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ABSTRACT

The goal of real-time music tracking is to follow a musical
performance on-line and at any time report the current po-
sition in the score. To achieve this, both the score and the
performance have to be represented in a suitable way. In
this paper, we first evaluate the performance of some well-
known features and then propose a simple but effective dis-
tance normalization strategy for onset-emphasized features,
which greatly improves the alignment results. Finally, we
combine both harmonic and onset-emphasized features in a
fashion known from off-line audio alignment, resulting in a
combination which outperforms each individual feature re-
garding robustness and accuracy.

Index Terms— Music Processing, Real-time Music
Tracking, Audio Alignment, Audio Features, Feature Nor-
malization

1. INTRODUCTION

The task of a real-time music tracking system (a.k.a. a score
follower) is to listen to a musical performance and automati-
cally recognize at any time the current position in the musical
score. A system that achieves this task accurately and robustly
promises to be useful in a wide range of applications (e.g., by
automatically accompanying or interacting with musicians or
by creating visualizations of their performance). There exist
various approaches to this problem, most notably the systems
by Raphael [1] and Cont [2], which both are based on differ-
ent kinds of graphical models. In contrast to these approaches
our tracker is based on an on-line version of the well-known
dynamic time warping algorithm.

In a real-time music tracking system the way the two time
series (the score and the live performance to be aligned) are
represented plays a vital role. Generally we can distinguish
two kinds of features: features which describe the general en-
ergy distribution (the harmonic content) and features which
describe increases in energy (modelling the onsets). While
harmonic features like the normalized chroma representation
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are well established in the field of audio alignment, features
based on onsetness have so far been somewhat neglected. A
difficulty with ‘onsetness’ features for alignment purposes are
different energy levels of onsets, which may lead to big dis-
tances between otherwise similar frames and thus to align-
ment errors. In this paper, we will tackle this problem by in-
troducing a simple distance normalization strategy for onset
features that tries to reduce the influence of the energy levels
on the distance computation process, while still preserving
the onset information. We will show that using onset features
computed with this normalization procedure leads to better
tracking results than using the prevailing normalized chroma
features. In a final step, we combine distances based on har-
monic and onset features into one distance measure, forming
a combination which outperforms the individual features by
far.

While the features and methods described in this paper are
presented and evaluated in the context of our real-time music
tracker, they may of course also be useful for the closely re-
lated task of off-line audio alignment.

2. REAL-TIME MUSIC TRACKING VIA ON-LINE
DYNAMIC TIME WARPING

Our real-time audio tracking system is based on an on-line
version of the dynamic time warping algorithm. It takes two
time series consisting of feature vectors as input – one known
completely beforehand (the score) and one coming in real-
time (the live performance) –, computes an on-line alignment,
and at any time returns the current position in the score. As
the focus of this paper is on the feature representations used
for the alignment process, we will only give a short intuitive
description of this algorithm and refer the reader to [3] for
further details.

Dynamic Time Warping (DTW) is an off-line alignment
method for two time series based on a local cost measure and
an alignment cost matrix computed using dynamic program-
ming. Each cell of the alignment cost matrix contains the
cost of the optimal alignment up to this cell. When the com-
plete matrix is computed, the optimal alignment path is ob-
tained by tracing the dynamic programming recursion back-



wards (backward path).
In [3] Dixon proposed an on-line version based on the

standard DTW algorithm which has two important properties
that make it useable in real-time systems: the alignment is
computed incrementally by always expanding the matrix into
the direction (row or column) containing the minimal costs
(forward computation), and it has linear time and space com-
plexity due to the fact that instead of the whole matrix in each
step only a fixed number of cells is computed.

Subsequently, improvements to this basic algorithm were
proposed. This includes an extension called the ‘backward-
forward strategy’ [4], which reconsiders past decisions and
tries to improve the precision of the current score position hy-
pothesis, and relatively simple tempo models [5] which are
used to stretch or compress the score representation accord-
ingly and therefore reduce differences in absolute tempo be-
tween the score representation and the live performance. For
the evaluation runs in this paper, we used the simpler of the
two tempo models presented in the above-mentioned paper.

3. FEATURE REPRESENTATION

In order to align a live performance to a score suitable feature
representations are needed. We first convert a MIDI version
of the score into a sound file using a software synthesizer.
Thus we actually treat this task as an audio-to-audio align-
ment problem, with additional knowledge about the score
audio file (e.g., the exact timing of each note onset). Both
streams to be aligned are represented as sequences of analysis
frames, computed via a short-time Fourier transform (STFT)
of the signal with a hamming window of size 92ms and a
hop size of 23ms. Then each frame resulting from the STFT
is mapped onto a musically more meaningful representation
better suited for the task of audio alignment.

