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Abstract. We present a system that listens to music on-line and al-
most instantly identifies the piece the performers are playing and the
exact position in the musical score. This is achieved via a combina-
tion of a state-of-the-art audio-to-note transcription algorithm and a
novel symbolic fingerprinting method. The speed and precision of the
system are evaluated in systematic experiments with a large corpus
of classical music recordings. The results indicate extremely fast and
accurate recognition performance — a level of performance, in fact,
that even human experts in classical music will find hard to match.

1 INTRODUCTION
In this paper we describe another big step in a long-term endeavour
that aims at building a musical system that is able to recognize ar-
bitrary pieces (of classcial music, for the time being) by real-time
listening, to identify the piece and provide meta-information almost
instantly, and to track the performance and display the musical score
in real time along with the performance. We call this, somewhat im-
modestly, the Complete Classical Music Companion.2

The first building block of that system – a highly robust and reac-
tive score follower that tracks live performances and aligns the mu-
sical score to the performance in real time – was first described in
[2]. In [1] this was extended with what we called ‘anytime tracking
ability’ — the ability to tolerate arbitrary jumps, insertions, repeats,
re-starts etc. on the part of the music performers. In effect, this per-
mits the musicians to jump around in a piece in arbitrary ways —
for instance, in a practicing situation — while still being correctly
followed.

In the present paper, we now describe the next (and, from our
point of view, penultimate) step towards building the complete clas-
sical music companion: the ability to almost instantly recognize an
arbitrary piece when hearing only a few arbitrarily chosen seconds
of music being played (possibly live) — the way the ideal human
encyclopaedic classical music expert would. Note that the input to
our system is audio streams, not some symbolic music representa-
tion such as, e.g., MIDI.

In the following, we describe the two new components that in con-
junction make this possible, and the methods behind them: a real-
time audio-to-pitch transcription algorithm (note recognizer), and an
extremely effective and robust indexing algorithm that quickly finds
matching situations in a large database of musical scores, based on
partly faulty information from the note transcriber, and in the pres-
ence of possibly large differences and fluctuations in tempo and tim-
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ing (which are common in classical music). We focus on a detailed
experimental analysis of these two new components that together
make up what might be called the instant piece recognition ability.

The ultimate step, not described here, is the integration of this in-
stant recognition ability into our score follower, such that the instant
recognizer constantly informs the music tracker about the most likely
position and/or piece the performers might be playing at any given
point in time, and in this way helps the music tracker to re-direct
its focus. The resulting system will be useful for a variety of musical
purposes — from fully automatic display of sheet music during prac-
ticing sessions, to real-time synchronisation of events and visualisa-
tion with live music on stage, to a comprehensive music information
companion that ‘knows’ all of classical music and provides useful
meta-information (including the score) instantly, whenever it ‘hears’
music.

2 THE TASK: INSTANT PIECE RECOGNITION
FROM LIVE AUDIO STREAMS

As noted above, the larger context of this work is a system that lis-
tens to music (live performances) via a microphone and follows the
musicians’ position in the printed score (see Figure 1 for a sketch
of the current system). Live input enters the system in the form of a
continuous audio stream (left-hand side of Fig. 1). This audio stream
is aligned, in real time, to a representation of the printed score of the
corresponding piece — in our case, this score representation is an-
other audio file that is generated from the score via some software
synthesiser. Score following thus becomes an online audio-to-audio
alignment problem, which is solved via a highly efficient and robust
algorithm based on On-line Dynamic Time Warping, with some spe-
cific enhancements (see [2]). Figure 1 indicates that there are mul-
tiple trackers simultaneously considering and tracking different al-
ternative hypotheses within a piece (e.g., the performers obeying a
repeat sign, or ignoring it).

The task of the new Instant Piece Recognition function is to imme-
diately recognize, from just a few seconds of live audio, what piece is
currently being played, and exactly which passage within the piece,
and to inform the trackers accordingly. This would permit musicians
to start playing an arbitrary piece, at an arbitrary position, at any
time, without having to give any directions to the system. The recog-
nition process involves analysing the last few seconds of audio and
searching in the score database for note configurations that match
what is being ‘heard’. As mentioned above, we will decompose this
into two separate problems (shown as yellow boxes in the Figure 1):
note recognition (transcription) from the audio stream, and search for
possibly matching musical situations in the score database (denoted
as symbolic music matching in the figure). Both problems are non-
trivial. Automatic audio transcription is still a wide open research
field (see e.g., [3, 4]), and nothing close to 100% recognition accu-
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Figure 1. Any-time Music Tracker

racy can be expected (see Table 1 below). Likewise, identifying the
correct score position from imprecise and incomplete information
about possibly played notes, in a large score database, and doing so
in a fraction of a second, is a demanding task.

