that beats are the musically most relevant descriptors
for the tempo of a musical piece, we take this approach one step
further and do not use the pre-processed signal directly – or any
representation that is strongly correlated with it, e.g. an onset detection
function – as an input for a comb filter, but rather process the signal
with a neural network which is trained to predict the positions of
beats inside the signal. The resulting beat activation function is then
fed into a bank of resonating comb filters to determine the tempo.

Neural
Network

Comb
Filter BankSignal TempoSignal

Preprocessing

Figure 8.1: Overview of the new tempo estimation system.

Figure 8.1 gives general overview over the different steps of the
tempo estimation system, which are described into more detail in the
following sections.

8.3.1 Signal pre-processing

The proposed system processes the signal in a frame-wise man-
ner. Therefore the audio signal is split into overlapping frames and
weighted with a Hann window of same length before being trans-
ferred to a time-frequency representation by means of the discrete
Fourier transform (DFT). Two adjacent frames are located 10 ms apart,
which corresponds to a rate of 100 fps (frames per second). We omit
the phase portion of the complex spectrogram and use only the mag-
nitudes for further processing. To reduce the dimensionality of the
signal, we process it with a logarithmically spaced filter which has

8.3 algorithm description 103

0 1 2 3 4 5 6
time [seconds]

1.0

0.5

0.0

0.5

1.0

a
u
d
io

 s
ig

n
a
l

(a) Input audio signal

0 1 2 3 4 5 6
time [seconds]

0

20

40

60

80

100

120
N

N
 f

e
a
tu

re
 i
n
p
u
t

(b) Input to the neural network

0 1 2 3 4 5 6
time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

N
N

 a
ct

iv
a
ti

o
n

(c) Neural network output (beat activation function)

0 1 2 3 4 5 6
time [seconds]

40

60

80

100

120

140

co
m

b
 f

ilt
e
r

la
g
 [

fr
a
m

e
s]

(d) Resonating comb filter bank output

0 1 2 3 4 5 6
time [seconds]

40

60

80

100

120

140

co
m

b
 f

ilt
e
r

la
g
 [

fr
a
m

e
s]

(e) Maxima of the resonating comb filter bank

250 176 136 111 93 81 71 63 57 52 48 44 41 38 36
tempo [bpm]

0

50

100

150

200

250

300

350

400

450

h
is

to
g
ra

m

(f) Weighted histogram with summed maxima

Figure 8.2: Signal flow of a 6 second pop song excerpt: (a) input audio
signal, (b) pre-processed input to the neural network, (c) its raw
(dotted) and smoothed (solid) output, (d) corresponding comb
filter bank response, (e) the maxima thereof, (f) resulting raw
(dotted) and smoothed (solid) weighted histogram of the summed
maxima. Ground-truth beat positions and corresponding tempo
are marked with vertical red lines.

104 tempo estimation

three bands per octave and is limited to the frequency range [30, 17000]
Hz. To better match the human’s perception of loudness, we scale the
resulting frequency bands logarithmically. As the final input features
for the neural network, we stack three spectrograms and their first
order difference calculated with different short-time Fourier transform
(STFT) sizes of 1024, 2048 and 4096 samples, a visualisation is given
Figure 8.2a.

8.3.2 Neural network processing

As a network we chose the system presented in [17], which is also
the basis for the current state-of-the-art in beat tracking [14, 83]. The
output of the neural network is a beat activation function, which
represents the probability of a frame being a beat position. Instead
of processing the beat activation function to extract the positions of
the beats, we use it directly as a one-dimensional input to the bank of
resonating comb filters.

Using this continuous function instead of discrete beats is advanta-
geous since the detection is never 100% effective und thus introduces
errors when inferring the tempo directly from the beats. This is in line
with the observation that recent tempo induction algorithms use onset
detection functions or other continuously valued inputs rather than
discrete time events.

We believe that the learned feature representation (at least to some
extent) incorporates information that otherwise would have to be mod-
elled explicitly, either by tracking multiple time scales [80], processing
multiple accent bands [117], modelling metrical relations [60], dividing
the excerpts into slow / fast categories [53] or any other advanced pro-
cessing. Figure 8.2c shows an exemplary output of the neural network.
It can be seen that the network activation function has strong regular
peaks that do not always coincide with high energies in the network’s
inputs.

Network training

We train the network on the datasets described in Section 8.4.2 which
are marked with an asterisk (*) in an 8-fold cross validation setting
based on a random splitting of the datasets. We initialise the network
weights and biases with a uniform random distribution with range
[−0.1, 0.1] and train it with stochastic gradient decent with a learning
rate of 10−4 and a momentum of 0.9. We stop training if no improve-
ment of the cross entropy error of the validation set can be observed
for 20 epochs. All adjustable parameters of the system are tuned to
maximise the tempo estimation performance on the validation set.

8.3 algorithm description 105

Activation function smoothing

The beat activation function of the neural network reflects the prob-
ability that a given frame is a beat position. However, it can happen
that the network is not sure about the exact position of the beat if
it falls close to the border between two frames and hence splits the
reported probability between these two frames. Another aspect to be
considered is the fact that the ground truth annotations used as targets
for the training are sometimes generated via manual tapping and thus
deviate from the real beat position by up to 50 ms. This can result
also in blurred peaks in the beat activation function. To reduce the
impact of these artefacts, we smooth the activation function before
being processed with the filter bank by convolving it with a Hamming
window of length 140 ms.1

8.3.3 Comb filter periodicity estimation

We use the output of the neural network stage as input to a bank
of resonating comb filters. As outlined previously, comb filters are a
common choice to detect periodicities in a signal, e.g. [35, 80, 117].
The advantage of comb filters over autocorrelation lays in the fact that
comb filters also resonate at multiples, fractions and simple rationales
of the filter lag. This behaviour is in line with the perception of humans,
which do not necessarily consider double or half tempi wrong. We use
a bank of resonating feed backward comb filters with different time
lags (τ), defined as:

y(t, τ) = x(t) + α ∗ y(t− τ, τ). (8.1)

Each comb filter adds a scaled (by factor α) and delayed (with lag τ)
version of its own output y(t) to the input signal x(t) with t denoting
the time frame index.

Lag range definition

For the individual bands of the comb filter bank we use a linear
spacing of the lags with the minimum and maximum delays calculated
as:

τmin = b60 ∗ f ps/bpmmaxc
τmax = d60 ∗ f ps/bpmmine

(8.2)

with f ps representing the frame rate of the system given in frames per
second and the minimum and maximum tempi bpmmin and bpmmax

1 Because of this smoothing the beat activations do not reflect probabilities any more
(and they may exceed the value of 1), but this does not harm the overall interpretation
and usefulness.

106 tempo estimation

given in beats per minute. We found the tempo range of [40, 250] bpm
to perform best on the validation set.

Scaling factor definition

Scheirer [117] found it beneficial to use different scaling factors α(τ)

for the individual comb filter bands. He defines them such that the
individual filters have the same half-energy time. Klapuri et al. [80]
also uses filters with exponentially decaying pulse response, but sets
the scaling factor such that the response decays to half after a defined
time of 3 seconds.

Contrary to these findings, we use a single value for all filter lags,
which is set to α = 0.79. The reason that a single value works better
for this system may lay in the fact that we sum all peaks of the filters.
With a fixed scaling factor, the resonance of filters with smaller lags
tend to decay faster, but they also produce more peaks, hence leading
to a more “balanced” histogram.

Histogram building

After smoothing the neural network output and processing it with
the comb filter, we build a weighted histogram H(τ) from the output
y(t, τ) by simply summing the activations of the individual comb
filters (over all frames) if this filter produced the highest peak at the
given time frame:

H(τ) =
T

∑
t=0

y(t, τ) ∗ I(τ, arg max
τ

y(t, τ))

I(a, b) =

1 if a ≡ b

0 otherwise

(8.3)

with t denoting the time frame index, T the total number of frames,
and τ the filter delays.

The bins of the weighted histogram correspond to the time lags τ

and the bin heights represent the number of frames where the cor-
responding filter has a maximum at this delay, weighted by the ac-
tivations of the comb filter. This weighting has the advantage that
it favours filters which resonate at lags which correspond to inter-
vals with highly probable beat positions (i.e. high values of the beat
activation function) over those which are less probable. Figure 8.2d
illustrates the output of the comb filter bank, Figure 8.2e the weighted
maxima which are used to build the weighted histogram shown as
the dotted line in Figure 8.2f.

8.4 evaluation 107

Histogram smoothing

Music almost always contains tempo fluctuations – at least with regard
to the frame rate of the system. Even stable tempi result in weights
being split between two or more histogram bins. Therefore we combine
bins before reporting the final tempo.

Our approach simply smooths the histogram by convolving it with
a Hamming window with a width of seven bins, similar to [109].
Depending on the bin index (corresponding to the filter lag τ), a fixed
width results in different tempo deviations, ranging from −7% to +8%
for a lag of τ = 24 (corresponding to 250 bpm) to −2% to +2.9% for a
lag of τ = 40 (i.e. 40 bpm). Although this allows a greater deviation
for higher tempi, we found no improvement over choosing the size of
the smoothing window as a function of the tempo. Figure 8.2f shows
the smoothed histogram as the solid line.

Peak selection

The histogram shows peaks at the different tempi of the musical piece.
Again, previous works put much effort into this stage to select the
peak with the strongest perceptual strength, ranging from simple rules
driven by heuristics [109] over GMM regression based solutions [107]
to utilising a support vector machine (SVM) [59, 109] or decision trees
[109]. In order to keep our approach as simple as possible, we simply
select the highest peak of the smoothed histogram as our final tempo.

8.4 evaluation

To assess the performance of the proposed system we compare it to an
autocorrelation based tempo estimation method as described in [17],
which operates on the same beat activation function obtained with the
neural network described in Section 8.3.2. The algorithms of Gkiokas
et al. [60], Percival and Tzanetakis [109], Klapuri et al. [80], Oliveira
et al. [104], and Davies and Plumbley [35] were chosen as additional
reference systems based on their availability and overall performance.

For a short description of these algorithms, please refer to Sec-
tion 8.2.

All of the algorithms were used in their default configuration, ex-
cept the system of Oliveira et al. [104], which we operated in offline
mode with an induction length of 100 seconds, because it yielded sig-
nificantly better results.2 It should be noted however, that this mode
results in a reduced tempo search range of 81-160 bpm, which can
lead to biased results in favour of datasets in this tempo range.

Following [138] and [109] we perform statistical tests of our results
compared to the others with McNemar’s test using a significance
value of p < 0.01.

2 This corresponds to: ibt -off -i auto-regen -t 100

108 tempo estimation

8.4.1 Evaluation metrics

Since humans perceive tempo and rhythm subjectively, there is no
single best tempo estimate. For example, the perceived tempo can be a
multiple or fraction of the tempo given by the score of the piece. This
is also known as the tempo octave problem. Therefore, two evaluation
measures are used in the literature: Accuracy 1 considers only the
single annotated tempo for the evaluation, whereas Accuracy 2 also
includes integer multiples or fractions of the annotated tempo. Since
the data that we use also contains music in ternary meter, we do not
only add double and half tempo annotations, but also triple and third
tempo. In line with most other publications we report accuracy values
which denote the algorithms’ ability to correctly estimate the tempo
of the musical piece with less than 4% deviation form the annotated
ground truth.

8.4.2 Datasets

We use a total of ten datasets to evaluate the performance of our algo-
rithm. Table 8.1 lists some statistics of the datasets. Datasets marked
with an asterisk (*) were used to train the neural networks with 8-fold
cross validation as described in Section 8.3.2.

For all sets with beat annotations available (Ballroom, Hainsworth,
SMC, Beatles, RWC, HJDB), we generated the tempo annotations as
the median of the inter beat intervals. For the HJDB set (which is in
4/4 meter), we first derived the beat positions from the downbeat
annotations before inferring the tempo ground truth. For all other sets
we use the provided tempo annotations and – where applicable – the
corrected annotations from [109].

8.4.3 Results and discussion

Table 8.2 lists the results of the proposed algorithm compared to
the reference systems. The results (of our algorithm) reported on the
Ballroom, Hainsworth and SMC set are obtained with 8-fold cross-
validation, since these datasets were used to train the neural network.
Although this is a technically correct evaluation, it can lead to biased
results, since the system knows for example about ballroom music
and its features in general and thus has an advantage over the other
systems. It is thus no surprise that the proposed system outperforms
the others on these sets.

