
Submitted by

Andreas Arzt

Submitted at

Department of
Computational
Perception

Supervisor and

First Examiner

Gerhard Widmer

Second Examiner

Meinard Müller

November 2016

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69

4040 Linz, Österreich

www.jku.at

DVR 0093696

Flexible and Robust
Music Tracking

Doctoral Thesis

to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

i

statutory declaration

I hereby declare that the thesis submitted is my own unaided work,
that I have not used other than the sources indicated, and that all direct
and indirect sources are acknowledged as references. This printed
thesis is identical with the electronic version submitted.

Linz, November 2016

iii

A C K N O W L E D G M E N T S

The work described in the thesis was carried out while I was working
at the Department of Computational Perception (CP) at Johannes

Kepler University in Linz, and at the Austrian Research Institute

for Artificial Intelligence (OFAI) in Vienna. I would like to thank
my supervisor Gerhard Widmer for giving me the opportunity to
work on his teams, and for all the freedom, trust and support over the
years.

I would like to thank all my colleagues at the CP and at OFAI,
who jointly are responsible for a unique, friendly, relaxed, fun, and at
the same time immensely productive and creative work environment.
Special thanks go to Harald Frostel and Martin Gasser, for their
support regarding implementation frameworks, annotation tools, and
their constant criticism of my coding style; Sebastian Flossmann, who
meticulously annotated an immense amount of sheet music and per-
formances, of which the thesis took advantage; Thassilo Gadermaier

and Maarten Grachten, for sharing the pain of working with Mu-
sicXML and MIDI; Sebastian Böck, whose transcription algorithms
play an important role in the thesis; Reinhard Sonnleitner, for many
fruitful discussions about the latest trends in music fingerprinting;
Filip Korzeniowski and Florian Krebs, for sharing their knowledge
about probabilistic models with me; Matthias Dorfer, for his insights
into deep learning; Tom Collins, for sharing his knowledge about
music with me; Peter Knees, for sharing his thoughts about research,
culture and arts; and to Claudia Kindermann, the heart and soul of
the CP.

Many thanks to Simon Dixon, who back when I was a master’s
student shared his research code with me, which led to a master’s
thesis, a first published paper, and in the long run to this doctoral
thesis. I would also like to thank Meinard Müller for many interesting
discussions at conferences, for agreeing to be an examiner of the thesis,
and for helping improving this document.

Special thanks go to Cynthia Liem, who always found time in her
incredibly busy schedule to perform and showcase the outcomes of
this thesis at conferences and various other events around the world,
and to Marcel van Tilburg, for sharing some good sherry and great
conversations. I would also like to thank all the great people involved
in the Phenicx project, which gave me the opportunity to showcase
the music tracker at the wonderful Concertgebouw in Amsterdam.
Furthermore, I would like to thank Werner Goebl, for his help with
demonstrating the music tracker, and for his valuable feedback.

v

Overlapping and slightly anonymised thanks go to all my friends,
especially the boat trip crew, the Offensee crew, the bavarian curling
crew, the cocktail crew, the barbecue crew, the whisky tasting crew,
the nightlife crew, and the Bomberman crew. It was a blast.

Last but definitely not least, I would like to thank my amazing
family for their never ending love and support.

This research is supported by the City of Linz, the Federal State of
Upper Austria, the Austrian Federal Ministry for Transport, Innovation
and Technology, the Austrian Science Fund (FWF) under project num-
bers P19349-N15, TRP109-N23 and Z159, the EU FP7 project Phenicx

(grant no. 601166), and the EU ERC project Con Espressione (grant
agreement 670035).

vi

A B S T R A C T

Computers nowadays are prevalent in all areas of music, from the
compositional process to music production, be it in the studio or
live on stage. The thesis is concerned with a specific problem in
music processing, namely score following, also known as real-time music
tracking. Casually speaking, a music tracking algorithm “listens” to
a live performance of music, compares the incoming audio signal
to a representation of the score, and “reads” along, i.e. at any given
moment it knows the exact position of the musician(s) in the sheet
music. This information enables a wide range of applications, e.g.
visualisations synchronised to live music, automatic page-turning of
the score, and automatic accompaniment.

The focus of the thesis is on robust and flexible music tracking
algorithms for Western classical music which overcome the limitations
of other existing algorithms. The main contributions of the thesis are

• improved algorithms, features, and tempo models, increasing the
robustness and accuracy of music tracking,

• a very robust multi-agent music tracking approach which enables
robust tracking e.g. of complex orchestral music, and

• fast music identification algorithms which enable flexible any-time
music tracking that is not limited to tracking a single, predefined
piece, but works flexibly on a (large) database of sheet music.

In addition to quantitative experiments on diverse datasets, the
algorithms described in this thesis were tested in real-world settings
— live in front of an audience. This includes demonstrations at sci-
entific conferences and galas, but also the culminating point of this
thesis: a live demonstration of robust music tracking technology at
the Concertgebouw in Amsterdam. There, our system tracked a live
performance of the Alpensinfonie by Richard Strauss and was used
to show synchronised visualisations — the sheet music with automatic
page turning, artistic videos, and textual information provided by a
musicologist — to the audience.

vii

K U R Z FA S S U N G

Computer sind aus der Musik nicht mehr wegzudenken und spielen
eine wichtige Rolle während des Kompositionsprozesses, der Pro-
duktion und auch während Konzerten live auf der Bühne. Diese
Dissertation beschäftigt sich mit einem spezifischen Problem der
Musikverarbeitung, dem Score Following, auch bekannt als Music
Tracking, also dem Verfolgen von Musik. Dabei „hört“ sozusagen ein
Musikverfolgungsalgorithmus einem Livekonzert zu, vergleicht das
aufgenommene Audiosignal mit einer abstrakten Repräsentation des
Notentextes, und „liest“ in diesem mit. Das heißt, der Algorithmus
kennt zu jedem Zeitpunkt die aktuelle Stelle der Musiker im Notentext.
Mithilfe dieser Information lassen sich Applikationen realisieren, die
zum Beispiel Visualisierungen automatisch zur Musik synchronisieren,
den Notentext automatisch umblättern, oder eine synchronisierte Be-
gleitstimme einspielen.

Der Fokus dieser Dissertation liegt auf flexiblen und robusten
Musikverfolgungsalgorithmen für Klassische Musik. Die wichtigsten
Beiträge dieser Dissertation sind

• verbesserte Algorithmen, Features und Tempomodelle, die die Ro-
bustheit und Genauigkeit des Verfolgungsalgorithmus erhöhen,

• ein robuster Multi-Agenten Musikverfolgungsalgorithmus, der auch
komplexe Orchestermusik zuverlässig verfolgen kann und

• Algorithmen, die blitzschnell Musikstücke identifizieren und als Basis
für einen Musikverfolgungsalgorithmus dienen, der flexibles
Verfolgen auf Basis einer großen Datenbank an Notentexten
realisiert.

Zusätzlich zu quantitativen Experimenten auf vielfältigen Daten-
sammlungen wurden die vorgestellten Algorithmen auch auf wis-
senschaftlichen Konferenzen und Galas live vor Publikum präsentiert.
Der Höhepunkt dieser Dissertation ist aber unzweifelhaft die Demon-
stration des Musikverfolgungsalgorithmus im Concertgebouw in
Amsterdam. Der Algorithmus verfolgte dort eine Aufführung der
Alpensinfonie von Richard Strauss und wurde verwendet, um für
das Publikum Informationen — den Notentext, künstlerische Videos
und informativen Text — zur Musik synchronisiert anzuzeigen.

ix

C O N T E N T S

i introduction and background 1

1 introduction 3

1.1 Contributions of this Thesis 4

1.2 Organisation of the Thesis 5

1.3 Main Publications . 6

1.4 Additional Publications 7

2 background and related work 11

2.1 A Vision of a Complete Classical Music Companion . . 12

2.2 Data Collection for this Thesis 13

2.3 Implementation Framework 21

2.4 Related Work . 24

ii contributions of the thesis 37

3 improvements to music tracking via on-line time

warping 39

3.1 Introduction . 40

3.2 The Original On-line Time Warping Algorithm 40

3.3 Improvement 1: Reconsidering Past Decisions 43

3.4 Improvement 2: Tempo Models 46

3.5 Improvement 3: Better Features for Music Tracking . . 52

3.6 Conclusions . 59

3.7 Prototypical Implementation 59

4 robust multi-agent music tracking 63

4.1 Introduction . 63

4.2 Music Tracking using Multiple Performances as a Ref-
erence . 64

4.3 Artificial Intelligence in the Concertgebouw 73

4.4 Conclusions . 79

4.5 Prototypical Implementation 79

5 music identification and flexible music tracking 81

5.1 Introduction . 82

5.2 Early Approaches . 83

5.3 Fast Identification of Piece and Score Position 85

5.4 The Dataset . 87

5.5 Tempo-invariant Fingerprinting 87

5.6 Adding Transposition Invariance 95

5.7 Processing Long Queries 97

5.8 Conclusions . 100

5.9 Prototypical Implementation 101

iii live demonstrations and conclusions 105

6 real-life applications 107

xi

xii contents

6.1 Tracking Algorithms used for Live Demonstrations . . 107

6.2 Live Demonstrations . 108

7 conclusions and outlook 117

Back Matter 119

Bibliography 121

Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

1
I N T R O D U C T I O N

Nowadays computers play an important role in all areas of music,
from composition to production and live performance. This is obvious
for all kinds of popular music, where complete genres are unthinkable
without modern technology, or are actually defined by technology,
like electronic music.

At first sight, for classical music the importance of technology might
not be equally apparent. Of course, modern developments in classical
music which incorporate electronics and computers during composi-
tion and/or performance come to mind, with the likes of Karlheinz
Stockhausen and Pierre Boulez being some of the main exponents.
But Beethoven and technology? An auto-tuned Mozart aria? A syn-
thetic Horowitz playing Chopin at the Musikverein in Vienna?

Actually, even in the world of traditional classical music (and by
this vague term I mean the world of famous opera houses and world-
renowned concert halls which keep playing basically the same reper-
toire for decades), one can witness a slow but steady movement
towards openness to technology.

For instance, the Vienna State Opera, a traditional opera house
with a history dating back to the 1850s, introduced both a live and
an on-demand subscription-based streaming service. This service is
enriched by the option to use a second screen (e.g. a tablet computer
or a mobile phone) to show additional information like multilingual
subtitles or historic sheet music, synchronised to the stream1. While
technically a relatively simple solution was chosen — the synchronisa-
tion itself is actually done manually at the concert hall, and the data is
transmitted hidden in the audio signal (audio watermarking) — this
product shows the opportunities technology can open up to broaden
the audience and find new markets for classical music via sensible use
of technology.

The technological backbone for this, and especially for more chal-
lenging future applications, can be provided by research conducted in
the area of music information retrieval (MIR) during the last 20 years.
This is a vast field, including but not limited to text analysis of web
pages and micro blogs to infer musical knowledge (e.g. to find trend-
ing artists, or to classify songs into genres), analysis of representations
of the sheet music (e.g. to identify the structure of a piece of music, or
find common patterns), and audio analysis, both of recordings and
of live streams (e.g. to track the beat, or to find out which songs in a
database are similar to each other).

1 See http://www.staatsoperlive.com for more information.

3

http://www.staatsoperlive.com

4 introduction

The thesis is mainly concerned with the task of tracking a live per-
formance of music on-line, in real-time. In the literature, this is also
known as score following. Casually speaking, the computer is listening
to a live performance and reading along in the sheet music (which
internally is represented in some abstract way). At any point in time
the computer “knows” the musicians’ current position in the piece.
This information can then be used for a wide range of applications
that involve synchronisation of data to music.

The thesis starts with an algorithm that, though being state of the
art at that time, was barely working for medium-complex piano music,
and ends at the world-famous Concertgebouw in Amsterdam, where
the resulting system of this thesis followed a complete orchestra —
more than 100 musicians (!) — performing the Alpensinfonie by
Richard Strauss. There, it listened to the live performance for about
50 minutes and read along in the sheet music. Based on the output of
this system, visualisations were synchronised to the music and pre-
sented to the audience. On their tablet computers and mobile phones
they could read along in the sheet music (including highlighting of
the current bar and automatic page turning), watch artistic videos, vi-
sualising the topics of the episodes of this piece, and read informative
texts, prepared by a musicologist.

As can be seen by this example, real-time music tracking algorithms
are already stable enough to be used in some real-life contexts, and
are enabling exciting applications.

1.1 contributions of this thesis

The thesis focuses on three main topics in real-time music tracking.

improvements to music tracking via on-line time warp-
ing At the heart of the systems and applications presented in this
document there is a music tracking algorithm. Based on a represen-
tation of the score, it tries to follow a live concert and at any time
reports back the current position of the performers in the score. To
build advanced systems, this algorithm has to work robustly and also
accurately, which is why a part of the thesis is concerned with improv-
ing a well-known score following algorithm, proposing better suited
features, and extending it with a tempo model. This is documented in
Chapter 3.

robust multi-agent music tracking Although the tracking
algorithm is very robust in itself, a new approach was developed in
response to an important real-life challenge: tracking a big orchestra
playing a complicated piece in a famous concert hall. For this, a
multi-agent tracking strategy was developed, which tracks the live

1.2 organisation of the thesis 5

performance using multiple recordings of performances of the same
piece as a reference. This work is presented in Chapter 4.

near-instant piece identification and flexible music

tracking on a database of scores Traditionally, the task of mu-
sic tracking is defined as following a live performance, from start
to end, based on the score of a particular piece. The score is loaded
beforehand, the operator hits the start button at the right moment, and
the algorithm follows the musician(s), as long as they follow the score
closely. The thesis presents a much more flexible approach. Operating
on a database of pieces, a piece identification algorithm determines
which piece is being played and where in the piece the performers
currently are. Then, the system tracks the progress of the musician(s)
over time — constantly trying to recognise any jumps, within a piece
or to a different piece in the background, and thus being able to follow
them in a very flexible way. Chapter 5 documents the progress in this
area.

1.2 organisation of the thesis

The thesis is heavily based on peer-reviewed papers, published during
the last few years, which described my contributions in the area of
music tracking. It consists of three parts.

part i: introduction and background Chapter 1 gives a
brief introduction to this thesis. It motivates the work, provides an
overview on the contributions of the thesis, its structure, and gives a
list of the publications on which the thesis is being based. Chapter 2
prepares the ground for the following chapters. In particular, Section
2.1 explains the motivation, or “vision”, of a Complete Classical Music
Companion, which guided my work in this area considerably. Section
2.2 briefly describes the data that was gathered and used during the
course of this thesis, while Section 2.3 gives some insight into the
framework that was used to implement the algorithms presented
here. Section 2.4 summarises the related work in a coherent way. In
particular, efforts towards music synchronisation and tracking, music
identification, and approaches related to the vision of a Complete
Classical Music Companion, including commercially available products,
are presented.

part ii: contributions of this thesis This part is heavily
based on peer-reviewed papers and describes the contributions of the
thesis in detail. It is structured according to the main contributions,
i.e. Chapter 3 is concerned with improvements of the basic tracking
algorithms, Chapter 4 with the multi-agent tracking approach, and

6 introduction

Chapter 5 with music identification and flexible any-time tracking
based on a database of scores.

part iii : live demonstrations and conclusions Chapter
6 describes the prototypical applications that we implemented based
on the research described in this thesis. It also gives an overview of
all the demonstrations that were done over the last few years of the
standard music tracking algorithm, the multi-agent tracker, and the
flexible music companion. Finally, the thesis closes with Chapter 7,
in which conclusions are presented and possible future work and
follow-up projects are outlined.

1.3 main publications

The following list gives the main publications on which the thesis is
based.

• Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Automatic
Page Turning for Musicians via Real-Time Machine Listening”.
In: Proceedings of the European Conference on Artificial Intelligence
(ECAI). Patras, Greece, 2008, pp. 241–245

• Andreas Arzt and Gerhard Widmer. “Simple Tempo Models for
Real-time Music Tracking”. In: Proceedings of the Sound and Music
Computing Conference (SMC). Barcelona, Spain, 2010

• Andreas Arzt and Gerhard Widmer. “Towards Effective ’Any-
Time’ Music Tracking”. In: Proceedings of the Starting AI Re-
searchers’ Symposium (STAIRS). Lisbon, Portugal, 2010, pp. 24–
36

• Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Adaptive
Distance Normalization for Real-time Music Tracking”. In: Pro-
ceedings of the European Signal Processing Conference (EUSIPCO).
Bucharest, Romania, 2012, pp. 2689–2693

• Andreas Arzt, Sebastian Böck, and Gerhard Widmer. “Fast Identi-
fication of Piece and Score Position via Symbolic Fingerprinting”.
In: Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR). Porto, Portugal, 2012, pp. 433–438

• Andreas Arzt, Gerhard Widmer, and Reinhard Sonnleitner. “Tem-
po- and Transposition-invariant Identification of Piece and Score
Position”. In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). Taipeh, Taiwan, 2014,
pp. 549–554

• Andreas Arzt, Harald Frostel, Thassilo Gadermaier, Martin Gas-
ser, Maarten Grachten, and Gerhard Widmer. “Artificial Intelli-
gence in the Concertgebouw”. In: Proceedings of the International

1.4 additional publications 7

Joint Conference on Artificial Intelligence (IJCAI). Buenos Aires,
Argentina, 2015, pp. 2424–2430

• Andreas Arzt and Gerhard Widmer. “Real-time Music Tracking
using Multiple Performances as a Reference”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain, 2015, pp. 357–363

1.4 additional publications

The following publications were not considered directly in this thesis,
but are related to the topic. This includes publications of which I
am not the main author and just contributed in minor ways, and
papers that used technology developed in this thesis for a different
use case, descriptions of demonstrations, or very recent publications
that already go beyond the scope of the thesis and are first steps
towards the goals formulated in the conclusion (see Chapter 7).

• Andreas Arzt and Gerhard Widmer. “Robust Real-time Music
Tracking”. In: Proceedings of the Vienna Talk on Musical Acoustics
(VITA). Vienna, Austria, 2010, pp. 5–8

• Harald Frostel, Andreas Arzt, and Gerhard Widmer. “The Vowel
Worm: Real-Time Mapping and Visualisation of Sung Vowels in
Music”. In: Proceedings of the Sound and Music Computing Confer-
ence (SMC). Padova, Italy, 2011, pp. 214–219

• Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl.
“Online Real-Time Onset Detection with Recurrent Neural Net-
works”. In: Proceedings of the International Conference on Digital
Audio Effects (DAFx). York, United Kingdom, 2012

• Andreas Arzt, Gerhard Widmer, Sebastian Böck, Reinhard Sonn-
leitner, and Harald Frostel. “Towards a Complete Classical Music
Companion”. In: Proceedings of the European Conference on Artificial
Intelligence (ECAI). Montpellier, France, 2012, pp. 67–72

• Filip Korzeniowski, Florian Krebs, Andreas Arzt, and Gerhard
Widmer. “Tracking Rests and Tempo Changes: Improved Score
Following with Particle Filters”. In: Proceedings of the International
Computer Music Conference (ICMC). Perth, Australia, 2013

• Maarten Grachten, Martin Gasser, Andreas Arzt, and Gerhard
Widmer. “Automatic Alignment of Music Performances with
Structural Differences”. In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). Curitiba, Brazil,
2013, pp. 607–612

• Tom Collins, Andreas Arzt, Sebastian Flossmann, and Gerhard
Widmer. “SIARCT-CFP: Improving Precision and the Discovery

8 introduction

of Inexact Musical Patterns in Point-set Representation”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Curitiba, Brazil, 2013, pp. 549–554

• Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, and Gerhard Widmer. “The Complete
Classical Music Companion V0.9”. In: Proceedings of the 53rd AES
Conference on Semantic Audio. London, England, 2014

• Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, Cynthia C.S. Liem, and Gerhard Widmer.
“The Piano Music Companion”. In: Proceedings of the Conference
on Prestigious Applications of Intelligent Systems (PAIS). Prague,
Czech Republic, 2014, pp. 1221–1222

• Tom Collins, Daniel A. Abrams, Rohan Chandra, Christina
Young, Andreas Arzt, and Vinod Menon. “Neural tracking of
musical motives revealed by a combination of fMRI and music
information retrieval techniques”. In: Proceedings of the Interna-
tional Conference on Music Perception and Cognition (ICMPC). Seoul,
South Korea, 2014, p. 55

• Andreas Arzt, Cynthia C.S. Liem, and Gerhard Widmer. “A
Tempo- and Transposition-invariant Piano Music Companion”.
In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), Late Breaking / Demo. Taipeh, Taiwan,
2014

• Martin Gasser, Andreas Arzt, Thassilo Gadermaier, Maarten
Grachten, and Gerhard Widmer. “Classical Music on the Web
– User Interfaces and Data Representations”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain, 2015, pp. 571–577

• Andreas Arzt, Werner Goebl, and Gerhard Widmer. “Flexible
Score Following: The Piano Music Companion and Beyond”. In:
Proceedings of the Vienna Talk on Musical Acoustics (VITA). Vienna,
Austria, 2015, pp. 220–223

• Mark Melenhorst, Ron van der Sterren, Andreas Arzt, Agustin
Martorell, and Cynthia C.S. Liem. “A Tablet App to Enrich
the Live and Post-Live Experience of Classical Concerts”. In:
Proceedings of the 3rd ACM International Workshop on Interactive
Content Consumption. Brussels, Belgium, 2015

• Matthias Dorfer, Andreas Arzt, and Gerhard Widmer. “Towards
Score Following in Sheet Music Images”. In: Proceedings of the
International Society for Music Information Retrieval Conference (IS-
MIR). New York, USA, 2016, pp. 789–795

1.4 additional publications 9

• Matthias Dorfer, Andreas Arzt, Sebastian Böck, Amaury Durand,
and Gerhard Widmer. “Live Score Following on Sheet Music
Images”. In: Proceedings of the International Society for Music In-
formation Retrieval Conference (ISMIR), Late Breaking / Demo. New
York, USA, 2016

• Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer. “Land-
mark-Based Audio Fingerprinting for DJ Mix Monitoring”. In:
Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR). New York, USA, 2016, pp. 185–191

• Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck,
Andreas Arzt, and Gerhard Widmer. “On the Potential of Simple
Framewise Approaches to Piano Transcription”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). New York, USA, 2016, pp. 475–481

• Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer.
“Using Geometric Symbolic Fingerprinting to Discover Distinc-
tive Patterns in Polyphonic Music Corpora”. In: Computational
Music Analysis. Ed. by David Meredith. Springer International
Publishing, 2016, pp. 445–474

2
B A C K G R O U N D A N D R E L AT E D W O R K

Since I started working in the field of score following, I gradually got a
clearer vision of how the technology could be used in a much broader
sense than it is done traditionally. The classic motivation for score
following has always been automatic accompaniment: a solo musician
plays a piece of music, and the computer takes the role of all the
other musicians, possibly a whole orchestra, and accompanies her in
the right tempo. The main goal is to provide a smooth, human-like
accompaniment that resembles a real-life performance. In the ideal
case, the human soloist would not be able to tell if she is performing
together with other humans or with a computer (see for example [39,
143] for recent discussions of this topic). The focus of my work in
score following has been a different one, partly because of my own
background — I am not a musician myself —, and partly because
of the background of the department, which focusses more on the
analysis of music, and not on the production.

The emphasis of the thesis is on the computer as a musical com-
panion not in the sense of a participating musician, but more in the
sense of a support system for performers and listeners, in various
situations. Thus, the main task here is the synchronisation of any
kind of additional information to the on-going live performance. In
the simplest case this might be the sheet music, but it might also
involve explanatory and/or educational textual information or visual
information and artistic videos.

The aim of this chapter is to prepare the ground for the remaining
chapters of the thesis, which describes my work in the field of music
tracking. As the vision of a “Complete Classical Music Companion”
to some extent defined the properties of the algorithms I was aiming
for, I will first give a more detailed description of this vision and
its ramifications (see Section 2.1). This vision relies on a relatively
large collection of data like scores in symbolic form, sheet music,
recordings of performances and annotations. In Section 2.2 a short
description of the data, and the tools that were built to prepare the
data is given. The software infrastructure that was used to implement
the prototypes is described in Section 2.3. Then, in Section 2.4, the
historic background of score following and related work relevant to
the thesis are summarised.

11

12 background and related work

2.1 a vision of a complete classical music companion

In this Section I describe the vision that drove my research during the
work on the thesis. This is a long-term goal, and not something that
can be fully achieved by the thesis.

The Complete Classical Music Companion is an application that is at
one’s fingertips anytime and anywhere, possibly as an application
on a mobile device like a tablet computer. Whatever source of music,
be it a live concert, a DVD, a video stream, or radio, whatever piece
of classical music, for whatever instrumentation, and whoever the
performers are, the companion will detect what it is listening to,
inform about the written music, the historical context of the piece,
famous interpretations, the specifics of the on-going (live) performance,
and guide the user in the listening process.

At any point in time, the companion knows exactly what piece it is
listening to, and where in the sheet music the performer(s) are. It will
also detect sudden changes, like a switch to a performance of another
piece. It can show visualisations synchronised to the music. In the
simplest case it can show the sheet music itself, with a marker indi-
cating the current position. While this is already helpful for listeners,
more sophisticated visualisations and enrichments are possible, like
showing information about the structure of the piece and the most
important themes, and giving hints about what to listen for at specific
moments. It might also tell you where you can acquire (additional)
performances of this piece, or related pieces.

The companion is useful for musicians too. For example, during
rehearsal the system can follow the performer(s) and show the sheet
music accordingly, even if a section is repeated over and over, mistakes
are made, and/or only parts of the score are played. It might even give
you feedback about your piano playing, give hints what to improve
— all done either fully automatically or also with the involvement
of a community. Furthermore, the companion can be used on-stage
for fully automatic page turning, either on a screen, or even via a
mechanical page turning device that turns the sheet music page at the
appropriate time.

The basis of an application as described above is a highly flexible
and robust music identification and tracking algorithm. It has to be
able to cope with a wide range of situations and contexts. It might be
used in concert halls, or in the living room; it might have to identify
and follow performances of soloists, quartets or even full symphonic
orchestras; it might have to process performances by amateur musi-
cians or professionals, it has to cope with different tempi, be it during
rehearsal (like playing a part half the tempo) or on purpose as part
of an expressive performance; generally it has to be able to adapt to
many different playing styles. Thus, the main focus is on robustness
and flexibility, while still providing sufficient tracking accuracy with

2.2 data collection for this thesis 13

minimum need for adaptation, and no prior optimisation or training
to a specific piece or performance.

This is very different to the classic motivation for score following:
automatic accompaniment. There, the system typically is highly opti-
mised to follow a specific performance. Every delayed triggering of
accompaniment events (e.g. by 100 ms) is a big problem, and the trig-
gering of events in the accompaniment ahead of time is even worse —
effectively this would mean that the accompaniment drives the perfor-
mance and the human performer has to react to it. Hence, this thesis
is not concerned with problems specific to automatic accompaniment
systems (e.g. focus on precision, human-computer interaction models),
but with properties more important to the vision described above.

At the time of writing, there is no application available that would
even come close to our vision of what a Complete Classical Music
Companion should be. The thesis is concerned with the backbone
of such an application: the music identification and tracking technology
on which everything else is based. In this field, the thesis presents
substantial progress, including prototypes that were shown live on
stage at various occasions.

In particular, the thesis is concerned with

• a robust music tracking algorithm, including a simple tempo
model and error recovery capabilities that works on solo piano
music as well as on orchestral music,

• a multi-agent tracking approach that adds extra robustness,

• and a flexible tracking system that enables tracking on a com-
plete database of scores for piano music. This is enabled by
a music identification algorithm based on fingerprinting that,
given a short snippet of audio, makes it possible to identify the
underlying piece in a matter of seconds.

The focus on the backbone also means that it will not cover topics
related to the extraction of information that is presented to a user in
a possible application, i.e. it will not be concerned with such inter-
esting and complicated topics as structure analysis, the identification
of themes, harmonic analysis, automatic extraction of background
information from the web, and their proper visualisation within a
possible application. Hopefully, in the future the work presented in
this thesis can be combined with all the efforts in the aforementioned
(and other) areas, to make this vision come true.

2.2 data collection for this thesis

Having access to appropriate, annotated data is paramount when
working in the area of music tracking. To improve and evaluate music
tracking and identification algorithms, audio recordings with ground

14 background and related work

truth annotations are needed. In the ideal case, given a score the
exact timing of each note in the respective audio recordings should be
known. As this data is only available in some special circumstances (if
the performance was recorded on a computer-controlled instrument),
in many cases coarser (manual) annotations e.g. at the beat level or
even only the downbeat level have to be used instead.

In the course of working on this thesis a lot of data of pieces and per-
formances of classical music was collected and/or annotated. The data
was organised with the help of a relational database. The database
started out purely as a helper to evaluate the music tracking algo-
rithms, but it turned into the backbone of many applications in the
context of classical music at the department. Thus, the data prepara-
tion as well as the development of supporting tools were very much a
joint effort with colleagues from the Department of Computational

Perception
1 at the Johannes Kepler University and from the In-

telligent Music Processing and Machine Learning Group
2 at

the Austrian Research Institute for Artificial Intelligence. The
most notable contributors are Harald Frostel, Sebastian Flossmann,
Maarten Grachten, Martin Gasser, and Thassilo Gadermaier.

While we store a lot more information in the database, for the thesis
three main parts are of great importance: the representation of musical
scores, the representation of performances, and the mapping between
information of these two different kinds of data. This enables the
systematic evaluation of music tracking and also music identification
algorithms.

2.2.1 The Data

For the thesis a variety of datasets of classical music was collected.
Most of the data was prepared in the context of a number of projects
at the department, while some of the data was annotated specifically
for this thesis. For many years the focus of the department was on the
analysis of piano music, which explains the large share of piano music
in the data collection. In recent years, mainly due to the Phenicx

3

project, the focus slowly shifted to classical music in a broader sense,
and there especially to orchestral music.

The database grew gradually, thus earlier papers presented in the
thesis will only use a small share of the data that is available now.
At the time of writing, the database contains 488 pieces of music
with 1,878,898 notes and 4,450 pages of sheet music. To these pieces
1,682 audio recordings of performances are linked. For a part of these
recordings, we know the exact timing of each note in the audio (in
total 489,982 notes, all of which are connected to events in the scores).

1 http://www.cp.jku.at

2 http://www.ofai.at/research/impml/index.html

3 http://phenicx.upf.edu

http://www.cp.jku.at
http://www.ofai.at/research/impml/index.html
http://phenicx.upf.edu

2.2 data collection for this thesis 15

For almost all the remaining pieces there are corresponding automatic
alignments, some of them rigorously corrected manually (at the time
of writing 624 alignments are stored). The most important datasets
contained in the database are described below.

mozart piano sonatas This dataset consists of 13 sonatas by
Wolfgang Amadeus Mozart, played by Roland Batik. The perfor-
mances were played on a Bösendorfer SE 290 computer-controlled
piano. Parameters like timing and velocity of each played noted were
saved and then synchronised to the original audio recordings (see
[140] for details). Thus the exact timing of each note that was played
is known, which is the key information for the evaluation of an align-
ment algorithm. In addition, deadpan MIDI files that can be used
as score representations were produced and linked to the symbolic
performance information.

chopin etude and ballade This dataset consists of 2 sets of
22 piano recordings each of the Etude in E major Op.10 No. 3, bars
1–21, and the Ballade Op. 38, bars 1–45 by Frédéric Chopin. The
excerpts were performed by skilled pianists on a Bösendorfer SE
290 computer-controlled piano (as above, the exact timing of each
note was recorded). For more information on this dataset see [59] (in
German) and [142].

chopin piano works This large dataset, also called the Maga-
loff Corpus (see [50, 51]) consists of nearly the complete solo piano
works by Chopin performed by Nikita Magaloff, especially known
for his performances of the complete works of Frédéric Chopin. The
data was collected during a series of 6 concerts in the Mozartsaal of
the Wiener Konzerthaus, which took place between January 16 and
May 17, 1989.

