FAST IDENTIFICATION OF PIECE AND SCORE POSITION
VIA SYMBOLIC FINGERPRINTING

Andreas Arzt', Sebastian Bock', Gerhard Widmer'-?
!Department of Computational Perception, Johannes Kepler University, Linz, Austria
2 Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria

andreas.arzt@jku.at,

ABSTRACT

In this paper we present a novel algorithm that, given a
short snippet of an audio performance (piano music, for the
time being), identifies the piece and the score position. In-
stead of using audio matching methods we propose a com-
bination of a state-of-the-art music transcription algorithm
and a new symbolic fingerprinting method. The resulting
system is usable in both on-line and off-line scenarios and
thus may be of use in many application areas. As the eval-
uation shows the system operates with only minimal lag
and achieves high precision even with very short queries.

1. INTRODUCTION

Over the last few years efficient systems for content-based
audio retrieval have been a major topic in music infor-
mation retrieval research. These systems allow the user
to browse and explore large music collections without the
need for meta-data and other external information sources.
In this context methods to automatically retrieve all pieces
(and/or all the excerpts of the pieces) matching a given ex-
ample query (in the form of a short audio clip) play an
important role (and actually are in everyday commercial
use). This task, most commonly called audio identifica-
tion or audio fingerprinting, can be considered as solved
(see e.g., [5,10]).

Audio identification by definition only finds exact repli-
cas of the query in the database, possibly distorted in some
ways (e.g., compression artefacts, noise). Especially for
classical music, this is not sufficient, because there are gen-
erally large numbers of different performances of the same
piece, all different in terms of tempo, expressive timing,
and other performance aspects. The relationship between
these performances (that they derive from a common mu-
sical score) in general goes unnoticed by an audio identi-
fication algorithm. In this paper we propose a method for
score identification: instead of identifying a particular per-
formance it returns the musical score on which the query
snippet is based. For example, if we present an audio ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2012 International Society for Music Information Retrieval.

sebastian.boeck@jku.at,

gerhard.widmer@ijku.at

cerpt of Vladimir Horowitz playing Chopin’s Nocturne Op.
55 No. 1 to the system, it will return the name and data of
the piece (Nocturne Op. 55 No. 1 by Chopin) rather than
the data of the specific performance. Moreover, the sys-
tem we propose returns not only the corresponding score,
but also the exact position within the score. Accordingly,
the database for this task does not contain audio record-
ings, but symbolic representations of musical scores (i.e.,
to identify the piece being played, the system only uses the
symbolic score and has no information about the specific
performance by Horowitz in the database).

This task is related to cover song identification (see [9]
for an overview), where the goal is to identify different
versions of one and the same song, in order to detect cover
songs in popular music for commercial applications. To
perform this task algorithms have to cope with large vari-
ations in parameters like timbre, tempo, timing and struc-
ture between different performances. Score identification
can be seen as a special case of cover song identification.
A MIDI version of the score of a classical piece of music
can be synthesized and then be treated as a “normal” per-
formance in this task, i.e., performances become ‘“cover
songs” of the synthesized version of the score. Still, the
difference to our approach to score identification is that for
our system very short queries (e.g., 5 seconds) are suffi-
cient, while cover song identification algorithms generally
assign similarity values to whole pieces of music.

As an alternative to our symbolic approach audio match-
ing can be considered (see e.g., [7]). In this case the score
is again first transformed into an audio file (or a suitable
in-between representation). Then an audio matching al-
gorithm, most commonly based on dynamic programming
techniques, retrieves all excerpts from a database which
musically correspond to a short query clip. In contrast
to audio fingerprinting methods audio matching can also
cope with (non-linear) timing deviations. The downside
of audio matching is that in general these methods are very
slow compared to fingerprinting methods. To cope with the
computational costs, [6] presented clever indexing strate-
gies that greatly reduce the computation time. Still, due
to the coarse feature resolution, relatively large query sizes
are needed.

Another related task, especially regarding the on-line
capabilities of the proposed algorithm, is score following
(seee.g., [3,8] for state-of-the-art score following systems).
In contrast to the algorithm presented in this paper, a score

follower needs to know a-priori which piece the perform-
ers are playing, and then tracks the on-going performance
and continuously returns the current score position. To do
so it relies both on access to the complete performance (up
to the current point in time) and on the performers closely
following the score (i.e., without any additional repeats or
any jumps). It contrast to this, the algorithm presented in
this paper is able to identify the piece being played, and to
identify the actual (or at least an identical) score position
from only a small, arbitrary snippet of the performance.