Nonetheless, the new system outperforms the autocorrelation based
tempo estimation method operating on the very same neural network
output in almost all cases. This clearly shows the advantage of the
resonating comb filters, which are less prone to single missing or
misaligned peaks in the beat activation function, due to their recurrent

8.4 evaluation 109

dataset # files length annotations

Ballroom [65, 87] * 3
685 5 h 57 m beats

Hainsworth [68] * 222 3 h 19 m beats

SMC [72] * 217 2 h 25 m beats

Klapuri [80] 474 7 h 22 m beats

GTZAN [109, 132] 999 8 h 20 m tempo

Songs [65] 465 2 h 35 m tempo

Beatles [33] 180 8 h 09 m beats

ACM Mirum [95, 107] 1410 15 h 05 m tempo

RWC Popular [62] 100 6 h 47 m beats

HJDB [71] 235 3 h 19 m downbeats

Total 4987 63 h 17 m

Table 8.1: Overview of the datasets used for tempo estimation evaluation.
Sets marked with asterisks were used for training.

nature and the fact that they also resonate on fractions and multiples
of the dominant tempo.

The results for the other datasets reflect the algorithm’s ability to
estimate the tempo of a completely unknown signal without tuning
any of the parameters. It can be seen that no single system performs
best on all datasets. Our proposed system performs state-of-the-art
(i.e. no other algorithm is statistically significantly better) in all but
the HJDB set w.r.t. Accuracy 2. We even outperform most of the other
methods in Accuracy 1, which highlights the algorithm’s ability to
not only capture a meaningful tempo, but also choose the correct
tempo octave.

An inspection of incorrectly detected tempi in the HJDB set showed
that the algorithm’s histogram usually has a peak at the correct tempo
but that this peak is not the highest. The reason lays in the fact
that this set contains music with breakbeats and strong syncopation.
Unfortunately, the neural network often identifies these syncopated
notes as beats. Contrary to single or infrequently misaligned beats, the
comb filter is not able to correct regularly recurring misalignments.
e.g. in drum & bass music, where the bass drum usually falls on the
offbeat between the third and fourth beat, this leads to additional
peaks in the histogram corresponding to 0.5 and 1.5 times the beat
interval, and a much lower peak at the correct position. Since we do
not perform intelligent clustering of the histogram peaks, often the
rate of the downbeats is reported, which results in a tempo which is
not covered by the Accuracy 2 measure any more.

3 We removed the 13 duplicates identified by Bob Sturm: http://media.aau.dk/null_
space_pursuits/2014/01/ballroom-dataset.html

http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html

110 tempo estimation

accuracy 1 new [17] [60] [109] [80] [104] [35]

Ballroom 0.950† 0.639†−0.625− 0.653− 0.642− 0.651− 0.709−
Hainsworth 0.847† 0.541†−0.667− 0.721− 0.752− 0.698− 0.739−
SMC 0.512† 0.442† 0.346− 0.267− 0.189− 0.166− 0.152−
Klapuri 0.789 0.502− 0.741 0.732 0.768 0.724− 0.692−
GTZAN 0.668 0.601− 0.716− 0.754+ 0.704+ 0.599− 0.582−
Songs 0.477 0.570+ 0.570+ 0.611+ 0.585+ 0.486 0.424

Beatles 0.850 0.700− 0.778 0.811 0.789 0.767 0.761−
ACM Mirum 0.741 0.540− 0.725 0.733 0.679− 0.621− 0.646−
RWC Pop 0.600 0.450 0.900+ 0.810+ 0.770 0.750 0.770+

HJDB 0.796 0.434− 0.783 0.285− 0.494− 0.911+ 0.706

Dataset avg. 0.721 0.543 0.563 0.638 0.636 0.637 0.617

Total avg. 0.734 0.560− 0.685− 0.677− 0.658− 0.623− 0.618−
accuracy 2

Ballroom 1.000† 0.997† 0.981 0.953− 0.921− 0.921− 0.974

Hainsworth 0.941† 0.910† 0.887 0.901 0.869 0.802− 0.878

SMC 0.673† 0.599† 0.512− 0.438− 0.438− 0.359− 0.415−
Klapuri 0.937 0.907− 0.954 0.937 0.918 0.880− 0.924

GTZAN 0.950 0.942 0.938 0.925− 0.923− 0.841− 0.922−
Songs 0.933 0.918 0.910 0.865− 0.910 0.791− 0.875−
Beatles 0.983 0.967 0.978 0.989 0.928 0.883 0.978

ACM Mirum 0.976 0.958− 0.979 0.972 0.967 0.915− 0.975

RWC Pop 0.950 0.940 1.000 1.000 0.990 0.980 1.000

HJDB 0.868 0.851 0.911 1.000+ 0.864 0.991+ 1.000+

Dataset avg. 0.919 0.899 0.916 0.896 0.871 0.837 0.893

Total avg. 0.946 0.929− 0.935− 0.923− 0.909− 0.861− 0.923−

Table 8.2: Accuracy 1 and Accuracy 2 results for different datasets (cf. Ta-
ble 8.1) and algorithms (Böck and Schedl [17], Gkiokas et al. [60],
Percival and Tzanetakis [109], Klapuri et al. [80], Oliveira et al.
[104], Davies and Plumbley [35]). Best results in bold, + and −
mark results statistically significance compared to ours, † denote
values obtained with 8-fold cross validation.

8.4.4 MIREX evaluation

We submitted the algorithm to last year’s MIREX evaluation.4 Perfor-
mance is tested on a hidden set of 140 files with a total length of 1 hour

4 http://nema.lis.illinois.edu/nema_out/mirex2014/results/ate/

http://nema.lis.illinois.edu/nema_out/mirex2014/results/ate/

8.5 conclusions 111

and 10 minutes. The tempo evaluation used for MIREX is different,
because for each song the two most dominant tempi are annotated.
MIREX uses the following three evaluation metrics: P-Score [102] and
the percentage of files for which at least one or both of the annotated
tempi was identified correctly within a maximum allowed deviation
of ±8% from the ground truth annotations. Since MIREX requires the
algorithms to report two tempi with a relative strength, we adapted
the peak-picking strategy outlined in Section 8.3.3 to simply report
the two highest peaks.

algorithm p-score ≥1 tempo both tempi

NEW 0.876 0.993 0.629

Elowsson et al. [53] 0.857 0.943 0.693

Gkiokas et al. [60] 0.829 0.943 0.621

Wu and Jang [136] 0.826 0.957 0.550

Lartillot et al. [92] 0.816 0.921 0.571

Klapuri et al. [80] 0.806 0.943 0.614

Böck and Schedl [17] 0.798 0.957 0.564

Davies and Plumbley [35] 0.776 0.929 0.457

Table 8.3: Tempo estimation results on the McKinney (MCK) test collection
used for MIREX evaluation.

Table 8.3 gives an overview of the five best performing algorithms
(of different authors) over all years the MIREX tempo estimation task
is run, together with results for algorithms also used for evaluation in
the previous section.

Our algorithm ranked first in last year’s MIREX evaluation 5 and
achieved the highest P-Score and at least one tempo reported correctly
performance ever. The best performing algorithm for the both tempi
correct evaluation was the one submitted by Elowsson et al. [53] in
2013, which explicitly models the speed of the music and thus has
a much higher chance to report the two annotated tempi which are
inferred from human beat tapping.

8.5 conclusions

The presented tempo estimation algorithm based on recurrent neural
networks and resonating comb filters is able to perform state-of-the-art
or outperforms existing algorithms on all but one datasets investigated.
Based on the high Accuracy 2 score, which also considers integer
multiples and fractions of the annotated ground truth tempo, it can

5 http://nema.lis.illinois.edu/nema_out/mirex2014/results/ate

http://nema.lis.illinois.edu/nema_out/mirex2014/results/ate

112 tempo estimation

be concluded that the system is able to capture a meaningful tempo
in almost all cases.

Additionally, we outperform many existing algorithms w.r.t. Accu-
racy 1 which suggests that it is advantageous to use a musically more
meaningful representation than just the onset strength of the signal
– even if split into multiple accent bands – as an input for a bank of
resonating comb filters.

In future, we want to investigate methods of perceptually clustering
the peaks of the histogram to report the most relevant tempo, as this
has been identified to be the main problem of the new algorithm
when dealing with very syncopated music. We believe that this should
increase the Accuracy 1 performance considerably.

addendum

Using this tempo estimation model (instead of an autocorrelation-
based one), boosts the beat tracking performance of the method de-
scribed in Chapter 5 considerably, as can be seen by the MIREX results
given in Table 5.3.

MIREX evaluation

The system presented was first submitted to MIREX 2014
6 and then

consecutively in 2015
7 and 2016.8 It always performed best and only

falls slightly short in both tempi correct performance. The 2015 submis-
sion uses neural network models trained on a wider range of musical
styles (the same as the beat tracking algorithms described in Chap-
ter 5). The system was submitted unaltered in 2016 and achieved the
same performance.

algorithm p-score ≥1 tempo both tempi

TempoDetector (2014) 0.876 0.993 0.629

TempoDetector (2015) 0.898 0.993 0.664

Elowsson et al. [53] 0.857 0.943 0.693

Table 8.4: Performance of the presented algorithm in MIREX evaluations on
the MCK set. The results represent the current state-of-the-art in
beat tracking on this dataset. TempoDetector reflects the name of the
executable program of the madmom package (cf. Section 10.2.2).

6 http://nema.lis.illinois.edu/nema_out/mirex2014/results/ate/

7 http://nema.lis.illinois.edu/nema_out/mirex2015/results/ate/

8 http://nema.lis.illinois.edu/nema_out/mirex2016/results/ate/

http://nema.lis.illinois.edu/nema_out/mirex2014/results/ate/
http://nema.lis.illinois.edu/nema_out/mirex2015/results/ate/
http://nema.lis.illinois.edu/nema_out/mirex2016/results/ate/

Part IV

N O T E T R A N S C R I P T I O N

9
P I A N O T R A N S C R I P T I O N

title

Polyphonic Piano Note Transcription with Recurrent Neural Net-
works.

authors

Sebastian Böck and Markus Schedl.

published

In Proceedings of the 37th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), March 2012, Kyoto, Japan.

contribution

All work was carried out by me. Markus Schedl provided valuable
input.

abstract

In this paper a new approach for polyphonic piano note onset tran-
scription is presented. It is based on a recurrent neural network to
simultaneously detect the onsets and the pitches of the notes from
spectral features. Long Short-Term Memory units are used in a bidirec-
tional neural network to model the context of the notes. The use of a
single regression output layer instead of the often used one-versus-all
classification approach enables the system to significantly lower the
number of erroneous note detections. Evaluation is based on common
test sets and shows exceptional temporal precision combined with
a significant boost in note transcription performance compared to
current state-of-the-art approaches. The system is trained jointly with
various synthesised piano instruments and real piano recordings and
thus generalises much better than existing systems.

115

116 piano transcription

9.1 introduction

Music transcription is the process of converting an audio recording
into a musical score or a similar representation. In this paper we
concentrate on the transcription of piano notes, especially on the two
most important aspects of notes, their pitch and onset times. To detect
them as accurately as possible is crucial for a proper transcription of
the musical piece. We leave out higher level tasks like determining the
length of a note (given either in seconds or in a musical notation like
quarter note). Also we do not consider the velocity or intensity. The
output of the system is a simplified piano-roll notation of the audio
signal.

Traditional music transcription systems are based on a wide range of
different technologies, but all have to deal with the subtasks of estimat-
ing the fundamental frequencies and the onset locations of the notes.
A very basic approach formulated by Dixon [41] solely relies on the
spectral peaks of the signal to detect notes; local maxima represent the
onsets and the drop of energy below a minimum threshold marks the
offset of the note. Bello et al. [7] additionally incorporate time-domain
features to predict multiple sounding pitches assuming that the signal
can be constructed as a linear sum of individual waveforms based on
a database of piano notes. Raphael [114] proposes a probability-based
system which uses a hidden Markov model (HMM) to find chord
sequences. The states are represented by frames with labels based on
the sounding pitches. Ryynänen and Klapuri [115] also use HMMs to
model note events based on multiple fundamental frequency features.
Transition between notes are controlled via musical knowledge.