The concerts were performed on a Bösendorfer SE 290 computer-
controlled piano, which means that, as for the Mozart Piano Sonatas

and for Chopin Etude and Ballade, we have very detailed informa-
tion about the performances. We do not have access to the original
audio recordings though, thus we replayed the symbolic performance
data on a Yamaha N2 hybrid piano and recorded the resulting perfor-
mances. For details on the data collection, the preparation of the score
and the alignment of the performance data to the scores see [50].

beethoven piano sonatas This dataset consists of the complete
piano sonatas by Beethoven (32 in total). As well as the Chopin Piano

Works dataset, this dataset was compiled by Sebastian Flossmann. It
contains all the sheet music, the scores in symbolic form, and audio
recordings (including symbolic information of key and pedal actions)

16 background and related work

of 9 sonatas played by Clemens Zeilinger on a Boesendorfer CEUS
computer-controlled piano.

orchestral works This data was annotated during the Phenicx

project using the tools that were developed in the context of the thesis.
The dataset comprises

• Ludwig van Beethoven’s Symphonies No. 1, 3, 5, 6 and 9,

• Johannes Brahm’s Symphony No. 3,

• Anton Bruckner’s Symphonies No. 5 and 9,

• Gustav Mahler’s Symphony No. 4,

• Richard Strauss’ Alpensinfonie.

For these pieces symbolic scores, images of the sheet music, and per-
formances are available. All the data was connected semi-automatically,
and especially the alignment of the performances to the scores (at the
downbeat level) involved rigorous manual corrections.

rachmaninoff prelude This is a small dataset of 3 perfor-
mances (by Vladimir Ashkenazy, Andrei Gavrilov and Howard
Shelley) of the Prelude Op. 23 No. 5 in G minor by Sergei Rachmani-
noff. These performances were manually annotated by the author.
Especially during the early stages of developing the tracker this data
played a vital role, as the piece contains two big tempo changes (fast
– slow – fast) and thus was ideal for developing and testing robust
tempo models.

miscellaneous pieces The database also includes a number of
pieces with varying amount of data (e.g. only the sheet music as an
image and in symbolic form, but no performance data or additional
annotations). Most of these were used at some point for live demon-
strations, but not for formal evaluation purposes, because of lack of
ground truth data.

2.2.2 Score Representations

The score is the main data needed to track a piece of music. We import
the score either from MIDI or MusicXML and store it in a symbolic
way. Since sometimes specific versions of a score are needed for track-
ing purposes, we introduced the notion of a “score variant”, which is
a version of the original score, but with a different structure. This is
important as performers often do not follow the score exactly but for
example play additional repetitions or leave out parts. Additionally,
we also store information like time signatures or tempo annotations.

2.2 data collection for this thesis 17

Figure 2.1: The minimal information needed to represent the notes within
a score. All other information (e.g. the pitch in music notation,
velocity information, trills, etc.) is optional and can be stored in
additional tables.

Notes can be organised in channels, and an instrument can be
assigned to a channel. Thus it is possible to (re-)create a MIDI file from
the score, and synthesise it, which is vital for our tracking algorithm.
See Figure 2.1 for an example of note entries in the database.

The general idea of music tracking is to follow a live performance
played in any tempo — e.g. a beginner might play the piece in half
the tempo that a professional performer might choose. Still, providing
tracking algorithms with a reasonable base tempo will improve the
tracking results drastically. In our datasets the tempo is generally set
such that a synthesised version of the score will roughly have the same
duration as a “mean” performance of the piece in question. As many
kinds of classical music (and especially piano music from the romantic
era, which makes up a big part of the data) can exhibit huge variations
in tempo, this base tempo in many cases is still very different to the
local tempo of a specific part. Tempo deviations up to a factor of
two or three are quite common. For most pieces we only use a single
tempo annotation for the whole piece, such that the duration of a
MIDI file of the score roughly corresponds to the average duration of
a real performance. Only in cases where a big change in tempo occurs,
and this is also notated in the sheet music, we might add additional
annotations.

In addition, for visualisation purposes (and for making sure visually
that the tracking is working fine), we also store the sheet music in
the form of images. Pixel coordinates in the images are then linked
to either single notes or at least bars in the symbolic score data (see
Figure 2.2).

18 background and related work

Figure 2.2: These screenshots show one of the annotation tools developed
for the music database. For the thesis it was used to produce the
mapping of time points in the symbolic score representation to
areas in the score images (top), and to align a symbolic score and
a performance (bottom).

2.2 data collection for this thesis 19

Figure 2.3: The minimal information needed to represent the symbolic note
information of a performance. More information can be stored in
additional tables.

2.2.3 Performance Representations

In the database, performances are stored and linked to the score
representations (and the specific score variant, see above). Currently
the database contains more than 1,600 performances. For many of
these performances not only an audio recording, but also annotations
are stored, which makes this data very useful for a range of tasks
in music information retrieval (e.g. score following, beat tracking,
structure analysis, etc.).

If available, not only the audio file, but also symbolic information
about the performance (i.e. the exact timing of each note) is stored
(see Figure 2.3).

2.2.4 Mapping between Score and Performance Information

To evaluate the algorithms presented in this thesis a mapping between
time points in the score and time points in the performance is needed.
Given this information, the output of the algorithms can be compared
to the ground truth at the mapped time points.

The annotations were collected from different sources and in dif-
ferent levels of detail. For four important datasets (Mozart Sonatas,
Chopin Etude and Ballade, Chopin Solo Piano and Beethoven

Sonatas) we have exact information for each note in the score, in the
performance, and their connection, i.e. which score note corresponds
to each note played in the performance (see Figure 2.4). This also
includes notes that should have been played, but were left out, and
notes that were played although they do not occur in the score. This

20 background and related work

Figure 2.4: Sample mappings of notes in a performance to notes in a score.
This connection is possible because of very detailed performance
data, recorded on a computer-controlled piano.

Figure 2.5: Sample mappings of time points in a performance to time points
in a score. These alignments are typically prepared in a semi-
automatic way via music synchronisation techniques and manual
corrections.

2.3 implementation framework 21

kind of data is invaluable for detailed in-depth evaluations of music
alignment and tracking algorithms.

If information in such a detail is not available, we have to rely on
semi-automatically prepared ground truth data, at varying level of
detail. In the annotation tool we support the generation of such align-
ment in a convenient way (see Figure 2.2). Generally, it is advisable to
prepare alignments via a combination of automatic alignments and
manual corrections, i.e. first compute an automatic alignment, man-
ually correct obvious mistakes, re-compute the automatic alignment
using these manual alignment points as fixed points, again manually
correct mistakes, and so on. This process can be repeated until the
desired level of detail is reached. In most cases it is very difficult to
actually align performances to scores at the note level with sufficient
confidence, thus normally we resort to either bar or beat-level for
alignment experiments. An example can be seen in Figure 2.5.

2.3 implementation framework

The algorithms and systems presented in the thesis were implemented
in C++, based on a real-time audio processing framework called
Flower (first used in [57]). This framework is developed and main-
tained by Martin Gasser

4 at the Austrian Research Institute for

Artificial Intelligence
5. Similar frameworks include CLAM [1],

Max
6, Pure Data

7 and Aura [37]. Flower is heavily inspired by
CLAM [1], but restricts itself to an easy-to-use and embeddable soft-
ware framework. It runs on Windows, MacOS, Linux, and on mobile
devices (iOS and Android).

Flower is a modular, multi-rate processing framework, based on
the idea of a data processing graph consisting of relatively simple
and reusable plug-ins. Plug-ins are written in C++ by implementing a
simple plug-in API. For this thesis many plug-ins that were written by
colleagues (or in co-operations with colleagues for other tasks) were re-
used — for example a mixer, a short-time Fourier transform, chroma
features, and so on. In addition, a substantial number of plug-ins was
developed by the author solely for this thesis. This includes the feature
computation, music tracking, multi-agent tracking and fingerprinting
plugins (see Chapters 3, 4 and 5).

The main tasks of the core framework are (1) allocation/deallocation
and generally management of plug-ins, (2) the construction/destruc-
tion of processing graphs and (3) scheduling and dispatching of nodes
in a processing graph. The scheduling algorithm is derived from work
originally presented in the field of embedded real-time systems [2].

4 http://www.ofai.at/~martin.gasser/

5 http://www.ofai.at

6 https://cycling74.com/products/max/

7 https://puredata.info

http://www.ofai.at/~martin.gasser/
http://www.ofai.at
https://cycling74.com/products/max/
https://puredata.info

22 background and related work

Audio Input 1
(e.g. via PortAudio)

Audio Input 2
(e.g. via PortAudio)

Mixer

Short Time Fourier
Transform (STFT)

Map to Semitone Scale

Application/User Interface/Visualisation

Microphone 1 Microphone 2

Flower Audio Processing Graph

Figure 2.6: A simple Flower application. Two audio streams are first mixed
into a mono signal, a short-time Fourier transform is computed,
which then is mapped onto the semi-tone scale.

Furthermore, Flower supports parallel processing via the concept of
zones (derived from Aura [37]) — sub-graphs that are executed by a
dedicated thread. Communication between zones is implemented via
lock-free FIFO queues.

To get a better idea, a simple graph composed of Flower plug-ins
that computes a semitone spectrum can be seen in Figure 2.6. Here,
two microphones record the signal. The data enters the network via
two input plug-ins. These plug-ins are connected to a mixer that
combines the stereo input into a mono signal. The mixer can also
take care of the synchronisation of both input streams by blocking
until there is data present in both inputs. The mixed signal is sent to
another plug-in that performs a short-time Fourier transform. Then,
the resulting spectrum is mapped onto the semitone scale. The data
then can be handed over to an application (via a FIFO buffer), running
in a separate thread to make sure that it does not block the audio
processing network.

All the plug-ins are easily configurable and reusable components.
For example, the STFT processing can be set up with different window
sizes, hop sizes, window functions, and so on. The Flower framework
takes care of the correct processing order of all the plug-ins in the
processing graph.

Flower also supports multi-threading. Figure 2.7 shows an exam-
ple of a graph that is very similar to the first one, except that both

2.3 implementation framework 23

Audio Input 1
(Microphone via

PortAudio)

Audio Input 2
(Microphone via

PortAudio)

Short Time Fourier
Transform (STFT)

Map to Semitones

Short Time Fourier
Transform (STFT)

Map to Semitones

Zone 2Zone 1

Application/User Interface/Visualisation

Microphone 1 Microphone 2

Flower Audio Processing Graph

Figure 2.7: Flower provides a very simple API to build multi-threaded audio
processing applications. The data of both microphones enters the
processing graph synchronously in zone 1, and is processed in
two separate zones (threads) in parallel.

input channels are processed separately (i.e. not mixed into one mono
channel). In Zone 1, only the two input plug-ins remain, which take
care of the microphone input. This zone is driven by the incoming
audio. zone 2 and 3 are running in separate threads and process the
two channels individually in parallel, as the data arrives. Between
zone 1 and 2 and zone 1 and 3, small FIFO buffers take care that no
data is lost. In the end, an application can request the data from both
zones, and e.g. visualise the output. Again, Flower takes care of the
correct execution order and also timing of the plug-ins within each
zone, and the communication between the zones.

This framework simplified the implementation of the systems pre-
sented in this thesis immensely, as it takes care of many important
aspects of the design of a real-time music processing system. Probably
the most important feature of Flower for this thesis is its parallel
processing capability. Especially for the design of the multi-agent and
the any-time tracking systems, which involve multiple tracking algo-
rithms running in parallel, this proved to be invaluable. As long as the
application is easily separable into blocks that are supposed to run in
parallel, building clean, multi-threaded applications in Flower is very
convenient.

24 background and related work

2.4 related work

In this section a brief summary of research related to this thesis is
given. In particular, the topic of music synchronisation — on-line as
well as off-line. Furthermore, a summary of related work in the area
of music identification will be given, as far as it is relevant for the
content of this thesis, and approaches and available applications are
presented that are related to the “vision” of this thesis.

2.4.1 Music Tracking

Score following algorithms that listen to a musical performance and at
any time report the current position in the musical score, originated
in the 1980s (see [36, 136]). These early approaches were not based on
audio processing and could only follow certain (monophonic) instru-
ments based on the live performance in symbolic form (e.g. by using
the fingering information of the flute or key-presses on a keyboard).
Most early algorithms were based on string matching techniques. The
main motivation of these early approaches was automatic accompani-
ment (i.e. the automatic synchronisation of an accompaniment to a live
performance of a soloist). Nowadays, there is still research in symbolic
score following, with most approaches being based on stochastic mod-
els (see e.g. [126] for well-known, and [95, 96] for recent approaches).
As this thesis is solely concerned with score following based on an
audio signal as input, I will not go into more detail here.

With the arrival of more powerful computing hardware in the early
1990s the focus shifted towards score following based on the audio
signal directly, albeit at first still limited to monophonic music. Pitch
detectors were used to transcribe the live performance into symbolic
form and used as input to a string matching algorithm. A widely used
example of this approach is presented in [111].

In score following, there generally are two sources of uncertainty.
First and foremost, an (expressive) performance of a piece of music
will always differ in some ways from what is written in the sheet
music. Performers will play some notes differently, be it on purpose or
by mistake. Events that might be written as happening synchronously
(like notes in a chord) will be played at least in a slightly asynchronous
manner. The tempo will vary throughout the piece, and so on. Also,
due to the nature of an audio signal, its interpretation (be it via a pitch
detector or via some lower level features) will add further uncertainty.
Thus, a natural choice to model the problem of score following is via
statistical approaches.

The first stochastic model was presented in [65], while the formu-
lation of the problem via a hidden Markov model (HMM) proved to
be seminal (see [114]). Since then, a number of stochastic approaches,
based on HMMs [29, 99, 100] and other state space models [46, 79],

2.4 related work 25

conditional random fields [123, 144] and particle filtering [74, 86, 103]
were presented. Arguably the most influential and most widely used
systems are Antescofo

8 and MusicPlusOne
9.

MusicPlusOne (see [115, 117, 118]) is based on a two-level architec-
ture. The score following task is performed by an HMM. The output
(i.e. begin times of notes) is fed to a switching Kalman filter that tries
to model musical timing (and can be trained for a specific performer).
The resulting system is able to anticipate actions by the performer and
to control the accompaniment accordingly.

A related system is IRCAM’s Antescofo (see [30]). Here, the main
difference is that score position and tempo are computed within a
coupled stochastic model (a hidden hybrid Markov/semi Markov
framework). The coupled tempo/audio inference model adaptively
updates its duration models during the performance, which means
that it does not need off-line training or parameter tweaking. Re-
cent developments of this system include considerations about the
internal modelling of time [33] and temporal accuracy regarding the
underlying implementation of audio and event processing [43].

In recent years, some publications tackled very specific challenges
using stochastic methods, like the improvement of the tracking results
in the presence of heavy use of the sustain pedal when following
a piano performance [79], or how to model (long) rests and tempo
changes [74]. Some papers also considered the problem of structural
changes to a piece, i.e. approaches were developed that can cope with
a performer who spontaneously skips a repeat or adds a repeat (see
[97, 104, 134]). This is a major topic in this thesis as well, and will be
discussed in Chapter 5.

For the task of automatic accompaniment (which is outside of the
scope of this thesis), a very important aspect is the way the computer
and human performers interact during a performance. This goes far
beyond score following in the traditional sense and includes anticipa-
tion of events, but also interaction with the human performer in terms
of expressive timing and articulation (see [39, 143]).

Recent work has also seen deep learning applied to music tracking.
The main advantage of the approach presented in [45] is that the track-
ing algorithm actually works directly on the sheet music, without any
need for an intermediate representation. This is still very early work,
but in long run it could make music tracking much more accessible
for wider audiences: the musician could simply take a picture of the
sheet music, and the algorithm is ready to follow the performance.

The main alternative to stochastic approaches is to use an on-line
variant of the dynamic time warping algorithm (DTW). The thesis
is heavily based on algorithms related to DTW, both off-line and
on-line. Thus, these algorithms will be described in more detail in

8 http://repmus.ircam.fr/antescofo and http://www.antescofo.com

9 http://music.informatics.indiana.edu/~craphael/music_plus_one/

http://repmus.ircam.fr/antescofo
http://www.antescofo.com
http://music.informatics.indiana.edu/~craphael/music_plus_one/

26 background and related work

separate sections. The basic (off-line) DTW algorithm and its use in
music synchronisation will be described in Section 2.4.2. In [41], an
on-line version of DTW was presented, on which the on-line music
tracker used in this thesis is based. This algorithm is described in
Section 3.2 (Chapter 3 is solely concerned with improvements to this
algorithm). On a side note, it can actually be shown that DTW is a
special case of an HMM (see [32]), which is the main stochastic music
synchronisation algorithm.

Comparisons between all these approaches are very difficult for
multiple reasons. First and foremost, these approaches are optimised
for specific kinds of music. A score following system for monophonic
music or only slightly polyphonic music will be very different to an
algorithm that is supposed to track orchestral music, and a tracker
for piano music from the romantic era has to deal with different
challenges than a tracker for 20th century classical music. In addition,
also the task the music tracker is used for plays an important role.
For example, for automatic accompaniment systems the main goal
is to provide a smooth and natural accompaniment (thus in this
case qualitative evaluations with human performers might be more
important than quantitative experiments). To this end, the tracker has
to be careful not to trigger events too early, as this would disturb
the soloist. Optimisation for a specific piece, including adaption to a
specific style of performance, and good detection (and anticipation)
models for events are paramount. This is very different if the goal is a
robust tracker for a wide range of classical music that works out of
the box for many different styles of interpretation, and that is used to
synchronise visual information to the live music. There, it is not as big
of a problem if some of the information is shown a bit too early.

While there are still many open research questions, real-time score
following is already used in real-world applications. The most promi-
nent example is the abovementioned Antescofo system, which is
actively used by professional musicians to synchronise a performance
(mostly solo instruments or small ensembles) with computer realised
performance elements — and was already featured in performances
in venues like the Royal Albert Hall

10. The main focus of this pro-
gram is on modern classical music by composers like Boulez, Cage

and Stockhausen, and thus actually is coupled with a synchronous
programming language for musical composition.

There also have been two attempts of bringing music tracking tech-
nology to big concert halls. In [110], an application of music tracking
in the context of the Philadelphia Orchestra is described, and
in Chapter 4 of the thesis the demonstration of our music tracking
system in the Concertgebouw in Amsterdam is presented. There,
music tracking algorithms are used to present information (e.g. the

10 http://www.bbc.co.uk/events/evrmbp

http://www.bbc.co.uk/events/evrmbp

2.4 related work 27

sheet music and other visualisations as well as textual information)
synchronised to the live performance to the audience.

Finally, Tonara
11 is an application based on music tracking, which

runs on a tablet computer and is focused on persons studying the
piano. The music tracker presented in this thesis also has been ported
to iOS, but not been released as an application yet (see Chapter 6).

2.4.2 Music Synchronisation with Dynamic Time Warping

In Section 2.4.1 research on music tracking (which can be seen as on-
line music synchronisation) was reviewed. In the off-line (non-causal)
case, very similar techniques are applicable. Although stochastic ap-
proaches are a viable option (see for example [22, 116]), I will focus
on the technique that was mainly used for this thesis: dynamic time
warping (DTW).

Originally developed in the field of speech recognition [112], dy-
namic time warping (DTW) is a general technique to find an optimal
alignment between two sequences. Other typical applications are ges-
ture recognition [58] and handwriting recognition [119, 137]. The basic
idea of DTW is to warp the input sequences in such a way that they
match each other as closely as possible. To this day, it plays a very
important role in music processing. It is used for such diverse tasks as
music synchronisation (which is one of the main topics of this thesis),
cover song identification [128] and dance pattern recognition [108]. In mu-
sic processing, DTW is generally used to either 1) find corresponding
time points in two sequences (e.g. the position in the score that corre-
sponds to some time point in the audio), or 2) compute the similarity
of two sequences (for example to find out if two audio files are based
on the same piece of music). For a very detailed overview, both on
DTW in general, including formal definitions, and on the use of DTW
in music processing, I refer the reader to [88, 112].

The goal of DTW is to compare two sequences U = (u1, . . . , um) and
V = (v1, . . . , vn). In the general case, U and V are feature sequences,
sampled at equidistant points in time. To compare two features, a
local cost function is needed. By computing the cost function for each
feature pair from U and V, a cost matrix d can be obtained. Given these
costs, the goal of DTW is to find an alignment between U and V, with
minimal overall costs. Intuitively, such an alignment is represented
by a path P that follows “valleys” of low costs within the local cost
matrix. The overall costs are the sum of all costs at points on this path.

Typically, several constraints are placed on the path P:

• P is bounded by the ends of both sequences

• P is monotonic

11 http://tonara.com

http://tonara.com

28 background and related work

• P is continuous

Often, additional global path constraints are used with the goal
to reduce complexity, such as the Sakoe-Chiba bound [124] which
constrains the path to lie within a fixed distance of the diagonal or the
Itakura parallelogram [69] which constrains the path to lie within a
parallelogram around the diagonal of the matrix.

There are a number of local step constraints which can be used for
the computation of the minimum cost path. The simplest and most
common one (see [112] for more options) is defined by Eq. 2.1.

D(i, j) = d(i, j) + min

D(i, j− 1)

D(i− 1, j)

D(i− 1, j− 1)

 (2.1)

This recursion can be computed in quadratic time by linear program-
ming. D is called the accumulated cost matrix, where D(i, j) is the cost
of the minimum cost path from (1, 1) to (i, j). D(1, 1) = d(1, 1). In the
end, the minimum cost path is extracted by following the recursion
backwards from D(m, n).

A common use case for DTW is as a measure of similarity of se-
quences, while discarding differences in timing. The distance of two
sequences is directly given by the value D(m, n).

For this thesis, the warping path itself is even more important: this
path represents a mapping from time points in sequence U to time
points in sequence V. If e.g. U represents an audio recording of a
performance, and V a representation of a musical score, then DTW
can be used to compute for any point in time of the audio recording the
respective position in the score.

Generally, this process is called music alignment and exists in three
closely related flavours. Audio-to-audio alignment is concerned with
aligning two audio recordings of the same piece to each other. This
is the most straightforward case, as both sequences are in the same
domain, and the same kind of feature extraction can be applied. Audio-
to-Score alignment is the task of aligning a recording of a performance
(audio) to symbolic representation of the musical score (symbolic
information). In this case either comparable features are computed
directly from the symbolic information and the audio recording (see
e.g. [38]), or the score is transfered into an audio representation (via a
MIDI synthesiser), which means that again the same kind of feature
computation can be applied to both sequences. In this way, the audio-
to-score alignment task is effectively treated as an audio-to-audio
alignment task, with some extra information available. Lastly, Audio-
to-Sheet-Music alignment is concerned with aligning a recording of a
performance to an image of the sheet music. There exists preliminary
work that tries to do this directly, without explicitly transferring the

2.4 related work 29

data of both sequences into a common domain (see [45]), but so far
the main approaches are based on using optical music recognition
algorithms to first transfer the image information into the symbolic
domain, and to try to align this (noisy) information via typical audio-
to-score alignment approaches (see e.g. [54, 77, 135]).

Thus, although music synchronisation spans multiple domains, the
techniques and features that are used are often very similar. DTW
was introduced to the problem of music synchronisation in [101] (in
this case the task was audio-to-score alignment). This implementation
follows exactly the standard definition of DTW, and used the simplest
local continuity constraint. As features expected peaks in the spectrum
are modelled from the pitches in the score and compared to the audio
signal.

Features

For music synchronisation, the representation of the sequences to
be aligned plays an important role. Ideally these features are both
discriminative and robust against noise. A natural choice are features
based on a series of short-time spectra, although early approaches
tried to use more sparse mid-level features, to reduce the memory
complexity [93, 101].

The most common low-level representation for music synchronisa-
tion are chroma features, also known as pitch class profiles (see e.g.
[38, 68, 92]). In music, a pitch class is the set of all pitches that are
a whole number of octaves apart. For example, the pitch class “C”
consists of all the “Cs“ in all octaves. The idea of chroma features is
to aggregate spectral information that relates to pitch classes. Thus, a
chroma feature is a 12 dimensional vector and indicates the strength
of each of the 12 pitch classes in an analysis frame (computed e.g. via
a short time Fourier transform or a constant Q transform). There are a
number of different ways of computing chroma features (see e.g. [47,
82, 90, 106]) and variations based on this representation (see e.g. [49,
92]).

Other feature representations that have been tried for music synchro-
nisation include mel frequency cepstral coefficients (MFCCs) (espe-
cially for performance-to-performance alignment, see e.g. [61]), onset-
based features [42, 49], and spectral patterns [23]. Comparisons of
features for music synchronisation can be found in [61, 70].

Complexity

Plain DTW has a time and space complexity that is proportional to
the product of the lengths of the input sequences. This is problematic
for processing music, especially for longer pieces. A common feature
resolution for audio alignment is 50 Hz, thus computing alignments
for recordings longer than a few minutes quickly becomes intractable.

30 background and related work

A common method to speed up DTW and to reduce its memory
usage is presented in [125]. The idea is to reduce the feature resolution
and compute the optimal alignment on this coarse representation.
Then, the resolution is increased step by step, while each time only
the area close to the optimal alignment at the prior resolution level is
considered. In [94] this approach was adapted for music alignment.
Subsequently, this approach was refined to work in heavily memory-
restricted environments (see [109], using ideas presented in [80]).

A different approach is presented in [72]. Based on the observation
that one path in the matrix cannot cross another one, the amount of
memory is significantly reduced. Via backtracking “fusion points” are
found, which determine segments of the optimal path. After finding
a fusion point it is sufficient to store the path found up to this point
and to clear all the previous data. Then the calculation is continued,
treating this fusion point as the beginning of the sequences. As this
is an optimal approach the same results as with standard DTW are
guaranteed.

This thesis is based on an on-line tracking algorithm that can also
be used to compute off-line alignments (see [42], also summarised in
Section 3.2). This approach has linear time and space complexity, based
on a greedy forward path that is computed in a causal way. Assuming
that the forward path always stays close to the actual minimal cost
path, the algorithm will return the exact same results as standard DTW.
The downside of this approach is the dependency on the forward path
computation, which for in some extreme cases might fail, resulting in
sub-optimal alignments.

Structure

In music, structure is a very important concept that can be analysed on
multiple levels. For music synchronisation, structure is important in
the sense that performers might deviate from the piece as it is notated
in the sheet music and e.g. omit a repetition or insert additional parts.
If a performance with such omissions or insertions is aligned to the
score via a naive method, the process is confused by the missing or
additional parts. The result is an alignment that for some parts of the
piece might be correct, but for the omitted and inserted parts, as well
as their surroundings, the output is unpredictable.

To manually take care of these differences in structure by adapting
the score to a specific performance is a laborious task (although for
our data collection (see Section 2.2) we actually do this). There have
been a few approaches that try to automatically detect differences
in structure. An early method based on a dynamic programming
technique similar to DTW is presented in [89]. There, an intuitive way
is described to automatically analyse a similarity matrix between two
sequences (e.g. two different audio recordings of the same piece), and

2.4 related work 31

to detect and extract paths that represent partial matches between the
two sequences while ignoring gaps in between them.

An interesting approach is presented in [53], which is specifically
designed for score representations that stem from automatic anal-
ysis of sheet music via optical music recognition (OMR). Amongst
other shortcoming, OMR algorithms often do not reliably recognise
repetition signs, volta brackets, coda markers, fine markers, and so
on. In this paper an adapted version of DTW, called JumpDTW, was
presented that explicitly allows for jumps to other blocks during the
alignment process. This also includes adaptations that remove the
constraints for the performance to have to start at the first bar, and
to end in the last bar (e.g. when in the presence of a “da capo”, the
performance would actually end at the block marked by “fine”). A
downside of this approach is that it assumes access to information
about the borders of blocks — for the case discussed in the paper this
information can be gained during the OMR step, but if the sequence
is already present in symbolic form (e.g. as a MIDI file), this method
is not directly applicable.

In [61] an approach is presented which does not rely on explicit infor-
mation on where jumps might occur. Here, the dynamic time warping
algorithm is replaced by a close relative, the Needleman-Wunsch al-
gorithm, which allows for skips during the alignment process. Given
a “complete” score, the algorithm can cope with performers skipping
some parts. But the algorithm is unable to correctly align an inserted
repetition, or cope with any other changes of the structure that involve
jumps “backwards” in score time.

Improving the Alignment Accuracy

Some approaches have been presented that take a computed alignment
and then try to refine the results. Examples include interpolation
strategies, to increase the resolution of the alignment [48], the use of
an onset detection function to explicitly look for the exact begin time
around an aligned point [84], the use of image processing techniques
to find exact begin times of notes in the spectrogram [85], and methods
that try to determine anchor notes that are correctly aligned with a
high probability, and revise the notes in-between them [98].

An alternative approach is presented in [139], which tries to improve
the alignment process by jointly aligning multiple recordings of the
same piece. This is implemented as an extension to the DTW algorithm,
and increases the alignment robustness (especially for recordings that
are difficult to align) and accuracy. In the thesis a similar approach
is used to improve the robustness and the accuracy of on-line music
tracking (see Chapter 4).

32 background and related work

Conclusion

In the thesis, DTW is used both for off-line and on-line music synchro-
nisation. Off-line DTW is mainly used to automatically preprocess
data, extract tempo curves or transfer temporal annotations between
performances. The music tracker used throughout this thesis is based
on the above-mentioned on-line variant of DTW [42]. In Chapter 3, this
algorithm is presented and a number of improvements are proposed.
Then, Chapters 4 and 5 are based on this algorithm, and present a
robust multi-agent music tracking approach and a very flexible music
tracking system working on a database of scores.

2.4.3 Music Identification

Music identification is a very broad area (see e.g. [64] for an overview).
In this thesis music identification plays an important role in the at-
tempts to make music tracking more flexible. The classic approach
to music tracking is to tell the algorithm first which piece the per-
former will play. Then, the performer plays this piece, starting in the
beginning and following the structure of the piece until the end. As
our goal was to build a more flexible system, which can follow the
performer even when leaving out arbitrary parts or jumping to an
entirely different piece, we needed a method to detect these actions
as quickly as possible and query the corresponding data from the
database in real-time.

A common identification problem is cover song detection, which has
the goal to identify different versions of one and the same song in a
collection of music (see e.g. [127]). This technique is aimed mostly at
popular music. Algorithms performing this task have to cope with
large variations in-between songs, like instrumentation, tempo, timing,
style and structure. The more difficult problems of finding music
based on the hummed melody (query by humming, see e.g. [105]) or
based on a tapped version of the rhythm (query by tapping, see e.g.
[107]) could be seen as special sub-problems of cover song detection.