In the following we will describe a new symbolic ap-
proach to score identification. Instead of creating an audio
representation of the score we create the database directly
from the symbolic score information. Then we transform
the audio query into a symbolic representation — a list of
note onset times with their respective pitch — and use a
symbolic fingerprinting algorithm, inspired by the algo-
rithm described in [10], to find matching positions in the
score database. This process is very fast, can be used in
real-time, on-line applications, and yields very high preci-
sion (as can be seen in Section 4). Note that our algorithm
involves music (audio) transcription — which is still basi-
cally an unsolved problem — as a query preprocessing step.
For our system we use a state-of-the-art music transcrip-
tion system for piano music which, despite many errors,
provides us with transcriptions of sufficient quality for the
robust symbolic fingerprinting algorithm. Still, this also
means that our system currently only works for piano mu-
sic (because of specific properties of the transcription sys-
tem).

2. BUILDING THE SCORE DATABASE

Before actually processing queries the score database has
to be built. In our system we use deadpan MIDI files as the
basis for the score database. The duration of these MIDI
files is similar to the duration of a ‘typical’ performance
of the respective piece, but without encoded timing varia-
tions. From these files a simple ordered list of note events
is extracted where for each note event the exact time in
seconds and the pitch as MIDI note number is stored.

Next, for each piece fingerprint tokens are generated. In
contrast to [10] we create them from 3 successive events
according to some constraints (also see Figure 1) to make
them tempo independent. Given a fixed event e we pair it
with the first n; events with a distance of at least d seconds
“in the future” of e. This results in ny event pairs. For
each of these pairs we then repeat this step and again pair
them with the ny future events with a distance of at least
d seconds. This finally results in 17 * no event triplets. In
our experiments we used the values d = 0.05 seconds and
ni1 = ng = 5. Also inspired by [10] we further constrain
the pair creation steps to notes which are at most 2 octaves
apart.

Given such a triplet consisting of the events e;, ex and
es the time difference td; > between e; and ez and the
time difference tds 3 between e, and e3 are computed. To
get a tempo independent fingerprint token we compute the

time difference ratio of the time differences: tdr = ’;Z?z

Pitch—— >

Time:

Figure 1. Fingerprint Token Generation: Example of 1
generated Token

This finally leads to a fingerprint token [pitch; : pitchg :
pitchg : tdr] : pieceID : time : td; 2, where the hash key
[pitchy : pitchg : pitchg : tdr] can be stored in a 32 bit in-
teger. The purpose of storing td; o in the fingerprint token
will be explained in the description of the search process
itself (see Section 3.2 below).

The result of the score preprocessing is our score data-
base; a container of fingerprint tokens which provides quick
access to the tokens via hash keys.

3. QUERYING THE DATABASE
3.1 Preprocessing: Transcribing the Query

Before querying the database the query (an audio snippet
of a performance) has to be transformed into a symbolic
representation. The algorithm we use to transcribe musical
note onsets from an audio signal is based on the system de-
scribed in [2], which exhibits state-of-the-art performance
for this task. It uses a recurrent neural network to simulta-
neously detect the pitches and the onsets of the notes (see
Figure 2 for an illustration of the algorithm).

For its input, a discretely sampled audio signal is split
into overlapping blocks before it is transferred to the fre-
quency domain with two parallel Short-Time Fourier Trans-
forms (STFT). Two different window lengths have been
chosen to achieve both a good temporal precision and a
sufficient frequency resolution for the transcription of the
notes. Phase information of the resulting complex spec-
trogram is discarded and only the logarithm of the magni-
tude values is used for further processing. To reduce the
dimensionality of the input vector for the neural network,
the spectrogram representation is filtered with a bank of
filters whose frequencies are equally spaced on a logarith-
mic frequency scale and are aligned according to the MIDI
pitches. The attack phase of a note onset is characterized
by a rise of energy, thus the first order differences of the
two spectrograms are used as additional inputs to the neu-
ral network.

