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Towards E-Motion Based Music Retrieval
A study of Affective Gesture Recognition

Denis Amelynck, Maarten Grachten, Leon Van Noorden and Marc Leman

Abstract—The widespread availability of digitised music collections and mobile music players have enabled us to listen to music during
many of our daily activities, such as exercise, commuting, relaxation, and many people enjoy that opportunity. A practical problem that
comes along with the wish to listen to music is that of music retrieval, the selection of desired music from a music collection. In this
paper we propose a new approach to facilitate music retrieval. Modern smart phones are commonly used as music players, and are
already equipped with inertial sensors that are suitable for obtaining motion information. In the proposed approach, emotion is derived
automatically from arm gestures, and is used to query a music collection. We set-up predictive models for valence and arousal from
empirical data, gathered in an experimental setup where inertial data recorded from arm movements is coupled to musical emotion.
Part of the experiment is a preliminary study confirming that human subjects are generally capable of recognising affect from arm
gestures. Model validation in the main study confirmed the predictive capabilities of the models.
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1 INTRODUCTION

THE widespread availability of digitised music col-
lections and mobile music players has enabled us to

listen to music during many of our daily activities, such
as exercise, commuting, relaxation, and many people
enjoy that opportunity. A practical problem people face
when they want to listen to music is the selection of
desired music from a music collection. The bibliographic,
text-based interface to music-collections that is prevalent
in mobile music players as we know them today, is
not an optimal solution to this problem for two major
reasons. Firstly, bibliographic indices to music, such as
artist and album names, are only useful when the user
is familiar with the music she is looking for. Secondly, a
text-based visual interface is often impractical to handle
on the small screens of mobile devices. It requires full
attention and fine motor control of the user, which can
be cumbersome and even dangerous in everyday life
situations.

The basic tenet of affective computing, as stated by
Calvo and D’Mello [1], is that automatically recognising
and responding to a user’s affective states during inter-
actions with a computer can enhance the quality of the
interaction, thereby making a computer interface more
usable, enjoyable, and effective. This may be particularly
true in the context of interfaces for music players, since
music and affect are strongly related. Not only is it
natural for people to describe music in affective terms;
studies have also suggested that the most common goal

of musical experiences and in particular for music listen-
ing is to influence emotions: People use music to change
emotions, to enjoy or comfort themselves, and to relieve
stress [2].

Of the various forms an affection-based interface to
music players might take, motion-driven approaches
seem especially promising. One reason for this is that
there is ample evidence that corporal gestures are a very
effective way of communicating affect among people
(see section 2). Another, more pragmatic reason is that
many smart phones that people use as music players
nowadays, are equipped with inertial sensors that make
it possible to capture movements of the user.

In the envisioned interface, users can search through
music collections by the affective character of the music,
where the character of the desired music is expressed
through corporal gestures. In this way we aim to im-
plement the conceptual framework of embodied music
cognition and mediation technology [3], and reduce the gap
between the fundamentally corporeal aspects of music
and the disembodied, bibliographical way of interacting
with music collections that is common practice today.

The work presented in this paper is intended as the
foundation for a such a motion based affective user
interface for music retrieval. We present a linear regres-
sion model that predicts the affective character of music,
based on the arm movements of people expressing that
character. The model is derived from empirical data that
is gathered from an experiment, as described in section 3.
A motion based interface can employ this model to
interpret arm movements of the user in terms of affective
character, so that the movement can be matched to the
affective character of music. For this, it is also necessary
to have a music collection that is annotated in affective
terms. Automated affective description of music is be-
yond the scope of this paper, but this is an active field
of research in its own right (see e.g. [4], [5], [6]).
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It is commonly acknowledged that the notion of affect,
and subsumed notions such as emotion, and mood, are
notoriously intricate. The study of affect in combination
with music is by no means less intricate and contro-
versial. First of all, some studies question whether the
emotions music evokes should be considered as basic
emotions [7], whereas others consider this view mis-
lead [2]. There is also disagreement on the question
whether music is more adequately described as inducing
mood (a relatively vague and long-lasting form of affect),
or emotion (more instantaneous and focused forms of
affect) [2]. Furthermore, perception of music has been
shown to influence neuroaffective processes [8]. Other
studies show however, that the strength of emotions
induced by music is relatively low compared to emotions
induced by personal memories [9].