A related problem is the fast and robust identification of exact
replicas of audio recordings, possibly distorted in some ways (e.g.,
compression artefacts, noise). For this problem, which is commonly
called audio fingerprinting, industry-strength algorithms exist and are
in every day use in commercial applications (e.g. the well-known
service Shazam

12, which is based on [138]). For an overview on early
work regarding audio fingerprinting see [21]. Recent work (see e.g. [18,
113, 129, 132]) mainly focuses on making fingerprinting algorithms
more robust to transformation in the time-scale (replay speed of the
audio) and the frequency scale (transpositions).

12 http://www.shazam.com

http://www.shazam.com

2.4 related work 33

In the thesis, we are interested in a problem that to some extent
is related to both cover song identification and fingerprinting: score
identification. Given a performance of a piece of music, we are interested
in automatically identifying the underlying score on which the perfor-
mance is based. More concretely, we are interested in an algorithm
that, given a short snippet of audio material (e.g. the most recent five
seconds of an on-going live performance), finds the corresponding
score in a database, and computes the exact position in that score.

This is a multi-modal problem, and could either be solved in the
symbolic domain (score), the audio domain (performance), or via
some suitable mid-level representation to which both kinds of data
can be transferred. As the transformation of a symbolic score into
the audio domain is relatively straightforward — a synthesiser can
be used to render a “machine-like” low-quality audio version of the
score —, it seems natural to try to solve this task via audio matching
(see Section 2.4.2 above). A typical implementation is described in
[92]. The downsides of approaches in the audio domain are that
relatively large query sizes are needed (around 20 seconds) and that it
is computationally expensive, despite attempts to improve on this via
sophisticated indexing strategies (see [62, 75]).

Instead, we followed a different approach and tried to solve this
problem in the symbolic domain. We developed a new method that
relies on a (noisy) transcription of the performance and then uses a
tempo- and transposition-invariant fingerprinting algorithm to retrieve
the correct piece and score position in a matter of seconds (see Chapter
5).

2.4.4 Efforts related to a Complete Classical Music Companion

Currently, there is no system available that covers all the aspects that
were mentioned in the vision of a Complete Classical Music Companion.
Nonetheless, there already are interesting prototypes and applications
available that cover a few of the ideas included in our vision. A
combination of these approaches with the music identification and
tracking technologies described in the thesis would seem to be a very
promising endeavour.

The simplest example are sheet music viewers on tablet computers,
like the Henle Library

13 or the Bärenreiter Study Score Reader
14.

Actually, it would be fairly easy to turn these applications into more
“intelligent” companions by integrating music identification and track-
ing technologies.

13 http://www.henle-library.com/en/

14 https://www.baerenreiter.com/programm/digitale-medien/

baerenreiter-study-score-reader-app/

http://www.henle-library.com/en/
https://www.baerenreiter.com/programm/digitale-medien/baerenreiter-study-score-reader-app/
https://www.baerenreiter.com/programm/digitale-medien/baerenreiter-study-score-reader-app/

34 background and related work

The Phenicx project15 (see [60]) was an EU FP7 project that ran
from 2013 to 2016. Its main aim was to “innovate the classical music
experience”, with a strong focus on the concert experience. I was in-
volved in this project, with my main task being to build a reliable live
music tracking algorithm for complex orchestral music. This tracking
algorithm was used to synchronise information for the audience to
the live music, like the sheet music, artistic videos and notes prepared
by a musicologist. The most important results of the project are shown
collectively in an online demonstrator16, which can be seen as interac-
tive and dynamic program notes that guide, educate and entertain the
concertgoer before, during and after the concert. A related application
called LiveNote

17 was developed by the Philadelphia Orchestra,
which is solely focused on the live performance. The music tracking
system behind this application is described in [110] (which is very
similar to the basic tracking algorithm this thesis is based on — see
[41] and Section 3.2).

Both of these projects demand a lot of (time-consuming) manual
preparation, and are focused on specific performances. This also means
that both systems would fail if something unexpected were to happen,
e.g. a repetition that is left out. Despite their inflexibility, the way in
which information is presented to the user is very much in the spirit
of the vision of a Complete Classical Music Companion.

There also exist a number of applications and projects that provide
a similar experience off-line, i.e. for recorded performances. Touch-
press

18 has published polished applications that allow the user to
explore and enjoy a number of famous pieces of classical music (e.g.
Beethoven’s 9th or the Liszt Sonata in B minor) and get to know
famous performers (e.g. the Juilliard String Quartet). These ap-
plications offer features like synchronised scores, seamless switching
between performances, helpful visualisations, background informa-
tion, and so on.

A similar application is published by the Royal Concertgebouw

Orchestra for the iPad. The RCO Editions
19 is an interactive maga-

zine with new editions released six times per year. It contains concert
recordings, expert commentary, articles, and graphics. Some of the con-
cert recordings are enriched in the sense that multi-modal information
is synchronised to the recording. We were involved in the synchroni-
sation process, which is done semi-automatically using our off-line
audio-to-score alignment algorithms. This on-going collaboration is
also an outcome of the Phenicx project.

The SyncPlayer [52, 76] is an off-line system for multi-modal music
presentation (e.g. the audio, sheet music, lyrics), including a basic

15 http://phenicx.upf.edu

16 http://beta.phenicx.com

17 http://livenote.philorch.org

18 http://www.touchpress.com

19 https://www.concertgebouworkest.nl/en/all-editions

http://phenicx.upf.edu
http://beta.phenicx.com
http://livenote.philorch.org
http://www.touchpress.com
https://www.concertgebouworkest.nl/en/all-editions

2.4 related work 35

mechanism for music identification. Later on, in the context of the
Probado

20 project, this system was extended for big collections of
musical data (see [34, 35]). A more recent example is the project Freis-
chütz Digital

21 [122]. This is an extensive collection of data, tools,
and visualisations, including efforts to present multi-modal informa-
tion about music in a unified and informative way. In this project,
different media types like images of historic and modern sheet music,
images of historic texts of the libretti, and audio recordings are linked
to each other and made browsable on an on-line platform. Available
demonstrators also include a network representation of topics and
concepts of the piece, a music player with synchronised sheet music,
and tools with which it is possible to explore the microphone setup
during recording, and to focus on specific instruments.

20 http://www.probado.de/en_home.html

21 http://freischuetz-digital.de

http://www.probado.de/en_home.html
http://freischuetz-digital.de

Part II

C O N T R I B U T I O N S O F T H E T H E S I S

3
I M P R O V E M E N T S T O M U S I C T R A C K I N G V I A
O N - L I N E T I M E WA R P I N G

preliminaries This chapter describes work on music tracking via
on-line time warping, which was published between 2008 and 2012.
In particular, the chapter is based on the papers

[15] Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Automatic
Page Turning for Musicians via Real-Time Machine Listening”.
In: Proceedings of the European Conference on Artificial Intelligence
(ECAI). Patras, Greece, 2008, pp. 241–245

[11] Andreas Arzt and Gerhard Widmer. “Simple Tempo Models for
Real-time Music Tracking”. In: Proceedings of the Sound and Music
Computing Conference (SMC). Barcelona, Spain, 2010

[16] Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Adaptive
Distance Normalization for Real-time Music Tracking”. In: Pro-
ceedings of the European Signal Processing Conference (EUSIPCO).
Bucharest, Romania, 2012, pp. 2689–2693

At this early stage of my research the data collection was still
relatively small. Consequently, the algorithms were evaluated on a
growing data collection, which explains the need to describe the data
for each of the papers individually.

In this chapter the algorithms and their evaluations are described
as they were presented in the original papers. While this is not men-
tioned in the papers explicitly, they are actually based on two different
implementations of the music tracker. In the beginning, up until 2011,
the algorithms were implemented in Java. Due to concerns regard-
ing the real-time capability, I re-implemented the complete tracker
in C++ using the Flower framework (see Section 2.3). Basically, this
can be seen as a fresh start. During this re-write many improvements
and optimisations regarding memory usage and runtime were made.
This lead to slight inconsistencies between the older Java version and
the new C++ implementation, while the general performance of the
system stayed the same. Footnotes will be used to comment on these
inconsistencies, and the chapter will close with a few remarks regard-
ing developments and changes that occurred after these papers were
published.

contributions Unless stated otherwise, the research in this chap-
ter was conducted by the author of the thesis. The original OLTW

39

40 improvements to music tracking via on-line time warping

algorithm was provided by Simon Dixon. This algorithm was ex-
tended and later re-implemented from scratch by the author of the
thesis. Both Gerhard Widmer and Simon Dixon were involved in the
writing process of the respective papers.

3.1 introduction

The goal of real-time music tracking is to follow a musical perfor-
mance on-line and at any time report the current position in the score.
For this task many different approaches have been proposed, which
are summarised in Section 2.4.1. In the thesis, this task is tackled
via on-line audio-to-audio alignment. That is, rather than trying to
transcribe the incoming audio stream into discrete notes and aligning
the transcription to the score, a MIDI version of the given score is first
converted into a sound file by using a software synthesiser. The result
is a “machine-like”, low-quality rendition of the piece with constant
tempo. Due to the information stored in the MIDI file, the time of ev-
ery event (e.g. note onsets) in this rendition is known. Then, an on-line
music alignment algorithm is used to align the live performance to
the “score audio”.

In the thesis, a music tracking algorithm based on on-line time
warping [41] is used, which will be summarised in Section 3.2. In its
original form, this algorithm becomes unstable in the case of mistakes
of the performer, increased pedal usage and polyphonic mixes of many
different instruments. Moreover, it is very sensitive to differences in
tempo between the performance and the score. In extreme cases it
would get lost completely. Thus, the main lines of work here were to

• generally improve the robustness and the capability to recover
after tracking errors (Section 3.3),

• introduce a tempo model that makes the algorithm applicable
in the case of tempo differences between the score and the
performance, both globally and locally (Section 3.4), and

• improve the features on which the tracking is based (Section
3.5).

The remainder of this thesis is based on the outcome of this chapter:
a robust music tracking algorithm that reliably tracks a wide range of
classical music.

3.2 the original on-line time warping algorithm

In [41], an algorithm for the online alignment of two audio streams
based on dynamic time warping (DTW) was presented (see Section
2.4.2 for a description of the DTW algorithm and its uses in music

3.2 the original on-line time warping algorithm 41

processing). The important differences between this algorithm and
standard DTW are linear time and space complexity, and the fact that
the alignment is computed incrementally.

Formally, this on-line time warping algorithm (OLTW) works as
follows. Given two sequences U = (u1, . . . , um) and V = (v1, . . . , vn),
an alignment between U and V is a path P = (P1, . . . , Pl) (through a
cost matrix) where each Pk is an ordered pair (ik, jk) such that (i, j) ∈ P
means that the points ui and vj are aligned. P is constrained to be
monotonic and continuous. An m× n matrix represents a cost matrix
d(i, j) which assigns costs to the alignment of each pair (ui, vj). The
cost of a path P is the sum of the local alignment costs along the
path. The m× n accumulated cost matrix D is computed using the
recursion:

D(i, j) = min

D(i, j− 1) + d(i, j)wa

D(i− 1, j) + d(i, j)wb

D(i− 1, j− 1) + d(i, j)wc

 (3.1)

The weights wa, wb and wc can be set to give some positive or negative
bias towards specific step directions. Here, it is set to wa = wb = 1
and wc = 2, which ensures that there is no bias for either step type
(i.e. a diagonal step has the same weight as one horizontal and one
vertical step combined). D(i, j) is the cost of the minimum cost path
from (1, 1) to (i, j), D(1, 1) = d(1, 1).

So far, this formulation is equivalent to the classic DTW algorithm.
The difference is that based on this formulation, the on-line time
warping algorithm computes a quasi-optimal solution (a “forward
path”) by incrementally constructing this cost matrix in real time.
During the initial phase, as long as fewer than s = 500 elements of
each series have been processed, columns and rows are calculated
alternately and the path follows the diagonal of the matrix. Calculating
a row (column) means incrementing the pointer to the next element
of the respective time series, calculating the new local distances, and
updating the accumulated cost matrix D by using Formula 3.1.

After this initial phase the number of cells to be calculated is given
by a search width parameter c = 500, e.g. for a new column i the lo-
cal distances d(i, j− (c− 1)), d(i, j− (c− 2)), . . . , d(i, j) are calculated,
where j is the index of the current row. The calculation of the minimum
cost paths using Formula 3.1 is restricted to using only calculated cells.
In this way, only a sub-band of the cost matrix of constant width is
computed (see Figure 3.1), which reduces time and space complexity
from quadratic to linear.

To decide if a row or a column should be computed (i.e. which
of the two time series to advance), for each cell in the current row
j and column i the normalised minimum path cost is found. The
normalisation is done via the number of steps it takes from (1, 1) to

42 improvements to music tracking via on-line time warping

Figure 3.1: Part of a cost matrix (note that not the complete matrix, but only
a sub-band around the diagonal is computed). Note the areas in
the upper left and lower right corners, illustrating the constrained
path computation around the forward path. This particular situa-
tion shows the system reacting to an additional bar of music (not
present in the score) erroneously played by the pianist. The live
performance is on the x axis, the score representation on the y
axis. Crosses show the correct note onsets according to the score.
The grey path is calculated by Dixon’s original OLTW algorithm,
the white path is the result of the tracker including the backward-
forward strategy. Note how the algorithm effectively “waits” for
the pianist (the horizontal segment) after having noticed the error.
This is made possible by the backward-forward approach (see
text).

the respective cell (i.e. the sum of the indices of the cell in question),
to ensure that shorter paths are not necessarily preferred over longer
ones. If the minimum cost occurs in the current position (i, j) both a
new row and column are calculated. If this occurs elsewhere in row j
a new row is calculated and if this occurs elsewhere in column i a new
column is calculated. If one time series has been incremented more
than MaxRunCount = 3 times, the other series is incremented. This
embodies the assumption that a given performance will not be more
than 3 times faster or slower than the reference score, and prevents
the alignment algorithm from “running away” too far.

In addition to the forward computation, it is also possible to com-
pute a “backward path” via following the recursion in Formula 3.1
backwards. This is equivalent to the normal DTW path computation
(limited to the computed cells).

3.3 improvement 1: reconsidering past decisions 43

The audio streams to be aligned are represented as sequences of
analysis frames, using a low-level spectral representation computed
via a windowed FFT of the signal with a hamming window of size
46ms and a hop size of 20ms. The data is mapped into 84 frequency
bins which are spread linearly up to 370Hz and logarithmically above,
with semitone spacing, and then normalised to sum up to 1. In order to
emphasise note onsets — the most important indicators of musical tim-
ing — only the increase in energy in each bin relative to the previous
frame is stored. The cost of aligning two such 84-dimensional vec-
tors is computed as the Manhattan distance between the two vectors,
normalised by a logarithmically weighted sum of their norms1.

3.3 improvement 1: reconsidering past decisions

The OLTW algorithm has a tendency to “run away” in the score,
and then has a hard time to recover. It is unable to actually wait for
the performer, due to constraints placed on the path computation.
Similarly, if the algorithm were to fall behind, it would have no way to
catch up quickly. These constraints are necessary mainly because the
path computation happens in a greedy way. At each step the decision
to take a step in the score or to stay at the current position is entirely
based on local information, and only indirectly (via the accumulated
costs) on past information. To weaken these constraints, we introduced
a way of explicitly re-considering past decisions [15]. This approach
uses the present hypothesis plus the information from which it was
constructed, in order to re-check past decisions and then, in turn, uses
the revised decisions to improve the present hypothesis.

More precisely, the method works as follows: After every two frames
of the live input a smoothed backward path is computed, starting at
the current position (i, j) of the forward path. By following this path
b steps backwards on the y-axis (the score) one gets a new point
which lies with a high probability nearer to the globally optimal
alignment than the corresponding point of the forward path (because
this backward computation takes into account information from the
“future” that was not available when computing the original forward
path). Starting at this new point another forward path is computed
until a border of the current matrix (either column i or row j) is
reached. If this new path ends in (i, j) again, this can be seen as a
confirmation of the current position. If the path ends in a column
k < i, new rows are calculated until the current column i is reached
again. If the path ends in a row l < j, the calculation of new rows is
stopped until the current row j is reached. We call this method the
“backward-forward” approach. In our specific implementation, two
different backtracking lengths are used: after 4 short backtrackings of
length b = 10 a longer one of length b = 50 is performed.

1 Both [41] and [15] incorrectly stated that the Euclidean distance was used.

44 improvements to music tracking via on-line time warping

id composer piece name # perf. data type

CB Chopin Ballade Op. 38 No. 1 (exc.) 22 Match

CE Chopin Etude Op. 10 No. 3 (exc.) 22 Match

Table 3.1: The data set used for the evaluation of our real-time music tracking
system.

The main effect of this strategy is increased robustness against tempo
changes and improved error tolerance. If there are extreme tempo changes
in the performance, or the performer makes large errors — plays
wrong notes and repeats or omits a whole bar — the backward-
forward strategy permits the system to correct the error faster by
waiting for the musician or jumping forward in the score. A situation
where the system “waits” for the performer to catch up after a serious
mistake is shown in Figure 3.1.

In addition to this extension, a few minor details of the algorithm
were changed. We set wa = wb = 1.3 and wc = 2, which intro-
duces some bias towards diagonal steps. Together with the backward-
forward approach, this stabilised the algorithm such that we could set
MaxRunCount = 6. Furthermore, we found using such a long initiali-
sation phase to be unnecessary, and set s = 50, which effectively starts
the actual tracking after slightly more than one second2.

3.3.1 Evaluation

A quantitative evaluation requires correct reference alignments. For
practical reasons, the systematic experiments were performed off-line.
The results are the same as for on-line alignment, except for a small
latency that would occur in real-time processing. In the following we
refer to Dixon’s original OLTW algorithm, which serves as a reference,
as D, and to the new algorithm that uses the backward-forward idea
as A1.

The algorithms were evaluated on two sets of 22 piano recordings
(see Table 3.1). The audio recordings were aligned to synthesised score
audio files with constant tempo. As the computer-monitored piano
that was used for the recordings also stores the precise note onset
times (“match files”), the alignment error could then be calculated.
For more information on the data see Section 2.2.

As Tables 3.2 and 3.3 show, A1 outperforms D by far. The mixture of
the backward-forward algorithm and the slightly loosened constraints
generally improves the tracking accuracy. The only minor problem

2 In [15] we also introduced a very naive on-line method for actually searching explicitly
for note onsets, which worked well on this set of test data. On more complicated
music (e.g. with piano music which makes more use of the sustain pedal, higher
degrees of polyphony or a mix of different instruments) this approach failed to work.
Hence, it was discarded in later papers (and will not be discussed here).

3.3 improvement 1: reconsidering past decisions 45

ballade etude

err. (sec) d a1 d a1

≤ 0.05 52.1% 48.0% 53.8% 53.2%

≤ 0.10 70.9% 72.6% 68.3% 75.7%

≤ 0.15 77.2% 80.0% 74.2% 82.0%

≤ 0.20 83.3% 86.6% 80.1% 87.7%

≤ 0.25 85.8% 89.1% 83.2% 90.8%

≤ 0.30 88.1% 91.2% 86.0% 93.4%

≤ 0.35 89.3% 92.7% 87.0% 94.6%

≤ 0.40 90.9% 93.7% 89.2% 96.0%

≤ 0.45 91.6% 94.4% 90.1% 96.7%

≤ 0.50 92.5% 94.9% 91.1% 97.6%

≤ 1.0 97.0% 97.3% 96.5% 99.5%

Table 3.2: Real-time alignment results shown as cumulative frequencies of
errors of matching pairs of notes for the original OLTW algorithm
(D) and the improved version (A1) on the Etude and the Ballade.
The results are based on the alignment of 3564 notes in the Etude
and 4422 notes in the Ballade.

id d a1

cb 85.8% 89.1%

ce 83.2% 90.8%

Table 3.3: Real-time alignment results. Here, the percentage of notes is shown
that was aligned with an error smaller or equal 250 ms (for conve-
nience — evaluations in the thesis will often use this evaluation
measure).

46 improvements to music tracking via on-line time warping

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350
T

e
m

p
o

 (
b

p
m

)
Time (Beats)

Tempo Curves

Alexeev
Ashkenazy

Biret
Gavrilov
Shelley

Figure 3.2: Tempo curves (at the level of quarter notes) automatically ex-
tracted from 5 different commercial recordings of the Prelude
Op. 23 No. 5 by Rachmaninoff. Note especially the slow-down
around beat 130 and the subsequent speed-up around beat 190

and the generally big differences in timing between the perfor-
mances.

is that the proposed method tends to “overshoot” a little bit, which
explains the results in the first line in Table 3.3.

3.4 improvement 2 : tempo models

Tempo models are one of the most important building blocks of a
music tracking algorithm. After all, the task of a music tracker can
be seen as adapting the tempo of the score representation to the live
performance. The better the tempo model, and thus the prediction of
future events, the easier this task becomes. In the ideal case, the tempo
model predicts the times of future events almost perfectly, and the
tracking algorithm only has to check for their occurrence and adjust
the timing slightly to minor prediction errors. The problem for a music
tracking algorithm is that for most kinds of (classical) music, tempo
is one of the main parameters a performer will vary to achieve an
expressive performance of a piece. As can be seen in Figure 3.2, these
changes are considerable within a performance, and also between
performances of the same piece. Thus, predicting the timing, even of
the next few events, is a very difficult task, and sometimes impossible
without additional information.

Our work on tempo models [11] was motivated by the observation
that the closer the tempo of the score representation is to the actual live
performance, the better the tracking works. Thus, what we actually
tried was not to design a system which predicts events and checks for
their occurrence, but a simple extension to the on-line time warping
algorithm that adapts the score feature sequence on the fly to match the
tempo of the performance as closely as possible. We came up with two
versions of tempo models, one being very simple and only based on
the current alignment context, and the second one taking into account
external information via automatically processed performances of the
same piece.

3.4 improvement 2: tempo models 47

Figure 3.3: Illustration of the music tracking algorithm, showing the itera-
tively computed forward path (white), the much more accurate
backward path (grey, also catching the one onset that the forward
path misaligned), and the correct note onsets (yellow crosses, an-
notated beforehand). In the background the local alignment costs
for all pairs of cells are displayed. Also note the white areas in
the upper left and lower right corners, illustrating the constrained
path computation around the forward path.

3.4.1 Computation of the Current Tempo

The computation of the current tempo of the performance (relative to
the score representation) is based on a constantly updated backward
path starting in the current position of the forward calculation. As the
backward path, in contrast to the forward path, which has to make
its decisions on-line, has perfect information about the performance —
at least up to the current position in the performance —, it is much
more accurate and reliable than the forward path (see Figure 3.3).

Intuitively, the slope of a backward path represents the relative
tempo differences between the score representation and the actual
performance. Given a perfect alignment, the slope between the last
two onsets would give a very good estimation of the current tempo.
But as the correctness of the alignment of these last onsets generally
is quite uncertain, one has to discard the last few onsets and use a
larger window over more note onsets to come up with a reliable tempo
estimation.

In particular, our tempo computation algorithm uses a method
described in [91]. It is based on a rectified version of the backward
alignment path, where the path between note onsets is discarded and
the onsets (known from the score representation) are instead linearly

48 improvements to music tracking via on-line time warping

connected. In this way, possible instabilities of the alignment path
between onsets (as, e.g. between the 2nd and 3rd onset in the lower left
corner in Figure 3.3) are smoothed away.

After computing this path, the n = 20 most recent note onsets which
lie at least one second in the past are selected, and the local tempo
for each onset is computed by considering the slope of the rectified
path in a window with size three seconds centred on the onset. This
results in a list v of length n of relative tempo deviations from the
score representation. Finally, an estimate of the current relative tempo
t is computed using Equation 3.2, which emphasises more recent
tempo developments while not discarding older tempo information
completely, for robustness considerations.

t = ∑n
i=1(vi ∗ i)
∑n

i=1 i
(3.2)

Of course, due to the simplicity of the procedure and especially
the fact that only information older than one second is used, this
tempo estimation method can recognise tempo changes only with
some delay. However, the computation is very fast, which is important
for real-time applications, and it proved very useful for the task we
have in mind.

3.4.2 Feeding Tempo Information to the OLTW algorithm

Based on the observation that both the alignment accuracy and the
robustness directly depend on the similarity between the tempo of
the performance and the score representation, we now use the current
tempo estimate to alter the score representation on the fly, stretching
or compressing it to match the tempo of the performance as closely
as possible. This is done by altering the sequence of feature vectors
representing the score audio. The relative tempo is directly used as
the probability to compress or extend the sequence by either adding
new vectors or removing vectors.

More precisely, after every incoming frame from the live perfor-
mance, and before the actual path computation, the current relative
tempo t is computed as given above, where t = 1 means that the
live performance and the score representation currently are in the
exact same tempo and t > 1 means that the performance is faster
than the score representation. The current position in the score p is
given by the forward path and thus coincides with the index of the
last processed frame of the score representation. If a newly computed
random number r between 0 and 1 is larger than t (or 1

t if t > 1) an
alteration step takes place. If t > 1, a feature vector is removed from
the score representation by replacing p + 1 and p + 2 with a mean
vector of p + 1 and p + 2. And if t < 1, a new feature vector, computed
as the mean of p and p + 1 is inserted next into the sequence between

3.4 improvement 2: tempo models 49

p and p + 1. As our system is based on features emphasising note
onsets, score feature vectors representing onsets (which are known
from the score) are not duplicated, as more (and wrong) onsets would
be introduced to the score representation. In such cases the alteration
process is postponed until the next frame. Furthermore, to avoid that
the system could get stuck at one frame, alterations may take place at
most three times in a row.

3.4.3 “Learning” Tempo Deviations From Different Performers

As will be shown later in Section 3.4.4, the introduction of this very
simple tempo model — simply using the current estimated tempo to
stretch/compress the reference score audio — already leads to consid-
erably improved tracking results. But especially at phrase boundaries
with huge changes in tempo (e.g. a slow-down or a speed-up by a fac-
tor of two is not uncommon, see also Figure 3.2) the above-mentioned
delay in the recognition of tempo changes still results in large align-
ment errors. Furthermore, such tempo changes are very hard to catch
instantly, even with more reactive tempo models. To cope with this
problem we came up with an automatic and very general way to
provide the system with information about possible ways in which a
performer might shape the tempo of the piece.

First we extract tempo curves from various different performances
(audio recordings) of the piece in question. Again, as for the real-
time tempo estimation, this is done completely automatically using
the method described in [91] (see Section 3.4.1), but as the whole
performance is known beforehand and the tempo analysis can be
done off-line there is now no need for further smoothing of the tempo
computation. These tempo curves (see Figure 3.2) are directly imported
into our real-time tracking system.

We use this additional information during the tracking process to
compute a tempo estimate based not only on tracking information
about the last couple of seconds, but also on similarities to other
known performances.

More precisely, as before, after every iteration of the path computa-
tion algorithm the list v containing tempo information at note onsets
is updated based on the backward path and the above-mentioned
local tempo computation method. But now the tempo curve of the live
performance over the last w = 50 onsets, again located at least one
second in the past, is compared to the previously stored tempo curves
at the same position. To do this all n tempo curves are first normalised
to represent the same mean tempo over these w onsets as the live
performance. The Euclidean distances between the curve of the live
performance and the stored curves are computed. These distances are
inverted and normalised to sum up to 1, thus now representing the
similarity to the tempo curve of the live performance.

50 improvements to music tracking via on-line time warping

Based on the stored tempo curves our system can now estimate
the tempo at the current position. As the current position should be
somewhere between the last aligned onset oj and the onset oj+1 to be
aligned next, we compute the current tempo t according to Equation
3.3, where ti,oj and ti,oj+1 represent the (scaled) tempo information of
curve i at onset oj and oj+1 respectively, and si is the similarity value
of tempo curve i to the current performance context.

t =
∑n

i=1[(ti,oj + ti,oj+1)si]

2
(3.3)

Intuitively, the tempo is estimated as the mean of the tempo estimates
at these two onsets, which in turn are computed as a weighted sum of
the (scaled) tempi in the stored performance curves, with each curve
contributing according to its local similarity to the current perfor-
mance. Please note that this approach somewhat differs from typical
ways of training a score follower to follow a particular performance.
We are not feeding the system with rehearsal data by a particular
musician, but with many different ways of how to perform the piece
in question, as the analysed performances may be by different per-
formers and differ heavily in their interpretation style. The system
then decides on-line at every iteration how to weigh the curves, effec-
tively selecting a mixture of the curves which represents the current
performance best.

3.4.4 Evaluation

The accuracy of our system was thoroughly tested on various pieces
of music (see Table 3.4), with very well known musicians like Vladimir
Horowitz, Vladimir Ashkenazy and Daniel Barenboim amongst
the performers. While we currently focus on classical piano music,
to show the independence of specific instruments we also tested our
system on an Oboe Sonata by Mozart and the 1st Movement of the
5th Symphony by Beethoven.

As for the evaluation reference alignments of the performances are
needed, Table 3.4 also indicates how the ground truth data was pre-
pared. For CB and CE we have access to very accurate data about every
note onset, as these were recorded on a computer-monitored grand
piano. For the performances of the three movements of Mozart’s
Sonata KV279 (MS) the evaluation is based on exact information about
every beat time, which was manually compiled. The evaluation of the
other pieces is based on off-line alignments produced by our system,
which are in general much more precise than on-line alignments. We
are well aware that this information is not guaranteed to be entirely
accurate, but we manually checked the alignments for obvious errors
and are quite confident that the results based on these alignments are
reasonable, especially as evaluations of CB, CE and MS based on these

3.4 improvement 2: tempo models 51

id composer piece name # perf. data type

BF Bach Fugue BMV847 7 Alignment

BS Beethoven 5th Sym., 1st Mov, 5 Alignment

CB Chopin Ballade Op. 38 No. 1 (exc.) 22 Match

CE Chopin Etude Op. 10 No. 3 (exc.) 22 Match

CW Chopin Waltz Op. 34 No. 1 8 Alignment

MO1 Mozart Oboe Quartet KV370 Mov. 1 5 Alignment

MO3 Mozart Oboe Quartet KV370 Mov. 3 5 Alignment

MS1 Mozart Sonata KV279 Mov. 1 5 Beats

MS2 Mozart Sonata KV279 Mov. 2 5 Beats

MS3 Mozart Sonata KV279 Mov. 3 5 Beats

RP Rachmaninoff Prelude Op. 23 No. 5 5 Alignment

SI Schubert Impromptu D935 No. 2 12 Alignment

Table 3.4: The data set used for the evaluation of our real-time tracking
system. Note that besides piano performances this also includes
two movements of an oboe quartet (oboe, violin, viola, cello) and a
symphony for orchestra.

alignments led to very similar numbers compared to the evaluation
on the correct reference alignments.

For all pieces we used audio files synthesised from publicly available
“flat” MIDI files with fixed tempo as score representation, only the
MIDI representing the Beethoven Symphony contained sparse tempo
annotations.

The evaluation took the form of a leave one out cross-validation.
Every performance in our data set (Table 3.4) was aligned with three
algorithms: the system as introduced in Section 3.3 above; the system
including the simple tempo model (Section 3.4.1); and the tempo
model that has access to a set of possible performance strategies
(Section 3.4.3). For the latter, all recordings pertaining to the given
piece were used except, of course, for the performance currently being
aligned. The result, for each performance and each algorithm, is a set
of events with detection times in milliseconds.