Most of today’s top performing piano transcription systems rely
on machine learning approaches. Marolt [97] describes an elaborate
approach based on different neural networks to recognise tones in an
audio recording, combined with adaptive oscillators to track partials.
Poliner and Ellis [111] use multiple support vector machine (SVM)
classifiers trained on spectral features to detect the sounding funda-
mental frequencies of a frame. Post-processing with HMM is applied
to temporally smooth the output. Boogaart and Lienhart [23] use a
cascade of boosted classifiers to predict the onsets and the correspond-
ing pitches of each note. All these systems use multiple classifiers
and thus can not reliably distinguish whether a sounding pitch is
the fundamental frequency of a note or a partial of another one. This
results in lots of false note detections. In contrast, our system uses a
single regression model and is thus able to distinguish between these
states and hence lowers the number of false detections significantly.

9.2 system description 117

9.2 system description

Figure 9.1 shows the proposed piano transcription system. It takes a
discretely sampled audio signal as its input. The signal is transferred
to the frequency domain via two parallel Short-Time Fourier Transforms
(STFT) with different window lengths. The logarithmic magnitude
spectrogram of each STFT is then filtered to obtain a compressed
representation with the frequency bins corresponding to the tone
scale of a piano with a semitone resolution. This representation is
used as input to a bidirectional Long Short-Term Memory (BLSTM)
recurrent neural network. The output of the network is a piano-roll
like representation of the note onsets for each MIDI note.

Spectrogram
46.4ms

Spectrogram
185.5ms

BLSTM
Network

Note Onset &
Pitch DetectionAudio

Semitone
Filterbank

Semitone
Filterbank

Notes

Figure 9.1: Proposed piano transcription system overview.

9.2.1 Feature extraction

As input, the system takes a monophonic pulse code modulated
(PCM) audio signal x(n) with a sampling rate of fs = 44.1 kHz in
floating point representation (in the range of [−1...1]). The signal is
split into overlapping frames with frame lengths of 2048 and 8192

samples (46.4 and 185.8 ms). Different frame lengths have been chosen
to achieve both a good temporal precision and a sufficient frequency
resolution for the transcription of the notes. Two consecutive frames
are located 10 ms apart, resulting in a constant frame rate fr = 100 fps.
A Hamming window with the same size as the frame is applied
before the signals are transferred to the frequency domain with the
Short-Time Fourier Transform.

Phase information of the resulting complex spectrograms X(n, k) is
omitted, and only the magnitude values are used for all further calcu-
lations. A logarithmic representation of the magnitude spectrograms
is advantageous, compared to the linear one. To avoid negative values
and to put the values in a suitable range for the following neural
network stage, the spectrograms are multiplied with a factor 1000 and
a fixed value of 1 is added before taking the logarithm. These values
yielded the best results during preliminary tests.

To reduce the dimensionality of the input vector of the neural
network, the two magnitude spectrograms S(n, k) are filtered with
semitone filterbanks F(m, k). The frequencies m are spaced equally

118 piano transcription

on a logarithmic frequency scale and are aligned according to the
pitches of the 88 MIDI notes (i.e. semitone spacing). This spacing
is expanded up to the maximum frequency of 16 kHz. Overlapping
triangular filters are used to combine multiple spectrogram frequency
bins into one. The area of each filter is normalised to 1 to compensate
the overemphasis of high frequencies. Finally duplicate filters (which
occur if the frequency resolution of the STFT is too coarse for low MIDI
pitches) are eliminated. This results in a dimensionality reduction from
5120 values of the two spectrograms down to 183.

The use of a semitone spacing instead of a less granular one (e.g.
quarter tone) has two main advantages: first, it reduces the dimension-
ality of the input vector for the neural network by roughly a factor
of two, thus resulting in reduced training time. It also desensitises
the whole system against minor tuning variations of different pianos,
hence leading to a much better generalisation without the need for a
manual adjustment of the piano tuning.

Since the energy of the signal rises during the note attack phase
which directly follows the note onset, also the first order differences of
the semitone filtered spectrograms are included. For the small window
length, the difference is calculated to the preceding frame, whereas
for the long window length it is calculated relative to the frame at
the index n− 4. This measure cancels the delay of the rise in energy
relative to the actual note onset position. Although adding the first
order differences doubles the input vector size of the neural network
from 183 to 366, it increases the overall transcription performance and
simultaneously reduces the needed training epochs, since the network
converges faster.

9.2.2 Neural network

For the neural network stage, a bidirectional recurrent neural network
(RNN) with Long Short-Term Memory (LSTM) units is used. Compared
to feed forward neural networks (FNNs), RNNs have the advantage that
they are able to model temporal contexts due to the use of recur-
rent connections in the hidden layers. Although theoretically able to
remember any past values, they suffer from the vanishing gradient
problem, i.e. input values decay or blow up exponentially over time,
thus limiting their range to a maximum of a few time steps. Hochre-
iter and Schmidhuber [70] developed a new method called LSTM to
overcome this problem. Each LSTM block has a recurrent connection
with weight 1.0 which enables the block to act as a memory cell. In-
put, output, and forget gates control the content of the memory cell
through multiplicative units and are connected to other neurons as
usual.

A bidirectional recurrent neural network (BRNN) [121] doubles the
number of hidden layers and presents the input values to the newly

9.2 system description 119

created set of hidden layers in reverse temporal order. This offers the
advantage that the network not only has access to past input values
but can also ‘look into the future’.

If BRNNs are used in conjunction with LSTM neurons, a bidirectional
Long Short-Term Memory (BLSTM) recurrent neural network is built.
It has the ability to model a wider temporal context around a given
input value. For the detection of notes this is an essential feature, since
the onset is not only characterised by an increase in energy during
the attack phase, but also by a special energy envelope during the
following decay, sustain, and release phases.

BLSTMs have been successfully implemented in systems for onset
detection [55] and beat detection and tracking [17] which both showed
state-of-the-art performance in their respective field. In contrast to
those implementations, the neural network of this approach uses a
regression output layer. The biggest advantage compared to multiple
classifier system [23, 97, 111] lies in the ability of the system to correctly
identify whether a sounding pitch is the fundamental frequency of
a note or a partial of another one, thus reducing the number of false
positive and negative note detections significantly.

The used neural network has three bidirectional hidden layers with
88 LSTM units each. The regression output layer has 88 units, each
representing one MIDI pitch. The output of these units represent the
activation functions for each note.

Network training

The network is trained with supervised learning and early stopping.
The used training data set is described in Section 9.3. Together with
the target values extracted from the MIDI data, each audio sequence
is preprocessed as described above and presented to the network for
learning. The network weights are initialised with random values
following a Gaussian distribution with mean 0 and standard deviation
0.1. Standard gradient descent with backpropagation of the errors
is used to train the network. To prevent over-fitting, performance
is evaluated after each training iteration on the validation set. If no
improvement on the summed squared error is observed for 20 epochs,
the training is stopped.

Network testing

For the evaluation of the system, the unknown music excerpts of the
test set are preprocessed as described in Section 9.2.1 and presented
to the previously trained network. The resulting note activation re-
gression matrix of the output nodes is used as input to the following
stage.

120 piano transcription

9.2.3 Note onset and pitch detection

The notes onset times and pitches are derived directly from the neural
network output. The activation values for each pitch are smoothed
with a Hamming window of 90 ms length before being thresholded.
The length of the window is not crucial as long as it is smaller than
the duration between two consecutive notes of the same pitch. The
threshold is determined individually per note on the validation set
by: θp = arg maxθ{TPθ − FPθ − FNθ}, TP denoting true positive, FP
false positive, and FN false negative detections. A standard local
maximum peak picking algorithm is applied to gather the final note
onset positions for each pitch.

9.3 data

Solo piano music has been chosen for training and evaluation of the
described system. As a basis, the musical renderings and recordings
of the MAPS database 1 introduced by Emiya et al. [54] are used. They
consist of 209 pieces rendered by seven different software synthesisers
and 60 real piano recordings with an upright Yamaha Disklavier. To
expand the dataset, 267 MIDI files from the same source, the Classical
Piano Midi Page 2, were synthesised with the freely available Maestro
Concert Grand v2

3 sound font. To compensate the emphasis towards
synthesised sounds, the LabROSA Disklavier recordings 4 (used for
evaluation in [111]) and real audio recordings of 13 Mozart sonatas
played on a Bösendorfer SE290 computer monitored grand piano by
the pianist Roland Batik were added to the set. The whole dataset is
split into training, validation, and testing examples according to the
original splitting in [111], thus maintaining the comparability of the
results. Table 9.1 shows the distribution of the dataset.

dataset training validation testing

MAPS (MIDI instruments) 854,507 108,778 107,310

MAPS (Disklavier) 86,026 16,495 5,675

MIDI (Maestro Concert) 519,479 59,838 71,225

Batik (Bösendorfer) 76,095 13,387 16,926

LabROSA (Disklavier) 47,134 0 23,298

Table 9.1: Number of notes in the individual datasets.

1 http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/

2 http://www.piano-midi.de

3 http://www.linuxsampler.org/instruments.html

4 http://labrosa.ee.columbia.edu/projects/piano/

http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/
http://www.piano-midi.de
http://www.linuxsampler.org/instruments.html
http://labrosa.ee.columbia.edu/projects/piano/

9.4 results 121

9.4 results

To measure the performance of our system, standard precision, recall,
and f-measure scores are used. Another measure is the accuracy,
defined by Dixon [41]. Since it counts false detections twice (both the
false negative and the false positive detection), error scores as used
by Poliner and Ellis [111] are provided additionally; Esubs denote note
substitutions, Emiss missed notes, E f a false additions, and Etot the sum
of all errors.

9.4.1 Note onset transcription

An onset is considered as correctly identified if its pitch is correctly
identified and its location is within a certain window around the
ground-truth position. For onset detection usually a 100 ms window
is used, and the results given by Poliner and Ellis [111] are based on
this window length as well. Boogaart and Lienhart [23] use a window
of 68.25 ms. Although penalising our system, we give results only for
a detection window of 50 ms.

acc esubs emiss efa etot

MAPS (MIDI) 0.840 0.029 0.068 0.056 0.153

MAPS (Disklavier) 0.687 0.066 0.170 0.090 0.326

MIDI 0.889 0.020 0.040 0.039 0.099

Batik 0.901 0.003 0.064 0.032 0.099

LabROSA 0.627 0.096 0.178 0.119 0.393

complete 0.856 0.025 0.061 0.051 0.137

complete (w/o octave) 0.897 0.025 0.053 0.014 0.092

Poliner and Ellis [111] 0.623 0.045 0.164 0.224 0.432

Boogaart and Lienhart [23] 0.874 - - - -

Table 9.2: Note onset transcription accuracy and error rates for the partial
and complete test sets. Esubs denote note substitution, Emiss missed
notes, E f a false additions, and Etot the sum of all errors.

Table 9.2 shows the accuracy and error rates for the different test
sets compared to other state-of-the-art systems. The new approach
clearly outperforms the system of Poliner and Ellis [111] not only in
case of the complete test set, but even for the most difficult partial
test set (the LabROSA Disklavier recordings). This does not only show
the good performance of our approach, but also highlights its good
generalisation capability. Concurrent with the rise in accuracy, all
error score are significantly lower. This demonstrates the ability of the

122 piano transcription

system to detect even difficult notes without adding a high number of
false detections.

If only a single instrument is evaluated (i.e. the MIDI test set), the
systems also performs better than the one of Boogaart and Lienhart
[23], which was trained with a single MIDI instrument. This is remark-
able, since our system is not trained specifically for a single instrument.
Trained solely on the MIDI dataset, our system achieves an accuracy
of 93.6%, exceeding their results even further.

The much better result for the Batik test set can be explained by the
lower musical complexity of the Mozart sonatas compared to other
musical pieces of the test set.

Tonal misalignments can have different impacts on human percep-
tion. A pitch error of an octave does usually not harm the overall
impression very much, whereas other transcription errors can spoil
a musical piece completely. Therefore Table 9.2 also adds results if
octave errors are not considered. Since the number of errors are almost
evenly distributed across all test sets, only one result for the complete
test set is given. Not counted are errors occurring due to notes being
added exactly one octave below or above the correct pitch, or notes
that are missed if there is a detection exactly one octave apart. It can
be seen that more than 70% of the spuriously added notes are pitched
exactly one octave aside and hence do not harm the musical perception
much.