In the light of these controversies, it is useful to clarify
our use of notions related to affect in this paper, and
the corresponding assumptions we make. To begin with,
we focus on the affective character of the music, as
perceived by the listener. We will also refer to these
as the emotional character of the music, because of the
instanteous and concrete nature of the music. More
specifically, we adhere to the valence-arousal model [10] to
represent the emotional character of music, in line with
other studies concerning emotion in music[4]. Although
extended versions of this model have been proposed
that include a third dimension representing tension, there
is evidence that the three-dimensional model does not
account better for perceived emotions in music [11].

Although we focus on emotions perceived by listeners,
there is a possible confounding effect of emotions that
are induced by the music. We consider this risk unprob-
lematic however, for several reasons. Firstly, the setup
of the experiment, in particular the short duration and
rapid succession of musical fragments (see section 3) do
not foster a deep emotional involvement of the subject
with the music. Secondly, as far as induced emotions
may affect the arm movement of listeners, the we assume
that the induced emotion is most likely to correspond
to the perceived emotion of the music. In other words,
although it is possible that a musical fragment of a
particular emotional character produces a non-congruent
emotional state in a subject due to a strong memory
association, we believe such cases to be too infrequent
to be of significance.

The next section contains a brief review related work
concerning both human and automated affect detection
from human movement. In section 3, we describe the
experiments carried out to gather the movement data
for affect recognition. In section 4, we present the data-
modelling process, and the results of the model valida-
tion. A discussion of the results is presented in section 5,
followed by conclusions and directions for future work,
in section 6.

2 RELATED WORK

A natural way for humans to express affect is by corporal
gestures [12], [13]. Communication of affect through ges-
tures (both static and dynamic) is arguably an intrinsic
part of social behaviour. This is reflected in numerous
studies showing the capability of humans to recognise
affect from the corporeal behaviour of others. To a large
extent, the quality of movements seem to convey affec-
tive information. For example, to recognise emotion from
gait, a small number of features describing joint angles
and spatial trajectories is sufficient for humans to recog-
nise emotions in animated avatars [14]. Furthermore,
Atkinson et. al [15] show that even with very reduced
visual representations of the body, such as point-light
displays, recognition of emotion by human subjects is
still possible (though to different degrees for different
emotions). Point-light displays of arm movements of
actors expressing affect in everyday movements, like
drinking and knocking, also enable observers to recog-
nise the expressed affects [16]. Pollick et al. also found
that movement features such as average velocity, peak
velocity, acceleration, and jerk were all correlated with
the level of activation.

Music-related body movement, such as that of
dancers, and the performing musicians, also conveys af-
fect. Brownlow and Dixon [17] state that observers easily
can judge happy dances as happier and stronger than
sad dances. Again, the observers in their experiment
based their judgement solely upon point-light displays
of dance, thus excluding recognition of affect by facial
expression or other cues. Successful automatic recognition
of emotions of dance movements has been reported [18].
Vines and Wanderley [19] analysed gestures from profes-
sional clarinet performers. They confirm that the visual
component (body movement) of the performance carries
much of the same structural information as the audio.
In some conditions, removing the visual component
decreases the judgement of tension (emotion).

These studies strengthen the view that affect can be
effectively communicated through human body move-
ment, and therefore, that automatic affect recognition
from human motion, even if it is a challenging problem
(see [1] for a survey of current research), is not unfeasi-
ble.

3 EXPERIMENTAL SET-UP

An experiment was carried out with the goal of building
a data set of arm movements expressing the affective
character of different pieces of music. The design of the
experiment is oriented towards the use case of gesture
based music retrieval in mobile devices, in the sense that
arm motion is captured using a wireless handheld device
equipped with 3D inertial sensors, comparable to the
motion-capture technology available in smart phones.

The following setup was designed to link movements
to affective descriptions of music: Participants were
asked to listen to a musical fragment, and to describe
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the emotional character of the music, in terms of valence
and arousal. Then, they were asked to listen to the
music again, and simultaneously express the emotional
character of the music as clearly as possible through
the movement of their arm (either the left or right
arm, depending on preference). The movement of the
arm was observed by three other participants, who had
to guess the emotional character of the music being
expressed, judging only on the arm movement. One
reason for including observing participants in the setup
is to encourage the observed participants (called per-
formers henceforth) to communicate the intended emotion
through the movement, rather than making just any
movements associated with the music. A second reason
is that the degree of agreement between the intended
emotion and the emotion recognized by observers serves
as an indicator of how clearly the intended emotion is
expressed by the movement.