The evaluation measure is defined after [31]. The percentage of
correctly aligned notes with respect to some threshold is the main
performance measure for a real-time music tracking system. We follow
[31] and accept a note as correctly aligned if the computed time differs
from the actual onset time by not more than 250 ms.

Table 3.5 summarises the results. Clearly, both tempo models lead
to large improvements in tracking accuracy for pieces played with a
lot of expressive freedom, especially for the Schubert Impromptu
(SI), the Rachmaninoff Prelude (RP) and the Chopin Waltz (CW).
Nonetheless these kinds of music still pose a great challenge to real-
time tracking systems. As the results for the Beethoven Symphony
(BS) show, our system can also cope quite well with orchestral music

52 improvements to music tracking via on-line time warping

id none simple learned

bf 97.3% 97.8% 98.1%

bs 84.1% 85.0% 86.1%

cb 89.1% 90.0% 90.1%

ce 90.8% 91.6% 93.2%

cw 72.4% 83.7% 88.1%

mo1 85.0% 93.0% 93.1%

mo3 81.6% 92.1% 93.0%

ms1 96.4% 96.7% 96.2%

ms2 80.2% 86.2% 88.7%

ms3 96.1% 96.7% 97.9%

rp 68.2% 82.9% 85.2%

si 58.2% 76.4% 79.9%

Table 3.5: Real-time alignment results for all three evaluated systems. None

is the system without a tempo model, Simple uses a tempo model
solely based on data of the current live performance, and Learned

uses a tempo model using data from other performances of the
same piece.

and does not depend on specific instruments. This is also supported
by the results on the Oboe Quartet (MO). As expected, the results for
pieces with less extreme tempo deviations were improved to a much
smaller extent. Further investigation showed that as intended, the
“learned” tempo curves guide the alignment path more accurately and
more reactively during huge tempo changes (i.e. at phrase boundaries).

3.5 improvement 3: better features for music tracking

Over the years there have been a number of studies on features for
music alignment via dynamic time warping, comparing and evalu-
ating features like (compressed versions of) the plain spectrogram,
mappings to different kinds of logarithmic scales like the semitone
scale, chromagrams, onset-emphasised features, and Mel-frequency
cepstral coefficients (see Section 2.4.2).

Some of these comparisons were focused on performance to per-
formance alignment, others on performance to score alignment. This
makes a difference, as some features, like MFCCs, tend to work better
on signals that are more “similar”, like two performances on the same
piece (compared to a performance and a synthesised version of a
score). Other features, like chroma features, generalise better and are
suitable for aligning a real performance to a score synthesised in a
“mechanical” way with some sound font.

This section is based on [16]. The goal of this paper was to try to
find a suitable feature representation for our music tracker. Note that

3.5 improvement 3 : better features for music tracking 53

this paper is already based on the new C++ implementation, which
accounts for slight inconsistencies with respect to the previous two
sections.

The basic setup is as follows. In order to align a live performance
to a score, suitable feature representations are needed. As mentioned
above, we actually treat this task as an audio-to-audio alignment
problem, with additional knowledge about the score audio file (e.g.
the exact timing of each note onset). Thus, we first convert a MIDI
version of the score into a sound file using a software synthesiser.
Then, both streams to be aligned are represented as sequences of
analysis frames, computed via a short-time Fourier transform (STFT)
of the signal with a hamming window of size 92ms and a hop size of
23ms3. Then each frame resulting from the STFT is mapped onto a
musically more meaningful representation better suited for the task of
audio alignment.

A natural musically motivated choice for representing the tonal/har-
monic content is to map the data into frequency bins with semitone
spacing. As we would like this representation to be invariant to dy-
namic variations, we normalise each vector to sum up to 1. We will
refer to this representation as Normalised Semitone features (NS).

For features representing the note onsets we again map the STFT
data to the semitone scale but now only store the increase in energy
in each bin relative to the previous frame. As described in [49] for
chroma onset features we now first take a suitable logarithm of the
values in the vector, motivated by the logarithmic sensation of sound
in humans, and then normalise each vector by the maximum norm
in a fixed window around this vector. While in the original paper
this window is centred on the vector to be normalised, we had to
shift the window to only use data up to the current vector to make
it computable on-line. We will refer to this representation as Locally
Adaptive Normalised Semitone Onset features (LNSO).

Most recent audio alignment systems are based on different variants
of chroma-based harmonic features (e.g. [68, 94, 98]). In general chroma
vectors consist of 12 elements per time frame, corresponding to pitch
classes; their values are computed by mapping the frequency bins of
the STFT to the 12 pitch classes and summing up the energies. There
also exist more sophisticated ways of computing chroma features, and
for this paper we are in fact using the method described in [47] (for
a collection of various chroma implementation see [90]). Again each
vector finally is normalised to sum up to 1 to make it invariant to
dynamic variations (Normalised Chroma features (NC)).

It is also possible to compute chroma onset features by a mapping
of the LNSO features described earlier to the chroma representation,
as recently done in [49]. The authors refer to this representation as

3 Note that in the previous two sections a window size of 46 ms and a hop size of 20

ms was used

54 improvements to music tracking via on-line time warping

id composer piece name # perf. data type

CE Chopin Etude Op. 10 No. 3

(excerpt)
22 Match

CB Chopin Ballade Op. 38 No. 1

(excerpt)
22 Match

MS Mozart 1st Mov. of Sonatas
KV279, KV280, KV281,
KV282, KV283, KV284,
KV330, KV331, KV332,
KV333, KV457, KV475,

KV533

1 Match

RP Rachmaninoff Prelude Op. 23 No. 5 3 Manual

Table 3.6: The data set used for the evaluation of the different features for
music tracking.

Locally Adaptive Normalised Chroma Onset features (LNCO). Additionally,
as this introduces a desirable property for off-line (= backward) audio
alignment they also introduce an extra temporal decay, resulting in
Decaying LNCO features (DLNCO), which should not be favourable
for the on-line task in question. Nonetheless we will also evaluate
the effect of this decay in our on-line (= forward) audio alignment
algorithm.

Finally, having defined a number of possible feature representations,
a function determining the alignment cost of two frames (distance
between 2 frames) is needed. Here, we will use the L1 distance:

d(I, J) =
n

∑
k=1
|Ik − Jk| (3.4)

where I and J are either semitone or chroma frames.

3.5.1 Adaptive Distance Normalisation

One problem with using the aforementioned features based on onset
information (LNSO, LNCO and DLNCO) directly is that they are only
normalised relative to their local context within their audio streams.
There can be huge differences in onset strength between the two audio
streams, especially when the score audio stream is generated from a
deadpan MIDI file without loudness information (= with the same
velocity for every note). In contrast to this, there are all kinds of
variations in dynamics in the live performance. Take for example a
piano performance in which the performer emphasises the melody
while playing the accompaniment very softly, or blurs the onsets by
using the sustain pedal, as is often the case. Then the correct alignment
of the louder melody notes would lead to minimal distances, but there

3.5 improvement 3 : better features for music tracking 55

would occur substantial alignment costs for each of the accompanying
notes, possibly leading to alignment errors.

A simple solution to this problem is to compute a normalised
distance dn of two frames by dividing d by the sum of their L1-norms.

dn(I, J) =
d(I, J)
|I|1 + |J|1

(3.5)

Evidently this simple approach has its drawbacks. It introduces a lot
of noise to the distance matrix by heavily up-scaling small distances
between frames with low energy in them. Still this normalisation step
greatly improves the alignment results and actually makes the semi-
tone onset features useable — alignments based on the unnormalised
distances got lost most of the time.

To get rid of this up-scaling effect, we introduce a weight describing
the “onsetness” of the two frames involved. When chosen correctly,
this weight can be seen as a dampening factor: avoiding the scale-up
effect for small numbers while still normalising the distance when
enough energy is involved. Recall that due to the locally adaptive
normalisation step the L1-norm of each frame is a measure of its
onsetness, ranging from 0 to 1. Thus the mean of the L1-norms of
two frames is a natural measure of their combined onsetness. Based
on experimental results we chose to apply a suitable function to this
value, leading to the desired dampening effect and resulting in the
normalised and weighted distance dnw.

dnw(I, J) = dn(I, J) ∗ 4

√
|I|1 + |J|1

2
(3.6)

It is important to note that the main point of the formula above is
not the application of exactly the 4th root — this function merely gave
the best results in our evaluation, but only by a very small margin.
We achieved very similar results with other functions (the square root,
cubic root or also a function based on the logarithm), as long as the
function fulfilled the intended dampening task described above.

Results

The performance of each feature configuration was thoroughly tested
on various pieces of piano music (see Table 3.6). This table also indi-
cates how the ground truth data was prepared, where “match” means
that we have access to very accurate data about every note onset,
as these were recorded on a computer-monitored grand piano. For
more information on the datasets see Section 2.2. The Tables 3.7 and
3.8 show the percentage of correctly aligned notes for the different
configurations mentioned in the text. A note is accepted as correctly
aligned if the computed time differs from the actual onset time not

56 improvements to music tracking via on-line time warping

id ns
dn

nc
dn

ce 82.01% 87.78%

cb 75.04% 79.97%

ms 90.19% 91.20%

rp 75.61% 81.45%

Table 3.7: Real-time alignment results for the harmonic features, i.e. the
Normalised Semitone (NS) and the Normalised Chroma (NC) features.

id ce cb ms rp

lnso
d

9.68% 5.80% 1.20% 2.28%

lnso
dn

91.93% 91.79% 97.41% 78.71%

lnso
dnw 96.09% 95.61% 93.76% 86.25%

lnco
d

43.66% 28.92% 18.23% 20.77%

lnco
dn

92.78% 86.74% 90.28% 42.67%

lnco
dnw 95.85% 93.72% 90.91% 71.77%

dlnco
d

77.01% 65.97% 48.18% 33.73%

dlnco
dn

89.46% 79.05% 79.14% 2.91%

dlnco
dnw 93.26% 85.27% 85.18% 23.56%

Table 3.8: Real-time alignment results for the onset features for the Locally
Adaptive Normalised Semitone Onset (LNSO), Locally Adaptive Nor-
malised Chroma Onset (LNSO), and the Decaying Locally Adaptive
Chroma Onset features, combined with different normalisation
methods.

3.5 improvement 3 : better features for music tracking 57

more than 250 ms (see also [31] for more details on the evaluation of
real-time audio-to-score alignment systems).

Regarding the harmonic features, the suitability of the NC features
for audio alignment purposes is well established (see e.g. [70]) and
again confirmed by our experiments (see Table 3.7). In contrast to that
the performance of the LNSO features4, which work far better than
the related LNCO features, may come as a bit of a surprise (see Table
3.8). It seems that when it comes to modelling onsets the mapping
to the chroma scale destroys crucial information (the absolute height
of the onsets). As also shown in this table, the normalisation step for
onset features is indispensable. While with the unnormalised distances
the tracker in many cases gets completely lost or at least produces
a lot of errors, both normalised versions lead to robust and accurate
alignments, the weighted one even clearly outperforming the NC
features.

Interestingly, the basic DLNCO features outperformed the LNSO
and LNCO features. But while the normalisation process also has a
positive influence on the DLNCO features in general (interestingly,
the Rachmaninoff Prelude is an exception) they do not benefit to the
same extent. When comparing the evaluation runs using the distance
normalisation process, the LNSO features are clearly preferable at
least for on-line trackers such as ours.

3.5.2 Mixing Chroma and Onset Information

Having evaluated their accuracy when used individually, it seems
reasonable to try to combine the two presented feature types (harmonic
and onset) into one feature set, something which has already been
suggested by [49] in a different (off-line) alignment setting. There the
authors mix NC features with the DLNCO features described above by
simply computing 2 distinct local cost matrices, and finally summing
up both matrices to get a distance measure which accounts for both
types of information.

We will now combine the best features of both classes according
to our evaluation runs in the same fashion. For this we picked the
NC features (see Table 3.7) and the LNSO features with the distance
normalization procedure described above (see Table 3.8). Thus as the
total distance dtot of 2 frames we get:

dtot(I, J) = dLNSO
nw (I, J) + dNC

n (I, J) (3.7)

4 Conceptually, the configuration LNSOdnw is very similar to the features and the
distance calculation that were used in Sections 3.3 and 3.4 above. The main difference
are the use of triangular filters instead of simple mappings and the use of the root
function instead of a function based on the logarithm. Further differences are the use
of a larger window size (92 ms vs. 46 ms) and a different hop size (23 ms vs20 ms).

58 improvements to music tracking via on-line time warping

id nc
dn

lnso
dnw

nc
dn +lnso

dnw

ce 87.78% 96.09% 96.13%

cb 79.97% 95.61% 96.38%

ms 91.20% 93.76% 98.20%

rp 81.45% 86.25% 93.73%

Table 3.9: Real-time alignment results for the single best features Nor-
malised Chroma (NC) and Locally Adaptive Normalised Semitone Onset
(LNSO), as well as their combination.

err . (sec) nc
dn

lnso
dnw

nc
dn +lnso

dnw

≤ 0.05 35.53% 44.69% 46.24%

≤ 0.10 67.64% 86.95% 89.00%

≤ 0.15 78.23% 90.49% 94.13%

≤ 0.20 83.75% 92.42% 96.03%

≤ 0.25 87.12% 93.32% 96.93%

≤ 0.30 89.75% 94.05% 97.57%

≤ 0.35 91.65% 94.58% 97.96%

≤ 0.40 92.91% 94.99% 98.28%

≤ 0.45 93.98% 95.36% 98.47%

≤ 0.50 94.77% 95.66% 98.71%

≤ 1.0 98.16% 97.44% 99.59%

Table 3.10: Real-time alignment results for the single best features and their
combination on the whole test set (79,178 notes in total) shown as
cumulative frequencies of errors of matching pairs of notes.

We also experimented with an additional weighting of the distances
such that in case of onsets dLNSO

nw (I, J) is dominant and dNC
n (I, J) other-

wise, but — despite some promising results with some of the weaker
features — we did not achieve further improvements by this strategy.

Results

As expected, these combined features, which complement one another
in a natural way, lead to a substantial increase in alignment accuracy
and robustness compared to their individual results (see Table 3.9).
The combination outperformed each configuration with single features
we tested for this paper.

Table 3.10 gives a more in-depth comparison of the combined fea-
tures to the individual ones based on the cumulative frequency of
errors. It again confirms that in this natural combination the NC fea-
tures mainly add robustness (i.e. these features show fewer extreme
errors larger than 1 second than the LNSO features). On the other
hand the LNSO features greatly improve the accuracy (e.g. 86.95%

3.6 conclusions 59

of the notes are aligned with an error smaller or equal 0.1 seconds,
compared to 67.64% when using the NC features).

3.6 conclusions

Although the original algorithm [41] was presented more than 10

years ago, and even the improvements date back around 5 years, the
method described in this section still is a competitive music tracking
algorithm. The main strength of the algorithm is its versatility and
robustness. Given a good representation of the score (in the sense
of “sounding similar to a real performance”), this algorithm works
well even for very complex symphonic music (see Chapter 4). On the
downside, it is not ideally suited for sparse, monophonic music as
it has no model of duration other than the implicit encodings in the
score representation. It has no real expectation of note lengths and
thus a hard time at coping with pauses. Casually speaking, the more
note onsets are being played, the easier is the task of this tracking
algorithm.

3.6.1 Current State of the Music Tracker

Over the years, the tracking algorithm has changed in a few minor
points. The features stayed basically the same, although we now do
zero-padding of the hamming window to a total size of 184 ms. Then,
in our current implementation we actually perform the backward-
forward procedure after every new frame of the live performance.
Furthermore, we compute the backward path as a smoothed version
of two kinds of backward paths — one starting in the cell that currently
holds the minimum costs, another one starting in the current position
hypothesis of the tracker (which are not necessarily the same) — which
are further smoothed over time. Furthermore, instead of on absolute
times in seconds we base the backtracking procedure on the note
context: each time the backward path is followed backwards in time
for 50 note onsets, and then the path computation is restarted from
there. Regarding the tempo models, we only changed the number of
onsets to use for the tempo computation from 20 to 30.

3.7 prototypical implementation

Figure 3.4 shows a conceptual sketch of the music tracker. As described
in this chapter, the algorithm takes a live audio stream as input and
aligns it to an internal representation of the score (which is represented
as an audio stream too). The tracker is based on on-line time warping,
which has been provided with a tempo model. The output is the
current position in the score, which enabled a number of applications
(e.g. automatic page turning for musicians).

60 improvements to music tracking via on-line time warping

Live
Performance

Output: Score Position

Musical
Score

On-line Music Tracker

Tempo Model

Figure 3.4: A conceptual sketch of the music tracker. Picture of Werner Goebl

(c) Clemens Chmelar

Figure 3.5 shows the current state of the music tracker as it is im-
plemented in the modular Flower framework (see Section 2.3). The
live audio stream is captured via a microphone. Raw features are com-
puted via a number of processings (IFGram, IFExtractor, ChromaIF
and STMSP). These basically are chroma features and spectral features
mapped to the semitone scale. They are then further processed by
MusicTrackingFeatures, computing NCdn and LNSOdnw features as
described in Section 3.5 above. These are handed over to the Music-
Tracker processing, which implements the tracking algorithm. This
processing also reads in all the necessary data (the score representation
in symbolic and in feature form) before the actual tracking begins. The
output of the Music Tracker processing is an estimate of the current
position in the score.

Besides the evaluations presented in this section, we also demon-
strated this algorithm live in front of audiences at a number of occa-
sions (even in combination with an automatic page turning device).
We mainly demonstrated this algorithm with piano music, although it
is perfectly capable of following other kinds of classical music. A list
of public showings, including a video, can be found in Chapter 6.

3.7 prototypical implementation 61

Audio Input

IFGram

IFExtractor

ChromaIF STMSP

MusicTrackerFeatures

MusicTracker

Microphone

Application/User Interface/Visualisation

Audio Processing

Figure 3.5: The music tracker based on on-line time warping, as it is imple-
mented via the Flower framework.

4
R O B U S T M U LT I - A G E N T M U S I C T R A C K I N G

preliminaries This chapter describes work on a novel music
tracking approach based on simultaneous tracking of the live perfor-
mance via multiple recordings of performances of the same piece. In
particular, this chapter is based on

[13] Andreas Arzt and Gerhard Widmer. “Real-time Music Tracking
using Multiple Performances as a Reference”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain, 2015, pp. 357–363

[7] Andreas Arzt, Harald Frostel, Thassilo Gadermaier, Martin Gas-
ser, Maarten Grachten, and Gerhard Widmer. “Artificial Intelli-
gence in the Concertgebouw”. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). Buenos Aires,
Argentina, 2015, pp. 2424–2430

This work was motivated by the task of tracking complicated sym-
phonic music, which poses some unique challenges. On a personal
note, the two papers above also mark two personal achievements. For
“Real-time Music Tracking using Multiple Performances as a Reference”
we received the best paper award at the ISMIR conference. But more
importantly, the paper “Artificial Intelligence in the Concertgebouw”
describes how we successfully applied our tracking algorithm during
a performance of Richard Strauss’ Alpensinfonie at the Concertge-
bouw in Amsterdam, which was a remarkable challenge.

contributions Unless stated otherwise, the research in this chap-
ter was conducted by the author of the thesis. Gerhard Widmer was
involved in the writing process. Harald Frostel, Martin Gasser,
Maarten Grachten and Thassilo Gadermaier helped with data prepa-
ration and setup for the application of the multi-agent tracking algo-
rithm at the Concertgebouw. Martin Gasser was responsible for the
client-server infrastructure that was used to distribute the data to the
tablet computers in the audience [56].

4.1 introduction

The performance of a music tracker depends considerably on the
quality of the underlying score representation. If a score differs from
the actual performance (e.g. missing notes, missing voices, different
tempo, differences due to different editions), the tracker will have a

63

64 robust multi-agent music tracking

hard time following the performers. In addition, as we are treating
music tracking as an audio-to-audio synchronisation task, the quality
of the synthesised audio version of the score plays a vital role. For
piano music, producing synthesised audio files of sufficient quality
is feasible. High quality sound fonts are available, and the piano
produces sounds in a very controlled way, compared to many other
instruments. There is a limited and well-defined number of pitches.
The sound is produced by a hammer that strikes the strings with
a specific speed, and the main parameter that can be varied by the
performer is the speed which controls the loudness. In addition, the
performer has some additional control of the timbre via the pedals.

In contrast to this, e.g. a violin player has much more direct control
of the way the sound is produced. The strings can be bowed or picked,
the performer can produce basically any pitch, might apply vibrato,
or add special harmonics by only touching a string lightly, can control
the timbre via various bowing techniques, and so on. This complexity
makes it much harder to produce an appropriate audio file represent-
ing the score for music tracking. While for piano this is an automatic
process (the result is very mechanic, but sufficient for our purposes),
for many other instruments a sound engineer would have to spend a
considerable amount of time to produce usable output. Thus, tracking
an orchestra, which produces a complex mix of sounds of instruments
with very different properties, is a special challenge. While in theory
it is possible to generate an audio representation of the score that is
suitable as a basis for our tracker, it clearly is impracticable and very
inflexible.

Thus, the goal of the work presented in this chapter was to find an
automatic way of producing high quality features for music tracking.
The basic idea of our approach is to use other performances of the
same piece as a tracking reference. We propose to automatically pre-
pare the necessary symbolic data via off-line alignment, and present
a multi-agent approach based on a number of these automatically
preprocessed performances that substantially improves the tracking
results (see Section 4.2, which is based on [13]). This multi-agent ap-
proach was then applied in a similar scenario to a very challenging
task. At the Concertgebouw in Amsterdam we had the opportunity
to track the world-famous Concertgebouw Orchestra, which was
playing the Alpensinfonie by Richard Strauss. A description of this
challenge is given in Section 4.3, which is based on [7].

4.2 music tracking using multiple performances as a ref-
erence

The music tracking algorithm presented in Chapter 3 is based on the
idea of aligning the live performance to a synthesised audio version
of the score. As could be seen, this generally works well, especially

4.2 music tracking using multiple performances as a reference 65

id composer piece name # perf. data type

CE Chopin Etude Op. 10 No. 3

(excerpt)
22 Match

CB Chopin Ballade Op. 38 No. 1

(excerpt)
22 Match

MS Mozart 1st Mov. of Sonatas
KV279, KV280, KV281,
KV282, KV283, KV284,
KV330, KV331, KV332,
KV333, KV457, KV475,

KV533

1 Match

RP Rachmaninoff Prelude Op. 23 No. 5 3 Manual

B3 Beethoven Symphony No. 3 1 Manual

M4 Mahler Symphony No. 4 1 Manual

Table 4.1: The evaluation data set.

for piano music – but it turned out to be problematic for complex
polyphonic orchestral music due to the quality of the automatically
generated “score audio”.

In this section, which is based on [13], an alternative approach is
presented. Instead of using the symbolic score directly, we propose
to first automatically align a recording of another performance of the
same piece to the score. Then, we use this automatically annotated
“score performance” as the new score representation for the on-line
tracking process. The motivation for this is twofold. Firstly, we expect
the quality of the features to be higher than if they were computed
from a synthesised version of the score. Secondly, in a performance a
lot of intricacies are encoded that are missing in the symbolic score,
including changes in (local) tempo and loudness. In this way we
implicitly also take care of special events like trills, which normally
are insufficiently represented in a symbolic score representation.

As will be seen in this section, this approach proves to be promis-
ing, but the results also depend heavily on which performance was
chosen as a reference. To improve the robustness we further propose
a multi-agent approach (inspired by [139], where a related strategy
was applied to off-line audio alignment), which does not depend on
a single performance as a reference, but takes multiple “score per-
formances” and aligns the live performance to all these references
simultaneously. The output of all agents is combined to come up with
the current position in the score. As will be shown in the evaluation,
this extension stabilises our approach and increases the alignment
accuracy.

66 robust multi-agent music tracking

4.2.1 Data Description

Compared to Chapter 3, the data collection was expanded with two
Symphonies by Beethoven and Mahler (see Table 4.1). These two
pieces were the main target of this new approach. Again, the table also
indicates how the ground truth was compiled. For the Ballade and
Etude by Chopin, and for the Mozart Piano Sonatas we have access
to accurate data about every note onset that was played, as these were
recorded on a computer-monitored grand piano. For the Prelude by
Rachmaninoff as well as for the Symphonies by Beethoven and
Mahler we have to rely on manually annotated performances (at
the note level for the Prelude and at the downbeat level for the two
Symphonies). See Section 2.2 for more information about the data
collection.

Furthermore, we collected a number of additional performances of
the pieces in our dataset. For these we do not have any annotations,
and their sole purpose is to be processed fully automatically. These
will act as replacements for the symbolic scores. We collected seven
additional performances for each piece in the dataset. We made an
exception for the excerpts of the Ballade and the Etude by Chopin,
as we already have 22 performances of those. We thus reused these
performances accordingly, randomly selected seven additional per-
formances for each performance in the evaluation set, and treated
them in the same way as the other additional data (i.e. we did not use
any part of the ground truth, everything was computed automatically
when they were used as a “score performance”). We also took care not
to use additional performances of the same performer(s) that occur in
our evaluation set.

4.2.2 Standard Music Tracking Based on a Symbolic Score Representation

The methods described here are based on the music tracking approach
as detailed in Chapter 3. First, we re-evaluated the algorithm on the
expanded data set (see Table 4.21). The results are shown as proportion
of correctly aligned pairs of time points (note times or downbeat times,
respectively) for different error tolerances (in seconds). For instance,
the first number in the first row means that for the Chopin Etude
the alignment was performed for 33% of the “annotation time points”
(i.e. notes or downbeats) with an error smaller than or equal to 0.05
seconds.

The goal is to improve on these results, both regarding tracking
accuracy and, especially, robustness (i.e. reduce the amount of big
mistakes made by the music tracker). As can be seen, the algorithm

1 The differences between these results and the ones presented in Section 3.5 are
explained by small optimisations and changes of parameter settings of the algorithm
(see Section 3.6.1).

4.2 music tracking using multiple performances as a reference 67

error ce cb mz rp b3 m4

≤ 0.05 s 0.33 0.33 0.55 0.45 0.42 0.23

≤ 0.25 s 0.96 0.92 0.97 0.90 0.84 0.71

≤ 0.50 s 0.99 0.96 0.98 0.96 0.91 0.83

≤ 0.75 s 1 0.98 0.99 0.98 0.94 0.87

≤ 1.00 s 1 0.98 0.99 0.98 0.95 0.91

Table 4.2: Results for the on-line tracking algorithm. The results are shown as
proportion of correctly aligned pairs of time points (note times
or downbeat times, respectively) for different error tolerances (in
seconds).

works particularly well on the piano pieces, but shows problems with
the two symphonies. A reason for this is that it is relatively easy to
synthesise piano pieces from MIDI in acceptable quality, but it is much
harder to do this automatically for orchestral pieces.

4.2.3 Music Tracking via a Single Performance as a Reference

As we are effectively treating the task of music tracking as an on-line
audio-to-audio alignment task, we can actually use any annotated
audio recording of a performance as a score representation. Using a
real performance as a “score” has some advantages.

Firstly, an audio file synthesised from a deadpan MIDI file may
sound bad compared to a real performance, thus also the features are
of relatively low quality (i.e. they differ sometimes quite heavily from
the features computed from the live performance we want to track).
Despite obvious differences between performances, their respective
features tend to be more similar to each other. This is especially true
for orchestral pieces, which often include instruments that are hard to
synthesise in high quality (or at least this would demand expensive
sound fonts and a lot of effort by a trained audio engineer).

Secondly, a performance implicitly encodes a lot of information that
is missing in the symbolic score. This includes detailed information
about tempo, loudness and articulation. Again we want to stress
that of course performances differ from each other quite heavily, but
compared to the differences between a performance and an audio
synthesised from the MIDI file, these differences are small.

There is also one big disadvantage: the symbolic information linking
time points in the audio to beat times in the score, which we get for
free when we use a MIDI file as the basis for the score audio, is
missing. Thus, this information needs to be generated. There are two
possible ways to do that: (1) by manual annotation, which can be very
laborious, or (2) by automatic off-line alignment of the performance to
the score — which is the option we decided on, as we are interested

68 robust multi-agent music tracking

Live Performance

Score

MIDI Representation

Synthesised MIDI

On-line Music Tracking

Live Performance

Score

MIDI Representation

Synthesised MIDI

Performance
Recording

On-line Music Tracking

Off-line Alignment

Figure 4.1: Standard music tracking (left) vs. music tracking via an off-line
aligned reference performance (right).

in an automatic method to improve tracking results (see Section 4.2.3
below).

Figure 4.1 shows a sketch of the intended setup. On the left, standard
music tracking is shown, where the live performance is aligned to
the symbolic score (via a synthesised audio). On the right, another
performance is first aligned to the symbolic score. This performance is
then used as the new reference in the on-line alignment process.

Off-line Alignment

To use a performance as a “score” we have to generate the necessary
symbolic information, linking time points in the audio to beat times
in the score. As we are interested in a fully automatic way to improve
the tracking results, we decided to use off-line audio alignment to
align the “score performance” to the symbolic score, which gives
us the needed mapping as a result. As off-line audio alignment is
far more accurate than on-line tracking, our intuition was that the
increase in feature quality outweighs the error introduced by the
off-line alignment process.

The off-line alignment is computed with the music tracking algo-
rithm from Section 4.2.2, with the only difference being that in the
end we compute the backward path, as it is done in the standard
DTW algorithm. As this path is based on more information (i.e. it is
computed in a non-causal way), the results are generally much more
accurate than in the on-line case. Of course any off-line audio-to-score
alignment algorithm could be used for this task (see Section 2.4.2 for
a discussion of work related to this task).

4.2 music tracking using multiple performances as a reference 69

error ce cb mz rp b3 m4

≤ 0.05 s 0.92 0.87 0.93 0.75 0.54 0.38

≤ 0.25 s 0.99 0.97 0.99 0.97 0.93 0.86

≤ 0.50 s 1 0.97 1 0.99 0.96 0.94

≤ 0.75 s 1 0.98 1 0.99 0.97 0.97

≤ 1.00 s 1 0.98 1 1 0.98 0.98

Table 4.3: Results for the off-line alignments. The results are shown as pro-
portion of correctly aligned pairs of time points (note times or
downbeat times, respectively) for different error tolerances (in
seconds).

error ce cb mz rp b3 m4

≤ 0.05 s 0.39 0.35 0.52 0.25 0.35 0.27

≤ 0.25 s 0.98 0.96 0.97 0.87 0.85 0.80

≤ 0.50 s 0.99 0.97 0.99 0.97 0.93 0.92

≤ 0.75 s 1 0.98 0.99 0.99 0.95 0.95

≤ 1.00 s 1 0.98 1 1 0.97 0.96

Table 4.4: Results for on-line music tracking based on a single off-line aligned
performance as a reference. The results are shown as proportion of
correctly aligned pairs of time points (note times or downbeat
times, respectively) for different error tolerances (in seconds).

Just to get a rough idea of how much error will be introduced by
the off-line alignment, we ran an experiment on our test data and
aligned it to the symbolic scores (later on, off-line alignments of the
additional recordings will be used, but we expect a similar behaviour).
Unsurprisingly, the results show that there is a gap between the results
of the off-line approach (see Table 4.3) and the on-line music tracking
approach (see Table 4.2). As we will use the off-line algorithm during
data preparation, we strongly expect that the higher quality of the
features and the additional information encoded in the performances
will outweigh the error that is introduced during this step.