Before describing in detail our solution to these problems, we need
to point out that the problem we address here is distinct from audio

fingerprinting, which can be considered a solved problem and is in
everyday commercial use. In audio fingerprinting (e.g., [6, 8]), the
task is to identify a specific audio recording from an arbitrary ex-
cerpt of this same recording, possibly corrupted by noise. In other
words, an audio fingerprinter can only identify recordings already in
its database. Our system needs to be able to recognize a completely
new rendition of a piece, for instance, a live performance currently
happening on stage that has never been realized in this way before,
possibly even on other instruments than any existing recordings; and
the database that is being matched against contains not recordings,
but symbolic music scores, in the specific form described in Section
4.1 below.

Besides audio fingerprinting the problem may also be solved via
audio matching (i.e., the database in this case again does not consist
of symbolic score representations, but of audio renditions), which in
general is able to identify different recordings of the same piece. In
[7] a fast method based on audio matching and indexing-techniques
is proposed which is designed for off-line retrieval tasks with query
lengths in the range of 10 to 20 seconds. The problem with this
approach in our live setting is that we need matching results much
quicker (e.g., with query sizes of about 1 second) which in our ex-
perience is not possible via a method based on audio matching tech-
niques.

Thus to overcome the deficiencies of the existing approaches we
will examine a novel kind of symbolic fingerprinting based on audio
transcription.

3 THE NOTE RECOGNIZER
The component to transcribe note onsets from an audio signal is
based on the system described in [3], which exhibits state-of-the-
art performance for this task. It uses a recurrent neural network to

simultaneously detect the pitches and the onsets of the notes.
For its input, a discretely sampled audio signal is split into over-

lapping blocks before it is transferred to the frequency domain with
two parallel Short-Time Fourier Transforms (STFT). Two different
window lengths have been chosen to achieve both a good temporal
precision and a sufficient frequency resolution for the transcription of
the notes. Phase information of the resulting complex spectrogram is
discarded and only the logarithm of the magnitude values is used for
further processing. To reduce the dimensionality of the input vector
for the neural network, the spectrogram representation is filtered with
a bank of filters whose frequencies are equally spaced on a logarith-
mic frequency scale and are aligned according to the MIDI pitches.
The attack phase of a note onset is characterized by a rise of energy,
thus the first order differences of the two spectrograms are used as
additional inputs to the neural network.

The neural network consists of a linear input layer with 324 units,
three bidirectional fully connected recurrent hidden layers, and a
regression output layer with 88 units, which directly represent the
MIDI pitches. Each of the hidden layers uses 88 neurons with hy-
perbolic tangent activation function. The use of bidirectional hidden
layers enables the system to better model the context of the notes,
which show a very characteristic envelope during their decay phase.

The network is trained with supervised learning and early stop-
ping. The network weights are initialized with random values follow-
ing a Gaussian distribution with mean 0 and standard deviation 0.1.
Standard gradient descent with backpropagation of the errors is used
to train the network. The network was trained on a collection of 281
piano pieces recorded on various pianos, virtual and not (seven dif-
ferent synthesizers, an upright Yamaha Disklavier, and a Bösendorfer
SE grand piano).