The rest of this section describes the experimental
setup in more detail.

Participants

In total 32 persons participated in the experiment. Of
these, five groups of four persons participated in the
main part of the experiment. The remaining 12 persons
participated individually. Their responses were used to
validate the model derived from the data obtained in the
main experiment, as described below.

Stimuli

The musical material was selected from a pre-existing
library of 30 second musical excerpts [20]. In total 24
musical fragments (table 1) were selected divided over
four similar sets of six fragments. The sets are sepa-
rated by a double line in table 1. Similarity of the sets
was controlled after the experiment. From the results
shown in table 2 it can be verified that the sets were
indeed homogeneous and that they spanned the whole
valence/arousal range. The arousal and valence scores
mentioned in both tables are average appraisal scores
collected from the performers.

Each of the 24 musical fragments was rated once in
each of the five participant group, resulting in 120 ratings
in total, and five ratings per fragment.

Material

For capturing arm movement, a Wii Remote was used.
This is a wireless, handheld device commercially avail-
able as a gaming interface from Nintendo. It transmits
3D inertial sensor data in realtime via Bluetooth at a
sample rate of 100Hz. Musical material was played to
the participants from a computer, using wired head-
phones. Visual recordings of arm movements were were
transmitted in real-time, using a digital video camera.

TABLE 1
Musical Fragments and their average Arousal/Valence

appraisal scores as given by the Performers

Performer - Title Arousal Valence

New Zealand Symphony Orchestra -
Many Meetings 1.4 3.6

Midori/Berliner Philharmoniker / Clau-
dio Abbado - Canzonetta. Andante
(Concerto for Violin and Orchestra in D
major op. 35)

2.6 2.0

Tam Echo Tam - One Step 4.2 4.4

L’ Arpeggiata / Christina Pluhar - Ah,
vita bella

1.6 1.8

Blur - Song 2 4.8 4.4

DJ Tiësto - Traffic 4.6 3.4

Metallica - St. Anger 4.0 2.8

De Nieuwe Snaar - Achterbank 3.8 5.0

Enya - Orinoco Flow 2.2 3.4

The Cleveland Orchestra/Pierre Boulez
- Le Sacre du Printemps 5 2.4

Alberto Gilberto - The girl from Ipanema 1.6 3.8

New Philharmonia Orchestra/Sir John
Barbirolli - Adagietto, Sehr langsam
Symphony No. 5 in C sharp minor

1.4 1.8

Esa-Pekka Salonen / Philharmonia Or-
chestra - Car Horn Prelude (Le Grand
Macabre)

4.0 1.4

Bob Marley - Corner stone 3.0 5.0

Beyoncé - Naughty Girl 3.8 3.3

Astor Piazzolla - Oblivion 1.2 1.8

Metallica - My World 4.8 1.6

Manu Chao - Mr. Bobby 2.4 4.6

Novastar - Never back down 2.6 3.4

David Hill / Westminster Cathedral
Choir - Motectum (Requiem, Officium
defunctorum)

1.2 1.2

Usher - Usher 4.6 4.2

Vladimir Ashkenazy - Nocturne in F
major op.15 No.1 1.4 2.8

St. Germain - Land of ... 3.8 4.4

Collegium Vocale & La Chapelle
Royale/Orchestre des Champs
Elysées/Philippe Herreweghe - Dies
Irae (Requiem KV 626)

4.4 1.6

Judgments of emotional character were obtained from
participants through printed questionaires.

Procedure

Within a group of four participants, one set of six musical
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TABLE 2
Sets of fragments and their statistical Arousal/Valence

dispersion

Set Arousal : mean ± stdev Valence : mean ± stdev

1 3.2 ± 1.5 3.3 ± 1.1

2 3.0 ±1.5 3.2 ± 1.1

3 3.2 ± 1.3 3.0 ± 1.6

4 3.0 ± 1.5 2.9 ± 1.3

Fig. 1. Video capture of performance as monitored by the
observers

fragments was assigned to each participant, such that
each fragment was uniquely assigned to a participant
within the group. Every participant was asked in turn
to listen to each of the fragments assigned to him/her,
express this character by arm movements while listening
to the fragment again, and judge its emotional character
(dealing with one fragment at a time). The arm move-
ments were made while holding the Wii Remote, in front
of a camera that was positioned in such a way that only
the arm was monitored, as illustrated in figure 1. A small
shield was used to prevent the participants’ faces from
occasionally appearing on the screen.