Thus, we aligned all the additional performances from Section 4.2.1
to the respective symbolic scores, resulting in performances with
linked symbolic information. In the following sections, we will use
these performances as new references (“score performances”) for the
music tracking algorithm.

Tracking Based on a Single Aligned Performance

Given the automatically computed “score performances”, we can
now use them in the tracking process as shown in Figure 4.1. In this
experiment, each performance from the evaluation set is aligned to

70 robust multi-agent music tracking

error ce cb mz rp b3 m4

≤ 0.05 s 0.39 0.35 0.58 0.19 0.44 0.32

≤ 0.25 s 0.99 0.98 0.99 0.92 0.90 0.84

≤ 0.50 s 1 0.98 1 1 0.95 0.94

≤ 0.75 s 1 0.98 1 1 0.96 0.96

≤ 1.00 s 1 0.99 1 1 0.97 0.97

Table 4.5: Results for the multi-agent tracking approach based on a set of off-
line aligned performances as a reference. The results are shown as
proportion of correctly aligned pairs of time points (note times
or downbeat times, respectively) for different error tolerances (in
seconds).

the score via each respective “score performance”, resulting in seven
on-line alignments for each performance.

The results are given in Table 4.4 and should be compared to the
numbers in Table 4.2. As can be seen, the general trend is an improve-
ment in robustness, especially for the complex orchestral pieces (e.g.
the percentage of aligned downbeats with an error smaller than 250 ms
increased from 71% to 80% for the Mahler symphony).

Unfortunately, the results also proved to be unstable. Some per-
formances are more similar (or at least easier to align) to each other,
which also results in good tracking results — but the use of some of
the “score performances” led to results that were worse than our basic
approach. A closer look at the positions where tracking errors occurred
showed that some of them happened at the same points in time over
all alignments of the piece — basically showing that some parts are
harder to track than others. But there were also many alignment errors
that occurred only for one or two of the “score performances”, but not
for the others. This led us to the idea to combine individual on-line
alignments in such a way that it would smooth out these errors.

4.2.4 Music Tracking via a Set of Performances as Reference

The analysis of the results from Section 4.2.3 above showed that a com-
bination of a number of on-line alignments might further improve the
tracking results. Here, we propose a simple multi-agent strategy (see
Figure 4.2 for an illustration). During a live concert n trackers run in
parallel and each tracker tries to align the incoming live performance
to its score representation, each producing its own, independent hy-
pothesis of the current position in the score. Finally, the hypotheses
are combined to form one collective hypothesis of the music tracking
system.

Many different ways of combining the hypotheses would be possible,
e.g. based on voting or on the current alignment error of the individual

4.2 music tracking using multiple performances as a reference 71

Live Performance

Score

MIDI Representation

Synthesised MIDI

Performance
Recording 1

Performance
Recording 2

Performance
Recording N...

On-line Music Tracking

Off-line Alignment

Figure 4.2: Multi-agent tracking based on off-line aligned performances as a
reference.

trackers. Here, we decided on a very simple method: taking the median
of the positions that are returned by the individual trackers. The
reasoning behind this is that trackers tend to make mistakes in both
directions — i.e. “running ahead” (reporting events to early), and
“lagging behind” (reporting events with some delay) — with about the
same frequency. Thus, trackers that stay safely in the middle of the
pack tend to give a robust estimate of the position in the score.

Furthermore, using the median also means that as long as n
2 + 1

trackers stay close to the actual position, the system would still come
up with a reasonable position estimate — while this is not directly
reflected in the evaluation results, this extra robustness is convenient
when the tracking algorithm is used in real-world applications. Further
strategies to increase the robustness are possible, like the automatic
replacement of trackers that got lost, but were not used in our experi-
ments.

For the evaluation, we set n = 7, as this was a good trade-off
between robustness and computation time (seven on-line alignments
can still be easily computed in real-time on a conventional consumer
laptop). The results given in Table 4.5 show that our approach is
working well. Errors of more than 1 second are rare, and the multi-
agent approach even improved the alignment accuracy for all pieces
(with the exception of the Prelude by Rachmaninoff).

4.2.5 Discussion

The main goal of our approach was to increase the robustness of the
algorithm, i.e. to decrease the frequency of large errors and to make

72 robust multi-agent music tracking

piece off-line standard via 1 via 7

CE 99.06% 95.62% 97.92% 98.78%

CB 97.13% 92.10% 96.00% 97.93%

MZ 99.35% 96.88% 97.46% 99.04%

RP 96.62% 90.14% 87.47% 92.47%

B3 92.88% 83.67% 85.04% 89.55%

M4 86.74% 71.15% 80.06% 83.66%

Table 4.6: Comparison of the results (error tolerance 250 ms). The results are
shown as percentage of matching pairs of time points (note times or
downbeat times, respectively). For instance, the first number in the
first row means that for the Chopin Etude the off-line alignment
was performed for 99.06% of the notes with an error smaller than or
equal to 0.25 seconds. The results of the off-line alignment algorithm
are only shown for comparison. Standard refers to the on-line
music tracker using a synthesised MIDI as a reference (see Section
4.2.2), Via 1 to the tracker using a single “score performance” as
a reference, Via 7 to the multi-agent approach based on seven
trackers.

sure that the tracker does not get lost, even when following difficult
orchestral pieces. For convenience, we give a summary of the results
(see Table 4.6) based on a common measure in the evaluation of music
tracking algorithms: the percentage of notes that were aligned with
an error less than or equal to 250 ms (see [31]). As can be seen, the
multi-agent approach based on automatically aligned reference per-
formances improves the results heavily — in fact for CB the results
of the on-line alignment even surpassed the off-line alignment. For
the results on the Chopin data (CE and CB) one has to take into ac-
count that we used 22 performances which were recorded by different
performers, but still on the same piano and with the same recording
setup, which will have a positive influence on the alignment results.
Still, as the remaining results show, even when completely unrelated
performances of the same piece were used as references, the alignment
results improved drastically.

Especially for the orchestral pieces (B3 and M4), we can see that
our intuition proved to be correct: the error introduced by the off-line
alignment had a lot less impact than the better quality of the features
and the additional tempo and loudness information provided by the
performances. The multi-agent approach proved to be very effective
regarding the increase in robustness. It smoothes out some of the
bigger errors that occur when using just a single performance as a
score reference.

4.3 artificial intelligence in the concertgebouw 73

4.3 artificial intelligence in the concertgebouw

The multi-national European research project Phenicx
2 provided us

with the unique opportunity (and challenge) to demonstrate our score
following technology in the context of a live symphonic concert [7].
The general goal of the project was to develop technologies that enrich
the experience of classical music concerts. In the experiment to be
described, this was done by using the music tracker to control the
transmission and display of additional visual and textual information,
synchronised to the live performance on stage (a similar system was
presented in [110] in the context of the Philadelphia Orchestra).
The user interface and the visualisations were provided by our project
partner Videodock

3.
The event took place on February 7th, 2015, in the Concertgebouw

in Amsterdam. The Royal Concertgebouw Orchestra, conducted
by Semyon Bychkov, performed the Alpensinfonie (“Alpine Sym-
phony”) by Richard Strauss. This concert was part of a series called
Essentials, during which technology developed within the project
could be tested in a real-life concert environment. All the tests dur-
ing this concert series had to be as non-intrusive as possible. For the
demonstration during the concert in question, a test audience of about
30 people was provided with tablet computers and placed in the rear
part of the concert hall to not disturb the regular concert goers.

The setup was as follows. Two microphones were placed a few
meters above the conductor, picking up the music, but also a lot
of noise, e.g. coughing in the audience and noise made by orchestra
members, and a fair amount of reverberation from the hall. In a control
room behind the scenes a regular consumer laptop was receiving the
audio signal and feeding it to a music tracking algorithm, computing
at any point during the performance the current position in the score.
This information was sent to the tablets of the test audience and
triggered pre-prepared visualisations at the appropriate times. The
audience could choose between three different kinds of synchronised
visualisations: the sheet music (with synchronised highlighting of
the current bar, and automatic page turning), textual information
and explanations, and an artistic video, visualising the story of the
symphony (which is “program music” par excellence). Two pictures
with impressions from the live setup are shown in Figure 4.3.

This specific application of music tracking poses some unique chal-
lenges. Most importantly, so far the focus of music tracking has mostly
been on solo or small ensemble music, like solo violin or flute, solo
piano or string quartets, and not to a full sized orchestra (according to
Strauss’ notes the optimal size of the orchestra for the Alpensinfonie

is 129 or more musicians!). This level of polyphony and of variety of

2 http://phenicx.upf.edu

3 http://videodock.com

http://phenicx.upf.edu
http://videodock.com

74 robust multi-agent music tracking

Figure 4.3: Left: view from the control room onto the stage (during orches-
tra rehearsal); right: synchronised score display in the audience
during the concert.

instruments has to be considered when choosing the internal represen-
tation of the score and the features used during the on-line alignment
process. Furthermore, this piece challenges the music tracking algo-
rithm with a vast range of musical situations: very quiet and slow
parts without a clear melodic line (only a sound texture), very sparse
parts with long pauses, energetic, loud and fast parts and even solo
sections.

Ideally, the tracker has to do equally well in all these situations, or
at least well enough to not get lost completely. Thus, the main focus
of our music tracking algorithm is placed on robustness. It actually
does not matter much if an event is detected with a short delay, but it
is very important that the algorithm does not get lost during this long
piece (a typical performance takes about 50 minutes and contains no
breaks).

4.3.1 The Score: Data Representation

To make the live tracking possible some internal representation of the
musical score is needed. Normally the starting point is a symbolic
representation of the score, which we then semi-automatically connect
to images of the sheet music, for visualisation purposes (most of the
time we do this at the bar level). As a basis for the tracking process, we
synthesise the symbolic score and either use it directly (see Chapter
3), or base the tracking on the multi-agent approach described above
(see Section 4.2).

For the Alpensinfonie we ran into problems with this approach.
First of all, it is far from easy to get good quality symbolical repre-
sentations for orchestral pieces. In the case of the Alpensinfonie we
found some MIDI files on the internet, but in the end all of them
turned out to be unusable because of grave mistakes and missing
parts. We also contacted a music publishing house, but they could
not provide us with a symbolic version for this particular piece. In
theory one could try to scan a printed score — those are of course
readily available — and try to convert it to a symbolic representation.
Unfortunately, optical music recognition (OMR) algorithms are still

4.3 artificial intelligence in the concertgebouw 75

not good enough to cope with the complexity of an orchestral score
fully automatically, and the manual correction of their output would
take an immense amount of time.

Thus, we decided to try a different approach and did not use a
symbolic representation at all. Instead, we directly used a recording
of the same piece as the basis for the music tracking. This version —
we selected a performance by the Royal Concertgebouw Orchestra

from 2007, conducted by Mariss Jansons — is manually annotated
beforehand, so that the timing of each downbeat (the first beat in a bar,
and thus the start time of a new bar) is known and the performance can
be used as a direct replacement of the score (all the visual information
shown to the audience is timed at the bar level).

We strongly believe that from a practical point of view this is the
best approach for tracking music of this complexity (regarding number
of instruments / polyphony). As discussed in Section 4.2, the resulting
score features are of very high quality, while the amount of time spent
on annotating the performance (about 12 hours) was acceptable —
especially compared to the amount of time it would have taken to
either repair one of the MIDI files or produce a digital version of the
score from scratch.

The absence of symbolic scores in the system also means that theo-
retically it can be used for any piece of music for which a recording
exists. This immensely extends the repertoire for which music tracking
can be used.

Another important point is that the amount of annotations actually
depends on the specific usage scenario. We decided to show the sheet
music synchronised at the bar level, and thus needed to annotate
the timing of every downbeat. As the piece consists of 1154 bars, we
had to find each of these points in the audio file. Then we linked
all the remaining information (the text and the videos) to these time
points. Had we decided to only turn the pages automatically, the
annotation work would have been reduced to about 190 time points
(160 pages plus about 30 additional events for the videos and textual
information).

The downside of this approach is that without the symbolic score
there is no information about specific notes. While this is not important
for our task, it might be important if the computer’s role is a more
proactive one and predicts the timing of certain events before they are
being played, or makes use of the symbolic information to actively
take part in the performance (e.g., by synthesising an accompaniment).

4.3.2 Following Live Orchestral Music: Tracking Algorithm

For the tracking itself we relied on our multi-agent approach as de-
scribed in Section 4.2.4. We collected six more performances of the
Alpensinfonie and aligned them to the manually annotated perfor-

76 robust multi-agent music tracking

conductor orchestra year dur . data type

Jansons Royal Concertgebouw Orch. 2007 52:51 Manual

Haitink London Symphony Orch. 2008 50:20 Alignment

Previn Philadelphia Orch. 1980 49:09 Alignment

Karajan Berlin Philharmonic Orch. 1980 51:05 Alignment

Luisi Staatskapelle Dresden 2007 50:42 Alignment

Haitink Royal Concertgebouw Orch. 1985 49:29 Alignment

Järvi Royal Scottish National Orch. 1987 49:33 Alignment

Table 4.7: Performances annotated to be used as alignment basis (“score
representations”)

mance via off-line audio alignment (see Table 4.7 for an overview
on the data), to produce the information about the location of the
downbeats. This means that these six additional “score performances”
were produced without any additional manual effort. Figure 4.4 shows
a sketch of the multi-agent tracker as it was used at the concert.

4.3.3 The Event: Live Tracking in the Concertgebouw

The event on February 7, 2015 in the Concertgebouw was a big
success. The tracking went smoothly and there were no glitches, only
some minor inaccuracies. An obvious mistake happened at the quiet
section in the beginning (see Figure 4.5). The sound texture here
essentially consists of a very soft and repeating pattern. In cases like
this the trackers sometimes tend to “wait”, because they try to align
newly incoming instances of the pattern to past positions in the score
(that also represent the same pattern). This resulted in a perceived
delay of roughly one bar, for a period of about five bars. As soon as
the texture changed and more distinct sounds could be recognised, the
trackers recovered quickly. There were no further noticeable problems
and in the end all of the trackers could follow the whole concert, and
there was never any concern that the system might fail.

The general opinion amongst the project staff and the test audi-
ence was that the tracking worked very well and the accuracy was
more than sufficient to trigger the visualisation in time. Only a few
inaccuracies were noticed.

4.3.4 Evaluation

For a quantitative post-hoc evaluation we annotated a recording of
the live concert. The results of the evaluation are presented in Tables
4.8 and 4.9. To see the effect of the multi-tracking approach, we also
simulated the tracking of the performance via the single annotated
“score performance”. As can be seen, there are only slight differences

4.3 artificial intelligence in the concertgebouw 77

Live Performance

Multi-agent On-line Music Tracker

Decision Maker: Computes a Combined Hypothesis

Output: Score Position

Tracker 1
'Score': Jansons/RCO

Tracker 2
'Score': Haitink/LSO

Tracker N
'Score': Previn/PSO

...

Figure 4.4: The Multi-agent Tracker. The live input is fed to N independent
instances of the tracking algorithm. Each aligns the input to its
own score representation, based on different performances of the
same piece. Then, the individual hypotheses are combined and the
estimate of the current position in the score is returned. Source of
the sheet music: IMSLP (http://imslp.org), Score 20542. Picture
of the Concertgebouw Orchestra (c) Christina Chouchena /
Royal Concertgebouw Orchestra.

in the results for the single tracker and the multi-agent approach.
Keeping in mind that the goal of the multi-agent approach was to
increase the robustness — as long as n

2 + 1 trackers stay close to the
actual position, the system would still come up with a reasonable
position estimate —, this is a good result: extra robustness and a slight
increase in accuracy were achieved without any extra manual efforts
as the additional data was prepared by automatic methods.

http://imslp.org

78 robust multi-agent music tracking

Figure 4.5: Excerpt from the score. This part is played very slowly and softly
(note the p and pp dynamic markings), without a distinct melody
(sustained notes in the strings, horns and the contrabassoon). The
triplet figures in the bass section are so soft that they don’t stand
out but add to the overall sound texture. Source of the sheet
music: IMSLP (http://imslp.org), Score 20542.

The results were more than sufficient for the task in question. The
median error for the multi-tracking approach is about 0.1 seconds.
Only in very rare cases did the tracker make major mistakes. Specifi-
cally the section already discussed above (see Figure 4.5) still causes
problems, culminating in a maximum error of 5.38 seconds at bar 24

(which translates to about 1.5 bars, as this part has a relatively slow
tempo). The extent of the problem was not as apparent during the
concert itself, also because even for humans it is very hard to follow
the orchestra during this part.

http://imslp.org

4.4 conclusions 79

err. (sec) single multi-agent

≤ 0.25 78.25% 81.80%

≤ 0.50 92.20% 93.24%

≤ 0.75 95.57% 96.44%

≤ 1.00 97.49% 98.01%

Table 4.8: Real-time alignment results for the single tracker and the multi-agent
tracker, shown as cumulative frequencies of errors of matching
pairs of downbeats. For instance, the first number in the first row
means that the single tracker aligned 78.25% of the downbeats
with an error smaller than or equal to 0.25 seconds.

single multi-agent

Average Error 0.20 sec. 0.19 sec.

Standard Dev. 0.35 sec. 0.36 sec.

First Quartile 0.06 sec. 0.05 sec.

Median Error 0.11 sec. 0.10 sec.

Third Quartile 0.22 sec. 0.19 sec.

Maximum Error 5.33 sec. 5.38 sec.

Table 4.9: Real-time alignment results for the single tracker and the multi-agent
tracker on the Alpensinfonie.

4.4 conclusions

In this chapter a robust approach to real-time music tracking was
presented. Instead of tracking directly on a symbolic score represen-
tation, we first use off-line alignment to match other performances
of the piece in question to the symbolic score. We then use these
performances as our new score representation, which results in high
quality features, and implicitly also adds extra information about
how this piece generally is performed. Together with a multi-agent
tracking strategy, which smoothes out most of the major errors, we
achieve increased robustness and also increase the accuracy of the live
tracking, especially for complex orchestral music. We also reported on
a successful real-world test of our algorithm in a famous concert hall.

4.5 prototypical implementation

A very general sketch of the prototype has already been shown in
Figure 4.4 above. Figure 4.6 shows the implementation of the multi-
agent tracker within the Flower framework. The feature computation
stage is the same as for the normal tracker. The only difference is
that instead of one tracking algorithm, multiple instances are used,

80 robust multi-agent music tracking

Audio Input

IFGram

IFExtractor

ChromaIF STMSP

MusicTrackerFeatures

Microphone

Application/User Interface/Visualisation

Flower Audio Processing Graph

MusicTracker1

Multi-agent Tracker

MusicTracker2 MusicTrackerN

Figure 4.6: The multi-agent tracker, as used e.g. at the Concertgebouw for
tracking orchestral music.

each running in a separate zone (thread). For most of the experiments,
including the live demonstration at the Concertgebouw, seven track-
ers are running in parallel, each using its own score representation
based on a performance of the piece in question. The outputs of the
individual trackers are collected by the Multi-agent Tracker to com-
pute a combined hypothesis about the current position in the score.
In addition, the Multi-agent Tracker processing can also directly
influence individual trackers and e.g. reset them to a sensible position
if they clearly got lost.

This setup was successfully employed multiple times for public
demonstrations, mostly in the context of orchestral music (see Section
6.2 for descriptions of further live demonstrations, as well as videos of
these experiments).

5
N E A R - I N S TA N T P I E C E I D E N T I F I C AT I O N A N D
F L E X I B L E M U S I C T R A C K I N G O N A D ATA B A S E O F
S C O R E S

preliminaries This chapter describes a flexible music tracking
algorithm that is able to follow the performer not only based on
a single score, but on a complete database of scores. To do so, the
tracker needs a way of identifying the piece that is being played,
and the position within that piece. Here, work on a fingerprinting
algorithm is described that tries to solve this task.

The main contributions of this chapter were published in

[6] Andreas Arzt, Sebastian Böck, and Gerhard Widmer. “Fast Identi-
fication of Piece and Score Position via Symbolic Fingerprinting”.
In: Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR). Porto, Portugal, 2012, pp. 433–438

[17] Andreas Arzt, Gerhard Widmer, and Reinhard Sonnleitner. “Tem-
po- and Transposition-invariant Identification of Piece and Score
Position”. In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). Taipeh, Taiwan, 2014,
pp. 549–554

Preliminary work that will only be briefly described can be found in

[15] Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Automatic
Page Turning for Musicians via Real-Time Machine Listening”.
In: Proceedings of the European Conference on Artificial Intelligence
(ECAI). Patras, Greece, 2008, pp. 241–245

[12] Andreas Arzt and Gerhard Widmer. “Towards Effective ’Any-
Time’ Music Tracking”. In: Proceedings of the Starting AI Re-
searchers’ Symposium (STAIRS). Lisbon, Portugal, 2010, pp. 24–
36

contributions Unless stated otherwise, the research in this chap-
ter was conducted by the author of the thesis. The transcription algo-
rithm was developed (in Python) by Sebastian Böck [20], who also
trained the models used in the presented experiments. The author
of the thesis re-implemented the necessary parts of the algorithm in
C++. Reinhard Sonnleitner contributed the idea of the verification
step, which was adapted to the use case described in this chapter. Ger-
hard Widmer was involved in the writing process and gave valuable
suggestions regarding the evaluation procedures used in this chapter.

81

82 music identification and flexible music tracking

5.1 introduction

Generally, the underlying assumption for the task of music track-
ing (see Section 2.4.1) — and also for many cases of off-line music
synchronisation (see Section 2.4.2) — is that the performers follow
a fixed score (the sheet music), and deviate from this score only in
some minor details. Mistakenly or deliberately, they may leave out
a few notes or play a few additional notes that are not in the score.
Often, they will not strictly follow tempo and loudness annotations
as given in the sheet music. But almost all music tracking algorithms
in the literature assume that regarding note content and structure the
performers follow the sheet music closely, i.e. start at the beginning,
play the piece as written down in the sheet music, without additional
repetitions, without skipping parts, and end with the final notes.

In many real-life situations this view of music tracking is too restric-
tive. For example, when practising a piece of music, the performer
might repeat parts over and over, or skip sections and jump to another
part that needs to be practised. Even in concert situations performers
sometimes ignore repeated sections. Music tracking algorithms that
are not aware of these structural deviations are useless in these situ-
ations and will inevitably get lost. For approaches to music tracking
that are to some extent able to cope with structural differences within
a single piece see e.g. [97, 104, 134]. The same problem for off-line
alignment is discussed in Section 2.4.2.

In addition, if a musician at home is sitting down at the piano,
just playing a single piece, it might be quite inconvenient to first set
everything up, look for the piece in the database, press the start button
and finally start playing. Furthermore, sometimes the musician may
not even know the exact name of the piece, and just remember the
first few notes, so she would have to browse the sheet music and
actively look for the piece in question. Instead, it would be much more
convenient to just start playing, and after the first few notes the piece
in question comes up on the screen. Then, the system follows the
performance and automatically turns the pages (or scrolls the sheet
music).

In this chapter an approach is presented that makes music tracking
much more flexible and can cope with all the situations mentioned
above. The techniques presented here can form the backbone of a
Complete Classical Music Companion (see Section 2.1), which is of
use not only for performers, but also for listeners of classical music. For
this flexible approach, we coined the term “any-time music tracking”:
an algorithm that is constantly listening to its environment, always
ready to react to music, to identify what it is listening to and to act
accordingly and track the progress of the performer(s) over time.

The development of this approach can be followed over the last few
years. In [15] a first effort was presented to at least be able to cope

5.2 early approaches 83

with left-out or added repetitions, based on manual annotations of the
possible paths through the piece. Later on, this was extended to deal
with arbitrary jumps, but still within a single piece [12] (see Section
5.2 below). By developing a tempo-invariant version of fingerprinting
[6] we were finally able to extend this approach to work on a database
of scores. In addition, we developed a version that can even cope with
arbitrary transpositions [17]. These two approaches are closely related,
and jointly described in Section 5.3.

5.2 early approaches

A simple, inflexible approach to detecting deviations from the intended
structure is described in [15]. The general idea is as follows (for an
illustration see also Figure 5.1). In addition to the score (in symbolic
form and as computed features), structural information is given. In
the simplest case, this information consists of manually annotated
section borders, all repeat signs, and similar annotations (e.g. da capo
al fine). The goal is to detect possible skips and repetitions at these
predetermined positions.

The tracking starts at the beginning of the piece. When it reaches
the position of one of the provided annotations (the repeat sign (2) in
Figure 5.1), according to this model there are three possible paths the
performer can follow: the performer repeats the section in question,
i.e. jumps back to (1) in the score, or she could ignore the repeat sign
and just continue with the next section (2), or skip an entire section, i.e.
jump to (3) and continue from there (which would be very unusual in
this particular case).

To detect which course of action the performer takes, two additional
instances of the tracking algorithm are initialised, which try to align
the incoming live performance to the different score contexts. Thus,
trackers are positioned at (1), (2), and (3) in Figure 5.1. The trackers
then try to follow the live performance. After a few seconds, the
alignment costs of the three trackers are compared. Generally, the
tracker that followed the same path in the score as the performer will
have the lowest alignment costs and thus it can be detected which
decision the performer actually made.

This idea works very well, and all the following approaches are
based on it. Thus, the main challenge was to get rid of the need for
predefined structural information and to provide the system with
ways to cope with arbitrary deviations.

In [12] we described a slightly more flexible method. The static
structural information is replaced by a relatively crude algorithm that
provides the system with a set of hypotheses that are in turn then
checked by instances of the tracking algorithm.

In this system music tracking is performed on two different levels.
The first level is using low-resolution audio features (frame size 600 ms

84 music identification and flexible music tracking

RONDO ALLA TURCA
Mov. 3 from Sonata No. 11, K. 331

Wolfgang Amadeus Mozart (1756‒1791)

!2!

!!!!!!

!

!!!

!4!

!

!" ! ! !#

!

!

!!!
! !!

!!!
!!

!!!
!! " 42

42

Allegretto
! !!#

!!#
!

" !!!
4
2!

!!
!
3

!

!
5

!"! ! !3

!!!
!
1

! !
!!!

!
4p
$

%

!!!
" !1 !! !
!!!

! !

!!!

4

!!

4!

!
!! ! !4

!!!
%

!!!

""""

"""" !!! !!!
p
!!

! !!!

$

!4

!!
!!!

!!
! !

4
2#

!
!

! !
!!

!!
mf
$

!!!!"
6

"
#

!

!!
!

!!
!! ! !!

ten.

#

!

! !
!!

!

!!
!!!

!!! !!#
!!! !!#! !!#

!

!

!

" !!!

!!#

!!!

!!
!!!## !1!

mf
$

!31!

!!

!

!!

!!
4
2!

!

!

!!!
" !! !!

3

!

" !&

!&

!

!!!!!!
%

!!!
!" !!!

$

!
!
!

!!!13 !! !

!!!
"# "

#

!! !!
fz
!

!

!!!
%

p
!!!

!

!!
"! !
4
2#

!

!

!!!

!! !!

!!!!

!!

! !

!!

!!!!

!!
!!
ten.
#

!

!

!!
!!!!

p
$

!! !! !!!

!!

""""

""""
! !!

2
4!

'

!!!
!
2
(!4!

!!

!!

!!!
!&

!!
1
4

!2!

!!!
!!
!

19

"$
#

!
" !!!

! !!
!

""
"

f
$""

"

!&
!!
&

! !!!
! !

!

! !

!!!
"!

!!

! !

!!
! !

!

1!

!!

!!!

!!!
! !!

!!

2!

!!!
"!!

!!!"

!2!

!!!

!!#

!!

!1!

!!

! !!
!

!!
ten.#

!!
#! !

!!

!2!
!

!3!
!

!

3

!

!25

5

% " ""
"

""
"

!!
!

!!
!!
!#

!!
#

!!
!

!!
!

!!
!

!!
!!

!!

!!
!

!!
!

!1!
#

!!
!

!!
"

!!
!

!!!2!
!

!!
!

!!
#! !

4

!

5

! !

!

!
!!
!

!ten.#

!!
#

!

#

!!
!

!
! !

!!

!
!!
!

!!!

!!
!

!!

""""

""""
!!

!
! !!!

3!
!

!! !

!!

! !! ! !!

!5
!30

" !" !
!!!" ""

"

""
"

!!
!4
" !2

!!!
!
!!!
!!!

!

!!
!!
!

!!
!

!!
!

!!
!

!!
!#

!!
#! !

!!
!

!!
!!
!

!!
#

!3

p
$

!!
&

!&

!!
!

!!
#! ! ! !

!

!!
!

!!

1

2

3

Figure 5.1: The first page of Mozart’s Alla Turca (Piano Sonata No. 11 in A
major, K. 331, 3rd movement), Source: IMSLP (http://imslp.org),
Score 286253.

http://imslp.org

5.3 fast identification of piece and score position 85

and hop size 300 ms) that are computed by aggregating the normal
(high resolution) features. These low resolution features are computed
for the score and for the live audio. A full distance matrix is computed,
containing the distances of the live audio features to all score features.
Based on this coarse resolution, for every incoming frame backward
alignments starting in every position in the score are computed (via a
computationally cheap, greedy local search algorithm). The result is a
list of score positions, ordered by their alignment costs to the current
context of the live performance. This effectively replaces the static
information about possible “forks” in the sheet music and enables the
detection of arbitrary structural changes.

The second level works on high-resolution features (frame size 46 ms
and hop size 20 ms) and comprises a fixed number of instances of
the tracking algorithm that take the hypotheses of the coarse tracking
level and follow them over some time (as described above). Again, the
real score position is determined by comparing their alignment costs
over the last few seconds. The system is helped by an automatically
computed structure model based on a self similarity matrix of the
score that identifies equivalent positions (parts with the same note
content), such that the system avoids tracking the same content via
multiple trackers.

While working well on single pieces, which mostly have a duration
of up to 10 minutes, it is obvious that for a collection of pieces this
is not feasible. Firstly, the time and space complexity for the coarse
tracking are too high, as they are linear in the database size. Secondly,
even if the computation could be sped up via, e.g. some indexing
techniques, preliminary experiments showed that the approach is
not discriminative enough to produce good hypotheses on even a
medium sized database (about 20 pieces). Due to these shortcomings,
the idea to solve the identification problem in the audio domain was
abandoned (thus the description here is rather brief – more details
can be found in [12]). In the next section a different approach to this
problem is presented, based on music transcription and a tempo- and
pitch-invariant fingerprinting algorithm. Although it is motivated by
the idea of using it in combination with a music tracker, this algorithm
is a general approach to retrieve matching sheet music for short audio
queries.

5.3 fast identification of piece and score position

Efficient systems for content-based music retrieval are a major topic
in music information retrieval research. An important sub-task is the
problem of music identification. This is a multi-faceted task, ranging
from identifying noisy version of the same recording (via audio finger-
printing) to finding a song based on the hummed melody (query by
humming). A brief summary is given in Section 2.4.3.