The neural network consists of a linear input layer with
324 units, three bidirectional fully connected recurrent hid-
den layers, and a regression output layer with 88 units,
which directly represent the MIDI pitches. Each of the
hidden layers uses 88 neurons with hyperbolic tangent ac-
tivation function. The use of bidirectional hidden layers
enables the system to better model the context of the notes,
which show a very characteristic envelope during their de-

A B PRV ™ :
lmmnmmmnw,‘wwvwmwmww-ﬂwwm%

2 parallel STFT

Recurrent Neural Network

Input Lyl Hidden Hidden Hidden Output
Layer Layer Layer Layer Layer

Figure 2. The Transcription System

Detection Window | Precision | Recall | F-measure
20 ms 0.586 0.489 0.533
40 ms 0.812 0.678 0.739
60 ms 0.851 0.710 0.774
80 ms 0.864 0.720 0.786
100 ms 0.869 0.725 0.790

Table 1. Results of the On-line Transcription Algorithm,
for different detection window sizes.

cay phase.

The network is trained with supervised learning and early
stopping. The network weights are initialized with ran-
dom values following a Gaussian distribution with mean 0
and standard deviation 0.1. Standard gradient descent with
backpropagation of the errors is used for training. The
network was trained on a collection of 281 piano pieces
recorded on various pianos, virtual and real (seven dif-
ferent synthesizers, an upright Yamaha Disklavier, and a
Bosendorfer SE grand piano).

To make the transcriber applicable also in on-line sce-
narios, instead of preprocessing the whole piece of audio at
a time, the signal is split into blocks of 11 frames centered
around the actual frame. The use of 11 frames is a trade-off
between keeping the system’s ability to model the context
of the notes and to keep the introduced delay at a mini-
mum. In the current system the constant lag caused by the
query preprocessing amounts to about 210 ms.

Table 1 shows the on-line transcription results for the
complete test set described later on in Section 4.1. A note
is considered to have been discovered correctly if its posi-
tion is detected within a ‘detection window’ of given size
around the annotated ground truth position. As can be seen
in the table, the results are far from perfect (though they are
very good, considering the state of the art). If the proposed
fingerprinting system is used in an off-line scenario, the
use of an off-line transcription algorithm is an option to
slightly improve the results.

3.2 Querying the Database

The transcription of the query results in a list of note pitches
with timestamps. This list is then processed in the same
way as described in Section 2 above to produce query to-

Query Time in Seconds
»

0 2 4 6 8 10 12 14 16 18 20

Score Time in Seconds

Token Count

| | | | | | | | | |
01 23 45 6 7 8 9 101112 13 14 15 16 17 18 19 20

ScoreTime - QueryTime

Figure 3. a) scatter plot of matching tokens and b) com-
puted histogram for diagonal identification

kens. Of course in this case no piece ID is known and
furthermore each query starts at time 0. These query fin-
gerprint tokens are now used to query the database. The
method described below is again very much inspired by
the audio fingerprinting method proposed in [10].

The general idea is to find regions in the score database
which share a continuous sequence of tokens with the query.
To do so first all the score tokens which match the query
tokens are extracted from the database. When plotted as a
scatter plot against their respective time stamps (see Figure
3a) matches will be indicated by (rough) diagonals (i.e.,
these indicate that the query tokens match the score tokens
over a period of time). As identifying these diagonals di-
rectly would be computationally expensive we instead use
a simpler method described in [10]. This is based on his-
tograms (one for each piece in the score database, with a
time resolution of 1 second) into which the matched tokens
are sorted in a way such that peaks appear at the start points
of these diagonals (i.e., the start point of a query, see Fig-
ure 3b). This is achieved by computing the bin to sort the
token into as the difference between the time of the score
token and time of the query token. The complete process
will be explained in more detail below.