The instructions for the performer were as follows:
1) Listen to a short musical fragment
2) While listening a second time, express the emo-

tional character of the music as accurately as pos-
sible through movements of your arm

3) Rate the emotional character of the music on the
provided form

The emotional character of musical fragments was
rated in terms of valence and arousal on a 1 to 5
scale. Rather than using the terms valence and arousal
directly, the semantics of the two scales was indicated by
labeling the extremes of the scales with corresponding
adjectives. The adjectives were given in Dutch: kalm,
vermoeid (calm, tired) versus energetisch, gespannen (ener-
getic,tense) to label the low and high extremes of arousal
respectively, and droevig, kwaad (sad, angry) versus blij,
tevreden (happy, pleased) for valence. It was explained
to the participants that a single matching adjective was
sufficient to rate a musical fragment correspondingly.
For example, it is sufficient for either kalm or vermoeid
to apply, in order to choose that rating.

The three other participants, referred to as observers,
watched the arm movements of the performer via a
monitor in a separate space (figure 1). They did not
hear the music fragments the performer heared. The
observers were instructed as follows:

1) Monitor the (arm movement of the) performer.
2) Rate the emotions expressed by the arm movement.
3) Describe any cues in the motion that helped you

to make your rating (free text)

The remaining 12 subjects participated in the role of per-
former, as described above. Each subject was assigned
again a group of six fragments. This time, no observers
were present. The arm movements and the subject’s
rating of the emotional character of the fragments was
recorded as before. The data obtained in this way is used
for validation, as described in section 4.

4 RESULTS

The data obtained in the experiment was used to create
a regression model for predicting the expressed arousal
and valence from arm movements as captured by the 3D
inertial sensors of the Wii remote. We aim at a general
data model that can easily be ported to other devices,
possibly using other sensing technologies. Therefore
only predictor variables with a relatively straightforward
relationship to movement were considered. This prefer-
ence of general validity over a fine-tuned model leads
us to consider only models with at most five predictor
variables.

The Wii Remote measures the acceleration of the de-
vice in the direction of three perpendicular axes, relative
to the device. Since the way of holding the device was
not constrained, similar arm movements may lead to dif-
ferent data, as an effect of the Wii Remote being held in
different ways. To compensate for this, the acceleration
data for each fragment was projected onto its three prin-
cipal components by performing a principal component
analysis (PCA). In figure 2 we show acceleration data
collected from two different subjects performing on the
same musical fragment. In this figure an acceleration
value of 25 corresponds with 1G (gravity). From this
figure it is very difficult to see similarities between the
two performances. When the data is translated and ro-
tated to the PCA-axes, the similarity between these two
performances becomes apparent (Figure 3). Apart from
making data from different subjects easier to compare,
an advantage of the PCA transform is that it reveals the
intrinsic dimensionality of the movement.

To determine a set of candidate features to compute
from the accelerometer data, we made an inventory
of the free text responses in which subjects reported
useful cues for judging the emotional character of the
movements. The cues can be roughly grouped into five
complementary aspects of the movement:

1) Roughness: gracefulness, multiple short moves
2) Rhythm: tempo of the music
3) Speed: high speed, low speed, and acceleration
4) Size: large versus small movements
5) Location of the arm: high = happy
Ideally, each of the cue categories should be repre-

sented by at least one predictor variable.
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Fig. 2. Raw acceleration data from accelerometer : Per-
formances of two subjects on the same musical fragment
(set 1, fragment 4)

We extract various features that describe various prop-
erties of the distribution of acceleration data, in terms of
geometry and density (Figure 3). The same was done for
jerk (derivative of acceleration) and speed (integral of
acceleration). Beside these spatial features we calculated
also a number of temporal related features as peak-rates,
zero crossings and randomness (runs test). Summarised
the following features were extracted :

• Distribution properties for acceleration, jerk and
speed along the 3 PCA axes : mean, range, standard
deviation, kurtosis, skewness.

• Distribution properties for direction: circular stan-
dard deviation, concentration parameter kappa (Von
Mises distribution),

• Volume (convhull) of acceleration point cloud.
• Time related variables: speed peak rate, zero cross-

ing, randomness (runs test).