86 music identification and flexible music tracking

Here, we consider the task of score identification: given a short audio
query, the goal is to identify the musical score it is based on. For ex-
ample, if we present an audio excerpt of Vladimir Horowitz playing
Chopin’s Nocturne Op. 55 No. 1 to the system, it should return the
name and data of the piece (Nocturne Op. 55 No. 1 by Chopin) rather
than the data of the specific performance. Moreover, we are also in-
terested in the exact position within the respective score. Accordingly,
the database for this task does not contain audio recordings (as would
be the case for most music identification tasks), but symbolic repre-
sentations of musical scores (i.e., to identify the piece being played,
the system only uses the symbolic score and has no information about
the specific performance by Horowitz in the database). Especially
for classical music, this is not a trivial task, because performances of
the same piece generally differ heavily in terms of tempo, expressive
timing, and other performance aspects, and the sheet music is by far
under-specifying the way a piece is supposed to be played.

In the literature, the main method to solve this task is based on audio
matching (see e.g., [92]). In this case the score is first transformed into
an audio file (or a suitable mid-level representation). Then, an audio
matching algorithm, commonly based on dynamic programming tech-
niques (also see Section 2.4.2), retrieves all excerpts which musically
correspond to a short query clip from a database. The downside of
audio matching is that in general these methods are very slow (i.e.
not suitable for the real-time task we have in mind). To cope with
the computational costs, [75] presented clever indexing strategies that
greatly reduce the computation time. Still, due to the coarse feature
resolution, relatively large query sizes are needed. The audio finger-
printing approach presented in [63] suffers from the same limitation
(see also Section 2.4.3).

Here, we describe a symbolic approach to score identification. Instead
of creating an audio representation of the score we create the database
directly from the symbolic score information. Then we transform the
audio query into a symbolic representation — a list of note onset times
with their respective pitches — and use a symbolic fingerprinting
algorithm to find matching positions in the score database, inspired by
the algorithm described in [138]. This process is very fast, can be used
in real-time, on-line applications, and yields a high recognition rate (as
can be seen in Section 5.5.3). Note that this algorithm involves music
(audio) transcription — which is still an unsolved problem in the
general case — as a query preprocessing step. For this system a state
of the art music transcription system for piano music is used, which,
despite many errors, provides transcriptions of sufficient quality for
the robust symbolic fingerprinting algorithm. Still, this also means
that this system currently only works for piano music (due to a lack
of training data for other instruments).

5.4 the dataset 87

data pieces score

notes

perf.
notes

dura-
tion

Chopin Piano Works 154 325,263 326,501 9:38:36

Mozart Piano Sonatas 13 42,049 42,095 1:23:56

Additional Pieces 159 574,926 – –

Total 326 942,238

Table 5.1: Database and test set overview. In the database, all the pieces are
included. As we only have performances aligned to the scores for
the Chopin and the Mozart corpus, only these are included in
the test set to query the database.

5.4 the dataset

For the evaluation of the score (and score position) identification task
a ground truth is required. As for music tracking, exact alignments
of performances (recordings) of classical music to their respective
scores are needed, such that we know exactly when each note given
in the score is actually played in the performance. Here, we use the
datasets Mozart Piano Sonatas and Chopin Piano Works, which
are described in Section 2.2. For these datasets both symbolic and
audio information are available. To build the score database, the
symbolic music is converted to MIDI files with a constant tempo
such that the overall duration of the file is comparable to a common
performance of the piece.

In addition to these two datasets, the score database includes the
complete Beethoven piano sonatas, two symphonies by Beethoven,
and various other piano pieces. To this data there is no ground truth
available, but this is irrelevant since they are not actively queried in
our evaluation runs (it is solely there to provide more diversity and
to make the task even harder for our algorithm). See Table 5.1 for an
overview of the complete dataset.

5.5 tempo-invariant fingerprinting

For solving the task of score identification, we propose a symbolic
fingerprinting approach (see Figure 5.2), based on the ideas of the
well-known Shazam

1 audio identification algorithm [138]. From the
symbolic scores local, tempo-invariant, and discriminative fingerprints
are extracted and stored in a hash table. For querying the database
the query is transcribed, resulting in a (noisy) list of notes. This list is
then processed in the same way as the symbolic score representations,
resulting in a set of performance fingerprints. Then, this set is com-
pared to the score fingerprint database to identify the corresponding

1 http://www.shazam.com

http://www.shazam.com

88 music identification and flexible music tracking

Score and Position
within the Score

Fast Matching
via Fingerprint

Database

Piano
Transcription

Performance in
Symbolic FormQuery (Audio)

2 parallel STFT

Input
Layer

Output
Layer

Recurrent Neural Network

Hidden
Layer

Hidden
Layer

Hidden
Layer

Sc
or

es
 in

Sy

m
bo

lic
 F

or
m

Figure 5.2: Overview of the proposed solution to score identification.

score (including the exact position within that score). Note that the
tempo-invariance of this method is based on the assumption that the
tempo within a query is relatively stable, i.e. it is mainly invariant to
global tempo. For short queries of a few seconds, this assumption
holds in the majority of cases. An approach taking care of local tempo
differences, which allows for using this approach with longer queries,
is presented in Section 5.7.

5.5.1 Building the Score Fingerprint Database

Before actually processing queries, the score database has to be built.
Here, deadpan MIDI files are used as the basis for the score database.
The duration of these MIDI files is comparable to the duration of a
“typical” performance of the respective piece, but without encoded
timing variations. From these files a simple ordered list of note events
is extracted where for each note event the exact time in seconds and
the pitch as MIDI note number is stored.

Next, for each piece fingerprint tokens are generated. In contrast to
[138] we create them from three successive events according to some
constraints (also see Figure 5.3), to make them tempo-invariant. Given
a fixed event e we pair it with the first n1 events with a distance of
at least d seconds “in the future” of e. This results in n1 event pairs.
For each of these pairs we then repeat this step and again pair them
with the n2 future events with a distance of at least d seconds. This
finally results in n1 ∗ n2 event triplets. In our experiments, we used
the values d = 0.05 seconds and n1 = n2 = 5. Also inspired by [138]
we further constrain the pair creation steps to notes which are at most
two octaves apart.

Given such a triplet consisting of the events e1, e2 and e3 the time
difference td1,2 between e1 and e2 and the time difference td2,3 between
e2 and e3 are computed. To get a tempo independent fingerprint token
we compute the time difference ratio of the time differences: tdr = td2,3

td1,2
.

This finally leads to a fingerprint token [pitch1 : pitch2 : pitch3 : tdr] :

5.5 tempo-invariant fingerprinting 89

Pi
tc
h

Time

td2,3td1,2

p1
p2

p3

Figure 5.3: Fingerprint token generation (example of one generated token).

pieceID : time : td1,2, where the hash key [pitch1 : pitch2 : pitch3 : tdr]
can be stored in a 32 bit integer. Both pieceID and time (of the first event
e1 in the triplet) are needed to identify the corresponding position
later on. The purpose of storing td1,2 in the fingerprint token will be
explained in the description of the search process itself (see Section
5.5.2 below).

The result of the score preprocessing is our score fingerprint data-
base; a container of fingerprint tokens which provides quick access to
the tokens via hash keys.

5.5.2 Querying the Database

Querying the database for matches via a short audio snippet is a two-
step process. First, the query is transcribed into a list of note pitches
with timestamps. Then, this list is converted into fingerprint tokens,
which are used to query the database of score fingerprint tokens for
consecutive sequences of matches.

Preprocessing: Transcribing the Query

Before querying the database, the query (an audio snippet of a per-
formance) has to be transformed into a symbolic representation. The
algorithm we use to transcribe musical note onsets from an audio
signal is described in [20], which exhibits state of the art performance
for this task. It uses a recurrent neural network to simultaneously
detect the pitches and the onsets of the notes (see Figure 5.4 for an
illustration of the algorithm). The author of the thesis was not involved
in the development of this algorithm.

For its input, a discretely sampled audio signal is split into overlap-
ping blocks before it is transferred to the frequency domain with two
parallel Short-Time Fourier Transforms (STFT). Two different window
lengths have been chosen to achieve both a good temporal precision
and a sufficient frequency resolution for the transcription of the notes.
Phase information of the resulting complex spectrogram is discarded
and only the logarithm of the magnitude values is used for further

90 music identification and flexible music tracking

processing. To reduce the dimensionality of the input vector for the
neural network, the spectrogram representation is filtered with a bank
of filters whose frequencies are equally spaced on a logarithmic fre-
quency scale and are aligned according to the MIDI pitches. The attack
phase of a note onset is characterized by a rise of energy, thus the
first order differences of the two spectrograms are used as additional
inputs to the neural network.

The neural network consists of a linear input layer with 324 units,
three bidirectional fully connected recurrent hidden layers, and a re-
gression output layer with 88 units, which directly represent the MIDI
pitches. Each of the hidden layers uses 88 neurons with hyperbolic
tangent activation function. The use of bidirectional hidden layers
enables the system to better model the context of the notes, which
show a very characteristic envelope during their decay phase.

The network is trained with supervised learning and early stopping.
The network weights are initialised with random values following a
Gaussian distribution with mean 0 and standard deviation 0.1. Stan-
dard gradient descent with backpropagation of the errors is used
for training. The network was trained on a collection of 281 piano
pieces (this dataset is independent from any other data used in the
thesis) recorded on various pianos, virtual and real (seven different
synthesisers, an upright Yamaha Disklavier, and a Bösendorfer SE
grand piano).

To make the transcriber applicable also in on-line scenarios, instead
of preprocessing the whole piece of audio at a time, the signal is split
into blocks of 11 frames centred around the actual frame. The use
of 11 frames is a trade-off between keeping the system’s ability to
model the context of the notes and to keep the introduced delay at a
minimum. In the current system the constant lag caused by the query
preprocessing amounts to about 210 ms.

Table 5.2 shows the on-line transcription results for the complete
test set described in Section 5.4. A note is considered to have been
discovered correctly if its position is detected within a detection win-
dow of given size around the annotated ground truth position. As
can be seen in the table, the results are far from perfect (though they
are very good, considering the state of the art). If the proposed finger-
printing system is used in an off-line scenario, the use of an off-line
transcription algorithm is an option to slightly improve the results.

Querying the Database

The transcription of the query results in a list of note pitches with
timestamps. This list is then processed in the same way as described
in Section 5.5.1 above to produce query tokens. Of course in this case
no piece ID is known and furthermore each query starts at time 0.
These query fingerprint tokens are used to query the database. The

5.5 tempo-invariant fingerprinting 91

2 parallel STFT

Input
Layer

Output
Layer

Recurrent Neural Network

Hidden
Layer

Hidden
Layer

Hidden
Layer

Figure 5.4: The transcription system, based on a recurrent neural network.

detection window precision recall f-measure

20 ms 0.586 0.489 0.533

40 ms 0.812 0.678 0.739

60 ms 0.851 0.710 0.774

80 ms 0.864 0.720 0.786

100 ms 0.869 0.725 0.790

Table 5.2: Results of the on-line transcription algorithm, for different detec-
tion window sizes.

92 music identification and flexible music tracking

!"

#"

$"

%"

&"

'"

("

!" $" &" (")" #!" #$" #&" #(" #)" $!"

!
"#

$%
&'
()

#&
(*
&+
#,
-*

./
&

+,-$#&'()#&(*&+#,-*./&

!"

#"

$"

%"

&"

'!"

'#"

'$"

!" '" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '*" '&" '+" #!"

!"
#$
%&
'"

(%
)&

*+",$!-.$&/&0($,1!-.$&

a)

b)

Figure 5.5: a) scatter plot of matching tokens and b) computed histogram for
diagonal identification

method described below is again very much inspired by the audio
fingerprinting method proposed in [138].

The general idea is to find regions in the score fingerprint database
which share a continuous sequence of tokens with the query. To
do so first all the score tokens which match the query tokens are
extracted from the database. When plotted as a scatter plot against
their respective time stamps (see Figure 5.5a) matches will be indicated
by (rough) diagonals (i.e., these indicate that the query tokens match
the score tokens over a period of time). As identifying these diagonals
directly would be computationally expensive, we instead use a simpler
method described in [138]. This is based on histograms (one for each
piece in the score database, with a time resolution of one second) into
which the matched tokens are sorted in a way such that peaks appear
at the start points of these diagonals (i.e., the start point of a query, see
Figure 5.5b). This is achieved by computing the bin to sort the token
into as the difference between the time of the score token and time
of the query token. The complete process will be explained in more
detail below.

For each of the query tokens with [qpitch1 : qpitch2 : qpitch3 : qtdr] :
qtime : qtd1,2 the following process is repeated. First, matching tokens
are extracted from the score fingerprint database via the hash key.
To allow for local tempo differences we permit the normalized time
difference to be within 1

4 of qtdr. This normally results in a large
number of score tokens [spitch1 : spitch2 : spitch3 : stdr] : spieceID :
stime : std1,2. Unfortunately, directly sorting these tokens into bin

5.5 tempo-invariant fingerprinting 93

query length in notes 10 15 20 25

correct piece as top match 0.6 0.82 0.88 0.91

correct piece mrr 0.68 0.86 0.91 0.93

correct position as top match 0.53 0.72 0.77 0.79

correct position mrr 0.60 0.79 0.83 0.85

mean query length in seconds 1.47 2.26 3.16 3.82

mean query execution time (sec.) 0.02 0.06 0.11 0.16

Table 5.3: Results for different query sizes of the tempo-invariant piece and
score position identification algorithm on the test database at the
piece level (upper half) and at the score position level (lower half).
Each estimate is based on 2500 random audio queries. For both
categories the percentage of correct detections at rank 1 and the
mean reciprocal rank (MRR) are given. Additionally, the mean
length of the query in seconds and the mean execution time for a
query is shown.

round(stime− qtime) of the histogram spieceID does not necessarily
make sense because of the query possibly having a different tempo
than expected by the score.

As an illustration let us assume a slower tempo for the query than
for the respective score. Then the diagonal in Figure 5.5a would be
steeper and when computing the bins via round(stime− qtime) the first
few tokens may fall into the correct bins. But soon the tokens, despite
belonging to the same score position, would get sorted into lower bins
instead.

Thus, we first try to adapt the timing by estimating the tempo
difference between the score token and the query token. First we compute
the tempo ratio of both tokens r =

std1,2
qtd1,2

and then adapt the time
of the query event when computing the bin to sort the token into:
bin = round(stime− qtime ∗ r). This assumes that the local tempo is
relatively stable, which is true for most short queries (see Section 5.7
for an extension, making this approach applicable to longer queries).

We now have a number of histograms, one for each score in the
fingerprint database, and need a way of deciding on the most probable
score position(s) (and, by implication, the most probable piece), for
the query. We did experiments with different methods of computing
the matching score but in the end simply taking the number of tokens
in each bin as the score produced the best results.

5.5.3 Evaluation

An evaluation of the transcription stage (query preprocessing) was
already presented in Section 5.5.2 above. As Table 5.2 shows, the results

94 music identification and flexible music tracking

of this stage are rather noisy. Still, the quality of the transcription is
sufficient to be used with our robust fingerprinting technique.

The data for the evaluation of the identification task is summarised
in Section 5.4. We tested the fingerprinting algorithms with different
query lengths: 10, 15, 20 and 25 notes (automatically transcribed
from the audio query). For each of the query lengths, we generated
2500 queries by picking random points in the performances of our
test database, and used them as input for the proposed algorithms.
Duplicate retrieval results (i.e. positions that have the exact same note
content; also, duplicate piece IDs for the experiments on piece-level)
are removed from the result set.

For the evaluation a score position X is considered correct if it marks
the beginning (+/- 1.5 seconds) of a score section that is identical
in note content to the “real” score situation corresponding to the
query audio segment. We check the note content over a time span the
length of the query, but at least 20 notes. This can be established as
we have the correct alignment between performance time and score
positions. The complex definition is necessary because musical pieces
may contain repeated sections or phrases, and it is impossible for
the system (or anyone else, for that matter) to guess the “true” one
out of a set of identical passages matching the current performance
snippet, given just that performance snippet as input. We acknowledge
that a measurement of musical time in a score in terms of seconds
is rather unusual. But as the MIDI tempos in our database are set
in a meaningful way, this seemed the best decision to make errors
comparable over different pieces, with different time signatures — it
would not be very meaningful to, e.g. compare errors in bars or beats
over different pieces.

Table 5.3 shows the results of the tempo-invariant fingerprinting
algorithm on our dataset. Here, we present results for two categories:
correctly identified pieces, and correctly identified piece and position
in the score. For both categories we give the percentage of correct
results at rank 1 and the mean reciprocal rank (MRR). The MRR is a
standard measure for this kind of task, and for a sample of queries Q
is computed as

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(5.1)

where ranki refers to the rank position of the first relevant document
for the i-th query.

As can be seen, even queries of only a length of 10 notes lead to
a surprising number of correct position identifications, and already
for a query length of 20 notes (which corresponds to a mean query
duration of 3.16 seconds) the correct piece is returned as top match in
almost 90% of the cases.

5.6 adding transposition invariance 95

To show the tempo independence of our method not only via ex-
periments, but also qualitatively, we performed a non-systematic ex-
periment with data from different sources — videos by amateurs and
by professional pianists, with differing recording qualities (including
noisy old recordings and noisy amateur recordings) — for which we
have no ground truth data. The general impression is that the system
works well in these scenarios, but of course the performance worsens
in the presence of noise. A video demonstration of the system is avail-
able on-line2 (note especially the identification capabilities for heavily
sped-up and slowed-down performances).

5.6 adding transposition invariance

In the algorithm described above, the pitches in the hash keys are
represented as absolute values. Thus, if a performer decides to trans-
pose a piece by an arbitrary number of semi-tones, any identification
attempt by the algorithm must fail.

To overcome this problem, a simple, relative representation of the
pitch values can be used, which makes the algorithm invariant to linear
transpositions. Instead of using three absolute pitch values, we replace
them by two differences, pd1 = pitch2− pitch1 and pd2 = pitch3− pitch2,
resulting in a hash key [pd1 : pd2 : tdr]. For use in Section 5.6.1 below
we additionally store pitch1, the absolute pitch of the first note, in the
token value.

In every other aspect the algorithm works in the same way as the
purely tempo-invariant version described above. Of course this kind
of transposition invariance cannot come free of cost, as the resulting
fingerprints will not be as discriminative as before. This has two
important direct consequences: (1) the retrieval accuracy will suffer,
and (2) for every query a lot more matching tokens are found in the
database, thus the runtime for each query increases (see Section 5.6.2).

5.6.1 De-noising the Results: Token Verification

To compensate for the loss in discriminative power we propose an
additional step before accepting a database token as a match to the
query. The general idea is taken from [78] and was first used in a music
context by [131]. It is based on a verification step for each returned
token that looks at the context within the query and the context at the
returned position the database.

Each score token that was returned in response to a query token can
be used to project the query (i.e. the notes identified from the query
audio snippet by the transcription algorithm) to the possibly matching
position in the score indicated by the score token. The intuition then is
that at true matching positions we will find a majority of the notes

2 http://www.cp.jku.at/people/arzt/thesis/instant_music_identification.mp4

http://www.cp.jku.at/people/arzt/thesis/instant_music_identification.mp4

96 music identification and flexible music tracking

query length in notes 10 15 20 25

correct piece as top match 0.30 0.40 0.41 0.40

correct piece mrr 0.36 0.47 0.50 0.49

correct position as top match 0.23 0.33 0.32 0.32

correct position mrr 0.29 0.40 0.41 0.40

mean query length in seconds 1.47 2.26 3.16 3.82

mean query execution time in (sec.) 0.10 0.32 0.62 0.91

Table 5.4: Results for different query sizes of the proposed tempo- and
transposition-invariant piece and score position identification al-
gorithm on the test database without the verification step.

from the query at their expected positions in the score. This will permit
us to more reliably decide if the match of hash keys is a false positive
or an actual match.

To do this, we need to compute the pitch shift and the tempo differ-
ence between the query and the potential position in the database. The
pitch shift is computed as the difference of the pitch1 of the matching
query token and score token. The difference in tempo is computed as the
ratio of td1,2 of the two tokens. This information can now in turn be
used to compute the expected time and pitch for each query note at
the current score position hypothesis. We actually do not do this for
the whole query, but only for a window of w = 10 notes, centred at
the event e1 of the query, and we exclude the notes e1, e2 and e3 from
this list (as they were already used to come up with the match in the
first place).

We now take these w notes and check if they appear in the database
as would be expected. In this search we are strict on the pitch value,
but allow for a window of ±100 ms with regards to the actual time in
the database. If we can confirm that a certain percentage of notes from
the query appears in the database as expected (in the experiments we
used 0.8), we finally accept the query token as an actual match.

As this approach is computationally expensive, we actually compute
the results in two steps: we first do “normal” fingerprinting without
the verification step and only keep the top 5% of the results. We
then perform the verification step on these results only and recom-
pute the scores. On our dataset this effectively more than halves the
computation time.

5.6.2 Evaluation

Again, as the basis for the evaluation the data presented in Section
5.4 is used. We evaluated the tempo- and transposition-invariant
fingerprinting method both without (see Table 5.4) and with (see Table

5.7 processing long queries 97

query length in notes 10 15 20 25

correct piece as top match 0.43 0.63 0.71 0.75

correct piece mrr 0.49 0.69 0.76 0.79

correct position as top match 0.33 0.51 0.57 0.60

correct position mrr 0.41 0.59 0.66 0.69

mean query length in seconds 1.47 2.26 3.16 3.82

mean query execution time in (sec .) 0.12 0.38 0.72 1.09

Table 5.5: Results for different query sizes of the proposed tempo- and
transposition-invariant piece and score position identification al-
gorithm on the test database with the verification step.

5.5) the verification step. In these tables, each estimate is based on
2500 random audio queries. The upper half shows recognition results
on the piece level, the lower half on the score position level. For both
categories the percentage of correct detections at rank 1 and the mean
reciprocal rank (MRR) are given. Additionally, the mean length of the
query in seconds and the mean execution time for a query is shown.

As expected, the use of pitch-invariant fingerprints without addi-
tional verification causes a big decrease in retrieval accuracy (compare
Table 5.4 with Table 5.3). Furthermore, the loss in discriminative power
of the fingerprint tokens also results in an increased number of tokens
returned for every query, which has a direct influence on the runtime
of the algorithm (last row in Table 5.4). The proposed verification step
solves this problem, at least to some extent, and in our opinion makes
the approach usable. On the downside, the runtime increases slightly.

We also tried to use the verification step with the original tempo-
invariant algorithm but were not able to improve on the retrieval
results. At least on our test data the tempo-invariant fingerprints are
discriminative enough to mostly avoid false positives.

5.7 processing long queries

The fingerprinting method described so far is mainly concerned with
invariance regarding the global tempo. When applying this algorithm
to our database with longer queries, local tempo changes (i.e. tempo
changes within the query) prove to be problematic, because they break
the cheap histogram approach that is used to determine continuous
regions of matching tokens.

Instead of using computationally much more expensive methods
for determining these regions, we propose to split longer queries into
shorter ones and track the results of these sub-queries over time. This is
known as shingling [24, 62]. Here, it is based on the assumption that in
short queries the tempo is (quasi) stationary, and that a few exceptions

98 music identification and flexible music tracking

will not break the tracking algorithm we use. In our implementation,
we split each query into sub-queries with a window size of w = 15
notes and a hop size of h = 5 notes and then feed each sub-query to
the fingerprinter individually.

Each result of a sub-query (but at most the top 100 positions that
are returned) is in turn fed to an on-line position hypothesis tracking
algorithm. In our current proof-of-concept implementation we use a
simple on-line rule-based multi-agent approach, inspired by the beat-
tracking algorithm described in [40]. For a purely off-line retrieval task
a non-causal algorithm will lead to even better results.

The basic idea is to create virtual agents for positions in the result
sets. Each agent has a current hypothesis of the piece, the position
within the piece and the tempo, and a score based on the results of the
sub-queries. The agents are updated, if possible, with newly arriving
data. In doing so, agents that represent positions that successively
occur in result sets will accumulate higher scores than agents that
represent positions that only occurred once or twice by chance, and
are most probably false positives.

More precisely, we iterate over all sub-queries and perform the
following steps in each iteration:

normalise scoring of position First the scores of the positions
in the result set of the sub-query are normalised by dividing
them by their median. This ensures that each iteration has ap-
proximately the same influence on the tracking process.

update agents For every agent, we look for a matching position in
the result set of the sub-query (i.e. a position that approximately
fits the extrapolated position of the agent, given the old position,
the tempo, and the elapsed time). The position, the tempo and
the score of the agent are updated with the new data from the
matching result of the sub-query. If we do not find a matching
position in the result set, we update the agent with a score of 0,
and the extrapolated position is taken as the new hypothesis. If a
matching position is found, the accumulated score is updated in
a fashion such that scores from further in the past have a smaller
impact than more recent ones. Each agent has a ring buffer s
of size 50, in which the scores of the individual sub-queries
are being stored. The accumulated score of the agent is then

calculated as scoreacc =
50
∑

i=1

si
1+log i , where s1 is the most recent

score.

create agents Each sub-query result that was not used to update
an existing agent is used to initialise a new agent at the respective
score position (i.e. in the first iteration up to 100 agents are
created).

5.7 processing long queries 99

no tracking tracking

query length in notes 50 100 50 100

correct piece as top match 0.95 0.96 0.98 1

correct piece mrr 0.97 0.98 0.99 1

correct position as top match 0.78 0.73 0.87 0.88

correct position mrr 0.85 0.81 0.89 0.90

mean query length in seconds 7.62 15.03 7.62 15.03

mean query exec . time (sec .) 0.42 0.92 0.49 1.08

Table 5.6: Results of the proposed tracking algorithm on the test database
for the tempo-invariant algorithm. Each estimate is based on 2500

random audio queries.

no tracking tracking

query length in notes 50 100 50 100

correct piece as top match 0.81 0.79 0.92 0.98

correct piece mrr 0.85 0.82 0.94 0.99

correct position as top match 0.64 0.59 0.77 0.83

correct position mrr 0.72 0.66 0.82 0.86

mean query length in seconds 7.62 15.03 7.62 15.03

mean query exec . time (sec .) 2.71 6.11 3.21 7.09

Table 5.7: Results of the proposed tracking algorithm on the test database for
the tempo- and pitch-invariant algorithm. Each estimate is based on
2500 random audio queries.

remove obsolete agents Finally, agents with low scores are re-
moved. In our implementation we simply remove agents that
are older than 10 iterations and are not part of the current top
25 agents.

At each point in time the agents are ordered by scoreacc and can
be seen as hypotheses about the current position in the database of
pieces. Thus, in the case of a single long query, the agents with the
highest accumulated scores are returned in the end. In an on-line
scenario, where an audio stream is constantly being monitored by the
fingerprinting system, the current top hypotheses can be returned
after each performed update (i.e. after each processed sub-query).

100 music identification and flexible music tracking

5.7.1 Evaluation

As before, the evaluation is performed on the data described in Section
5.4. Tables 5.6 and 5.7 give the results on slightly longer queries for
the original tempo-invariant and the tempo- and transposition-invariant
algorithm. For the category “No Tracking”, the query was fed directly
to the fingerprinting algorithm. For “Tracking”, the queries were split
into sub-queries with a window size of 15 notes and a hop size of 5

notes, and the individual results were tracked by our proof-of-concept
multi-agent approach. Each estimate is based on 2500 random audio
queries. The upper half shows recognition results on the piece level,
the lower half on the score position level. For both categories the
percentage of correct detections at rank 1 and the mean reciprocal
rank (MRR) are given. Additionally, the mean length of the query in
seconds and the mean execution time for a query is shown.

As can be seen, for the detection of the exact position in the score,
using no tracking, the results based on queries with length 100 notes
are worse than those for queries with only 50 notes, i.e. more infor-
mation leads to worse results. This is caused by local tempo changes
within the query, which break the histogram approach for finding
sequences of matching tokens.

As shown on the right hand side for both fingerprinting types, the
approach of splitting longer queries into shorter ones and tracking
the results takes care of this problem. Please note that for the tracking
approach we check if the position hypotheses after the last tracking
step match the correct position in the score. Thus, as this is an on-line
algorithm, we are not interested in the start position of the query in
the score, but in the endpoint, i.e. if the query was tracked successfully,
and the correct current position is returned. Even the causal approach
leads to a high percentage of correct results with both the original and
the tempo- and pitch-invariant fingerprinting algorithm. Most of the
remaining mistakes happen because (very) similar parts within one
and the same piece are confused.

5.8 conclusions

The proposed algorithms are useful in a wide range of applications.
As a retrieval algorithm it enables fast and robust (inter- and intra-
document) searching and browsing in large collections of musical
scores and corresponding performances. Furthermore, we believe that
the algorithm is not limited to retrieval tasks in classical music, but
may be of use for cover version identification in general, and possibly
many other tasks. For example, it was already successfully applied in
the field of symbolic music processing to find repeating motifs and
sections in complex musical scores [27].

5.9 prototypical implementation 101

Possible Applications

Live
Performance

'Any-time' On-line Music Tracker
Instant Piece Recognizer

Note Recognizer
(On-line Audio-to-Pitch

Transcriptor)

Symbolic Music
Matcher

(Fingerprinter)

Multi-agent Music Tracking System

Output: Score Position

Musical
Score

Database

Figure 5.6: The Any-time Music Tracker. Picture of Werner Goebl (c) Clemens
Chmelar. The page turner was formerly produced by Qidenus
(http://qidenus.com), the “performance worm” was produced
by Werner Goebl

In the context of this thesis the algorithm is used an on-line music
tracking scenario:. the fingerprinting algorithm is used to retrieve
probable score positions from a database of scores, which are then
used as input to an ‘any-time’ music tracking system (see Section 5.9).

5.9 prototypical implementation

In combination with the music tracking algorithm, we built a very
flexible system that is able to recognise arbitrary pieces of classical
piano music, identify the position in the score and track the progress
of the performer. A sketch of this system is shown in Figure 5.6. The
system is provided with scores in symbolic form as well as audio
feature for the tracking. The live performance is transcribed and
processed by the fingerprinter. Multiple instances of the tracking
algorithm try to align the live audio to the score positions suggested
by the fingerprinter. The system determines a final hypothesis via the
alignment costs. At any time it outputs a position in some score in the
database.

The implementation with the help of the Flower framework is
sketched in 5.7. The audio input is processed in two threads in parallel,
computing features for the tracking and for the music transcription
modules. The Recurrent Neural Network transcribes the incoming

http://qidenus.com

102 music identification and flexible music tracking

Audio Input

IFGram

IFExtractor

ChromaIF

STMSP

Music Tracker Features

Microphone

Application/User Interface/Visualisation

Flower Audio Processing Graph

Multi-agent Tracker

STFT1 STFT2

Delay

Normalise Normalise

Convert to
Float Array

Convert to
Float Array

Constant Q
Filterbank

Constant Q
Filterbank

Logarithm
on Bins

Logarithm
on Bins

Pointwise
Difference

Pointwise
Difference

Stack
Features

Recurrent
Neural Network

Fingerprinter
Wrapper

External Thread:
Fingerprinter

MusicTracker
NMusicTracker 2MusicTracker 1

Figure 5.7: The Any-time Tracker, as implemented in the Flower framework.