9.4.2 Temporal resolution

According to Handel [69], 5 ms is the threshold of perceptual differ-
ence for musical performances. For piano transcription it is therefore
highly desirable to achieve the maximum possible temporal precision.
Table 9.3 shows the precision, recall, f-measure and accuracy results
for different detection window sizes on the whole test set. The system
achieves roughly the same performance for all detection windows
down to a length of 50 ms. If the window size is reduced to 30 ms
(which corresponds to a maximum deviation of the detection by a
single frame in both directions at the used frame rate), the perfor-
mance starts to decrease. Even if only the annotated frame is used for
evaluation, the system is still performing decently, highlighting the
exceptional temporal precision. It should be noted that the Disklavier
recordings sometimes have annotation inaccuracies of up to 15 ms,
which explains the much lower result if only one frame is considered.

The use of multiple spectrograms enables the algorithm to achieve
such a good temporal performance. Inspection of the internal states of
the neural network shows that the network gathers timing information
almost exclusively from the spectrogram and the differences obtained
with the shorter STFT window length, while the information needed

9.5 conclusions 123

window precision recall f-measure accuracy

±50 ms 0.936 0.917 0.927 0.863

±35 ms 0.935 0.917 0.926 0.862

±25 ms 0.933 0.915 0.924 0.859

±15 ms 0.924 0.906 0.915 0.844

±5 ms 0.738 0.723 0.730 0.575

Table 9.3: Note onset transcription results for the complete test set measured
with different window detection sizes.

to determine the pitch of a note (especially the lower pitched ones) is
mostly obtained from the spectrogram with the longer window.

9.5 conclusions

In this paper we presented a new piano transcription system which
is a significant step towards real audio-to-MIDI transcription. It gives
exceptional temporal precision paired with state-of-the-art note onset
and pitch transcription performance.

The evaluation on publicly available test sets shows that our ap-
proach greatly reduces both the number of false positive and negative
note detections. The reduction is mainly due to the use of a single re-
gression output layer to simultaneously detect note onsets and pitches
compared to the one-versus-all classification approaches. Only holistic
systems can decide whether a sounding frequency is the real funda-
mental frequency or a harmonic overtone of another note.

Furthermore our system generalises very well over a wide range
of various pianos, resulting in transcription results previously only
achieved by systems tuned specifically for a single instrument.

addendum

The presented work is used as a transcription step in ‘The Complete
Classical Piano Music Companion’ developed by Arzt et al. [1, 2, 4]. This
system is able to identify the piece being played, and determine the
position within the piece almost instantly and then follows the score
in real-time accordingly as the performer continues playing.

In Collins et al. [30] it is used to bridge the “audio-symbolic gap” to
discover repeated musical patterns directly from polyphonic audio –
instead of inferring these patterns from symbolic data.

124 piano transcription

MIREX evaluation

The presented algorithm was submitted to MIREX 2012.5 It ranked
first wrt. average onset transcription F-Measure (given in Table 9.4).
A simplified version of this system tuned for real-time performance
(also included in the madmom package, cf. Chapter 10) was submitted
to MIREX 2014.6 It uses tanh units instead of the proposed LSTM units.
This reduces the number of network weights (roughly by a factor of 4),
yielding even a slightly better overall performance.

algorithm precision recall f-measure

PianoTranscriptor (2012) 0.595 0.754 0.664

PianoTranscriptor (2014) 0.640 0.728 0.680

BW3 [9, 10] (2015) 0.704 0.683 0.692

MM1 [97] (2016) 0.794 0.722 0.754

EF1 [52] (2014) 0.845 0.764 0.802

DT1 [130] (2016) 0.912 0.756 0.820

Table 9.4: Performance of the presented algorithm in MIREX evaluations
compared to state-of-the-art piano transcription algorithms. The
PianoTranscriptor reflects the name of the executable program in-
cluded in the madmom package (cf. Section 10.2.2).

The 2014 EF1 submission of Elowsson and Friberg [52] and 2016

DT1 submission of Troxel [130] show outstanding performance. They
achieve this high performance at the cost of a very high runtime of
23400 seconds (EF1) 7 for 300 seconds of audio material (78×real-time)
as compared to 180 seconds of our 2014 submission (0.6×real-time)
on the test set.

Table 9.4 list the best results reported so far for this MIREX task,
showing that our approach is still performing well, especially consid-
ering that it is the only one (of those listed) that achieves better than
real-time execution times. 8

5 http://www.music-ir.org/mirex/wiki/2012:Multiple_Fundamental_Frequency_

Estimation_%26_Tracking_Results

6 http://www.music-ir.org/mirex/wiki/2014:Multiple_Fundamental_Frequency_

Estimation_%26_Tracking_Results

7 The runtimes of DT1 and MM1 are not given, but we also assume high runtimes,
since both submissions use either a large convolutional neural networks (DT1) or
multiple neural networks together with a complicated partial tracking technique
(MM1).

8 Our system is one of two submissions ever achieving better than real-time execution
times.

http://www.music-ir.org/mirex/wiki/2012:Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results
http://www.music-ir.org/mirex/wiki/2012:Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results
http://www.music-ir.org/mirex/wiki/2014:Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results
http://www.music-ir.org/mirex/wiki/2014:Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results

Part V

S O F T WA R E

10
M A D M O M

title

madmom: a new Python Audio and Music Signal Processing Library.

authors

Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, and
Gerhard Widmer.

published

In Proceedings of the 24th ACM International Conference on Multi-
media, October 2016, Amsterdam, The Netherlands.

contribution

The work on this library started on my initiative, and most source
code and documentation was contributed by me.

abstract

In this paper, we present madmom, an open-source audio processing
and music information retrieval (MIR) library written in Python. mad-
mom features a concise, NumPy-compatible, object oriented design
with simple calling conventions and sensible default values for all
parameters, which facilitates fast prototyping of MIR applications. Pro-
totypes can be seamlessly converted into callable processing pipelines
through madmom’s concept of Processors, callable objects that run trans-
parently on multiple cores. Processors can also be serialised, saved, and
re-run to allow results to be easily reproduced anywhere.

Apart from low-level audio processing, madmom puts emphasis on
musically meaningful high-level features. Many of these incorporate
machine learning techniques and madmom provides a module that
implements some methods commonly used in MIR such as hidden
Markov models and neural networks. Additionally, madmom comes
with several state-of-the-art MIR algorithms for onset detection, beat,
downbeat and meter tracking, tempo estimation, and chord recogni-
tion. These can easily be incorporated into bigger MIR systems or run
as stand-alone programs.

127

128 madmom

10.1 introduction

Music information retrieval (MIR) has become an emerging research
area over the last 15 years. Especially audio-based MIR has become
more and more important, since the amount of available audio data in
the last years exploded beyond being manageable manually.

Most state-of-the-art audio-based MIR algorithms consist of two
components: first, low-level features are extracted from the audio
signal (feature extraction stage), and then the features are analysed
(feature analysis stage) to retrieve the desired information. Most current
MIR systems incorporate machine learning algorithms in the feature
analysis stage, with neural networks currently being the most popular
and successful ones [14, 15, 83, 119, 120].

Numerous software libraries have been proposed over the years
to facilitate research and development of applications in MIR. Some
libraries concentrate on low-level feature extraction from audio signals,
such as Marsyas [131], YAAFE [100] and openSMILE [56]. Others also
include higher level feature extraction such as onset and beat detection
as for example in the MIRtoolbox [93], Essentia [22] and LibROSA [101].
However, to our knowledge, there exist no library that also includes
machine learning components (except Marsyas [131], which contains
two classifiers), although machine learning components are crucial in
current MIR applications.

Therefore, we propose madmom, a library that incorporates low-level
feature extraction and high-level feature analysis based on machine
learning methods. This allows the construction of the full processing
chain within a single software framework, making it possible to build
standalone programs without any dependency on other machine
learning frameworks. Moreover, madmom comes with several state-
of-the-art systems including their trained models, for example for
onset detection [55, 119, 120], tempo estimation [15], beat [14, 83] and
downbeat tracking [16, 87], and chord recognition [84, 85].

madmom is written in Python, which has become the language
of choice for scientific computing for many people due to its free
availability and its simplicity of use. The code is released under BSD
license and pre-trained models are released under the CC BY-NC-SA
4.0 license.

10.1.1 Design and functionality

Object-oriented programming

madmom follows an object-oriented programming (OOP) approach. We
encapsulate everything in objects that are often designed as subclasses
of NumPy’s ndarray, offering all array handling routines inherited from
NumPy [134] with additional functionality. This compactly bundles

10.1 introduction 129

data and meta-data (e.g. a Spectrogram and its frame rate) and simplifies
meta-data handling for the user.

Rapid prototyping

madmom aims at minimising the turnaround time from a research idea
to a software prototype. Thus, object instantiation is made as simple
as possible: e.g. a Spectrogram object can be instantiated with a single
line of code by only providing the path to an audio file. madmom
automatically creates all objects in between using sensible default
values.

Simple conversion into runnable programs

Once an audio processing algorithm is prototyped, the complete work-
flow should be easily transformable into a runnable standalone pro-
gram with a consistent calling interface. This is implemented using
madmom’s concept of Processors.

Machine learning integration

We aim at a seamless integration of machine learning methods without
the need of any third party modules. We limit ourselves to testing
capabilities (applying pre-trained models), since it is impossible to
keep up with newly emerging training methods in the various machine
learning domains. Models that have been trained in an external library
should be easily be convertible to an internal madmom model format.

State-of-the-art features

Many existing libraries provide a huge variety of low-level features,
but few musically meaningful high-level features. madmom tries to
close this gap by offering high-quality state-of-the-art feature extrac-
tors for onsets, beats, downbeats, chords, tempo, etc.

Reproducible research

In order to foster reproducible research, we want to be able to save
and load the specific settings used to obtain the results for a certain
experiment. In madmom this is implemented using Python’s own
pickle functionality which allows to save an entire processing chain
(including all settings) to a file.

Few dependencies

madmom is built on top of three excellent and wide-spread libraries:
NumPy [134] provides all the array handling subroutines for madmom’s
data classes. SciPy [76] provides optimised routines for the fast Fourier

130 madmom

transform (FFT), linear algebra operations and sparse matrix repre-
sentations. Finally, Cython [5] is used to speed up time critical parts
of the library by automatically generating C code from a Python-like
syntax and then compiling and linking it into extensions which can be
transparently used from within Python. These libraries are the only
installation and runtime dependencies of madmom besides the Python
standard library itself, supported in version 2.7 as well as 3.3 and
newer.

Multi-core capability

We designed madmom to be able to exploit the multi-core capabilities
of modern computer architectures, by providing functionality to run
several programs or Processors in parallel.

Extensive documentation

All source code files contain thorough documentation following the
NumPy format. The complete API reference, instruction on how to
build and install the library, as well as interactive Jupyter [110] note-
books can be found online at http://madmom.readthedocs.io. The
documentation is built automatically with Sphinx.1

Open development process

We follow an open development process and the source code and
documentation of our project is publicly available on GitHub: http:
//github.com/CPJKU/madmom. To maintain high code quality, we use
continuous integration testing via TravisCI 2, code quality tests via
QuantifiedCode 3, and test coverage via Coveralls.4

10.2 library description

In this section, we will describe the overall architecture of madmom, its
packages as well as the provided standalone programs.

madmom’s main API is composed of classes, but much of the func-
tionality is implemented as functions (in turn used internally by the
classes). This way, madmom offers the ‘best of both worlds’: concise
interfaces exposed through classes, and detailed access to functionality
through functions. In general, the classes can be split in two different
types: the so called data classes and processor classes.

data classes

Represent data entities such as audio signals or spectrograms.

1 http://www.sphinx-doc.org

2 http://www.travis-ci.org

3 http://www.quantifiedcode.com

4 http://www.coveralls.io

http://madmom.readthedocs.io
http://github.com/CPJKU/madmom
http://github.com/CPJKU/madmom
http://www.sphinx-doc.org
http://www.travis-ci.org
http://www.quantifiedcode.com
http://www.coveralls.io

10.2 library description 131

They are implemented as subclasses of NumPy’s ndarray, and
thus offer all array handling routines inherited directly from
NumPy (e.g. transposing or saving the data to file in either
binary or human readable format). These classes are enriched
by additional attributes and expose additional functionality via
methods.

processor classes

Exclusively store information on how to process data, i.e. how
to transform one data class into another (e.g. from a Signal into
a Spectrogram). In order to build chains of transformations, each
data class has its corresponding processor class, which imple-
ments this transformation. This enables a simple and fast con-
version of algorithm prototypes to callable processing pipelines.