For each of the query tokens gt with [gpitch; : gpitchs :
gpitchg : qtdr] : qtime : qtd, 5 the following process
is repeated. First, matching tokens are extracted from the
score database via the hash key. To allow for local tempo
differences we permit the normalized time difference to be
within % of gtdr. This normally results in a large num-
ber of score tokens [spitch; : spitchg : spitchg : stdr] :
spiecelD : stime : stdq 2. Unfortunately directly sort-
ing these tokens into bin round(stime — gtime) of the
histogram spiecelD does not necessarily make sense be-
cause of the query possibly having a different tempo than

Data Description | Number of Pieces | Notes in Score | Notes in Performance | Performance Duration

Chopin Corpus 154 325,263 326,501 9:38:36

Mozart Corpus 13 42,049 42,095 1:23:56

Additional Pieces 16 68,358 — —

Total 183 435,670

Table 2. Pieces in Database
Query Length in Notes
5 10 20 30 40 50 60

Corr. Piece as Top Match 22.55% | 78.33% | 94.07% 96.70% 97.50% 98.01% 98.42%
Corr. Piece in Top 2 29.23% | 83.22% | 96.07% 97.67% 98.28% 98.64% 98.87%
Corr. Piece in Top 3 33.00% | 85.50% | 96.74% 98.12% 98.57% 98.91% 99.09%
Corr. Piece in Top 4 35.33% | 86.88% | 97.15% 98.32% 98.76% 99.09% 99.22%
Corr. Piece in Top 5 37.24% | 87.86% | 97.44% 98.49% 98.87% 99.17% 99.32%
Corr. Position as Top Match | 14.41% | 60.47% | 80.35% 84.63% 84.86% 83.91% 83.70%
Corr. Position in Top 2 21.94% | 75.09% | 91.11% 93.39% 93.77% 93.39% 93.17%
Corr. Position in Top 3 25.77% | 79.70% | 93.69% 95.36% 95.73% 95.85% 95.84%
Corr. Position in Top 4 28.20% | 81.94% | 94.69% 96.14% 96.61% 96.84% 96.93%
Corr. Position in Top 5 30.02% | 83.29% | 95.22% 96.55% 97.05% 97.34% 97.47%
Mean Query Duration 0.60sec | 1.33sec | 2.78sec | 4.21sec | 5.63sec | 7.04sec | 8.48 sec
Mean Query Exec. Time 1.71ms | 5.13ms | 11.76 ms | 16.86 ms | 20.76 ms | 26.36 ms | 31.89 ms

Table 3. Results of the proposed piece and score position identification algorithm on the test database. Each estimate is

based on 50,000 random audio queries.

expected by the score.

As an illustration let us assume a slower tempo for the
query than for the respective score. Then the diagonal in
Figure 3a would be steeper and when computing the bins
via round (stime— gtime) the first few tokens may fall into
the correct bins. But soon the tokens, despite belonging to
the same score position, would get sorted into lower bins
instead.

Thus we first try to adapt the timing by estimating the
tempo difference between the score token and the query
token. First we compute the tempo ratio of both tokens

= Zg% and then adapt the time of the query event
when cotﬁputing the bin to sort the token into: bin =
round (stime — gtime x r).

We now have a number of histograms, one for each
score in the database, and need a way of deciding on the
most probable score position(s) (and, by implication, the
most probable piece), for the query. We did experiments
with different methods of computing the matching score
but in the end simply taking the number of tokens in each
bin as the score produced the best results.

4. EVALUATION

4.1 Dataset Description

For the evaluation of our algorithm a ground truth is needed.

We need exact alignments of performances of classical mu-
sic to their respective scores such that we know exactly
when each note given in the score is actually played in the
performance. This data can either be generated by a com-

puter program or by extensive manual annotation but both
ways are prone to annotation errors.

Luckily, we have access to two unique datasets where
professional pianists played their performances on a com-
puter-controlled piano! and thus every action (e.g., key
presses, pedal movements) was recorded in a symbolic way.
The first dataset (described in [11]) consists of performan-
ces of the first movements of 13 Mozart piano sonatas by
Roland Batik. The second, much larger, dataset consists
of nearly the complete solo piano works by Chopin per-
formed by Nikita Magaloff [4]. For the latter set we do
not have the original audio files and thus replayed the sym-
bolic performance data on a Yamaha N2 hybrid piano and
recorded the resulting performances.

As we have both symbolic and audio information about
the performances, we know the exact timing of each played
note in the audio files. The performances were manually
aligned to electronic (symbolic) versions of the original
sheet music. To build the score database we converted the
sheet music to MIDI files with a constant tempo such that
the overall duration of the file is similar to a ‘normal’ per-
formance of the piece.