A natural musically motivated choice for representing the
tonal/harmonic content is to map the data into frequency bins
with semitone spacing. As we would like this representation
to be invariant to dynamic variations, we normalize each vec-
tor to sum up to 1. We will refer to this representation as
normalized semitone features (NS).

For features representing the note onsets we again map
the STFT data to the semitone scale but now only store the
increase in energy in each bin relative to the previous frame.
As described in [6] for chroma onset features we now first
take a suitable logarithm of the values in the vector, moti-
vated by the logarithmic sensation of sound in humans, and
then normalize each vector by the maximum norm in a fixed
window around this vector. While in the original paper this
window is centered on the vector to be normalized, we had
to shift the window to only use data up to the current vector
to make it computable on-line. We will refer to this represen-
tation as locally adaptive normalized semitone onset features
(LNSO).

Most recent audio alignment systems are based on dif-
ferent variants of chroma-based harmonic features (e.g., [7,
8, 9]). In general chroma vectors consist of 12 elements per
time frame, corresponding to pitch classes; their values are
computed by mapping the frequency bins of the STFT to the
12 pitch classes and summing up the energies. There also
exist more sophisticated ways of computing chroma features
and for this paper we are in fact using the method described
in [10]. Again each vector finally is normalized to sum up
to 1 to make it invariant to dynamic variations (normalized
chroma features (NC)).

It is also possible to compute chroma onset features by a
mapping of the LNSO features described earlier to the chroma
representation, as recently done in [6]. The authors refer to
this representation as locally adaptive normalized chroma on-
set features (LNCO). Additionally, as this introduces a desir-
able property for off-line (= backward) audio alignmen,t they
also introduce an extra temporal decay to these features (de-
caying LNCO (DLNCO)), which should not be favourable for
the on-line task in question. Nonetheless we will also eval-
uate the effect of this delay in our on-line (= forward) audio
alignment algorithm.

Finally, having defined a number of possible feature rep-
resentations, a function determining the alignment cost of 2
frames (distance between 2 frames) is needed. In this paper
we will use the L1 distance:

d(I, J) =

n∑
k=1

|Ik − Jk|, (1)

where I and J are either semitone or chroma frames.

4. ADAPTIVE DISTANCE NORMALIZATION

One problem with using the aforementioned features based
on onset information (LNSO, LNCO and DLNCO) directly
is that they are only normalized relative to their local context
within their audio streams. There can be huge differences
in onset strength between the two audio streams, especially
when the score audio stream is generated from a deadpan
MIDI file without loudness information (= with the same ve-
locity for every note). In contrast to this, there are all kinds
of variations in dynamics in the live performance. Take for
example a piano performance in which the performer em-
phasizes the melody while playing the accompaniment very
softly, or ‘blurs’ the onsets by using the sustain pedal, as is of-
ten the case. Then the correct alignment of the louder melody
notes would lead to minimal distances, but there would oc-
cur substantial alignment costs for each of the accompanying
notes, possibly leading to alignment errors.

A simple solution to this problem is to compute a normal-
ized distance dn of two frames by dividing d by the sum of
their L1-norms:

dn(I, J) =
d(I, J)

|I|1 + |J |1
. (2)



ID Composer Piece Name # Perf Eval. Type
CE Chopin Etude Op. 10 No. 3 (excerpt) 22 Match
CB Chopin Ballade Op. 38 No. 1 (excerpt) 22 Match
MS Mozart 1st Mov. of Sonatas KV279, KV280, KV281, KV282, KV283,

KV284, KV330, KV331, KV332, KV333, KV457, KV475, KV533
1 Match

RP Rachmaninoff Prelude Op. 23 No. 5 3 Man. Annotations

Table 1. The data set used for the evaluation.

Evidently this simple approach has its drawbacks. It intro-
duces a lot of noise to the distance matrix by heavily up-
scaling small distances between frames with low energy in
them. Still this normalization step greatly improves the align-
ment results and actually makes the semitone onset features
useable – alignments based on the unnormalized distances got
lost most of the time (see Table 3).