10.2.1 Packages

The library is split into several packages, grouped by functionality. For
a detailed description including examples of usage please refer to the
library’s documentation.

madmom.audio

The madmom.audio package includes basic audio signal processing and
“low-level” functionality.

The Signal and FramedSignal classes are used to load an audio signal
and split it into (overlapping) frames. Following madmom’s automatic
instantiation approach, both classes can be instantiated from any object
up the instantiation hierarchy – including a simple file name. madmom
supports almost a wide range of audio and video formats – provided
ffmpeg 5 is installed – and transparently converts sample rates and
number of channels if needed.

Signal is a subclass of ndarray with additional attributes like sam-
ple rate or number of channels. FramedSignal supports float hop sizes,
making it possible to build systems with an arbitrary frame rate –
independently of the signal’s sample rate – and ensures that all frames
are temporally aligned, even if computed with different frame sizes.

The ShortTimeFourierTransform and Spectrogram classes represent the
complex valued STFT and magnitudes respectively. They are the key
classes for spectral audio analysis and provide windowing, automatic
circular shifting (for correct phase) and zero-padding. Both are inde-
pendent of the data type (integer or float) of the underlying Signal,
resulting in spectrograms of the same value range. A Spectrogram can
be filtered with a Filterbank (e.g. Mel, Bark, logarithmic), which in turn
can be parametrised to reduce the dimensionality or transform the
spectrogram into a logarithmically spaced pitch representation closely

5 http://www.ffmpeg.org

http://www.ffmpeg.org

132 madmom

following the auditory model of the human ear. madmom also provides
standard MFCC and Chroma features.

Listing 1 shows an example of how a standard spectral flux onset
detection function can be prototyped with madmom in a few lines of
code.

from madmom.audio import (Spectrogram,

SpectrogramDifference)

compute spectral flux

spec = Spectrogram(’sample.wav’)

diff = SpectrogramDifference(spec,

positive_diffs=True)

sf = np.mean(diff, axis=1)

Listing 1: Rapid prototyping of the spectral flux onset detection function
using madmom’s data classes.

madmom.processors

Processors are one of the fundamental building blocks of madmom. Each
Processor accepts a number of processing parameters and must provide
a process method, which takes the data to be processed as its only
argument and defines the processing functionality of the Processor. An
OutputProcessor extends this scheme by accepting a second argument
which defines the output and can thus be used to write the output
of an algorithm to a file. All Processors are callable, making it easy to
use them interchangeably with normal functions. Furthermore, the
Processor class provides methods for saving and loading any Processor
to a file – including all parameters – using Python’s own pickle library.
This facilitates the reproducibility of an experiment.

Multiple Processors can be combined into a processing chain using
either a SequentialProcessor or a ParallelProcessor, which execute the
chain sequentially or in parallel, using multiple CPU cores if available.

10.2 library description 133

from madmom.audio import (

SpectrogramProcessor,

SpectrogramDifferenceProcessor)

from madmom.processors import SequentialProcessor

from functools import partial

define spectral flux processing chain

spec = SpectrogramProcessor()

diff = SpectrogramDifferenceProcessor(

positive_diffs=True)

mean = partial(np.mean, axis=1)

wrap everything in a SequentialProcessor

sf_proc = SequentialProcessor([spec, diff, mean])

process an audio file by calling the processor

sf = sf_proc(’sample.wav’)

Listing 2: Spectral flux onset detection implemented as a callable Processor.

Listing 2 shows the conversion of the prototyped algorithm in
Listing 1 into a callable Processor by simply replacing the used data
classes with their respective processor classes and wrapping them into a
SequentialProcessor.

madmom.features

The madmom.features package includes “high-level” functionality which
are related to certain MIR tasks, such as onset detection or beat track-
ing. madmom’s focus is on providing musically meaningful and descrip-
tive features rather than a vast number of low to mid-level features.
At the time of writing, madmom contains state-of-the-art features for
onset detection, beat and downbeat tracking, rhythm pattern analysis,
tempo estimation and chord recognition.

All features are implemented as Processors without a corresponding
data class. Users can thus use the provided functionality and build
algorithms on top of these features. For most of the features, madmom
also provides stand-alone programs with a consistent calling interface
to process audio files (see Section 10.2.2).

134 madmom

from madmom.features.beats import (

RNNBeatProcessor, DBNBeatTrackingProcessor)

from madmom.processors import SequentialProcessor

define beat tracking processor

rnn = RNNBeatProcessor()

dbn = DBNBeatTrackingProcessor(

min_bpm=50, max_bpm=200)

tracker = SequentialProcessor([rnn, dbn])

track the beats by calling the processor

beats = tracker(’sample.wav’)

Listing 3: Beat tracking with a recurrent neural network (RNN) and dynamic
Bayesian network (DBN) in madmom using provided Processors.

madmom.evaluation

All features come with code for evaluation. The implemented metrics
are those commonly found in the literature of the respective field.

madmom.ml

Most of today’s top performing music analysis algorithms incorporate
machine learning, with neural networks being the most universal
and successful ones at the moment. madmom includes Python imple-
mentations of commonly used machine learning techniques, namely
Gaussian Mixture Models, Hidden Markov Models, linear-chain Condi-
tional Random Fields, and different types of neural networks, including
feed forward, convolutional, batch normalisation, and recurrent lay-
ers, various activation functions and special purpose long short-term
memory and gated recurrent units.

madmom provides functionality to use these techniques without any
dependencies on third-party modules, but does not contain training
algorithms. This decision was made on purpose since the library’s
main focus is on applying machine learning techniques to MIR, rather
than providing an extensive set of learning techniques. However,
trained models can be easily converted to be compatible with madmom,
since neural network layers usually are simply defined as a set of
weights, biases and an activation function they apply to the input data.
Listing 4 shows the code necessary to convert a simple neural network
trained using the Lasagne library [40].

10.2 library description 135

import lasagne

from madmom import ml

... here comes the Lasagne training code

’net’ is the Lasagne network handle

p = lasagne.layers.get_all_param_values(net)

create a NeuralNetwork in madmom

nn = ml.nn.NeuralNetwork([

ml.nn.layers.FeedForwardLayer(

p[0], p[1], ml.nn.activations.relu),

ml.nn.layers.FeedForwardLayer(

p[2], p[3], ml.nn.activations.relu),

ml.nn.layers.FeedForwardLayer(

p[4], p[5], ml.nn.activations.relu),

ml.nn.FeedForwardLayer(

p[6], p[7], ml.nn.activations.sigmoid)

])

save the network (can be used as a processor)

nn.dump(’neural_net.pkl’)

Listing 4: Converting a deep neural network with three hidden layers from
Lasagne to madmom.

madmom.models

madmom comes with a set of pre-trained models which are distributed
under a Creative Commons attribution non-commercial share-alike
license, i.e. they can be freely used for research purposes as long as
derivative works are distributed under the same license. madmom uses
the exact same mechanism to save and load the models it uses for
Processors to be pickled.

10.2.2 Standalone programs

madmom comes with a set of standalone programs, covering many
areas of MIR. Table 10.1 lists selected programs included in the library
with the performance achieved at the annual Music Information Retrieval
Evaluation eXchange (MIREX) 6, where MIR algorithms are compared
on test datasets. We aggregated the results of all years (2006-2016),
i.e. a rank 1 means that the algorithm is the best performing one of
all submissions from 2006 until present. The outstanding results in
Table 10.1 highlight the state-of-the-art features madmom provides.

These programs are simple wrappers around the functionality pro-
vided by the madmom.features package, and provide a simple and easy
to use command line interface. They are implemented as Processors
and can operate either in single or batch mode, processing single or
multiple input files, respectively. Additionally all programs can be

6 http://www.music-ir.org/mirex/wiki/

http://www.music-ir.org/mirex/wiki/

136 madmom

program task year rank

CNNOnsetDetector [119] onset 2016 1

OnsetDetector [55] onset 2013 2

BeatTracker [17] beat MCK 2015 1

DBNBeatTracker [14] beat SMC 2015 1

CRFBeatDetector [83] beat MAZ 2015 1

DBNDownBeatTracker [16] downbeat 2016 1

TempoDetector [15] tempo 2015 1

CNNChordRecognition [84] chord 2016 1

Table 10.1: Ranks of the programs included in madmom for the MIREX evalu-
ations, results aggregated over all years (2006-2016).

pickled, serialising all parameters in a way that the program can be
executed later on with the exact same settings.

#!/usr/bin/env python

from madmom.processors import (

IOProcessor, io_arguments)

from madmom.features.beats import (

RNNBeatProcessor, DBNBeatTrackingProcessor)

from madmom.utils import write_events

from argparse import ArgumentParser

if __name__ == ’__main__’:

define parser

p = ArgumentParser()

add I/O related arguments and define

single/batch/pickle processing mode

io_arguments(p, output_suffix=’.beats.txt’)

parse arguments

args = p.parse_args()

define beat tracking processor

rnn = RNNBeatProcessor()

dbn = DBNBeatTrackingProcessor()

out = write_events

wrap as IOProcessor

processor = IOProcessor([rnn, dbn], out)

call the processor in single/batch/pickle

mode defined by ‘args.func‘

args.func(processor, **vars(args))

Listing 5: Beat tracking algorithm of Listing 3 converted into a runnable
program.

Listing 5 shows the beat tracking algorithm of Listing 3 converted
into a runnable program. The usage of an IOProcessor instead of a

10.3 conclusions 137

SequentialProcessor enables the program to output the detected beats
into a file or to STDOUT. io_arguments provides all the handling needed
for the different operation modes.

10.3 conclusions

This paper gave a short introduction to madmom, its design principles
and library structure. Up-to-date information on functionality can
be found in the project’s online documentation at https://madmom.
readthedocs.io and source code repository at https://github.com/
CPJKU/madmom.

Future work aims at including a streaming mode, i.e. providing
online real-time processing of audio signals in a memory efficient way
instead of processing whole audio files at a time. In addition, we will
gradually extend the set of features and algorithms, as well as add
tools to automatically convert models that have been trained with
machine learning libraries.

https://madmom.readthedocs.io
https://madmom.readthedocs.io
https://github.com/CPJKU/madmom
https://github.com/CPJKU/madmom

B I B L I O G R A P H Y

[1] Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, Cynthia C. S. Liem, and Gerhard Wid-
mer. “The Piano Music Companion”. In: Proceedings of the
21th European Conference on Artificial Intelligence (ECAI). Prague,
Czech Republic, 2014, pp. 1221–1222.

[2] Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, and Gerhard Widmer. “The complete
classical music companion v0.9”. In: Proceedings of the Audio En-
gineering Society 53rd International Conference on Semantic Audio.
London, UK, 2014, pp. 18–20.

[3] Andreas Arzt, Sebastian Böck, and Gerhard Widmer. “Fast
Identification of Piece and Score Position via Symbolic Fin-
gerprinting”. In: Proceedings of the 13th International Society for
Music Information Retrieval Conference (ISMIR). Porto, Portugal,
2012, pp. 433–438.

[4] Andreas Arzt, Gerhard Widmer, Sebastian Böck, Reinhard
Sonnleitner, and Harald Frostel. “Towards a Complete Clas-
sical Music Companion”. In: Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI). Montpellier, France,
2012, pp. 67–72.

[5] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn, and Kurt Smith. “Cython: The Best of
Both Worlds”. In: Computing in Science Engineering 13.2 (2011),
pp. 31–39. issn: 1521-9615.

[6] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris
Duxbury, Matthew E. P. Davies, and Mark Sandler. “A Tutorial
on Onset Detection in Music Signals”. In: IEEE Transactions
on Speech and Audio Processing 13.5 (2005), pp. 1035–1047. issn:
1063-6676.

[7] Juan Pablo Bello, Laurent Daudet, and Mark B. Sandler. “Auto-
matic Piano Transcription Using Frequency and Time-Domain
Information”. In: IEEE Transactions on Audio, Speech, and Lan-
guage Processing 14.6 (2006), pp. 2242–2251. issn: 1558-7916.

[8] Juan Pablo Bello, Chris Duxbury, Matthew Davies, and Mark
Sandler. “On the use of phase and energy for musical onset
detection in the complex domain”. In: IEEE Signal Processing
Letters 11.6 (2004), pp. 553–556. issn: 1070-9908.