Table 1 shows the transcription results for the complete test set
described in Section 5.1. A note is considered to have been discov-
ered correctly if its position is detected within the detection window
around the annotated ground truth position.
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Figure 2. The Note Recognizer

Table 1. Results of the Note Transcriptor

Detection Window Precision Recall F-measure
20 ms 0.585 0.486 0.531
40 ms 0.813 0.676 0.738
60 ms 0.852 0.708 0.773
80 ms 0.865 0.718 0.785
100 ms 0.870 0.723 0.790

4 THE SYMBOLIC MUSIC MATCHER

The symbolic music matcher’s task is to take the output of the note
recognizer and query a score database for matching positions. This is
a difficult task because of two reasons. Firstly, the output of the note
recognizer contains a lot of noise. As shown in table 1 only a certain
percentage of the played notes is correctly recognized, and further-
more a considerable amount of wrongly detected notes is added. The
symbolic music matcher needs to be robust enough to cope with this
noise. Secondly, the algorithm has to deal with big differences in
tempo between the score representations and the performances. Ac-
tually this manifests itself in two ways: in a global tempo difference
between the query and the matching position in the score, and in lo-
cal tempo deviations within the query (i.e., the performer in general
does not play a constant tempo and may accelerate or slow down,
while the scores given to the system are in a constant tempo without
any such changes).

4.1 Building the Score Database

Before actually processing queries the score database has to be built.
To do so we present the algorithm with musical scores in the format
of MIDI files. In general the duration of these MIDI files is similar
to the duration of a ‘typical’ performance of the respective piece, but
without encoded timing variations. From these files a simple ordered
list of note events is extracted where for each note event the exact
time in seconds and the pitch as MIDI note number is stored.

Next, for each piece fingerprint tokens are generated. To make
them tempo independent we create them from 3 successive events
according to some constraints (also see Figure 3). Given a fixed event

e we pair it with the first n1 events with a distance of at least d sec-
onds “in the future” of e. This results in n1 event pairs. For each of
these pairs we then repeat this step and again pair them with the n2

future events with a distance of at least d seconds. This finally re-
sults in n1 ⇤ n2 event triplets. In our experiments we used the values
d = 0.05 seconds and n1 = n2 = 5.

Given such a triplet consisting of the events e1, e2 and e3 the time
difference td1,2 between e1 and e2 and the time difference td2,3

between e2 and e3 are computed. To get a tempo independent fin-
gerprint token we compute the time difference ratio tdr =

td2,3

td1,2
.

This finally leads to a fingerprint token [pitch1 : pitch2 : pitch3 :
tdr ] : pieceID : time : td1,2, where the hash key [pitch1 : pitch2 :
pitch3 : tdr ] can be stored in a 32 bit integer. The purpose of storing
td1,2 in the fingerprint token will be explained in the description of
the search process itself below.

The result of the score preprocessing is our score database; a con-
tainer of fingerprint tokens which provides quick access to the tokens
via hash keys.
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Figure 3. Fingerprint Token Generation

4.2 Querying the Database
As input the symbolic music matcher takes a list of note events with
their timestamps as extracted by the note recognizer. This list is then
processed in the same way as described in Section 4.1 above to pro-
duce query tokens. Of course in this case no piece ID is known and
furthermore each query starts at time 0. These query fingerprint to-



kens are now used to query the database. The method described be-
low is very much inspired by the audio fingerprinting method pro-
posed in [8].

The general idea is to find regions in the score database which
share a continuous sequence of tokens with the query. To do so first
all the score tokens which match the query tokens are extracted from
the database. When plotted as a scatter plot using their respective
time stamps (see Figure 4a) matches will be indicated by (rough) di-
agonals (i.e., these indicate that the query tokens match the score
tokens over a period of time). As identifying these diagonals di-
rectly would be computationally expensive we instead use a simpler
method described in [8]. This is based on histograms (one for each
piece in the score database with a time resolution of 1 second) into
which the matched tokens are sorted in a way such that peaks appear
at the start points of these diagonals (i.e., the start point of a query,
see Figure 4b). This is achieved by computing the bin to sort the to-
ken into as the difference between the time of the score token and
time of the query token. The complete process will be explained in
more detail below.
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Figure 4. a) scatter plot of matching tokens and b) computed histogram for
diagonal identification

For each of the query tokens qt with [qpitch1 : qpitch2 :
qpitch3 : qtdr ] : qtime : qtd1,2 the following process is repeated.
First, matching tokens are extracted from the score database via the
hash key. To allow for local tempo differences we permit the time
difference ratio stdr to be within 1

4 of qtdr . This normally results in
a large number of score tokens [spitch1 : spitch2 : spitch3 : stdr ] :
spieceID : stime : std1,2. Unfortunately directly sorting these to-
kens into bin round(stime�qtime) of the histogram spieceID does
not necessarily make sense because of the query possibly having a
different tempo than expected by the score.