These features can be linked to the cue categories iden-

Fig. 3. Acceleration data translated and rotated to PCA-
axes : For same performances as shown in Figure 2.

tified before, with the exception of location cues1.
• Roughness : all jerk related features
• Rhythm : time related variables
• Speed : Speed and acceleration features
• Size : Direction parameters , volume of acceleration

point cloud.
To remove any transient effects due to subjects starting

or stopping to move, the features are extracted after
removing the first and last 5 seconds of each data stream.
The remaining stream spanned 20 seconds (correspond-
ing to 2000 samples).

The extracted features were correlated with valence
and arousal. There are strong correlations between some
features and arousal ( |r| > 0.6) but in general weaker
correlations with valence (all |r| < 0.4). Uncorrelated
features ( |r| < 0.2) were discarded from the analysis. Be-
cause some features were highly correlated ( |r| > 0.9). is
is necessar to take precautions against multicollinearity.

1. Although the position of the Wii Remote can in principle be
estimated by assuming an initial position and tracking acceleration
over time, this estimation is unusable in practice, due to cumulative
estimation errors.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING (TAC) 6

Using all features in a least squares estimate as a
regression model would give two problems [21]. The
first problem is prediction accuracy: the least squares
estimates often have low bias but large variance. Pre-
diction accuracy can however sometimes be improved
by shrinking or setting some coefficients to zero. By
doing so we sacrifice a little bit of bias to reduce the
variance of the predicted values, and hence may improve
the overall prediction accuracy. The second problem is
interpretation. With a large number of predictors, we
often would like to determine a smaller subset that
exhibits the strongest effects.

Because of our restriction to models of maximally five
predictor variables, the method of ’best subset selection’
was used. By retaining a subset of the predictors and
discarding the rest, subset selection produces a model
that is interpretable but has possibly lower prediction
error than the full model. Best subset selection also gives
a hard threshold on how many parameters to keep.
Other shrinkage methods ( like lasso or ridge regression
) may give less variability but the number of parameters
is soft-thresholded. The choice for least squares estimates
and for best subset selection implied the need of a data
validation step to check the generalisation capabilities of
the calculated data model.

The regression model was eventually calculated via
SPSS using the stepwise method. In this method, each
variable is entered in sequence and its value assessed. If
adding the variable contributes to the model then it is
retained, but all other variables in the model are then re-
tested to see if they are still contributing to the success of
the model. If they no longer contribute significantly they
are removed. In this way this method ensures that the
smallest possible set of predictor variables is included in
the model [22].

From here we will make a distinction between data
modelling for arousal and data modelling for valence.

4.1 The Regression Model for Arousal

Set-Up of the Arousal Model

The regression model for Arousal was derived from
97 performances out of a total of 120 performances.
23 cases where performer and observers did not agree
(Difference > 1) were discarded as mentioned before.
In other words, in over 80% of the cases there was
an agreement between performer and observer. We use
SPSS and the stepwise method to enter the predictor
variables, resulting in a model with three predictor vari-
ables. The variables (listed in their order of contribution
importance) are the following (beta-values in table 3):

SpeedPeakrate: The number of local maxima and local
minima for speed (integral of acceleration) divided by
the time interval. Speed is calculated as an Euclidean
norm.

KurtPCA1Speed: Kurtosis of the distribution of speed
along the first (main) principal axis. This variable is

TABLE 3
Regression analysis for Arousal.

Model B SE B Beta Sig.

(Constant) 2.096 4.410 0.000

Speedpeakrate 0.560 0.056 0.680 0.000

PCA3Std 0.043 0.014 0.213 0.002

kurtPCA1Speed -0.585 0.149 -0.212 0.000

R = 0.854 (R2 = 0.730 adjusted R2 = 0.721)

negatively correlated with arousal. A high value means
that intermediate values have become less likely and the
central and extreme values have become more likely. In
other words low arousal corresponds with long periods
of low speed (central values) and other periods of high
speed (extreme values). High arousal corresponds with
periods of nearly constant speed or where the variation
in speed is not huge (intermediate values).

PCA3Std: Standard deviation of the distribution of
acceleration along the third principal axis. A small value
indicates that the acceleration mainly happens in a plane
formed by the two main principal axes.

The regression analysis did not reveal any outliers.
(Criterion used: more than three standard deviations dif-
ference). There was however one influential case (group
5 subject 3 fragment 5) that ended up with a high value
for DFFit (Difference in Fit). In order to preserve the
general character of our model we removed this case
and recalculated our regression model. An overview of
the recalculated model can be found in table 3.