139

140 Bibliography

[9] Emmanouil Benetos and Tillman Weyde. “An efficient
temporally-constrained probabilistic model for multiple-
instrument music transcription”. In: Proceedings of the 16th Inter-
national Society for Music Information Retrieval Conference (ISMIR).
Malaga, Spain, 2015, pp. 701–707.

[10] Emmanouil Benetos and Tillman Weyde. “Polyphonic Tran-
scription with Deep Layered Learning”. In: Music Information
Retrieval Evaluation eXchange (MIREX) Abstracts. 2015.

[11] Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus
Schedl. “Online Real-time Onset Detection with Recurrent Neu-
ral Networks”. In: Proceedings of the 15th International Conference
on Digital Audio Effects (DAFx). York, UK, 2012, pp. 301–304.

[12] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs,
and Gerhard Widmer. “madmom: a new Python Audio and
Music Signal Processing Library”. In: Proceedings of the 24th
ACM International Conference on Multimedia. Amsterdam, The
Netherlands, 2016, pp. 1174–1178.

[13] Sebastian Böck, Florian Krebs, and Markus Schedl. “Evaluat-
ing the Online Capabilities of Onset Detection Methods”. In:
Proceedings of the 13th International Society for Music Information
Retrieval Conference (ISMIR). Porto, Portugal, 2012, pp. 49–54.

[14] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “A multi-
model approach to beat tracking considering heterogeneous
music styles”. In: Proceedings of the 15th International Society for
Music Information Retrieval Conference (ISMIR). Taipei, Taiwan,
2014, pp. 603–608.

[15] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “Accurate
Tempo Estimation based on Recurrent Neural Networks and
Resonating Comb Filters”. In: Proceedings of the 16th Interna-
tional Society for Music Information Retrieval Conference (ISMIR).
Malaga, Spain, 2015, pp. 625–631.

[16] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “Joint Beat
and Downbeat Tracking with Recurrent Neural Networks”. In:
Proceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR). New York, NY, USA, 2016, pp. 255–
261.

[17] Sebastian Böck and Markus Schedl. “Enhanced Beat Tracking
with Context-Aware Neural Networks”. In: Proceedings of the
14th International Conference on Digital Audio Effects (DAFx).
Paris, France, 2011, pp. 135–139.

[18] Sebastian Böck and Markus Schedl. “Polyphonic Piano Note
Transcription with Recurrent Neural Networks”. In: Proceedings
of the 37th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Kyoto, Japan, 2012, pp. 121–124.

Bibliography 141

[19] Sebastian Böck, Jan Schlüter, and Gerhard Widmer. “Enhanced
peak picking for onset detection with recurrent neural net-
works”. In: Proceedings of the 6th International Workshop on Ma-
chine Learning and Music (MML). Prague, Czech Republic, 2013,
pp. 15–18.

[20] Sebastian Böck and Gerhard Widmer. “Local Group Delay
based Vibrato and Tremolo Suppression for Onset Detection”.
In: Proceedings of the 14th International Society for Music Informa-
tion Retrieval Conference (ISMIR). Curitiba, Brazil, 2013, pp. 589–
594.

[21] Sebastian Böck and Gerhard Widmer. “Maximum Filter Vibrato
Suppression for Onset Detection”. In: Proceedings of the 16th In-
ternational Conference on Digital Audio Effects (DAFx). Maynooth,
Ireland, 2013, pp. 55–61.

[22] Dmitry Bogdanov, Nicholas Wack, Emilia Gómez, Sankalp
Gulati, Perfecto Herrera, Oscar Mayor, Gerard Roma, Justin
Salamon, José R. Zapata, and Xavier Serra. “ESSENTIA: an
Audio Analysis Library for Music Information Retrieval”. In:
Proceedings of the 14th International Society for Music Information
Retrieval Conference (ISMIR). Curitiba, Brazil, 2013, pp. 493–498.

[23] Gregor van den Boogaart and Rainer Lienhart. “Note onset
detection for the transcription of polyphonic piano music”. In:
Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME). 2009, pp. 446–449.

[24] Paul Brossier, Juan Pablo Bello, and Mark D. Plumbley. “Real-
time temporal segmentation of note objects in music signals”.
In: Proceedings of the International Computer Music Conference
(ICMC). Miami, FL, USA, 2004.

[25] Ali Taylan Cemgil, Bert Kappen, Peter Desain, and Henkjan
Honing. “On Tempo Tracking: Tempogram Representation and
Kalman Filtering”. In: Journal of New Music Research 28:4 (2001),
pp. 259–273.

[26] Trevor de Clercq and David Temperley. “A corpus analysis of
rock harmony”. In: Popular Music 30.1 (1 2011), pp. 47–70. issn:
1474-0095.

[27] Nick Collins. “A Comparison of Sound Onset Detection Al-
gorithms with Emphasis on Psychoacoustically Motivated De-
tection Functions”. In: Proceedings of the 118th AES Convention.
2005, pp. 28–31.

[28] Nick Collins. “Using a Pitch Detector for Onset Detection”. In:
Proceedings of the 6th International Conference on Music Information
Retrieval (ISMIR). London, UK, 2005, pp. 100–106.

142 Bibliography

[29] Nick Collins. “Towards a style-specific basis for computational
beat tracking”. In: Proceedings of the 9th International Conference
on Music Perception and Cognition (ICMPC). Bologna, Italy, 2006,
pp. 461–467.

[30] Tom Collins, Sebastian Böck, Florian Krebs, and Gerhard Wid-
mer. “Bridging the Audio-Symbolic Gap: The Discovery of Re-
peated Note Content Directly from Polyphonic Music Audio”.
In: Proceedings of the Audio Engineering Society 53rd International
Conference on Semantic Audio. London, UK, 2014.

[31] Roger B. Dannenberg. “An On-Line Algorithm for Real-Time
Accompaniment”. In: Proceedings of the 1984 International Com-
puter Music Conference. 1984, pp. 193–198.

[32] Matthew E. P. Davies and Sebastian Böck. “Evaluating the Eval-
uation Measures for Beat Tracking”. In: Proceedings of the 15th
International Society for Music Information Retrieval Conference
(ISMIR). Taipei, Taiwan, 2014, pp. 637–642.

[33] Matthew E. P. Davies, Norberto Degara, and Mark D. Plumbley.
Evaluation Methods for Musical Audio Beat Tracking Algorithms.
Tech. rep. C4DM-TR-09-06. Centre for Digital Music, Queen
Mary University of London, 2009.

[34] Matthew E. P. Davies and Mark D. Plumbley. “A Spectral Dif-
ference Approach to Downbeat Extraction in Musical Audio”.
In: Proceedings of the 14th European Signal Processing Conference
(EUSIPCO). Florence, Italy, 2006, pp. 121–124.

[35] Matthew E. P. Davies and Mark D. Plumbley. “Context-
Dependent Beat Tracking of Musical Audio”. In: IEEE Trans-
actions on Audio, Speech, and Language Processing 15.3 (2007),
pp. 1009–1020. issn: 1558-7916.

[36] Noberto Degara, Matthew E. P. Davies, Antonio Pena, and
Mark Plumbley. “Onset Event Decoding Exploiting the Rhyth-
mic Structure of Polyphonic Music”. In: IEEE Journal of Selected
Topics in Signal Processing 5.6 (2011), pp. 1228–1239. issn: 1932-
4553.

[37] Norberto Degara, Enrique Argones-Rúa, Antonio Pena,
Soledad Torres-Guijarro, Matthew E. P. Davies, and Mark D.
Plumbley. “Reliability-Informed Beat Tracking of Musical Sig-
nals.” In: IEEE Transactions on Audio, Speech and Language Pro-
cessing 20.1 (2012), pp. 290–301.

[38] Bruno Di Giorgi, Massimiliano Zanoni, Sebastian Böck, and
Augusto Sarti. “Multipath Beat Tracking”. In: Journal of the
Audio Engineering Society 64.7 (2016), pp. 493–502.

Bibliography 143

[39] Bruno Di Giorgi, Massimiliano Zanoni, Augusto Sarti, and
Stefano Tubaro. “Automatic chord recognition based on the
probabilistic modeling of diatonic modal harmony”. In: 8th
International Workshop on Multidimensional Systems (nDS). Erlan-
gen, Germany, 2013, pp. 145–150.

[40] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren
Kaae Sønderby, Daniel Nouri, Eric Battenberg, Aäron van den
Oord, et al. Lasagne: First release. 2015.

[41] Simon Dixon. “On the Computer Recognition of Solo Piano
Music”. In: Proceedings of the Australasian Computer Music Con-
ference. 2000, pp. 31–37.

[42] Simon Dixon. “Automatic Extraction of Tempo and Beat from
Expressive Performances”. In: Journal of New Music Research 30

(2001), pp. 39–58.

[43] Simon Dixon. “Onset Detection Revisited”. In: Proceedings of
the 9th International Conference on Digital Audio Effects (DAFx).
Montréal, Canada, 2006, pp. 133–137.

[44] Simon Dixon. “Evaluation of the Audio Beat Tracking System
BeatRoot”. In: Journal of New Music Research 36.1 (2007), pp. 39–
50.

[45] Simon Durand, Juan Pablo Bello, Bertrand David, and Gaël
Richard. “Downbeat tracking with multiple features and deep
neural networks”. In: Proceedings of the 40th IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
Brisbane, Australia, 2015, pp. 409–413.

[46] Simon Durand, Juan Pablo Bello, Bertrand David, and Gaël
Richard. “Feature Adapted Convolutional Neural Networks
for Downbeat Tracking”. In: Proceedings of the 41st IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). Shanghai, China, 2016, pp. 296–300.

[47] Simon Durand, Bertrand David, and Gaël Richard. “Enhancing
downbeat detection when facing different music styles”. In:
Proceedings of the 39th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Florence, Italy, 2014,
pp. 3132–3136.

[48] Chris Duxbury, Juan Pablo Bello, Mike Davies, and Mark B.
Sandler. “Complex Domain Onset Detection for Musical Sig-
nals”. In: Proceedings of the 6th International Conference on Digital
Audio Effects (DAFx). London, UK, 2003.

[49] Douglas Eck. “Beat Tracking using an Autocorrelation Phase
Matrix”. In: Proceedings of the 32nd IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Honolulu,
HI, USA, 2007, pp. 1313–1316.

144 Bibliography

[50] Daniel P. W. Ellis. “Beat tracking by dynamic programming”.
In: Journal of New Music Research (2007), pp. 51–60.

[51] Daniel P. W. Ellis and Graham E. Poliner. “Identifying ‘Cover
Songs’ with Chroma Features and Dynamic Programming Beat
Tracking”. In: Proceedings of the 32nd IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). Hon-
olulu, HI, USA, 2007, pp. 1429–1432.

[52] Anders Elowsson and Anders Friberg. “Polyphonic Transcrip-
tion with Deep Layered Learning”. In: Music Information Re-
trieval Evaluation eXchange (MIREX) Abstracts. 2014.

[53] Anders Elowsson, Anders Friberg, Guy Madison, and Johan
Paulin. “Modelling the Speed of Music Using Features from
Harmonic/Percussive Separated Audio”. In: Proceedings of the
14th International Society for Music Information Retrieval Confer-
ence (ISMIR). Curitiba, Brazil, 2013, pp. 481–486.

[54] Valentin Emiya, Roland Badeau, and Bertrand David. “Mul-
tipitch estimation of piano sounds using a new probabilistic
spectral smoothness principle”. In: IEEE Transactions on Audio,
Speech, and Language Processing 18 (6 2010), pp. 1643–1654. issn:
1063-6676.

[55] Florian Eyben, Sebastian Böck, Björn Schuller, and Alex Graves.
“Universal Onset Detection with Bidirectional Long Short-Term
Memory Neural Networks”. In: Proceedings of the 11th Interna-
tional Society for Music Information Retrieval Conference (ISMIR).
Utrecht, The Netherlands, 2010, pp. 589–594.

[56] Florian Eyben, Felix Weninger, Florian Gross, and Björn
Schuller. “Recent Developments in openSMILE, the Munich
Open-Source Multimedia Feature Extractor”. In: Proceedings of
ACM International Conference on Multimedia. Barcelona, Spain,
2013, pp. 835–838.

[57] Hugo Fastl and Eberhard Zwicker. Psychoacoustics: Facts and
Models. Springer Series in Information Sciences. Springer, 2007.
isbn: 9783642517655.