To illustrate this let us assume a slower tempo for the query than
for the respective score. Then the diagonal in Figure 4a would be
steeper and when computing the bins via round(stime�qtime) the
first few tokens may fall into the correct bins. But soon the tokens,

despite belonging to the same score position, would get sorted into
lower bins instead.

Thus we first try to adapt the timing by estimating the tempo differ-
ence between the score token and the query token. First we compute
the tempo ratio of both tokens r =

std1,2

qtd1,2
and then adapt the time

of the query event when computing the bin to sort the token into:
bin = round(stime � qtime ⇤ r).

We now have a number of histograms, one for each score in the
database, and need a way of deciding on the most probable score po-
sition(s) for the query. The first method which springs to mind is to
simply take the number of tokens in each bin as a score. This actually
already leads to quite good results. Still this method has one problem:
it favours score positions with lots of events over more sparse posi-
tions as then simply the probability to hit many tokens is higher. Thus
we compute the score s of bin b as

s =
|b|

|query | ⇤
|b|

|score|

In this formula |b| (the number of hash tokens in bin b) and |query |
(the number of hash tokens in the query) are directly given. In con-
trast to that |score| is not given as bin b only gives the starting point
of the query in score, it does not make any indication about the
length. It would be possible to simply assume the same tempo as in
the query and count the number of tokens which are generated over
the timespan of the query at this score position. Instead we compute
the mean tempo of the tokens in this bin b to make an estimate of the
tempo relative to the score te, estimate the length of the respective
part in the score as l = querylength ⇤ te and then count the num-
ber of tokens in this timespan accordingly. This proves to be a very
robust way of computing the score for each bin as can be seen in the
evaluation below.

5 EVALUATION
5.1 Dataset Description
For the evaluation of our algorithm a ground truth is needed, i.e. we
need exact alignments of performances of classical music to their re-
spective scores such that we know exactly when each note given in
the score is actually played in the performance. This data can either
be generated by a computer program or by extensive manual annota-
tion but both ways are prone to annotation errors.

Luckily, we possess two unique datasets where professional pi-
anists played their performances on a computer controlled piano3 and
thus every action (e.g., key presses, pedal movements) was recorded
in a symbolic way. The first dataset consists of performances of the
first movements of 13 Mozart sonatas by Roland Batik (described
in more detail in [9]). The second, much larger, dataset consists of
nearly the complete solo piano works by Chopin performed by Nikita
Magaloff (see [5]). For the latter set we do not have the original
audio files and thus replayed the symbolic performance data on a
Yamaha N2 hybrid piano and recorded the resulting performance.
In addition to these two datasets we added some more scores to the
database, solely to provide for more diversity and to make the task
even harder for our algorithm (these include, amongst others, the
Beethoven Symphony No. 5, the Mozart Oboe Quartet KV370, the
First Mephisto Waltz by Liszt and Schoenberg Op. 23 No. 3). To the
latter, we have no ground truth but this is irrelevant since we do not
actively query for them with performance data in our evaluation runs.
See Table 2 for an overview of the complete dataset.
3 Bösendorfer SE 290



Table 2. Pieces in Database

Data Description Number of Pieces Notes in Score Notes in Performance Performance Duration

Chopin Corpus 154 325,263 326,501 9:38:36
Mozart Corpus 13 42,049 42,095 1:23:56

Additional Pieces 16 68,358 – –

Total 183 435,670

5.2 Results

We simulated the task of quickly recognizing a played piece and de-
ciding on the exact position in the score by playing the audio perfor-
mances in our database to the system. To simplify the experiments
we first ran the note recognizer on the entire set of recordings and
then fed the output systematically to the symbolic audio matcher –
we will discuss the additional delay which would happen during the
preprocessing step in our on-line system below. For the evaluation
we initialized queries starting with only 1 note and incrementally
added further notes detected by the note recognizer one by one until
the information was sufficient for the system to return the ‘correct’
position.