Because of the correlations between features, the fol-
lowing assumptions were checked:

1) Multicollinearity: VIF (variance inflation factor) av-
erage was close to 1 (1.4) and indicated absence of
multicollinearity between the 3 predictor variables.

2) Normality for distributed errors: Probability plot
for the residuals confirmed normality.

Validation of the Arousal model:

Model validation was done using the data gathered from
the 12 individual subjects, who did not participate in the
main part of the experiment.

Explanatory capabilities of the model: The variance of
the validation data explained by the model : R = 0.754
(R2 = 0.568). Compared to R = 0.854 (R2 = 0.730) for the
original data, this means a shrinkage with 16%.

The predictive capabilities are presented in Fig. 4. We
see that the average prediction from the model deviates
most for low arousal values. For other arousal values the
prediction is in line with the target value.

Further investigation was done by having a closer look
at the residuals. The results of this analysis are in table 4.
The large residual value of -4.888 is due to an out of scale
prediction of 9.888 for an arousal value of 5. Allowing
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Fig. 4. Validation data. Y-axis predicted Arousal values.
X-axis performer Arousal values.

TABLE 4
Residual statistics.

Residuals Minimum Maximum Mean StdDev

Model -1.553 1.880 0 0.740

Validation -4.888 1.506 -0.494 1.083

non-linearity by replacing values outside the boundaries
of 1 and 5 with their respective boundary values, reduces
the error, and the explanatory value of the model is
increased (R2 = 0.685). This leads to a reduction of only
4.5 % compared to the original data model.

4.2 The Regression Model for Valence
The regression model for valence was derived from
88 out of a total of 120 performances. 32 cases where
performer and observers did not agree (Difference > 1)
were discarded. We discarded considerable more sam-
ples (27 %) than for arousal (19 %).

Just like for the arousal model, we started with the
stepwise method to add variables to the model. In a first
step we obtained a model with five predictor variables.
There were no outliers but however there was one
influential case. Group 2 Subject 3 Fragment 5 ended
up with a high value for DFFit. In order to preserve
the general character of our model we removed that
case and recalculated our model. Recalculation led to
the removal of two more predictor variables that had
no significant contribution. The final result was a model
with again three predictor variables. The variables are
hereafter listed in their order of contribution importance
(beta-value), see table 5:

stdPCA1Jerk: Standard deviation of the derivative of
the acceleration (jerk) of the first PCA component and
this variable was negatively correlated with valence. If

TABLE 5
Regression analysis for Valence.

Model B SE B Beta Sig.

(Constant) 1.083 0.354 0.003

Speedpeakrate 0.751 0.116 1.018 0.000

StdPCA1Jerk -0.238 0.046 -1.148 0.000

PCA2Std 0.058 0.021 0.461 0.008

R = 0.606 (R2 = 0.367 adjusted R2 = 0.344)

acceleration changes are nearing a random pattern (high
standard deviation), this will result into a lower valence.

SpeedPeakrate: See subsection 4.1.
PCA2std: Standard deviation of the second princi-

pal component. A small value means that accelera-
tion/movement happens mainly along the axis of the
first principal component rather than in a plane. This
variable was positively correlated with valence. In other
words for low valence the movement is rather one
dimensional (1D).

A complete overview of the model can be found in
table 5.

Assumptions checked:
1) Multicollinearity: (VIF variance inflation factor).

The VIF never exceeded 10, but the average over
all variables was well above 1 (4.4). So there might
be some moderate bias in the model.

2) Normality for distributed errors: Probability plot
indicates that the distribution is slightly skewed
left.

The R2 value of 0.367 for valence is relatively low com-
pared to a value of 0.730 for arousal. A possible reason
for this is that the model contains no predictor variable
representing location, although observers reported this
cue as indicative for valence. Even if location cannot
be estimated directly from the accelerometer data, an
estimate of position can be made indirectly: Because of
the fact that the Wii Remote device is ergonomically
designed for one particular way of grasping, in practice
subjects held the Wii Remote all in the same position.
Additionally, it is reasonable to assume that raising
the arm leads to a different angle of the hand than
lowering it, due to physiological constraints. By making
these extra assumptions, location can be estimated as the
rotation of the device along its pitch axis, comparable
with nose up (pitch>0) or nose down (pitch<0) for
a plane. The contribution of the pitch variable to the
regression model was slightly below the contribution of
the strongest variables. Because the pitch variable did
not explain more or additional variance, we did not
include it in the model here.