[58] Mikel Gainza and Eugene Coyle. “Tempo Detection Using a
Hybrid Multiband Approach”. In: IEEE Transactions on Audio,
Speech, and Language Processing 19.1 (2011), pp. 57–68.

[59] Aggelos Gkiokas, Vassilios Katsouros, and George Carayannis.
“Reducing Tempo Octave Errors by Periodicity Vector Coding
And SVM Learning”. In: Proceedings of the 13th International
Society for Music Information Retrieval Conference (ISMIR). Porto,
Portugal, 2012, pp. 301–306.

Bibliography 145

[60] Aggelos Gkiokas, Vassilios Katsouros, George Carayannis, and
Themos Stafylakis. “Music tempo estimation and beat track-
ing by applying source separation and metrical relations”. In:
Proceedings of the 37th IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). Kyoto, Japan, 2012,
pp. 421–424.

[61] John Glover, Victor Lazzarini, and Joseph Timoney. “Real-time
detection of musical onsets with linear prediction and sinu-
soidal modeling”. In: EURASIP Journal on Advances in Signal
Processing 68.1 (2011). issn: 1687-6180.

[62] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and
Ryuichi Oka. “RWC Music Database: Popular, Classical, and
Jazz Music Databases”. In: Proceedings of the 3rd International
Conference on Music Information Retrieval (ISMIR). Paris, France,
2002, pp. 287–288.

[63] Masataka Goto and Yoichi Muraoka. “Beat Tracking based on
Multiple-agent Architecture A Real-time Beat Tracking System
for Audio Signals”. In: Proceedings of the International Conference
on Multiagent Systems. 1996, pp. 103–110.

[64] Fabien Gouyon and Simon Dixon. “A Review of Automatic
Rhythm Description Systems”. In: Computer Music Journal 29 (1
2005), pp. 34–54. issn: 0148-9267.

[65] Fabien Gouyon, Anssi Klapuri, Simon Dixon, Miguel Alonso,
George Tzanetakis, Christian Uhle, and Pedro Cano. “An ex-
perimental comparison of audio tempo induction algorithms”.
In: IEEE Transactions on Audio, Speech, and Language Processing
14.5 (2006), pp. 1832–1844. issn: 1558-7916.

[66] Fabien Gouyon, Gerhard Widmer, Xavier Serra, and Arthur
Flexer. “Acoustic Cues to Beat Induction: A Machine Learning
Perspective”. In: Music Percepcion. UCPress 24 (2006), pp. 177–
188.

[67] Alex Graves. “Supervised Sequence Labelling with Recur-
rent Neural Networks”. PhD thesis. Technische Universität
München, 2008.

[68] Stephen Hainsworth and Malcolm Macleod. “Particle filtering
applied to musical tempo tracking”. In: EURASIP Journal on
Applied Signal Processing 15 (2004), pp. 2385–2395. issn: 1110–
8657.

[69] Stephen Handel. Listening: An Introduction to the Perception of
Auditory Events. MIT Press, 1989. isbn: 9780262081795.

[70] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term
Memory”. In: Neural Computing 9.8 (1997), pp. 1735–1780. issn:
0899-7667.

146 Bibliography

[71] Jason Hockman, Matthew E. P. Davies, and Ichiro Fujinaga.
“One in the Jungle: Downbeat Detection in Hardcore, Jungle,
and Drum and Bass.” In: Proceedings of the 13th International
Society for Music Information Retrieval Conference (ISMIR). Porto,
Portugal, 2012, pp. 169–174.

[72] André Holzapfel, Matthew E. P. Davies, José R. Zapata, João
L. Oliveira, and Fabien Gouyon. “Selective Sampling for Beat
Tracking Evaluation”. In: IEEE Transactions on Audio, Speech, and
Language Processing 20.9 (2012), pp. 2539–2548. issn: 1558-7916.

[73] André Holzapfel, Florian Krebs, and Ajay Srinivasamurthy.
“Tracking the “odd": meter inference in a culturally diverse
music corpus”. In: Proceedings of the 15th International Society for
Music Information Retrieval Conference (ISMIR). Taipei, Taiwan,
2014, pp. 425–430.

[74] André Holzapfel, Yannis Stylianou, Ali C. Gedik, and Barış
Bozkurt. “Three dimensions of pitched instrument onset de-
tection”. In: IEEE Transactions on Audio, Speech, and Language
Processing 18.6 (2010), pp. 1517–1527.

[75] Florian Hörschläger, Richard Vogl, Sebastian Böck, and Peter
Knees. “Addressing tempo estimation octave errors in elec-
tronic music by incorporating style information extracted from
Wikipedia”. In: Proceedings of the 12th Sound and Music Confer-
ence (SMC). Maynooth, Ireland, 2015.

[76] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python. [Online; accessed 2016-03-11].
2001–.

[77] Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian
Böck, Andreas Arzt, and Gerhard Widmer. “On the Potential
of Simple Framewise Approaches to Piano Transcription”. In:
Proceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR). New York, NY, USA, 2016, pp. 475–
481.

[78] Maksim Khadkevich, Thomas Fillon, Gaël Richard, and Maur-
izio Omologo. “A probabilistic approach to simultaneous ex-
traction of beats and downbeats”. In: Proceedings of the 37th IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Kyoto, Japan, 2012, pp. 445–448.

[79] Anssi P. Klapuri. “Sound onset detection by applying psychoa-
coustic knowledge”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
Vol. 6. Phoenix, AZ, USA, 1999, pp. 3089–3092.

Bibliography 147

[80] Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola. “Anal-
ysis of the meter of acoustic musical signals”. In: IEEE Trans-
actions on Audio, Speech, and Language Processing 14.1 (2006),
pp. 342–355. issn: 1558-7916.

[81] Peter Knees, Kristina Andersen, Sergi Jordà, Michael Hlatky,
Andres Bucci, Wulf Gaebele, and Roman Kaurson. “The Gi-
antSteps project: A second-year intermediate report”. In: Pro-
ceedings of the 42nd International Computer Music Conference
(ICMC). Utrecht, The Netherlands, 2016, pp. 363–368.

[82] Peter Knees, Ángel Faraldo, Perfecto Herrera, Richard Vogl, Se-
bastian Böck, Florian Hörschläger, and Mickael Le Goff. “Two
data sets for tempo estimation and key detection in electronic
dance music annotated from user corrections”. In: Proceedings
of the 16th International Society for Music Information Retrieval
Conference (ISMIR). Malaga, Spain, 2015, pp. 364–370.

[83] Filip Korzeniowski, Sebastian Böck, and Gerhard Widmer.
“Probabilistic extraction of beat positions from a beat activa-
tion function”. In: Proceedings of the 15th International Society for
Music Information Retrieval Conference (ISMIR). Taipei, Taiwan,
2014, pp. 513–518.

[84] Filip Korzeniowski and Gerhard Widmer. “A Fully Convolu-
tional Deep Auditory Model for Musical Chord Recognition”.
In: Proceedings of IEEE International Workshop on Machine Learn-
ing for Signal Processing (MLSP). Salerno, Italy, 2016.

[85] Filip Korzeniowski and Gerhard Widmer. “Feature Learning
for Chord Recognition: The Deep Chroma Extractor”. In: Pro-
ceedings of the 17th International Society for Music Information
Retrieval Conference (ISMIR). New York, NY, USA, 2016, pp. 37–
43.

[86] Florian Krebs, Sebastian Böck, Matthias Dorfer, and Gerhard
Widmer. “Downbeat Tracking using Beat-Synchronous Features
and Recurrent Neural Networks”. In: Proceedings of the 17th
International Society for Music Information Retrieval Conference
(ISMIR). New York, NY, USA, 2016, pp. 129–135.

[87] Florian Krebs, Sebastian Böck, and Gerhard Widmer. “Rhyth-
mic Pattern Modeling for Beat and Downbeat Tracking in Mu-
sical Audio”. In: Proceedings of the 14th International Society for
Music Information Retrieval Conference (ISMIR). Curitiba, Brazil,
2013, pp. 227–232.

[88] Florian Krebs, Sebastian Böck, and Gerhard Widmer. “An Effi-
cient State Space Model for Joint Tempo and Meter Tracking”.
In: Proceedings of the 16th International Society for Music Informa-
tion Retrieval Conference (ISMIR). Malaga, Spain, 2015, pp. 72–
78.

148 Bibliography

[89] Florian Krebs, André Holzapfel, Ali Taylan Cemgil, and Ger-
hard Widmer. “Inferring Metrical Structure in Music Using
Particle Filters”. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 23.5 (2015), pp. 817–827. issn: 2329-
9290.

[90] Florian Krebs, Filip Korzeniowski, Maarten Grachten, and Ger-
hard Widmer. “Unsupervised Learning and Refinement of
Rhythmic Patterns for Beat and Downbeat Tracking”. In: Pro-
ceedings of the 22nd European Signal Processing Conference (EU-
SIPCO). Lisboa, Portugal, 2014, pp. 611–615.

[91] Alexandre Lacoste and Douglas Eck. “A supervised classifica-
tion algorithm for note onset detection”. In: EURASIP Journal on
Applied Signal Processing 1 (2007), pp. 153–153. issn: 1110-8657.

[92] Olivier Lartillot, Donato Cereghetti, Kim Eliard, Wiebke J. Trost,
Marc-André Rappaz, and Didier Grandjean. “Estimating tempo
and metrical features by tracking the whole metrical hierarchy”.
In: Proceedings of the 3rd International Conference on Music &
Emotion (ICME). Jyväskylä, Finland, 2013.

[93] Olivier Lartillot and Petri Toiviainen. “A Matlab toolbox for
musical feature extraction from audio”. In: Proceedings of the
10th International Conference on Digital Audio Effects (DAFx).
Bordeaux, France, 2007, pp. 237–244.

[94] Bernhard Lehner, Gerhard Widmer, and Sebastian Böck. “A
low-latency, real-time-capable singing voice detection method
with LSTM recurrent neural networks”. In: Proceedings of the
23rd European Signal Processing Conference (EUSIPCO). Nice,
France, 2015, pp. 21–25.

[95] Mark Levy. “Improving Perceptual Tempo Estimation with
Crowd-Sourced Annotations.” In: Proceedings of the 12th Interna-
tional Society for Music Information Retrieval Conference (ISMIR).
Miami, FL, USA, 2011, pp. 317–322.

[96] Ugo Marchand and Geoffroy Peeters. “Swing Ratio Estimation”.
In: Proceedings of the 18th International Conference on Digital Audio
Effects (DAFx). Trondheim, Norway, 2015, pp. 423–428.

[97] Matija Marolt. “A connectionist approach to automatic tran-
scription of polyphonic piano music”. In: IEEE Transactions on
Multimedia 6 (2004), pp. 439–449.

[98] Paul Masri. “Computer Modeling of Sound for Transformation
and Synthesis of Musical Signals”. PhD thesis. UK: University
of Bristol, 1996.

Bibliography 149

[99] Raul Mata-Campos, Francisco Jose Rodriguez-Serrano, Pedro
Vera-Candeas, Julio José Carabias-Orti, and Francisco Jesus
Canadas Quesada. “BEAT TRACKING IMPROVED BY AM
SINUSOIDAL BEAT TRACKING IMPROVED BY AM SINU-
SOIDAL MODELED ONSETS”. In: Music Information Retrieval
Evaluation eXchange (MIREX) Abstracts. 2010.

[100] Benoit Mathieu, Slim Essid, Thomas Fillon, and Jacques Prado.
“YAAFE, an easy to use and efficient audio feature extraction
software”. In: Proceedings of the 11th International Society for
Music Information Retrieval Conference (ISMIR). Utrecht, The
Netherlands, 2010, pp. 441–446.

[101] Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W. Ellis, Matt
McVicar, Eric Battenberg, and Oriol Nieto. “librosa: Audio and
Music Signal Analysis in Python”. In: Proceedings of the 14th
Python in Science Conference (SCIPY). 2015.

[102] Martin F. McKinney, Dirk Moelants, Matthew E. P. Davies,
and Anssi P. Klapuri. “Evaluation of Audio Beat Tracking and
Music Tempo Extraction Algorithms”. In: Journal of New Music
Research 36.1 (2007), pp. 1–16.