5.9 prototypical implementation 103

audio stream and hands the data over to a processing that wraps the
fingerprinter, which has access to a fingerprint database computed
from the scores. The fingerprinter is running as an external thread,
receives newly transcribed notes and returns position hypotheses.
The Multi-Agent Tracker processing is acting as the central unit
that receives data from the fingerprinter and manages the instances
of the music tracking algorithm accordingly (Music Tracker 1 to
Music Tracker N, each running in a separate thread). It receives the
position hypotheses and uses them to initialise new instances of the
music tracking algorithm at the respective position. It also receives
the positions from the trackers, including their alignment costs over
the last couple of seconds. Based on this information, it decides which
trackers to reset, which trackers to keep, and also which tracker to
trust at any given time. The position of this tracker is returned as
the current score position in the whole database of scores. We have
demonstrated this system at various occasions. A full list, including
links to videos of live demonstrations, can be found in Chapter 6. A
short demonstration video is also available at http://www.cp.jku.at/
people/arzt/thesis/fingerprinting_transposition.mp4.

http://www.cp.jku.at/people/arzt/thesis/fingerprinting_transposition.mp4
http://www.cp.jku.at/people/arzt/thesis/fingerprinting_transposition.mp4

Part III

L I V E D E M O N S T R AT I O N S A N D C O N C L U S I O N S

6
R E A L - L I F E A P P L I C AT I O N S

In the previous chapters research towards a complete classical music
companion was presented. During the work on this thesis the focus
was not only on research, but to some extent also on bringing this
technology to life and presenting it in live music environments.

In Section 6.1, three different algorithm configurations are described
that we used for the live demonstration. Then, Section 6.2 lists the live
showings of the prototypes presented in chronological order.

6.1 tracking algorithms used for live demonstrations

Over the years, we demonstrated three different kinds of systems, at
different stages and in various settings.

music tracker The music tracker was the starting point for all
demonstrations. It is based on the work described in Chap-
ter 3 (for notes regarding the implementation see Section 3.7 for
a description of the implementation). In contrast to the other
demonstration prototypes, this one was at first implemented
in Java, and then later on, around 2010, re-implemented in the
Flower framework. Although theoretically usable for other kinds
of music too, it was used exclusively for demonstrations with
live piano performances.

multi-agent tracker The multi-agent tracker is based on the work
described in Chapter 4 (for notes regarding the implementation
see Section 4.5). It is designed as a more robust version of the
music tracker. The tracking is based on a number of automatically
preprocessed performances of the piece in question. While also
applicable for piano or other kinds of classical music, this system
was developed with orchestral music in mind and was used in
real concert settings.

piano companion The piano companion is based on the work de-
scribed in Chapter 5 (for notes regarding the implementation
see Section 5.9). This system listens to a live piano performance,
detects the piece and the position within the piece in a matter of
seconds and then tracks the performer over time. It continues
to track multiple hypotheses in the background and is able to
detect any jumps within a piece or to other pieces.

107

108 real-life applications

Figure 6.1: An impression of the page turner as shown in the documentary.

6.2 live demonstrations

The following list gives an overview of live demonstrations featuring
technology that was developed during the course of this thesis.

TV Documentary: Stil und Interpretation - Fingerprints der Musik, Music
Tracker, first shown on BR Alpha in January 2010

The first prototype was featured in a TV documentary that was pro-
duced in summer 2009 (see Figure 6.1). Gerhard Widmer, the supervi-
sor of this thesis, is shown playing the piano (Impromptu D.935 No.2
by Franz Schubert) while the score follower is tracking the progress.
This is visualised on screen as a marker in the sheet music, and also
via a page turning device that was connected to the computer and
thus was able to turn the pages for the pianist automatically at the
appropriate moments. The page turning device was developed by the
Viennese company Qidenus

1, and usually is controlled manually by
the musician via a pedal. We built a small adapter to connect it to the
computer via USB (see Figure 6.2). This system was used to demon-
strate intelligent music technology to different audiences, ranging
from school kids to fellow researchers.

Start-Wittgenstein Gala, Vienna, Music Tracker, March 2010

The Start-Wittgenstein Gala is an event organised by the Austrian
funding agency FWF2, where the winners of Austria’s most prestigious

1 http://www.qidenus.com; The press release for the first public demonstration of
their page turning device is available at http://www.ots.at/presseaussendung/OTS_
20060801_OTS0110/ (in German).

2 https://www.fwf.ac.at

http://www.qidenus.com
http://www.ots.at/presseaussendung/OTS_20060801_OTS0110/
http://www.ots.at/presseaussendung/OTS_20060801_OTS0110/
https://www.fwf.ac.at

6.2 live demonstrations 109

Figure 6.2: The Qidenus QiVinci page turner (left) and the adapter we built
to connect it to the computer via USB (right).

research awards are celebrated. During this event Gerhard Widmer,
who was one of the two winners of the Wittgenstein Award that
year, gave a talk that included a demonstration of the score following
technology. Concert pianist Veronika Trisko played Schubert’s Im-
promptu D899 No. 3, with the music tracker following the progress.
The page turning device was connected to the computer and turned
the pages for the pianist automatically at the appropriate moments
(see Figure 6.3 for an impression of the performance).

Vienna Talk on Music Acoustics, Vienna, Music Tracker, October 2010

This was the first showing of our score following technology at a scien-
tific conference. During the keynote given by Gerhard Widmer (“On
the use of intelligent computational methods for music performance
analysis”), Werner Goebl played the Intermezzo of the Faschingss-
chwank Op. 26 by Robert Schumann, with the computer tracking the
progress live and showing the position in the score. Again, the page
turning device was included in the demonstration (see Figure 6.4). A
video of this performance is available on-line3.

ICT Conference of the European Union, Piano Companion, November 2013

At the ICT 2013, in the context of the EU FP7 PHENICX project4

the piano companion was shown for the first time. In addition to
demonstrations at the exhibition booth, the piano companion was
featured in two live shows on a stage in the conference venue. At this
occasion Cynthia Liem (see Figure 6.5), who is both a professional
pianist and a researcher in music information retrieval at TU Delft,
played the piano.

3 http://www.cp.jku.at/people/arzt/thesis/pageturner_werner_goebl.mov

4 http://phenicx.upf.edu

http://www.cp.jku.at/people/arzt/thesis/pageturner_werner_goebl.mov
http://phenicx.upf.edu

110 real-life applications

Figure 6.3: Veronika Trisko demonstrating the Automatic Page Turner at the
Start-Wittgenstein Gala 2010. Picture (c) FWF / Hans Schubert

Figure 6.4: Werner Goebl demonstrating the Automatic Page Turner at the
Vienna Talk on Music Acoustics 2010.

6.2 live demonstrations 111

Figure 6.5: Cynthia Liem. Picture (c) Marco Borggreve

The setup was as follows: The computer has knowledge of a large
database of piano scores, including all the 32 Beethoven piano sonatas,
most of Chopin’s solo piano works, most of the Mozart piano sonatas.
At that time, the total database consisted of more than 1,000,000

notes. Cynthia Liem’s repertoire covers large parts of the database.
To demonstrate the capabilities of the piano music companion, she
switched between different pieces, jumping to any position, which
the piano music companion recognised within a few seconds and
visualised the correct position in the sheet music. This was done in a
controlled environment with predefined, rehearsed jumps, but also
without a safety net, by handing out sheet music to the audience and
letting them decide on which piece she is supposed to play. Short clips
of this demonstration are available on-line5.

AES Semantic Audio Conference, Piano Companion, London, January 2014

At the AES Semantic Audio Conference the piano companion was
demonstrated in front of a scientific audience (again with the help of
Cynthia Liem). In the audience there were a few (amateur-)pianists,
who were given the opportunity to try the piano companion them-
selves. At the conference, we received the best demonstration award.

5 http://www.cp.jku.at/people/arzt/thesis/vilnius.mp4 and http://www.cp.jku.

at/people/arzt/thesis/decomposing_mozart.mov

http://www.cp.jku.at/people/arzt/thesis/vilnius.mp4
http://www.cp.jku.at/people/arzt/thesis/decomposing_mozart.mov
http://www.cp.jku.at/people/arzt/thesis/decomposing_mozart.mov

112 real-life applications

Figure 6.6: Werner Goebl and Andreas Arzt (background) demonstrating
the Piano Companion at the OFAI Jubelfeier in December 2014.
Picture (c) Thomas Grill

Prestigious Applications of Intelligent Systems Conference, held in conjunc-
tion with the European Conference on Artificial Intelligence, Music Tracker
and Piano Companion, Prague, August 2014

At the ECAI 2014 both the music tracker, including the automatic page
turner, and the piano companion were demonstrated. At this occasion
Gerhard Widmer and Cynthia Liem played the piano. The contribution
was awarded the best demonstration award at the conference.

International Society for Music Information Retrieval Conference, Piano
Companion, Taipei, November 2014

The International Symposium on Music Information Retrieval Confer-
ence (ISMIR) is the main conference of the music information retrieval
community. At the demo session, the piano companion was presented.
This is a very informal session which gave fellow researchers the
opportunity to try the companion themselves.

OFAI 30th Anniversary Celebrations, Piano Companion, Vienna, December
2014

The Austrian Research Institute for Artificial Intelligence

(OFAI) celebrated its 30th anniversary with a gala in the great festival
hall of the Austrian Academy of Sciences. The piano companion
was demonstrated with Werner Goebl at the piano (see 6.6).

6.2 live demonstrations 113

Concert by the Concertgebouw Orchestra under Semyon Bychkov, Multi-
agent Tracking, Amsterdam, February 2015

The “adventure” at the Concertgebouw definitely was the highlight
during the work on the thesis. During a regular concert, the multi-
agent tracking algorithm listened to the live performance of a full
orchestra playing the Alpensinfonie by Richard Strauss, and com-
puted the position in the sheet music. This information was used to
provide a test audience with synchronised information on their mobile
phones and tablets (the sheet music, textual information which was
prepared by a musicologist, and artistic videos telling the story of the
piece). A detailed description of this event can be found in Section
4.3. Short videos of this concert and of a related internal test at the
Concertgebouw are avalable on-line6.

Science Days at TU Delft, Delft, Piano Companion, May 2015

A demo of the piano companion was included in a talk about music
and technology by Cynthia Liem at the A Day of Wonder festival at
TU Delft.

IMAGINE Conference, Vienna, Piano Companion, June 2015

At Imagine 2015 in Vienna I was invited to give a talk about music
tracking technology, including live demos of the music tracker, as well
as the piano companion, with Werner Goebl at the piano.

International Joint Conference on Artificial Intelligence, Piano Companion,
Buenos Aires, July 2015

At the opening celebrations of the IJCAI the piano companion was
presented as a special music act (with Cynthia Liem on the piano).
The demonstration included both the music tracker and the piano
companion demo, including interaction with the audience.

ICT Conference of the European Union, Multi-agent Tracker, Lisbon, October
2015

At the ICT conference some of the outcomes of the Phenicx project
(which was mainly concerned with orchestral music) were presented.
For practical reasons, at this occasion the orchestra was “emulated”
on the piano (i.e. we used the multi-agent tracker in the same way as
with orchestral music, but with piano as input).

Cynthia Liem played a piano version of the overture of Beethoven’s
The Creatures of Prometheus. The multi-agent tracker followed her

6 http://www.cp.jku.at/people/arzt/thesis/alpensinfonie_1.mp4, http:

//www.cp.jku.at/people/arzt/thesis/alpensinfonie_2.mp4, http://www.cp.

jku.at/people/arzt/thesis/alpensinfonie_3.mp4 and http://www.cp.jku.at/

people/arzt/thesis/chabrier.mp4

http://www.cp.jku.at/people/arzt/thesis/alpensinfonie_1.mp4
http://www.cp.jku.at/people/arzt/thesis/alpensinfonie_2.mp4
http://www.cp.jku.at/people/arzt/thesis/alpensinfonie_2.mp4
http://www.cp.jku.at/people/arzt/thesis/alpensinfonie_3.mp4
http://www.cp.jku.at/people/arzt/thesis/alpensinfonie_3.mp4
http://www.cp.jku.at/people/arzt/thesis/chabrier.mp4
http://www.cp.jku.at/people/arzt/thesis/chabrier.mp4

114 real-life applications

Figure 6.7: The music tracker on the iPad (Score (c) Henle Verlag)

performance and controlled visualisations prepared by our project
partner, the Music Technology Group at Universitat Pompeu Fabra

(UPF).

International Symposium on Music Information Retrieval Conference, Multi-
agent Tracker, Malaga, October 2015

At ISMIR 2015 in Malaga, an event was organised that gave scientists
and musicians the opportunity to present their work to the public.
During this event the Phenicx project, together with a Spanish youth
orchestra, presented the orchestra tracking technology as it was used
in the Concertgebouw Amsterdam earlier that year. This time, visu-
alisations by the project partner UPF were synchronised to the music
via the multi-agent tracker. The synchronisations included the sheet
music in multiple forms, an activity map of the orchestra and gestures
by the conductor, and were projected on a big screen located above
the orchestra.

Public Demonstration of the Phenicx Project, Piano Companion and Multi-
agent Tracker, Barcelona, March 2016

Towards the end of the Phenicx project, a final event was organised to
present the results of the project to the general public. At this occasion,
the piano companion, including audience interaction, and the tracking
and visualisation of orchestral music (again the orchestra had to be
“emulated” by a piano) were shown.

6.2 live demonstrations 115

Addendum: Music Tracking on the iPad

For demonstration purposes the music tracker was also ported to iOS,
the operating system of Apple’s mobile devices. This was done by
Martin Gasser (see Figure 6.7).

7
C O N C L U S I O N S A N D O U T L O O K

Music tracking algorithms are already robust enough to be used in real
life applications. This has been demonstrated by a number of research
groups and companies. Within the Phenicx

1 project we applied music
tracking at the Concertgebouw. The Philadelphia Orchestra

2 has
used a similar algorithm during some of their concerts, and automatic
accompaniment systems have already been showcased in concert halls
such as the Royal Albert Hall3. There are also first attempts at building
interactive piano tutors that help beginners with learning the piano4.

The thesis contributes to this field by making music tracking more
robust and more flexible. Starting from a simple and fragile algorithm,
systems are built that work well with complex romantic piano music
and orchestral music. In addition, methods are presented that take
music tracking to the next level and enable following the performer
flexibly based on a big database of piano music. To lift the limitation
of the presented music identification system to piano music, and make
it work with arbitrary instruments and higher levels of polyphony (e.g.
orchestral music) still remains an open point. Essentially, the limitation
is not caused by the algorithm itself, but by the absence of appropriate
training data for the underlying audio transcription algorithm.

The context of the thesis is the “vision” of a Complete Classical
Music Companion, a “support system” for performers and listeners
that flexibly detects music and provides synchronised information.
While the thesis presents algorithms and technology that can be used
as a basis for such an application, it does not tackle problems like data
preparation and the presentation of meaningful visualisations to the
user.

Especially data preparation remains a big problem, as even just
preparing the sheet music for tracking is a very laborious task. Only
a small percentage of the sheet music is available in symbolic form.
For music publishers it is time consuming, error prone and without
any financial gain to redo the typesetting of most pieces of classical
music and thus they continue to use the old printing plates as long as
possible. And, even if clean, digitally typeset sheet music is available,
the preparation of the data for a synchronisation algorithm is not
an automatic process, as many problems can arise that might need
manual intervention (e.g. conversion errors, non-standard annotations
of transpositions of instruments, transpositions that are not annotated).

1 http://phenicx.upf.edu

2 http://livenote.philorch.org

3 http://www.bbc.co.uk/events/evrmbp

4 http://tonara.com

117

http://phenicx.upf.edu
http://livenote.philorch.org
http://www.bbc.co.uk/events/evrmbp
http://tonara.com

118 conclusions and outlook

The most flexible and promising way forward actually seems to
be to try to work with images of sheet music directly. Unfortunately,
optical music recognition [120] is still not at a level where it can read
complex scores reliably enough. Recently, we published a deep learn-
ing approach to music tracking that works directly on sheet music (see
[44, 45]). This bypasses the complex and laborious task of score data
preparation. This is still early work, and the tracking and identification
abilities are not comparable to the complex systems presented in this
thesis. In the future, we plan to improve this approach and make it
work reliably on more complex music. It is a data-driven approach,
and thus requires large amounts of (annotated) training and testing
data, which is not readily available. Hence, besides advances regarding
the algorithm itself, the collection and preparation of sufficient high
quality training data will be paramount. We plan to create this data
by collecting large amounts of sheet music, symbolic information (if
available) and performances, and aligning these kinds of data to each
other. Essentially, this is cross-modal, large scale multiple sequence
alignment, and we hope that we can improve on the state of the art of
the individual alignment tasks by leveraging the information we gain
with each new datapoint and each additional alignment.

Regarding the Complete Classical Music Companion, there is also
the problem of preparing the data for visualisation purposes. Showing
the sheet music is relatively straight forward, but presenting more
sophisticated information — like a visualisation of the structure of
a piece, a summary of important motifs, or a characterisation of a
performance — needs in-depth annotations of a piece of music. At
the time of writing, there are no algorithms that are able to extract
complex musical concepts like these reliably from the score or from the
audio signal of a performance (see for example [141] for a discussion
of what computers so far do not understand in music). From an
application standpoint, this can be solved via manual annotations by
experts, possibly combined with a crowdsourcing approach — just
covering the, e.g. 1,000 most “important” pieces of classical music in
more depth (i.e. in addition to showing the synchronised score) would
result in a very useful program. From the research point of view, for
extracting such complex concepts data-driven methods seem to be
most promising, and we hope that we can support this research by
creating parts of the necessary data via our music synchronisation
technologies.

B A C K M AT T E R

119

B I B L I O G R A P H Y

[1] Xavier Amatriain, Pau Arumi, and David Garcia. “CLAM: A
Framework for Efficient and Rapid Development of Cross-
platform Audio Applications”. In: Proceedings of the ACM In-
ternational Conference on Multimedia. Santa Barbara, USA, 2006,
pp. 951–954.

[2] Pau Arumi. “Real-time Multimedia Computing on Off-The-
Shelf Operating Systems: From Timeliness Dataflow Models to
Pattern Languages”. PhD thesis. Barcelona, Spain: Universitat
Pompeu Fabra, 2009.

[3] Andreas Arzt. “Score Following with Dynamic Time Warp-
ing: An Automatic Page Turner”. MA thesis. Vienna, Austria:
Vienna University of Technology, 2008.

[4] Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, Cynthia C.S. Liem, and Gerhard Wid-
mer. “The Piano Music Companion”. In: Proceedings of the Con-
ference on Prestigious Applications of Intelligent Systems (PAIS).
Prague, Czech Republic, 2014, pp. 1221–1222.

[5] Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald
Frostel, Martin Gasser, and Gerhard Widmer. “The Complete
Classical Music Companion V0.9”. In: Proceedings of the 53rd
AES Conference on Semantic Audio. London, England, 2014.

[6] Andreas Arzt, Sebastian Böck, and Gerhard Widmer. “Fast
Identification of Piece and Score Position via Symbolic Finger-
printing”. In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). Porto, Portugal, 2012,
pp. 433–438.

[7] Andreas Arzt, Harald Frostel, Thassilo Gadermaier, Martin
Gasser, Maarten Grachten, and Gerhard Widmer. “Artificial
Intelligence in the Concertgebouw”. In: Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI). Buenos
Aires, Argentina, 2015, pp. 2424–2430.

[8] Andreas Arzt, Werner Goebl, and Gerhard Widmer. “Flexible
Score Following: The Piano Music Companion and Beyond”.
In: Proceedings of the Vienna Talk on Musical Acoustics (VITA).
Vienna, Austria, 2015, pp. 220–223.

[9] Andreas Arzt, Cynthia C.S. Liem, and Gerhard Widmer. “A
Tempo- and Transposition-invariant Piano Music Companion”.
In: Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), Late Breaking / Demo. Taipeh, Taiwan,
2014.

121

122 Bibliography

[10] Andreas Arzt and Gerhard Widmer. “Robust Real-time Music
Tracking”. In: Proceedings of the Vienna Talk on Musical Acoustics
(VITA). Vienna, Austria, 2010, pp. 5–8.

[11] Andreas Arzt and Gerhard Widmer. “Simple Tempo Models
for Real-time Music Tracking”. In: Proceedings of the Sound and
Music Computing Conference (SMC). Barcelona, Spain, 2010.

[12] Andreas Arzt and Gerhard Widmer. “Towards Effective ’Any-
Time’ Music Tracking”. In: Proceedings of the Starting AI Re-
searchers’ Symposium (STAIRS). Lisbon, Portugal, 2010, pp. 24–
36.

[13] Andreas Arzt and Gerhard Widmer. “Real-time Music Tracking
using Multiple Performances as a Reference”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain, 2015, pp. 357–363.

[14] Andreas Arzt, Gerhard Widmer, Sebastian Böck, Reinhard
Sonnleitner, and Harald Frostel. “Towards a Complete Classical
Music Companion”. In: Proceedings of the European Conference on
Artificial Intelligence (ECAI). Montpellier, France, 2012, pp. 67–
72.

[15] Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Automatic
Page Turning for Musicians via Real-Time Machine Listening”.
In: Proceedings of the European Conference on Artificial Intelligence
(ECAI). Patras, Greece, 2008, pp. 241–245.

[16] Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Adaptive
Distance Normalization for Real-time Music Tracking”. In: Pro-
ceedings of the European Signal Processing Conference (EUSIPCO).
Bucharest, Romania, 2012, pp. 2689–2693.

[17] Andreas Arzt, Gerhard Widmer, and Reinhard Sonnleitner.
“Tempo- and Transposition-invariant Identification of Piece
and Score Position”. In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). Taipeh, Taiwan,
2014, pp. 549–554.

[18] Shumeet Baluja and Michele Covell. “Waveprint: Efficient
Wavelet-based Audio Fingerprinting”. In: Pattern Recognition
41.11 (2008), pp. 3467–3480.

[19] Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus
Schedl. “Online Real-Time Onset Detection with Recurrent
Neural Networks”. In: Proceedings of the International Conference
on Digital Audio Effects (DAFx). York, United Kingdom, 2012.

[20] Sebastian Böck and Markus Schedl. “Polyphonic piano note
transcription with recurrent neural networks”. In: Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Kyoto, Japan, 2012, pp. 121–124.

Bibliography 123

[21] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma. “A Re-
view of Algorithms for Audio Fingerprinting”. In: Proceedings of
the IEEE International Workshop on Multimedia Signal Processing
(MMSP). St. Thomas, Virgin Islands, USA, 2002, pp. 169–173.

[22] Pedro Cano, Alex Loscos, and Jordi Bonada. “Score-
Performance Matching Using HMMs”. In: Proceedings of the
International Computer Music Conference ICMC. Beijing, China,
1999.

[23] J. J. Carabias-Orti, F. J. Rodriguez-Serrano, P. Vera-Candeas,
N. Ruiz-Reyes, and F. J. Canãdas-Quesada. “An Audio to Score
Alignment Framework using Spectral Factorization and Dy-
namic Time Warping”. In: Proceedings of the International Society
for Music Information Retrieval Conference. Málaga, Spain, 2015,
pp. 742–748.

[24] Michael A. Casey and Malcolm Slaney. “Song Intersection by
Approximate Nearest Neighbor Search”. In: Proceedings of the
International Society for Music Information Retrieval Conference
(ISMIR). Victoria, Canada, 2006, pp. 144–149.

[26] Tom Collins, Daniel A. Abrams, Rohan Chandra, Christina
Young, Andreas Arzt, and Vinod Menon. “Neural tracking of
musical motives revealed by a combination of fMRI and music
information retrieval techniques”. In: Proceedings of the Inter-
national Conference on Music Perception and Cognition (ICMPC).
Seoul, South Korea, 2014, p. 55.

[27] Tom Collins, Andreas Arzt, Sebastian Flossmann, and Gerhard
Widmer. “SIARCT-CFP: Improving Precision and the Discov-
ery of Inexact Musical Patterns in Point-set Representation”.
In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Curitiba, Brazil, 2013, pp. 549–554.

[28] Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Wid-
mer. “Using Geometric Symbolic Fingerprinting to Discover
Distinctive Patterns in Polyphonic Music Corpora”. In: Com-
putational Music Analysis. Ed. by David Meredith. Springer
International Publishing, 2016, pp. 445–474.

[29] Arshia Cont. “Realtime Audio to Score Alignment for Poly-
phonic Music Instruments, using Sparse Non-Negative Con-
straints and Hierarchical HMMS”. In: Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). Toulouse, France, 2006, pp. 245–248.

[30] Arshia Cont. “A Coupled Duration-Focused Architecture for
Real-Time Music-to-Score Alignment”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 32.6 (2010), pp. 974–987.

124 Bibliography

[31] Arshia Cont, Diemo Schwarz, Norbert Schnell, and Christopher
Raphael. “Evaluation of Real-Time Audio-to-Score Alignment”.
In: Proceedings of the International Conference on Music Information
Retrieval (ISMIR). Vienna, Austria, 2007, pp. 315–316.

[32] Stephen S. Cox. “Speech and Language Processing”. In: ed.
by C. Wheddon and R. Linggard. London, UK: Chapman &
Hall, Ltd., 1990. Chap. Hidden Markov Models for Automatic
Speech Recognition: Theory and Application, pp. 209–230.

[33] Philippe Cuvillier and Arshia Cont. “Coherent time modeling
of Semi-Markov models with application to real-time audio-to-
score alignment”. In: Proceedings of the IEEE International Work-
shop on Machine Learning for Signal Processing (MLSP). Reims,
France, 2014, pp. 1–6.

[34] David Damm, Christian Fremerey, Frank Kurth, Meinard
Müller, and Michael Clausen. “Multimodal Presentation and
Browsing of Music”. In: Proceedings of the International Confer-
ence on Multimodal Interfaces (ICMI). Chania, Crete, Greece, 2008,
pp. 205–208.

[35] David Damm, Christian Fremerey, Verena Thomas, Michael
Clausen, Frank Kurth, and Meinard Müller. “A digital library
framework for heterogeneous music collections: from docu-
ment acquisition to cross-modal interaction”. In: International
Journal on Digital Libraries: Special Issue on Music Digital Libraries
12.2-3 (2012), pp. 53–71.

[36] Roger B. Dannenberg. “An On-Line Algorithm for Real-Time
Accompaniment”. In: Proceedings of the International Computer
Music Conference (ICMC). Paris, France, 1984, pp. 193–198.

[37] Roger B. Dannenberg. “Aura II: Making Real-Time Systems
Safe for Music”. In: Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). Hamamatsu,
Japan, 2004, pp. 132–137.

[38] Roger B. Dannenberg and Ning Hu. “Polyphonic Audio Match-
ing for Score Following and Intelligent Audio Editors”. In: Pro-
ceedings of the International Computer Music Conference (ICMC).
San Francisco, USA, 2003, pp. 27–34.

[39] Roger B. Dannenberg, Zeyu Jin, Nicolas E. Gold, Octav-Emilian
Sandu, Praneeth N. Palliyaguru, Andrew Robertson, Adam
Stark, and Rebecca Kleinberger. “Human-Computer Music
Performance: From Synchronized Accompaniment to Musi-
cal Partner”. In: Proceedings of the Sound and Music Computing
Conference (SMC). Stockholm, Sweden, 2013, pp. 277–283.

[40] Simon Dixon. “Automatic extraction of tempo and beat from
expressive performances”. In: Journal of New Music Research 30.1
(2001), pp. 39–58.

Bibliography 125

[41] Simon Dixon. “An On-Line Time Warping Algorithm for Track-
ing Musical Performances”. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). Edinburgh, Scot-
land, 2005, pp. 1727–1728.

[42] Simon Dixon and Gerhard Widmer. “MATCH: A Music Align-
ment Tool Chest”. In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). London, UK,
2005, pp. 492–497.

[43] Pierre Donat-Bouillud, Jean-Louis Giavitto, Arshia Cont, Nico-
las Schmidt, and Yann Orlarey. “Embedding native audio-
processing in a score following system with quasi sample
accuracy”. In: Proceedings of the International Computer Music
Conference (ICMC). Utrecht, Netherlands, 2016, pp. 478–484.

[44] Matthias Dorfer, Andreas Arzt, Sebastian Böck, Amaury Du-
rand, and Gerhard Widmer. “Live Score Following on Sheet
Music Images”. In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), Late Breaking /
Demo. New York, USA, 2016.

[45] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer. “Towards
Score Following in Sheet Music Images”. In: Proceedings of the
International Society for Music Information Retrieval Conference
(ISMIR). New York, USA, 2016, pp. 789–795.

[46] Zhiyao Duan and Brian Pardo. “A state space model for on-line
polyphonic audio-score alignment”. In: Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). Prague, Czech Republic, 2011, pp. 197–200.

[47] Daniel P.W. Ellis and Graham E. Poliner. “Identifying ‘Cover
Songs’ with Chroma Features and Dynamic Programming Beat
Tracking”. In: Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Vol. 4. Hon-
olulu, Hawaii, USA, 2007.

[48] Sebastian Ewert and Meinard Müller. “Refinement Strategies
for Music Synchronization”. In: Lecture Notes in Computer
Science 5493 (2008), pp. 147–165.

[49] Sebastian Ewert, Meinard Müller, and Peter Grosche. “High
Resolution Audio Synchronization Using Chroma Onset Fea-
tures”. In: Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Taipei, Taiwan,
2009, pp. 1869–1872.

[50] Sebastian Flossmann. “Expressive Performance Rendering with
Probabilistic Models - Creating, Analyzing, and Using the
Magaloff Corpus”. PhD thesis. Linz, Austria: Johannes Kepler
University, 2010.

126 Bibliography

[51] Sebastian Flossmann, Werner Goebl, Maarten Grachten, Bern-
hard Niedermayer, and Gerhard Widmer. “The Magaloff
project: An interim report”. In: Journal of New Music Research
39.4 (2010), pp. 363–377.

[52] Christian Fremerey, Frank Kurth, Meinard Müller, and Michael
Clausen. “A Demonstration of the SyncPlayer System”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Vienna, Austria, 2007, pp. 131–132.

[53] Christian Fremerey, Meinard Müller, and Michael Clausen.
“Handling Repeats and Jumps in Score-Performance Synchro-
nization”. In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). Utrecht, The Nether-
lands, 2010, pp. 243–248.

[54] Christian Fremerey, Meinard Müller, Frank Kurth, and Michael
Clausen. “Automatic Mapping of Scanned Sheet Music to Au-
dio Recordings”. In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). Philadelphia,
USA, 2008, pp. 413–418.

[55] Harald Frostel, Andreas Arzt, and Gerhard Widmer. “The
Vowel Worm: Real-Time Mapping and Visualisation of Sung
Vowels in Music”. In: Proceedings of the Sound and Music Com-
puting Conference (SMC). Padova, Italy, 2011, pp. 214–219.

[56] Martin Gasser, Andreas Arzt, Thassilo Gadermaier, Maarten
Grachten, and Gerhard Widmer. “Classical Music on the Web
– User Interfaces and Data Representations”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain, 2015, pp. 571–577.

[57] Martin Gasser, Arthur Flexer, and Gerhard Widmer. “Stream-
catcher: Integrated Visualization of Music Clips and Online
Audio Streams”. In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). Philadelphia,
USA, 2008, pp. 205–210.

[58] Dariu M. Gavrila and Larry S. Davis. “Towards 3-D Model-
based Tracking and Recognition of Human Movement”. In:
Proceedings of the IEEE International Workshop on Face and Gesture
Recognition. Zurich, Switzerland, 1995, pp. 272–277.

[59] Werner Goebl. “Numerisch-klassifikatorische Interpretations-
analyse mit dem Boesendorfer Computerfluegel”. MA thesis.
Vienna, Austria: University of Vienna, 1999.