Validation of the Valence model:

Model validation was done again on the validation set.
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Fig. 5. Validation data. Y-axis predicted valence values .
X-axis valence as given by the performer.

TABLE 6
Residual statistics.

Residuals Minimum Maximum Mean StdDev

Model -2.031 2.203 0 0.970

Validation -3.394 1.901 -0.255 1.073

Explanatory capabilities of the model: The variance of
the validation data explained by the model : R = 0.532
(R2 = 0.284). Compared with R = 0.606 (R2 = 0.367) for
the original data, this means a shrinkage with 8.3 %.

The predictive capabilities of the model are presented
in Fig. 5. As expected with the lower R2 values, the
predicted (main) values for valence are closer to the
mean. Most variation in prediction is found for low
valence values.

Further investigation was done by having a closer look
at the residuals. The results are in table 6.

Standard Deviation for residuals is 1.073 and that is
close to the standard deviation of the model. There is
one residual with an excessive value of -3.394. This case
is for a low valence value (value = 2).

5 DISCUSSION

The data model for arousal explains 73 % (R2-statistic)
of the variance for the original sample and 68.5 %
(R2-statistic) of the variance for the validation samples.
These are high values and endorse the good predicting
capabilities of the model. The small shrinkage (4.5 %)
from the original sample to the validation data confirms
the generalisation capability of this model. The data
model for valence resulted in a value for the R2 statistic
of 36.7 % for the original sample and of 28.4 % for
the validated data. This is a shrinkage with 8.3 %. The
generalisation of the valence model is clearly less than

for arousal and its predicting capabilities are also clearly
less.

We have tried to remedy a possible cause for this,
namely that the accelerometer data do not allow for a
good estimate of location. However, an post hoc heuristic
to estimate location indirectly did not improve results.

Another explanation for the lower prediction results of
valence is that valence related aspects of movement are
ambiguous, in the sense that human observers are also
less succesful in recognizing valence accurately. This is
reflected in the fact that for valence, a larger proportion
of the experimental data was discarded due to lack of
agreement between intended and observed valence. The
higher ambiguity of valence compared to arousal is also
on a par with the findings of Pollick et al. who stated
that the second dimension of affect, pleasantness, was
less correlated with any of the considered movement
features [16]. A possible explanation is that sad mu-
sic is not systematically associated with negative va-
lence [23] [24]. Although sadness is generally considered
to be an unpleasant emotion, the classification is not
as straightforward in the context of music. Sad music
is often considered beautiful, and therefore it may be
difficult to perceive sadness in music as unpleasant [11].

The models presented here are based upon motion
data from arm gestures as input. To our knowledge,
experiments attempting to detect musical affect from
movement using inertial sensors are as of yet very scarce.
Another Reference is for example made to the study
of Yi-Hsuan Yang [25]. In his research a support vector
regression model was used based upon timbral texture
features (spectral centroid, spectral rolloff, spectral flux
and MFCC) and MPEG-7 features They obtained an R2-
statistic of 79.3 % for arousal, and 33.4 % for valence,
which is in the same order of magnitude as the results
presented here (68.5 % for arousal and 28.4 % for va-
lence).

Apart from the accuracies obtained for predicting
arousal and valence, the cue categories identified in ob-
servers’s responses are likewise similar to those reported
in other studies, such as a study on dance movements,
where full-body movement was judged [18]. Similar
movement cues (irregularity, fluency, speed, amount)
were also identified in a study on the visual perception
of expressiveness in musicians’ body movements [26].

The data regression models for predicting arousal
and valence are the key building blocks to form the
envisioned application of an affect based music retrieval
system. The data models project arm movement data
into a point onto the valence/arousal plane used to
describe emotion. What is missing for a complete af-
fect based music retrieval system is the annotation of
a music library and the construction of playlists. A
straight-forward method to construct a playlist is then
to select songs that are close to the projected point in the
valence/arousal plane. Such a method could possibly be
more tolerant to differences in valence than in arousal,
to compensate for the lesser quality of the data model
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Fig. 6. NRMSE for varying retrieval/analysis intervals.
(For convenience of the reader polynomial regression lines were
added.)

for valence. This however is an issue of playlist-creation,
and what constitutes a ”good” playlist also depends
on the expectations of the end-user. An end-user study
would be required to gain more insight in this domain.