[103] Bernhard Niedermayer, Sebastian Böck, and Gerhard Widmer.
“On the Importance of “Real” Audio Data for MIR Algorithm
Evaluation at the Note-Level - A Comparative Study”. In: Pro-
ceedings of the 12th International Society for Music Information
Retrieval Conference (ISMIR). Miami, FL, USA, 2011, pp. 543–
548.

[104] João L. Oliveira, Fabien Gouyon, Luis G. Martins, and Luis
Paulo Reis. “IBT: a Real-Time Tempo and Beat Tracking Sys-
tem”. In: Proceedings of the 11th International Society for Music
Information Retrieval Conference (ISMIR). Utrecht, The Nether-
lands, 2010, pp. 291–296.

[105] Hélène Papadopoulos and Geoffroy Peeters. “Joint Estimation
of Chords and Downbeats From an Audio Signal”. In: IEEE
Transactions on Audio, Speech, and Language Processing 19.1 (2011),
pp. 138–152. issn: 1558-7916.

[106] Geoffroy Peeters. “Beat-Marker Location Using a Probabilistic
Framework and Linear Discriminant Analysis”. In: Proceedings
of the 12th International Conference on Digital Audio Effects (DAFx).
Como, Italy, 2009, pp. 313–320.

[107] Geoffroy Peeters and Joachim Flocon-Cholet. “Perceptual
tempo estimation using GMM-regression”. In: Proceedings of
the 2nd international ACM workshop on Music information re-
trieval with user-centered and multimodal strategies (MIRUM).
Nara, Japan, 2012, pp. 45–50.

150 Bibliography

[108] Geoffroy Peeters and Hélène Papadopoulos. “Simultaneous
Beat and Downbeat-Tracking Using a Probabilistic Framework:
Theory and Large-Scale Evaluation”. In: IEEE Transactions on
Audio, Speech, and Language Processing 19.6 (2011), pp. 1754–1769.
issn: 1558-7916.

[109] Graham Percival and George Tzanetakis. “Streamlined Tempo
Estimation Based on Autocorrelation and Cross-correlation
With Pulses”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing 22.12 (2014), pp. 1765–1776. issn: 2329-9290.

[110] Fernando Pérez and Brian E. Granger. “IPython: A System
for Interactive Scientific Computing”. In: Computing in Science
Engineering 9.3 (2007), pp. 21–29. issn: 1521-9615.

[111] Graham E. Poliner and Daniel P. W. Ellis. “A discriminative
model for polyphonic piano transcription”. In: EURASIP Jour-
nal on Applied Signal Processing 2007 (1 2007), pp. 154–154. issn:
1110-8657.

[112] Elio Quinton, Mark Sandler, and Simon Dixon. “Estimation of
the reliability of multiple rhythm features extraction from a
single descriptor”. In: Proceedings of the 41st IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
Shanghai, China, 2016, pp. 256–260.

[113] Lawrence R. Rabiner. “A tutorial on hidden Markov models
and selected applications in speech recognition”. In: Proceedings
of the IEEE 77.2 (1989), pp. 257–286.

[114] Christopher Raphael. “Automatic Transcription of Piano Mu-
sic”. In: Proceedings of the 3rd International Conference on Music
Information Retrieval (ISMIR). Paris, France, 2002.

[115] Matti P. Ryynänen and Anssi P. Klapuri. “Polyphonic music
transcription using note event modeling”. In: IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics. 2005,
pp. 319–322.

[116] Markus Schedl, Peter Knees, and Sebastian Böck. “Investi-
gating the Similarity Space of Music Artists on the Micro-
Blogosphere”. In: Proceedings of the 12th International Society for
Music Information Retrieval Conference (ISMIR). Miami, FL, USA,
2011, pp. 323–328.

[117] Eric D. Scheirer. “Tempo and beat analysis of acoustic musical
signals”. In: The Journal of the Acoustical Society of America 103.1
(1998), pp. 588–601.

[118] Olaf Schleusing, Bingjun Zhang, and Ye Wang. “Onset de-
tection in pitched non-percussive music using warping-
compensated correlation”. In: Proceedings of the 38th IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). Vancouver, Canada, 2013, pp. 117–120.

Bibliography 151

[119] Jan Schlüter and Sebastian Böck. “Musical Onset Detection
with Convolutional Neural Networks”. In: Proceedings of the 6th
International Workshop on Machine Learning and Music (MML).
Prague, Czech Republic, 2013, pp. 79–82.

[120] Jan Schlüter and Sebastian Böck. “Improved Musical Onset De-
tection with Convolutional Neural Networks”. In: Proceedings
of the 39th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Florence, Italy, 2014, pp. 6979–6983.

[121] Mike Schuster and Kuldip K. Paliwal. “Bidirectional Recurrent
Neural Networks”. In: IEEE Transactions on Signal Processing
45.11 (1997), pp. 2673–2681.

[122] Xavier Serra et al. Roadmap for Music Information ReSearch. Cre-
ative Commons BY-NC-ND 3.0 license, ISBN: 978-2-9540351-1-6,
2013.

[123] Yu Shiu, Namgook Cho, Pei-Chen Chang, and Jay C.-C. Kuo.
“Robust on-line beat tracking with kalman filtering and prob-
abilistic data association (KF-PDA)”. In: IEEE Transactions on
Consumer Electronics 54.3 (2008), pp. 1369–1377. issn: 0098-3063.

[124] Reinhard Sonnleitner, Bernhard Niedermayer, Gerhard Wid-
mer, and Jan Schlüter. “A Simple and Effective Spectral Feature
for Speech Detection in Mixed Audio Signals”. In: Proceedings of
the 15th International Conference on Digital Audio Effects (DAFx).
York, UK, 2012, pp. 377–383.

[125] Ajay Srinivasamurthy, André Holzapfel, and Xavier Serra. “In
Search of Automatic Rhythm Analysis Methods for Turkish
and Indian Art Music”. In: Journal of New Music Research 43.1
(2014), pp. 94–114.

[126] Ajay Srinivasamurthy and Xavier Serra. “A Supervised Ap-
proach to Hierarchical Metrical Cycle Tracking from Audio
Music Recordings”. In: IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP). Florence, Italy, 2014,
pp. 5217–5221.

[127] Dan Stowell and Mark D. Plumbley. “Adaptive Whitening For
Improved Real-time Audio Onset Detection”. In: Proceedings of
the International Computer Music Conference (ICMC). 2007.

[128] Mi Tian, György Fazekas, Dawn A. A. Black, and Mark B.
Sandler. “Design And Evaluation of Onset Detectors using
Different Fusion Policies”. In: Proceedings of the 15th International
Society for Music Information Retrieval Conference (ISMIR). Taipei,
Taiwan, 2014, pp. 631–636.

152 Bibliography

[129] Mi Tian, György Fazekas, Dawn AA Black, and Mark Sandler.
“On the use of the tempogram to describe audio content and its
application to Music structural segmentation”. In: Proceedings
of the 40th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Brisbane, Australia, 2015, pp. 419–
423.

[130] Daylin Troxel. “Music Transcription with a Convolutional Neu-
ral Network”. In: Music Information Retrieval Evaluation eXchange
(MIREX) Abstracts. 2016.

[131] George Tzanetakis and Perry Cook. “MARSYAS: a framework
for audio analysis”. In: Organised Sound 4 (03 2000), pp. 169–175.
issn: 1469-8153.

[132] George Tzanetakis and Perry Cook. “Musical genre classifica-
tion of audio signals”. In: IEEE Transactions on Speech and Audio
Processing 10.5 (2002), pp. 293–302. issn: 1063-6676.

[133] Nicholas Wack and Eduard Aylon. “Beat Detection using PLP”.
In: Music Information Retrieval Evaluation eXchange (MIREX)
Abstracts. 2010.

[134] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux.
“The NumPy Array: A Structure for Efficient Numerical Com-
putation”. In: Computing in Science Engineering 13.2 (2011),
pp. 22–30. issn: 1521-9615.

[135] Nick Whiteley, Ali Taylan Cemgil, and Simon Godsill.
“Bayesian Modelling of Temporal Structure in Musical Au-
dio”. In: Proceedings of the 7th International Conference on Music
Information Retrieval (ISMIR). Victoria, Canada, 2006, pp. 29–34.

[136] Fu-Hai Frank Wu and Jyh-Shing Roger Jang. “A supervised
learning method for tempo estimation of musical audio”. In:
22nd Mediterranean Conference of Control and Automation (MED).
Palermo, Italy, 2014, pp. 599–604.

[137] José R. Zapata, Matthew E. P. Davies, and Emilia Gómez.
“Multi-feature beat tracking”. In: IEEE/ACM Transactions on
Audio, Speech, and Language Processing 22.4 (2014), pp. 816–825.
issn: 2329-9290.

[138] José R. Zapata and Emilia Gómez. “Comparative evaluation
and combination of audio tempo estimation approaches”. In:
Proceedings of the AES 42nd International Conference on Semantic
Audio. Ilmenau, Germany, 2011. isbn: 978-0-937803-81-3.

[139] Zhengchen Zhang, Dong-yan Huang, Renbo Zhao, and
Minghui Dong. “Onset detection based on fusion of Simpls and
SuperFlux”. In: Music Information Retrieval Evaluation eXchange
(MIREX) Abstracts. 2013.

Bibliography 153

[140] Ruohua Zhou, Marco Mattavelli, and Giorgio Zoia. “Music
Onset Detection Based on Resonator Time Frequency Image”.
In: IEEE Transactions on Audio, Speech, and Language Processing
16.8 (2008), pp. 1685–1695. issn: 1558-7916.

[141] Yongwei Zhu, Hui Li Tan, and Lekha Chaisorn. “Audio Beat
Tracking Algorithm from Institute for Infocomm Research”.
In: Music Information Retrieval Evaluation eXchange (MIREX)
Abstracts. 2010.

C U R R I C U L U M V I TÆ
personal data

Dipl.-Ing. Univ. Sebastian Böck

born 1977, Munich

http://phd.minimoog.org

education

2010–2016 Doctoral studies in computer science, Johannes
Kepler University Linz

2002–2010 Diploma studies in electrical and computer engi-
neering, Technical University Munich

work

2010–2016 Researcher at the Department of Computational
Perception, Johannes Kepler University Linz

1996–2010 Sound and recording engineer

scientific services

PC member Society for Music Information Retrieval Confer-
ence (ISMIR)

Reviewer Society for Music Information Retrieval Confer-
ence (ISMIR), Conference on Digital Audio Ef-
fects (DAFx), Sound and Music Conference (SMC),
IEEE International Conference on Multimedia and
Expo (ICME), ACM International Conference on
Multimedia (ACMMM), Journal of new music re-
search (JNMR), Transactions on Audio, Speech,
and Language Processing (TASLP), Transactions
on Signal Processing (TSP), Journal of Multimedia
Information Retrieval (MMIR)

http://phd.minimoog.org

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline
	1.2 Contributions
	1.3 Main publications
	1.4 Related publications

	Onset Detection
	2 Online Real-time Onset Detection
	2.1 Introduction
	2.2 System description
	2.3 Data
	2.4 Results and discussion
	2.5 Conclusions

	3 Online Onset Detection Evaluation
	3.1 Introduction and related work
	3.2 Compared methods
	3.3 Experiments
	3.4 Results and discussion
	3.5 Conclusions

	4 Vibrato Suppression For Onset Detection
	4.1 Introduction and related work
	4.2 Proposed method
	4.3 Evaluation
	4.4 Conclusions

	Beat and Downbeat Tracking
	5 Beat Tracking
	5.1 Introduction
	5.2 Related work
	5.3 Neural networks
	5.4 Algorithm description
	5.5 Evaluation
	5.6 Conclusions

	6 Multi-Model Beat Tracking
	6.1 Introduction and related work
	6.2 Proposed method
	6.3 Evaluation
	6.4 Conclusions

	7 Joint Beat and Downbeat Tracking
	7.1 Introduction
	7.2 Related work
	7.3 Algorithm description
	7.4 Evaluation
	7.5 Conclusions

	Tempo Estimation
	8 Tempo Estimation
	8.1 Introduction
	8.2 Related work
	8.3 Algorithm description
	8.4 Evaluation
	8.5 Conclusions

	Note Transcription
	9 Piano Transcription
	9.1 Introduction
	9.2 System description
	9.3 Data
	9.4 Results
	9.5 Conclusions

	Software
	10 madmom
	10.1 Introduction
	10.2 Library description
	10.3 Conclusions

	Bibliography