[60] Emilia Gómez, Maarten Grachten, Alan Hanjalic, Jordi Janer,
Sergi Jorda, Carles F. Julia, Cynthia Liem, Agustin Martorell,
Markus Schedl, and Gerhard Widmer. “PHENICX: Perfor-
mances as Highly Enriched aNd Interactive Concert Expe-

Bibliography 127

riences”. In: Proceedings of the Sound and Music Computing Con-
ference (SMC). Stockholm, Sweden, 2013, pp. 681–688.

[61] Maarten Grachten, Martin Gasser, Andreas Arzt, and Gerhard
Widmer. “Automatic Alignment of Music Performances with
Structural Differences”. In: Proceedings of the International Soci-
ety for Music Information Retrieval Conference (ISMIR). Curitiba,
Brazil, 2013, pp. 607–612.

[62] Peter Grosche and Meinard Müller. “Toward Characteristic
Audio Shingles for Efficient Cross-Version Music Retrieval”.
In: Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). Kyoto, Japan, 2012.

[63] Peter Grosche and Meinard Müller. “Toward Musically-
Motivated Audio Fingerprints”. In: Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP). Kyoto, Japan, 2012, pp. 93–96.

[64] Peter Grosche, Meinard Müller, and Joan Serrà. “Audio
Content-Based Music Retrieval”. In: Multimodal Music Process-
ing. Ed. by Meinard Müller, Masataka Goto, and Markus Schedl.
Vol. 3. Dagstuhl Follow-Ups. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2012, pp. 157–174.

[65] Lorin Grubb and Roger B. Dannenberg. “A Stochastic Method
of Tracking a Vocal Performer”. In: Proceedings of the Interna-
tional Computer Music Conference (ICMC). Thessaloniki, Greece,
1997.

[68] Ning Hu, Roger B. Dannenberg, and George Tzanetakis. “Poly-
phonic Audio Matching and Alignment for Music Retrieval”.
In: Proceedings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA). New Paltz, USA,
2003.

[69] F. I. Itakura. “Minimum prediction residual principle applied
to speech recognition”. In: IEEE Transactions on Acoustics Speech
and Signal Processing 23.1 (1975), pp. 52–72.

[70] Cyril Joder, Slim Essid, and Gaël Richard. “A comparative
study of tonal acoustic features for a symbolic level music-
to-score alignment”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Dallas, USA, 2010.

[72] Hagen Kaprykowsky and Xavier Rodet. “Globally Optimal
Short-Time Dynamic Time Warping, Application to Score to
Audio Alignment”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Toulouse, France, 2006, pp. 249–252.

128 Bibliography

[73] Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian
Böck, Andreas Arzt, and Gerhard Widmer. “On the Potential of
Simple Framewise Approaches to Piano Transcription”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). New York, USA, 2016, pp. 475–481.

[74] Filip Korzeniowski, Florian Krebs, Andreas Arzt, and Gerhard
Widmer. “Tracking Rests and Tempo Changes: Improved Score
Following with Particle Filters”. In: Proceedings of the Interna-
tional Computer Music Conference (ICMC). Perth, Australia, 2013.

[75] Frank Kurth and Meinard Müller. “Efficient Index-Based Audio
Matching”. In: IEEE Transactions on Audio, Speech, and Language
Processing 16.2 (2008), pp. 382–395.

[76] Frank Kurth, Meinard Müller, David Damm, Christian Fre-
merey, Andreas Ribbrock, and Michael Clausen. “SyncPlayer -
An Advanced System for Multimodal Music Access”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). London, UK, 2005, pp. 381–388.

[77] Frank Kurth, Meinard Müller, Christian Fremerey, Yoon-ha
Chang, and Michael Clausen. “Automated Synchronization of
Scanned Sheet Music with Audio Recordings”. In: Proceedings of
the International Society for Music Information Retrieval Conference
(ISMIR). Vienna, Austria, 2007, pp. 261–266.

[78] Dustin Lang, David W. Hogg, Keir Mierle, Michael Blanton,
and Sam Roweis. “Astrometry.net: Blind astrometric calibration
of arbitrary astronomical images”. In: The Astronomical Journal
139.5 (2010), p. 1782.

[79] Bochen Li and Zhiyao Duan. “Score Following for Piano Per-
formances with Sustain-Pedal Effects”. In: Proceedings of the
International Society for Music Information Retrieval Conference
(ISMIR). Málaga, Spain, 2015, pp. 469–475.

[80] Robert Macrae and Simon Dixon. “Accurate Real-time Win-
dowed Time Warping”. In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). Utrecht, The
Netherlands, 2010, pp. 423–428.

[82] Matthias Mauch and Simon Dixon. “Approximate note tran-
scription for the improved identification of difficult chords”.
In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Utrecht, The Netherlands, 2010,
pp. 135–140.

[83] Mark Melenhorst, Ron van der Sterren, Andreas Arzt, Agustin
Martorell, and Cynthia C.S. Liem. “A Tablet App to Enrich
the Live and Post-Live Experience of Classical Concerts”. In:
Proceedings of the 3rd ACM International Workshop on Interactive
Content Consumption. Brussels, Belgium, 2015.

Bibliography 129

[84] Yoram Meron and Keikichi Hirose. “Automatic alignment of
a musical score to performed music”. In: Acoustical Science &
Technology 22.3 (2001), pp. 189–198.

[85] Marius Miron, Julio José Carabias-Orti, and Jordi Janer. “Audio-
to-Score Alignment at Note Level for Orchestral Recordings”.
In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Taipei, Taiwan, 2014, pp. 125–130.

[86] Nicola Montecchio and Arshia Cont. “A unified approach to
real time audio-to-score and audio-to-audio alignment using
sequential Montecarlo inference techniques”. In: Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Prague, Czech Republic, 2011, pp. 193–
196.

[88] Meinard Müller. Fundamentals of Music Processing. Springer
Verlag, 2015.

[89] Meinard Müller and Daniel Appelt. “Path-Constrained Partial
Music Synchronization”. In: Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP). Las
Vegas, USA, 2008, pp. 65–68.

[90] Meinard Müller and Sebastian Ewert. “Chroma Toolbox: MAT-
LAB Implementations For Extracting Variants of Chroma-Based
Audio Features”. In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). Miami, USA,
2011, pp. 215–220.

[91] Meinard Müller, Verena Konz, Andi Scharfstein, Sebastian Ew-
ert, and Michael Clausen. “Towards Automated Extraction of
Tempo Parameters from Expressive Music Recordings”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Kobe, Japan, 2009, pp. 69–74.

[92] Meinard Müller, Frank Kurth, and Michael Clausen. “Audio
Matching via Chroma-Based Statistical Features”. In: Proceed-
ings of the International Society for Music Information Retrieval
Conference (ISMIR). London, UK, 2005, pp. 288–295.

[93] Meinard Müller, Frank Kurth, and Tido Röder. “Towards an
Efficient Algorithm for Automatic Score-to-Audio Synchro-
nization”. In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). Barcelona, Spain, 2004,
pp. 365–372.

[94] Meinard Müller, Henning Mattes, and Frank Kurth. “An Ef-
ficient Multiscale Approach to Audio Synchronization”. In:
Proceedings of the International Society for Music Information Re-
trieval Conference (ISMIR). Victoria, Canada, 2006, pp. 192–197.

130 Bibliography

[95] Eita Nakamura, Philippe Cuvillier, Arshia Cont, Nobutaka Ono,
and Shigeki Sagayama. “Autoregressive Hidden Semi-Markov
Model of Symbolic Music Performance for Score Following”.
In: Proceedings of the International Society for Music Information
Retrieval Conference. Málaga, Spain, 2015, pp. 392–398.

[96] Eita Nakamura, Nobutaka Ono, Yasuyuki Saito, and Shigeki
Sagayama. “Merged-Output Hidden Markov Model for Score
Following of MIDI Performance with Ornaments, Desynchro-
nized Voices, Repeats and Skips”. In: Joint Proceedings of the
International Computer Music Conference (ICMC) and the Sound
and Music Computing Conference (SMC). Athens, Greece, 2014,
pp. 1185–1192.

[97] Tomohiko Nakamura, Eita Nakamura, and Shigeki Sagayama.
“Real-Time Audio-to-Score Alignment of Music Performances
Containing Errors and Arbitrary Repeats and Skips”. In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing
24.2 (2016), pp. 329–339.

[98] Bernhard Niedermayer and Gerhard Widmer. “A Multi-pass
Algorithm for Accurate Audio-to-Score Alignment”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Utrecht, The Netherlands, 2010, pp. 417–
422.

[99] Nicola Orio and François Déchelle. “Score Following Using
Spectral Analysis and Hidden Markov Models”. In: Proceedings
of the International Computer Music Conference (ICMC). Havana,
Cuba, 2001.

[100] Nicola Orio, Serge Lemouton, Diemo Schwarz, and Norbert
Schnell. “Score Following: State of the Art and New Devel-
opments”. In: Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME). Montréal, Canada, 2003,
pp. 36–41.

[101] Nicola Orio and Diemo Schwarz. “Alignment of Monophonic
and Polyphonic Music to a Score”. In: Proceedings of the Interna-
tional Computer Music Conference ICMC. Havana, Cuba, 2001.

[103] Takuma Otsuka, Kazuhiro Nakadai, Toru Takahashi, Tet-
suya Ogata, and Hiroshi G. Okuno. “Real-Time Audio-to-
Score Alignment using Particle Filter for Co-player Music
Robots”. In: EURASIP Journal on Advances in Signal Processing
2011.2011:384651 (2011).

[104] Bryan Pardo and William P. Birmingham. “Modeling Form
for On-line Following of Musical Performances”. In: Proceed-
ings of the National Conference on Artificial Intelligence (AAAI).
Pittsburgh, USA, 2005, pp. 1018–1023.

Bibliography 131

[105] Bryan Pardo, Jonah Shifrin, and William Birmingham. “Name
that Tune: A Pilot Study in Finding a Melody from a Sung
Query”. In: Journal of the American Society for Information Science
and Technology 55.4 (2004), pp. 283–300.

[106] Geoffroy Peeters. “Chroma-based estimation of musical key
from audio-signal analysis”. In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). Victo-
ria, Canada, 2006, pp. 115–120.

[107] Geoffrey Peters, Caroline Anthony, and Michael Schwartz.
“Song Search and Retrieval by Tapping”. In: Proceedings of the
National Conference on Artificial Intelligence (AAAI). Pittsburgh,
USA, 2005, pp. 1696–1697.

[108] Henning Pohl and Aristotelis Hadjakos. “Dance Pattern Recog-
nition using Dynamic Time Warping”. In: Proceedings of the
Sound and Music Computing Conference (SMC). Barcelona, Spain,
2010.

[109] Thomas Prätzlich, Jonathan Driedger, and Meinard Müller.
“Memory-Restricted Multiscale Dynamic Time Warping”. In:
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). Shanghai, China, 2016,
pp. 569–573.

[110] Matthew Prockup, David Grunberg, Alex Hrybyk, and Young-
moo E. Kim. “Orchestral Performance Companion: Using Real-
Time Audio to Score Alignment”. In: IEEE Multimedia 20.2
(2013), pp. 52–60.

[111] Miller S. Puckette and Cort Lippe. “Score Following in Prac-
tice”. In: Proceedings of the International Computer Music Confer-
ence (ICMC). San Jose, USA, 1992.

[112] Lawrence Rabiner and Bing-Hwang Juang. Fundamentals of
Speech Recognition. Prentice Hall Signal Processing Series, 1993.

[113] Mathieu Ramona and Geoffroy Peeters. “AudioPrint: an effi-
cient audio fingerprint system based on a novel cost-less syn-
chronization scheme”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Vancouver, Canada, 2013, pp. 818–822.

[114] Christopher Raphael. “Automatic Segmentation of Acoustic
Musical Signals Using Hidden Markov Models”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 21.4 (1999),
pp. 360–370.

[115] Christopher Raphael. “A Bayesian Network for Real-Time Mu-
sical Accompaniment”. In: Advances in Neural Information Pro-
cessing Systems (NIPS). Vancouver, Canada, 2001, pp. 1433–
1439.

132 Bibliography

[116] Christopher Raphael. “Aligning music audio with symbolic
scores using a hybrid graphical model”. In: Machine Learning
65.2-3 (2006), pp. 389–409.

[117] Christopher Raphael. “Current Directions with Music Plus
One”. In: Proceedings of the Sound and Music Computing Confer-
ence (SMC). Porto, Portugal, 2009, pp. 71–76.

[118] Christopher Raphael. “Music Plus One and Machine Learning”.
In: Proceedings of the International Conference on Machine Learning
(ICML). Haifa, Israel, 2010, pp. 21–28.

[119] Toni M. Rath and R. Manmatha. “Word Image Matching Using
Dynamic Time Warping”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Madison,
USA, 2003, pp. 521–527.

[120] Ana Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, Andre R. S.
Marcal, Carlos Guedes, and Jaime S. Cardoso. “Optical music
recognition: state-of-the-art and open issues”. In: International
Journal of Multimedia Information Retrieval 1.3 (2012), pp. 173–
190.

[122] Daniel Röwenstrunk, Thomas Prätzlich, Thomas Betzwieser,
Meinard Müller, Gerd Szwillus, and Joachim Veit. “Das
Gesamtkunstwerk Oper aus Datensicht – Aspekte des Um-
gangs mit einer heterogenen Datenlage im BMBF-Projekt “Freis-
chütz Digital””. In: Datenbank-Spektrum 15.1 (2015), pp. 65–72.

[123] Shinji Sako, Ryuichi Yamamoto, and Tadashi Kitamura. “Ryry:
A Real-Time Score-Following Automatic Accompaniment Play-
back System Capable of Real Performances with Errors, Re-
peats and Jumps”. In: (2014), pp. 134–145.

[124] Hiroaki Sakoe and Seibi Chiba. “Dynamic programming al-
gorithm optimization for spoken word recognition”. In: IEEE
Transactions on Acoustics Speech and Signal Processing 26.1 (1978),
pp. 43–49.

[125] Stan Salvador and Philip Chan. “Toward accurate dynamic
time warping in linear time and space”. In: Intelligent Data
Analysis 11.5 (2007), pp. 561–580.

[126] Diemo Schwarz, Nicola Orio, and Norbert Schnell. “Robust
Polyphonic Midi Score Following with Hidden Markov Mod-
els”. In: Proceedings of the International Computer Music Conference
(ICMC). Miami, USA, 2004.

[127] Joan Serrà, Emilia Gómez, and Perfecto Herrera. “Audio
cover song identification and similarity: background, ap-
proaches, evaluation and beyond”. In: Advances in Music Infor-
mation Retrieval. Ed. by Z. W. Ras and A. A. Wieczorkowska.
Vol. 274. Studies in Computational Intelligence. Berlin, Ger-
many: Springer, 2010. Chap. 14, pp. 307–332.

Bibliography 133

[128] Joan Serrà, Emilia Gómez, Perfecto Herrera, and Xavier Serra.
“Chroma Binary Similarity and Local Alignment Applied to
Cover Song Identification”. In: IEEE Transactions on Audio,
Speech, and Language Processing 16 (2008), pp. 1138–1151.

[129] Joren Six and Marc Leman. “Panako - A Scalable Acoustic
Fingerprinting System Handling Time-Scale and Pitch Mod-
ification”. In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). Taipei, Taiwan, 2014,
pp. 259–264.

[130] Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer.
“Landmark-Based Audio Fingerprinting for DJ Mix Monitor-
ing”. In: Proceedings of the International Society for Music Informa-
tion Retrieval Conference (ISMIR). New York, USA, 2016, pp. 185–
191.

[131] Reinhard Sonnleitner and Gerhard Widmer. “Quad-Based Au-
dio Fingerprinting Robust to Time and Frequency Scaling”. In:
Proceedings of the International Conference on Digital Audio Effects
(DAFx). Erlangen, Germany, 2014, pp. 173–180.

[132] Reinhard Sonnleitner and Gerhard Widmer. “Robust Quad-
based Audio Fingerprinting”. In: IEEE/ACM Transactions on
Audio, Speech and Language Processing 24.3 (2016), pp. 409–421.

[134] Mevlut Evren Tekin, Christina Anagnostopoulou, and Yo
Tomita. “Towards an Intelligent Score Following System: Han-
dling of Mistakes and Jumps Encountered During Piano Practic-
ing”. In: Proceedings of the International Symposium on Computer
Music Modeling and Retrieval (CMMR). Esbjerg, Denmark, 2004,
pp. 211–219.

[135] Verena Thomas, Christian Fremerey, Meinard Müller, and
Michael Clausen. “Linking Sheet Music and Audio - Challenges
and New Approaches”. In: Multimodal Music Processing. Ed. by
Meinard Müller, Masataka Goto, and Markus Schedl. Vol. 3.
Dagstuhl Follow-Ups. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2012, pp. 1–22.

[136] Barry Vercoe. “The Synthetic Performer in the Context of Live
Performance”. In: Proceedings of the International Computer Music
Conference (ICMC). Paris, France, 1984, pp. 199–200.

[137] Alessandro Vinciarelli. “A survey on off-line Cursive Word
Recognition”. In: Pattern Recognition 35.7 (2002), pp. 1433–1446.

[138] Avery Wang. “An Industrial Strength Audio Search Algorithm”.
In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Baltimore, Maryland, USA, 2003,
pp. 7–13.

134 Bibliography

[139] Siying Wang, Sebastian Ewert, and Simon Dixon. “Robust Joint
Alignment of Multiple Versions of a Piece of Music”. In: Pro-
ceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Taipei, Taiwan, 2014, pp. 83–88.

[140] Gerhard Widmer. “Discovering simple rules in complex data:
A meta-learning algorithm and some surprising musical dis-
coveries”. In: Artificial Intelligence 146.2 (2003), pp. 129–148.

[141] Gerhard Widmer. “Getting Closer to the Essence of Music: The
Con Espressione Manifesto”. In: ACM Trans. Intell. Syst. Technol.
8.2 (2016), 19:1–19:13.

[142] Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk,
and Asmir Tobudic. “In search of the Horowitz factor”. In: AI
Magazine 24.3 (2003), pp. 111–130.

[143] Guangyu Xia, Yun Wang, Roger B. Dannenberg, and Geoffrey
Gordon. “Spectral Learning for Expressive Interactive Ensem-
ble Music Performance”. In: Proceedings of the International Soci-
ety for Music Information Retrieval Conference (ISMIR). Málaga,
Spain, 2015, pp. 816–822.

[144] Ryuichi Yamamoto, Shinji Sako, and Tadashi Kitamura. “Ro-
bust on-line algorithm for real-time audio-to-score alignment
based on a delayed decision and anticipation framework”.
In: Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP). Vancouver, Canada,
2013, pp. 191–195.

C U R R I C U L U M V I TA E

ANDREAS ARZT

PARTICULARS

EDUCATION

Technical University of Vienna Vienna, Austria

M. S. in Computer Science February 2006 - February 2008

With Distinction

University of Vienna Vienna, Austria

BSc. in Computer Science October 2002 - February 2006

CURRENT STATUS

Austrian Resident, Citizen of Austria.

RESEARCH INTERESTS

My main interests in research are in the area of (real-time) music
understanding, which can be seen as a multi-faceted combination
of digital signal processing, artificial intelligence (mainly machine
learning), and musicology.

ACADEMIC HONORS

• Best Paper Award for “Real-time Music Tracking using Multiple Per-
formances as a Reference” by A. Arzt and G. Widmer at International
Society for Music Information Retrieval Conference (ISMIR), Málaga,
Spain, 2015.

• Best Demo Award for the “The Piano Music Companion” by A. Arzt, S.
Böck, S. Flossmann, H. Frostel, M. Gasser, C.C.S. Liem, and G. Widmer
at the 8th International Conference on the Prestigious Applications
of Intelligent Systems (PAIS) in conjunction with the 21st European
Conference on Artificial Intelligence (ECAI), Prague, Czech Republic,
2014.

• Best Demo Award for “The Complete Classical Music Companion
V0.9” by A, Arzt, S. Böck, S. Flossmann, H. Frostel, M. Gasser, and G.
Widmer at the AES 53rd International Conference on Semantic Audio,
London, UK, 2014.

135

RESEARCH EXPERIENCE

• Austrian Research Institute for Artificial Intelligence (OFAI), Vi-
enna, Austria, July 2016 - Present.
Research Topics: Methods to collect, annotate and analyse large cor-
pora of classical music.

• Austrian Research Institute for Artificial Intelligence (OFAI), Vi-
enna, Austria, September 2014 - December 2015.
Research Topics: Live Tracking of Orchestral Music (including a live
event at the Concertgebouw in Amsterdam).

• Research Assistant and University Assistant, Department of Com-
putational Perception, Johannes Kepler University, Linz, Austria,
July 2009 - June 2016.
Research Topics: Music Synchronisation, Real-time Music Tracking,
Music Identification, Pattern Discovery in Music

TEACHING EXPERIENCE

• KV Special Topics Audio and Music Processing. Summer 2011, Sum-
mer 2012, Summer 2013, Summer 2014 and Summer 2015 at Johannes
Kepler University. This course is an introduction to the automatic
analysis of music via computer algorithms.

• KV Special Topics Artificial Intelligence in Media, Art and Society.
Summer 2014 and Summer 2015 at Johannes Kepler University. This
class consists of lectures, guest lectures, and screenings that focus on
current trends in media, art, and society that are related to Artificial
Intelligence.

• UE Algorithmen und Datenstrukturen 1. Summer 2014 at Johannes
Kepler University. This is the accompanying lab course to the lec-
ture VO Algorithmen und Datenstrukturen 1, which teaches basic
techniques in algorithms and data structures.

• UE Artificial Intelligence. Winter 2010, Winter 2011, Winter 2012 and
Winter 2013 at Johannes Kepler University. This is the accompanying
lab course to the lecture VO Artificial Intelligence. The goal is to
improve the students’ understanding of the material and prepare them
for the exam.

• SE Seminar in Computational Engineering. Winter 2013 at Johannes
Kepler University. Research seminar.

• PR Project in Computational Engineering. Winter 2013 at Johannes
Kepler University.

PUBLICATIONS

PAPERS

1. Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Automatic Page
Turning for Musicians via Real-Time Machine Listening”. In: Proceed-
ings of the European Conference on Artificial Intelligence (ECAI). Patras,
Greece, 2008, pp. 241–245

2. Andreas Arzt and Gerhard Widmer. “Simple Tempo Models for Real-
time Music Tracking”. In: Proceedings of the Sound and Music Computing
Conference (SMC). Barcelona, Spain, 2010

3. Andreas Arzt and Gerhard Widmer. “Towards Effective ’Any-Time’
Music Tracking”. In: Proceedings of the Starting AI Researchers’ Symposium
(STAIRS). Lisbon, Portugal, 2010, pp. 24–36

4. Andreas Arzt and Gerhard Widmer. “Robust Real-time Music Track-
ing”. In: Proceedings of the Vienna Talk on Musical Acoustics (VITA).
Vienna, Austria, 2010, pp. 5–8

5. Harald Frostel, Andreas Arzt, and Gerhard Widmer. “The Vowel Worm:
Real-Time Mapping and Visualisation of Sung Vowels in Music”. In:
Proceedings of the Sound and Music Computing Conference (SMC). Padova,
Italy, 2011, pp. 214–219

6. Andreas Arzt, Gerhard Widmer, Sebastian Böck, Reinhard Sonnleitner,
and Harald Frostel. “Towards a Complete Classical Music Companion”.
In: Proceedings of the European Conference on Artificial Intelligence (ECAI).
Montpellier, France, 2012, pp. 67–72

7. Andreas Arzt, Gerhard Widmer, and Simon Dixon. “Adaptive Distance
Normalization for Real-time Music Tracking”. In: Proceedings of the
European Signal Processing Conference (EUSIPCO). Bucharest, Romania,
2012, pp. 2689–2693

8. Andreas Arzt, Sebastian Böck, and Gerhard Widmer. “Fast Identifi-
cation of Piece and Score Position via Symbolic Fingerprinting”. In:
Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Porto, Portugal, 2012, pp. 433–438

9. Sebastian Böck, Andreas Arzt, Florian Krebs, and Markus Schedl.
“Online Real-Time Onset Detection with Recurrent Neural Networks”.
In: Proceedings of the International Conference on Digital Audio Effects
(DAFx). York, United Kingdom, 2012

10. Filip Korzeniowski, Florian Krebs, Andreas Arzt, and Gerhard Widmer.
“Tracking Rests and Tempo Changes: Improved Score Following with
Particle Filters”. In: Proceedings of the International Computer Music
Conference (ICMC). Perth, Australia, 2013

11. Maarten Grachten, Martin Gasser, Andreas Arzt, and Gerhard Widmer.
“Automatic Alignment of Music Performances with Structural Differ-
ences”. In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Curitiba, Brazil, 2013, pp. 607–612

12. Tom Collins, Andreas Arzt, Sebastian Flossmann, and Gerhard Wid-
mer. “SIARCT-CFP: Improving Precision and the Discovery of Inexact

Musical Patterns in Point-set Representation”. In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR).
Curitiba, Brazil, 2013, pp. 549–554

13. Andreas Arzt, Gerhard Widmer, and Reinhard Sonnleitner. “Tempo-
and Transposition-invariant Identification of Piece and Score Position”.
In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Taipeh, Taiwan, 2014, pp. 549–554

14. Andreas Arzt, Cynthia C.S. Liem, and Gerhard Widmer. “A Tempo-
and Transposition-invariant Piano Music Companion”. In: Proceedings
of the International Society for Music Information Retrieval Conference
(ISMIR), Late Breaking / Demo. Taipeh, Taiwan, 2014

15. Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald Frostel,
Martin Gasser, and Gerhard Widmer. “The Complete Classical Music
Companion V0.9”. In: Proceedings of the 53rd AES Conference on Semantic
Audio. London, England, 2014

16. Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald Frostel,
Martin Gasser, Cynthia C.S. Liem, and Gerhard Widmer. “The Piano
Music Companion”. In: Proceedings of the Conference on Prestigious Ap-
plications of Intelligent Systems (PAIS). Prague, Czech Republic, 2014,
pp. 1221–1222

17. Tom Collins, Daniel A. Abrams, Rohan Chandra, Christina Young,
Andreas Arzt, and Vinod Menon. “Neural tracking of musical motives
revealed by a combination of fMRI and music information retrieval
techniques”. In: Proceedings of the International Conference on Music
Perception and Cognition (ICMPC). Seoul, South Korea, 2014, p. 55

18. Andreas Arzt, Werner Goebl, and Gerhard Widmer. “Flexible Score
Following: The Piano Music Companion and Beyond”. In: Proceedings
of the Vienna Talk on Musical Acoustics (VITA). Vienna, Austria, 2015,
pp. 220–223

19. Andreas Arzt, Harald Frostel, Thassilo Gadermaier, Martin Gasser,
Maarten Grachten, and Gerhard Widmer. “Artificial Intelligence in the
Concertgebouw”. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). Buenos Aires, Argentina, 2015, pp. 2424–
2430

20. Andreas Arzt and Gerhard Widmer. “Real-time Music Tracking using
Multiple Performances as a Reference”. In: Proceedings of the Interna-
tional Society for Music Information Retrieval Conference (ISMIR). Málaga,
Spain, 2015, pp. 357–363

21. Martin Gasser, Andreas Arzt, Thassilo Gadermaier, Maarten Grachten,
and Gerhard Widmer. “Classical Music on the Web – User Interfaces
and Data Representations”. In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). Málaga, Spain, 2015,
pp. 571–577

22. Mark Melenhorst, Ron van der Sterren, Andreas Arzt, Agustin Mar-
torell, and Cynthia C.S. Liem. “A Tablet App to Enrich the Live and
Post-Live Experience of Classical Concerts”. In: Proceedings of the 3rd
ACM International Workshop on Interactive Content Consumption. Brussels,
Belgium, 2015

23. Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck,
Andreas Arzt, and Gerhard Widmer. “On the Potential of Simple
Framewise Approaches to Piano Transcription”. In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR).
New York, USA, 2016, pp. 475–481

24. Reinhard Sonnleitner, Andreas Arzt, and Gerhard Widmer. “Landmark-
Based Audio Fingerprinting for DJ Mix Monitoring”. In: Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR).
New York, USA, 2016, pp. 185–191

25. Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer. “Us-
ing Geometric Symbolic Fingerprinting to Discover Distinctive Patterns
in Polyphonic Music Corpora”. In: Computational Music Analysis. Ed. by
David Meredith. Springer International Publishing, 2016, pp. 445–474

26. Matthias Dorfer, Andreas Arzt, Sebastian Böck, Amaury Durand, and
Gerhard Widmer. “Live Score Following on Sheet Music Images”. In:
Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), Late Breaking / Demo. New York, USA, 2016

27. Matthias Dorfer, Andreas Arzt, and Gerhard Widmer. “Towards Score
Following in Sheet Music Images”. In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). New York,
USA, 2016, pp. 789–795

THESIS

1. Andreas Arzt. “Score Following with Dynamic Time Warping: An
Automatic Page Turner”. MA thesis. Vienna, Austria: Vienna University
of Technology, 2008

OTHER REPORTS

1. Andreas Arzt, Werner Goebl, Dominik Schnitzer and Gerhard Wid-
mer. “Assessment nationaler Nischen in Bezug auf EU-Aktivitäten
am Beispiel Computational Perception", Studie im Auftrag des öster-
reichischen Bundesministeriums für Verkehr, Innovation und Technologie,
2009.

TALKS

INVITED TALKS

• “Demonstration of the Piano Music Companion at the Opening Cer-
emony", International Joint Conference on Artificial Intelligence (IJCAI),
Buenos Aires, Argentina, July 2015.

• “Echtzeit-Musik-Erkennng Live-Demo (Real-time Music Recognition
Live Demo)”, IMAGINE, Vienna, Austria, June 2015.

	Contents
	Introduction and Background
	1 Introduction
	1.1 Contributions of this Thesis
	1.2 Organisation of the Thesis
	1.3 Main Publications
	1.4 Additional Publications

	2 Background and Related Work
	2.1 A Vision of a Complete Classical Music Companion
	2.2 Data Collection for this Thesis
	2.3 Implementation Framework
	2.4 Related Work

	Contributions of the Thesis
	3 Improvements to Music Tracking via On-line Time Warping
	3.1 Introduction
	3.2 The Original On-line Time Warping Algorithm
	3.3 Improvement 1: Reconsidering Past Decisions
	3.4 Improvement 2: Tempo Models
	3.5 Improvement 3: Better Features for Music Tracking
	3.6 Conclusions
	3.7 Prototypical Implementation

	4 Robust Multi-agent Music Tracking
	4.1 Introduction
	4.2 Music Tracking using Multiple Performances as a Reference
	4.3 Artificial Intelligence in the Concertgebouw
	4.4 Conclusions
	4.5 Prototypical Implementation

	5 Music Identification and Flexible Music Tracking
	5.1 Introduction
	5.2 Early Approaches
	5.3 Fast Identification of Piece and Score Position
	5.4 The Dataset
	5.5 Tempo-invariant Fingerprinting
	5.6 Adding Transposition Invariance
	5.7 Processing Long Queries
	5.8 Conclusions
	5.9 Prototypical Implementation

	Live Demonstrations and Conclusions
	6 Real-Life Applications
	6.1 Tracking Algorithms used for Live Demonstrations
	6.2 Live Demonstrations

	7 Conclusions and Outlook
	Back Matter
	Bibliography