The regression models were derived from movement
on 20 seconds excerpts. For a music retrieval system,
requiring 20 seconds of movement to retrieve music is
probably unacceptably long. Therefore it is worthwhile
to investigate the impact of reducing the query duration.
We simulated a shorter query time by stepwise reduction
of the analysis interval from 2000 samples (20 seconds) to
500 samples (5 seconds) and investigating the prediction
errors at every step. In figure 6 the impact of using
shorter retrieval intervals is visualised. The data set
used for this investigation is the validation data set. The
impact on the prediction errors was measured by the
normalised root mean square error (NRMSE):

NRMSE =

√∑n

i=1
(Ŷi−Yi)2

n

(Y max− Y min)
(1)

With Ŷi being the value for valence/arousal calculated
from the models and Yi being the real valence/arousal
value (appraisal by the performer). Reducing the re-
trieval time clearly results in less accurate predictions.
The loss of precision is however rather small. A usability
study should determine the right ratio between retrieval
time duration and precision. These findings are valid as
well for the arousal model as well as for the valence
model.

The data models for valence and arousal were derived
from an experiment where subjects could hear the music.
This is different from the typical situation of musical
playlist creation, where the user does not hear music
while making an arm gesture. Instead, he or she must
“think” music. Most people intuitively understand what
it means to hear a tune in your head. This can be

considered as a form of musical (auditory) imagery.
Converging evidence indicates that auditory cortical ar-
eas can be recruited even in the absence of sound and
that this corresponds to phenomenological experience of
imagining music [27]. Auditory imagery preserves many
structural and temporal properties of auditory stimuli,
and generation of auditory imagery appears to involve
activation of many brain areas involved in perception
of auditory stimuli [28]. We hypothesise that gestures
made by subjects to emotionally express the music they
hear is triggered by the activation in these brain areas.
As a consequence, we expect arm movements made in
absence of music but triggered by musical imagery, will
be essentially similar to movements that would have
been made when the imagined music would have been
physically audible. In particular, we assume here that
musical emotion can be transmitted through movement
independent of the physical presence of the music.

Additional research is needed to gain insight into
the role of musical imagery for our application. One
important research question is: What is the impact of
arousal and valence on musical imagery ? In a study
with words, emotional words were consistently better
recalled than the neutral words [29]. Does this also apply
to music imagery, can we easier imagine music that
triggers extreme values for valence and arousal?

6 CONCLUSIONS AND FUTURE WORK

The work presented in this paper is intended as a
foundation for a motion based affective user interface
for music retrieval. We have derived predictive models
for valence and arousal from empirical data, gathered
in an experimental setup where inertial data recorded
from arm movements is coupled to emotion ratings. This
experiment firstly extends previous findings that human
subjects are generally capable of recognising affect from
arm gestures to the capability of recognising affect from
gestures originated by the mood of a musical fragment.
Secondly, model validation in the main study confirmed
the predictive capabilities of the model regressing mu-
sical emotion ratings to arm movement. In line with
previous studies we find that arousal is more directly
related to arm movement than valence [16]. To our
knowledge, attempts to detect affect from movement
using inertial sensors are as of yet very scarce2. The use
of inertial sensors for affect recognition has the crucial
advantage that such sensors are readily available in
mobile devices nowadays, which makes the use of the
developed method in commercial applications a viable
option.

Several improvements to the models can be made. A
first improvement can come from an individual calibra-
tion of the model. Movement on music is an individual
expression. Although our general model works, fine-
tuning to individual traits of users may increase its ac-
curacy. Studies revealed indeed that for example gender,

2. The exception that proves the rule is [30].
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age, musical expertise, active musicianship, broadness of
taste and familiarity with music have an influence on the
semantic description of music [31].

A second improvement come from the use of other
statistical models. In this study, we used linear regression
models, but more complex models like support vector
regression [32] or reservoir computing [33] may achieve
higher prediction accuracies.

A last improvement can result from other and/or more
sensing devices. The observers in the experiment indi-
cated that the physical location where the arm movement
takes place plays an important role for the determination
of the valence. Arm movement performed at higher
locations are indicators of joy and consequently of high
valence values. Since accelerometer data alone is not suf-
ficient to accurately estimate position, additional sensing
techniques (e.g. gyroscopic sensing) will be required.
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