In addition to these two datasets we added some more
scores to the database, solely to provide for more diversity
and to make the task even harder for our algorithm (these
include, amongst others, the Beethoven Symphony No. 5,
the Mozart Oboe Quartet KV370, the First Mephisto Waltz
by Liszt and Schoenberg Op. 23 No. 3). To the latter,
we have no ground truth, but this is irrelevant since we

I Bssendorfer SE 290

Musical Score
Database

Live Performance

e
‘v —
' y 1’ —

'Any-time' On-line Music Tracker

Instant Piece Recognizer

Note Recognizer Symbolic Music
(On-line Audio-to-Pitch Matcher
Transcriptor) (Fingerprinter)

Multi Agent Music Tracking System

Output: Score Position

~
[

Figure 4. The Ultimate Music Companion

do not actively query for them with performance data in
our evaluation runs 2. See Table 2 for an overview of the
complete dataset.

4.2 Results

An evaluation of the transcription stage (query preprocess-
ing) was already presented in Section 3.1 above. As Table
1 shows the results of this stage are rather noisy. Still, the
quality of the transcription is sufficient to be used with our
robust fingerprinting technique.

We tested the algorithm with different query lengths: 5,
10, 20, 30, 40, 50 and 60 notes (in number of transcribed
notes during the preprocessing step). For each of the query
lengths, we generated 50,000 queries by picking random
points in the performances of our test database, and used

2 Additionally we performed some non-systematic experiments with
data from different sources (e.g., Youtube videos, both by amateurs and
by professional pianists, with differing recording qualities (including
noisy ‘old’ recordings and noisy amateur recordings)), for which we have
no ground truth data. The general impression is that the system works
well too in these scenarios, but of course the performance worsens in the
presence of noise.

Score Tempo
Normal | Double Half
Corr. Pos. as Top M. | 84.63% | 83.30% | 85.15%
Corr. Pos. in Top 2 93.39% | 92.61% | 92.70%
Corr. Pos. in Top 3 95.36% | 95.06% | 94.42%
Corr. Pos. in Top 4 96.14% | 96.11% | 95.00%
Corr. Pos. in Top 5 96.55% | 96.55% | 95.26%

Table 4. Results of the algorithm with score representa-
tions with altered tempi. The results are based on query
lengths of 30 notes.

them as input for the proposed algorithm.

The results of this experiment are shown in Table 3.
In this table we present two measures: the percentage of
correctly identified pieces, and the percentage of cases in
which both the piece and the exact position in the score
were correctly identified.

For the evaluation a score position X is considered cor-
rect if it marks the beginning (+/- 1.5 seconds) of a score
section that is identical in note content, over a time span
the length of the query (but at least 30 notes), to the note
content of the ‘real’ score situation corresponding to the
audio segment that the system was just listening to (we
can establish this as we have the correct alignment be-
tween performance time and score positions — our ground
truth). This complex definition is necessary because musi-
cal pieces may contain repeated sections or phrases, and it
is impossible for the system (or anyone else, for that mat-
ter) to guess the ‘true’ one out of a set of identical passages
matching the current performance snippet, given just that
performance snippet as input. We acknowledge that a mea-
surement of musical time in a score in terms of seconds is
rather unusual. But as the MIDI tempos in our database
generally are set in a meaningful way, this seemed the best
decision to make errors comparable over different pieces,
with different time signatures — it would not be very mean-
ingful to, e.g., compare errors in bars or beats over different
pieces.

As can be seen, even queries of only a length of 5 notes
lead to a surprising number of correct position identifica-
tions, and already for a query length of 20 notes (which
corresponds to a mean query duration of 2.78 seconds)
the correct position in the score is contained in the top 5
matches for more than 95% of the cases.

To show the tempo independence of our method we
also ran experiments with big tempo differences between
the score and the performance. We simulated this by ma-
nipulating the scores to have double and half the original
tempo. The results for these experiments are shown in
Table 4. As can be seen the performance only decreases
slightly and the proposed algorithm still recognizes the cor-
rect position in the vast majority of the cases.

A flaw of the current approach is that it cannot cope
with non-linear tempo deviations (i.e., with tempo varia-
tions within a query). As we are using very short queries
and a rather coarse resolution in the histograms this is only

a minor problem. But for longer queries (e.g., with dura-
tions of over 10 seconds) explicitly dealing with non-linear
tempo deviations becomes more of an issue. To make our
approach useable with longer queries we propose to split
the long query into smaller, overlapping queries (e.g., of
size 30 notes with 15 notes overlap) and then use some
simple tracking and scoring algorithm to combine the indi-
vidual results into a single score. Preliminary experiments
with this approach suggest that this leads to a very robust
and accurate algorithm.