To get rid of this up-scaling effect, we introduce a weight
describing the ‘onsetness’ of the two frames involved. When
chosen correctly, this weight can be seen as a dampening fac-
tor: avoiding the scale-up effect for small numbers while still
normalizing the distance when enough energy is involved.
Recall that due to the locally adaptive normalization step the
L1-norm of each frame is a measure of its ‘onsetness’, rang-
ing from 0 to 1. Thus the mean of the L1-norms of two frames
is a natural measure of their combined ‘onsetness’. Based on
experimental results we chose to apply a suitable function to
this value, leading to the desired dampening effect and result-
ing in the normalized and weighted distance dnw:

dnw(I, J) = dn(I, J) ∗
4

√
|I|1 + |J |1

2
. (3)

It is important to note that the main point of the formula above
is not the application of exactly the 4th root – this function
merely gave the best results in our evaluation, but only by
a very small margin. We achieved very similar results with
other functions (the square root, cubic root or also a function
based on the logarithm), as long as the function fulfilled the
intended dampening task described above.

4.1. Results

The performance of each feature configuration was thor-
oughly tested on various pieces of piano music (see Table 1).
This table also indicates how the ground truth data was pre-
pared, where ‘match’ means that the we have access to very
accurate data about every note onset, as these were recorded
on a computer-monitored grand piano. The Tables 2 and 3
show the percentage of correctly aligned notes for the differ-
ent configurations mentioned in the text. A note is accepted
as correctly aligned if the computed time differs from the
actual onset time not more than 250 ms (see also [11] for
more details on the evaluation of real-time audio-to-score
alignment systems).

ID NSdn NCdn

CE 82.01% 87.78%
CB 75.04% 79.97%
MS 90.19% 91.20%
RP 75.61% 81.45%

Table 2. Real-time alignment results for the harmonic fea-
tures (see text).

Regarding the harmonic features, the suitability of the NC
features for audio alignment purposes is well established (see
e.g., [12]) and again confirmed by our experiments (see Table
2). In contrast to that the performance of the LNSO features,
which work far better than the related LNCO features, may
come as a bit of a surprise (see Table 3). It seems that when
it comes to modelling onsets the mapping to the chroma scale
destroys crucial information (the absolute height of the on-
sets). As also shown in this table, the normalization step for
onset features is indispensable. While with the unnormalized
distances the tracker in many cases gets completely lost or at
least produces a lot of errors both normalized versions lead to
robust and accurate alignments, the weighted one even clearly
outperforming the NC features.

Interestingly the basic DLNCO features outperformed the
LNSO and LNCO features. But while the normalization pro-
cess also has a positive influence on the DLNCO features in
general (interestingly, the Rachmaninov Prelude is an excep-
tion) they do not benefit to the same extent. When comparing
the evaluation runs using the distance normalization process
the LNSO features are clearly preferable at least for on-line
trackers such as ours.

5. MIXING CHROMA AND ONSET INFORMATION

Having evaluated their accuracy when used individually it
seems reasonable to try to combine the two presented feature
types (harmonic and onset) into one feature set, something
which has already been suggested in [6] in a different (off-
line) alignment setting. There the authors mix NC features
with the DLNCO features described above by simply com-
puting 2 distinct local cost matrices, and finally summing up
both matrices to get a distance measure which accounts for



ID LNSOd LNSOdn LNSOdnw LNCOd LNCOdn LNCOdnw DLNCOd DLNCOdn DLNCOdnw

CE 9.68% 91.93% 96.09% 43.66% 92.78% 95.85% 77.01% 89.46% 93.26%
CB 5.8% 91.79% 95.61% 28.92% 86.74% 93.72% 65.97% 79.05% 85.27%
MS 1.2% 97.41% 93.76% 18.23% 90.28% 90.91% 48.18% 79.14% 85.18%
RP 2.28% 78.71% 86.25% 20.77% 42.67% 71.77% 33.73% 2.91% 23.56%

Table 3. Real-time alignment results for the onset features (see text).

ID NCdn LNSOdnw NCdn+LNSOdnw

CE 87.78% 96.09% 96.13%
CB 79.97% 95.61% 96.38%
MS 91.20% 93.76% 98.20%
RP 81.45% 86.25% 93.73%

Table 4. Real-time alignment results for the single best fea-
tures and their combination (see text).

both types of information.
We will now combine the best features of both classes

according to our evaluation runs in the same fashion. For
this we picked the NC features (see Table 2) and the LNSO
features with the distance normalization procedure described
above (see Table 3). Thus as the total distance dtot of 2 frames
we get:

dtot(I, J) = dLNSO
nw (I, J) + dNC

n (I, J). (4)

We also experimented with an additional weighting of the
distances such that in case of onsets dLNSO

nw (I, J) is dominant
and dNC

n (I, J) otherwise, but – despite some promising re-
sults with some of the ‘weaker’ features – we did not achieve
further improvements by this strategy.