For the evaluation a score position X is considered correct if it
marks the beginning (+/- 1 second) of a score section that is identical
in note content, over a time span the length of the query (but at least
30 notes), to the note content of the ‘real’ score situation correspond-
ing to the audio segment that the system was just listening to (we
can establish this as we have the correct alignment between perfor-
mance time and score positions — our ground truth). This complex
definition is necessary because musical pieces may contain repeated
sections or phrases, and it is impossible for the system (or anyone
else, for that matter) to guess the ‘true’ one out of a set of identical
passages matching the current performance snippet, given just that
performance snippet as input. We acknowledge that a measurement
of musical time in a score in terms of seconds is rather unusual. But
as the MIDI tempos in our database generally are set in a meaningful
way, this seemed the best decision to make errors comparable over
different pieces, with different time signatures – it would not be very
meaningful to, e.g., compare errors in bars or beats over different
pieces. We systematically did the experiments in steps of 1 second,
up to 30 seconds before the end of the recording which amounts to
34,841 recognition experiments in total.

Table 3 shows the results of this experiment, giving both statis-
tics on the performance time in seconds and the ‘time in number of
recognized notes’ it took the system until it first reported the cor-
rect position in the score. Of course this still involves a large degree
of uncertainty as the system may again decide on another, incorrect,
position when provided with the next recognized note. Thus we took
the same measurements again with the constraint that the correct po-
sition has to be reported by the system 5 times in row, which shows
that the system is confident and really settled on this position (see
Table 4).

In general the algorithm returns the correct score position very
quickly (e.g., in 50% percent of the cases it has to listen to the per-
formance for only 1.87 seconds or less to confidently find the correct
position). The algorithm never failed to come up with the correct po-
sition, and only in a few rare cases was it reported back with a big
delay (e.g., the worst delay in Table 4 amounts to 45.28 seconds, but
actually in 99% of the cases the delay was smaller than 11.5 seconds).

In a live setting (i.e., when the system is listening to an actual on-
going live performance) the additional constant lag due to the note
recognizer would amount to about 210 ms (caused by needed win-
dow sizes for this transcription step). Additionally each query takes
a certain amount of time which depends on the query size (see Ta-
ble 5). So for a query of size 30 the total delay of the system on the
described database amounts to about 235 ms.

In our opinion these are fantastic results which even experts in
classical music would struggle to achieve (unfortunately we are not
aware of any study on this matter). We will demonstrate this live at
the conference.

Table 3. Evaluation results in detail (see text). This table gives the duration
of the performance both in time and in detected notes until the system first

reported the correct position in the database.
Time Notes

Best 0.16 sec 4
1st Decile 0.53 sec 6
2nd Decile 0.70 sec 7
3rd Decile 0.87 sec 8
4th Decile 1.06 sec 9
Median 1.27 sec 9
6th Decile 1.53 sec 10
7th Decile 1.88 sec 12
8th Decile 2.47 sec 15
9th Decile 3.76 sec 22
Worst 41.68 sec 417

Table 4. Evaluation results in detail (see text). This table gives the duration
of the performance both in time and in detected notes until the system

reported the correct position in the database five times in a row.
Time Notes

Best 0.31 sec 8
1st Decile 0.84 sec 10
2nd Decile 1.07 sec 11
3rd Decile 1.30 sec 12
4th Decile 1.57 sec 13
Median 1.87 sec 13
6th Decile 2.22 sec 14
7th Decile 2.67 sec 16
8th Decile 3.35 sec 19
9th Decile 4.78 sec 26
Worst 45.28 sec 421

6 CONCLUSION
In this paper we presented another step towards our goal, ‘the ulti-
mate classical music companion’. We proposed a system based on



Table 5. Mean query times for different query sizes

Query Size Time
5 notes 3.02 ms
10 notes 10.83 ms
20 notes 19.37 ms
30 notes 24.29 ms
40 notes 28.05 ms
50 notes 33.74 ms
60 notes 38.66 ms
70 notes 43.79 ms

a combination of music transcription and symbolic fingerprinting
which is able to detect almost instantly which piece a performer is
playing, and the according position in the score.

The next step now is to include the proposed algorithm into our on-
line tracker and make the complete system usable for musicians. In
the near future we will further augment the repertoire of our system.
Currently we are preparing the complete Beethoven piano sonatas
(the “New Testament” of the piano literature) for our database. Re-
garding the scalability of our solution we foresee no problems, es-
pecially as the algorithm which inspired our symbolic fingerprinting
solution [8] is used commercially with databases consisting of mil-
lions of songs4.
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