5. CONCLUSION
5.1 Applications

The proposed system is useful in a wide range of applica-
tions. For the off-line case it may either be used stand-
alone or as a preprocessing step to audio alignment al-
gorithms. This enables fast and robust (inter- and intra-
document) searching and browsing in large collections of
musical scores and corresponding performances.

Originally this work was motivated by an on-line sce-
nario (see [1]). In connection with an on-line score fol-
lowing algorithm we are currently building a system that
we somewhat immodestly call ‘the ultimate classical mu-
sic companion’ (see Figure 4 for a sketch of the system).
This system will be able to recognize arbitrary pieces of
classical music, immediately identify the position in the
score, provide meta-information, track the piece via an on-
line score following algorithm, display the score, and vi-
sualize musical aspects of the performance like the struc-
ture of the piece, tempo and expressive timing deviations
— all done on-line with minimal delay. This ultimate mu-
sic companion may be used to enhance the listening ex-
perience but may also be of use for performers, especially
during rehearsal. Besides this very specific application the
proposed algorithm may also be of use in any application
which requires monitoring of an audio stream of classical
music on-line with minimal delay.

5.2 Future Work

Regarding the improvement of the algorithm, we see some
future work in making it better useable with longer queries
including tempo variations. As already mentioned above a
combination of small overlapping subqueries with simple
tracking of the results seems to be the way to go. Also a
larger scale evaluation of the algorithm (with thousands of
classical piano scores) has to be done.

The algorithm in the current state is able to recognize
the correct piece and the score position even for very short
queries of piano music. Based on this algorithm we have
already implemented a real-time on-line piece and score
position identification system that shows a level of perfor-
mance that even human experts in classical music will find
hard to match. This will be demonstrated live at the con-
ference. We are now working on the integration of the pro-
posed algorithm in our score following system as a next
step towards our ultimate goal: ‘the ultimate classical mu-
sic companion’.

6. ACKNOWLEDGMENTS

This research is supported by the Austrian Science Fund
(FWF) under project numbers Z159 and P22856-N23.

7. REFERENCES

[1] A. Arzt, G. Widmer, S. Bock, R. Sonnleitner, and
H. Frostel. Towards a complete classical music com-
panion. In Proceedings of the European Conference on
Artificial Intelligence (ECAI), 2012.

[2] S. Bock and M. Schedl. Polyphonic piano note tran-
scription with recurrent neural networks. In Proceed-
ings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2012.

[3] A. Cont. A coupled duration-focused architecture for
realtime music to score alignment. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,

32(6):974-987, 2010.

[4] S. Flossmann, W. Goebl, M. Grachten, B. Nie-
dermayer, and G. Widmer. The Magaloff project:
An interim report. Journal of New Music Research,
39(4):363-377, 2010.

[5] J. Haitsma and T. Kalker. A highly robust audio fin-
gerprinting system. In Proceedings of the International
Symposium on Music Information Retrieval (ISMIR),
2002.

[6] F. Kurth and M. Miiller. Efficient index-based audio
matching. IEEE Transactions on Audio, Speech, and
Language Processing, 16(2):382-395, 2008.

[7] M. Miiller, F. Kurth, and M. Clausen. Audio matching
via chroma-based statistical features. In Proceedings
of the International Conference on Music Information
Retrieval (ISMIR), 2005.

[8] C. Raphael. Current directions with music plus one. In
Proceedings of the Sound and Music Computing Con-
ference (SMC), 20009.

[9] J. Serra, E. Gémez, and P. Herrera. Audio cover song
identification and similarity: background, approaches,
evaluation, and beyond. In Z. W. Ras and A. A. Wiec-
zorkowska, editors, Advances in Music Information
Retrieval, pages 307-332. Springer, 2010.

[10] A. Wang. An industrial strength audio search algo-
rithm. In Proceedings of the International Conference
on Music Information Retrieval (ISMIR), 2003.

[11] G. Widmer. Discovering simple rules in complex data:
A meta-learning algorithm and some surprising mu-
sical discoveries. Artificial Intelligence, 146(2):129—
148, 2003.