5.1. Results

As expected, these features, which complement one another
in a natural way, lead to a substantial increase in alignment
precision and robustness compared to their individual results
(see Table 4). The combination outperformed each configura-
tion with single features we tested for this paper.

Table 5 gives a more in-depth comparison of the com-
bined features to the individual ones based on the cumulative
frequency of errors. It again confirms that in this natural com-
bination the NC features mainly add robustness (i.e., these
features show fewer extreme errors larger than 1 second than
the LNSO features). On the other hand the LNSO features
greatly improve the precision (e.g., 86.95% of the notes are
aligned with an error smaller or equal 0.1 seconds, compared
to 67.64% when using the NC features).

Err. (sec) NCdn LNSOdnw NCdn+LNSOdnw

≤ 0.05 35.53% 44.69% 46.24%
≤ 0.10 67.64% 86.95% 89.00%
≤ 0.15 78.23% 90.49% 94.13%
≤ 0.20 83.75% 92.42% 96.03%
≤ 0.25 87.12% 93.32% 96.93%
≤ 0.30 89.75% 94.05% 97.57%
≤ 0.35 91.65% 94.58% 97.96%
≤ 0.40 92.91% 94.99% 98.28%
≤ 0.45 93.98% 95.36% 98.47%
≤ 0.50 94.77% 95.66% 98.71%
≤ 1.0 98.16% 97.44% 99.59%

Table 5. Real-time alignment results for the single best fea-
tures and their combination on the whole test set (79178 notes
in total) shown as cumulative frequencies of errors of match-
ing pairs of notes.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented a detailed evaluation of differ-
ent feature configurations for real-time music matching. The
main contribution of this paper is an adaptive distance nor-
malization strategy for onset features. The final configuration,
a combination of normalized chroma features and locally nor-
malized semitone onset features, together with this distance
normalization strategy led to a huge increase in alignment pre-
cision. So far we only presented evaluation results on piano
music. First experiments on other kinds of music (e.g., or-
chestral music) show promising results, and we are now col-
lecting the necessary ground truth data for a larger scale eval-
uation. In our opinion, at least regarding our real-time mu-
sic tracking system, the possibilities of signal processing are
exhausted and further serious improvements both in robust-
ness and in precision are only possible by introducing musi-
cal knowledge. We will be working on this in the form of
anticipative tempo models and explicit event anticipation.

7. REFERENCES

[1] C. Raphael, “Current directions with music plus one,”
in Proc. of the Sound and Music Computing Conference,
2009.



[2] A. Cont, “A coupled duration-focused architecture for
realtime music to score alignment,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32,
no. 6, pp. 837–846, 2010.

[3] S. Dixon, “An on-line time warping algorithm for track-
ing musical performances,” in Proc. of the International
Joint Conference on Artificial Intelligence, 2005.

[4] A. Arzt, G. Widmer, and S. Dixon, “Automatic page
turning for musicians via real-time machine listening,”
in Proc. of the European Conference on Artificial Intel-
ligence, 2008.

[5] A. Arzt and G. Widmer, “Simple tempo models for real-
time music tracking,” in Proc. of the Sound and Music
Computing Conference, 2010.

[6] S. Ewert, M. Müller, and P. Grosche, “High resolution
audio synchronization using chroma onset features,” in
Proc. of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2009.

[7] N. Hu, R. Dannenberg, and G. Tzanetakis, “Polyphonic
audio matching and alignment for music retrieval,” in
IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, 2003.

[8] M. Müller, H. Mattes, and F. Kurth, “An efficient mul-
tiscale approach to audio synchronization,” in Proc. of
the International Conference on Music Information Re-
trieval, 2006.

[9] B. Niedermayer and G. Widmer, “A multi-pass algo-
rithm for accurate audio-to-score alignment,” in Proc.
of the International Conference on Music Information
Retrieval, 2010.

[10] D. P. W. Ellis and G. E. Poliner, “Identifying ‘cover
songs’ with chroma features and dynamic programming
beat tracking,” in Proc. of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
2007.

[11] A. Cont, D. Schwarz, N. Schnell, and C. Raphael,
“Evaluation of real-time audio-to-score alignment,” in
Proceedings of the 8th International Conference on Mu-
sic Information Retrieval (ISMIR 2007), Vienna, Aus-
tria, 2007.

[12] C. Joder, S. Essid, and G. Richard, “A comparative study
of tonal acoustic features for a symbolic level music-
to-score alignment,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP)
2010. IEEE, 2010, pp. 409–412.


