
Multimed Tools Appl
DOI 10.1007/s11042-010-0679-8

A fast audio similarity retrieval method
for millions of music tracks

Dominik Schnitzer · Arthur Flexer · Gerhard Widmer

© Springer Science+Business Media, LLC 2010

Abstract We present a filter-and-refine method to speed up nearest neighbor
searches with the Kullback–Leibler divergence for multivariate Gaussians. This
combination of features and similarity estimation is of special interest in the field
of automatic music recommendation as it is widely used to compute music similarity.
However, the non-vectorial features and a non-metric divergence make using it with
large corpora difficult, as standard indexing algorithms can not be used. This paper
proposes a method for fast nearest neighbor retrieval in large databases which relies
on the above approach. In its core the method rescales the divergence and uses a
modified FastMap implementation to speed up nearest-neighbor queries. Overall the
method accelerates the search for similar music pieces by a factor of 10–30 and yields
high recall values of 95–99% compared to a standard linear search.

Keywords Audio · Indexing · Music recommendation

1 Introduction

Today an unprecedented amount of music is available on-line. As of January 2010,
the Apple iTunes music store alone lists more than 11 million songs in its catalog.
Other on-line music stores like Amazon MP3 offer a 9 million song catalog to

D. Schnitzer (B) · A. Flexer
Austrian Research Institute for Artificial Intelligence (OFAI),
Freyung 6/6, Vienna, Austria
e-mail: dominik.schnitzer@ofai.at

A. Flexer
e-mail: arthur.flexer@ofai.at

G. Widmer
Department of Computational Perception, Johannes Kepler University,
Altenberger Str. 69, Linz, Austria
e-mail: gerhard.widmer@jku.at

Multimed Tools Appl

choose from. With the catalog numbers constantly reaching record highs, the need
for intelligent music search algorithms that provide new ways to discover, navigate
and recommend music is critical.

Automatic content-based music recommendation systems usually operate with
acoustic music similarity algorithms and work as a query-by-example system: (1) the
user selects a song she/he likes, (2) the system searches its databases for similar songs,
(3) according to the similarity measure the n-nearest neighbors are returned to the
user as possible recommendations. This setup defines the very basic scenario this
paper aims to address.

But to use music recommendation algorithms on these large databases, the search
strategy usually needs to be adjusted to scale. General approaches to search high
dimensional data utilize Binary space partitioning (BSP) trees, like Kd-Trees [4]
or Vantage-Point Trees [32]. These work well for moderately high-dimensional
features using common metrics. For very high-dimensional data Locality Sensitive
Hashing (LSH, [1]) should be used as the afore mentioned algorithms are likely to
perform worse or equal than a linear scan with very high dimensional data (“curse
of dimensionality”, [5]). LSH is an approximate nearest neighbor retrieval algorithm
for the metric spaces L1 and L2, it scales sub-linearly in the number of items and
comes with a probabilistic guarantee on accuracy. It is possible to use LSH for other
non-metric divergences if the features can be embedded in the L1,2 spaces.

A common method to compute acoustic music similarity uses timbre features
represented as multivariate Gaussian distributions (cf. [22, 24] or [27]). Similarity is
computed using the non-metric Kullback–Leibler (and related) divergences defined
for Gaussian distributions.

Although this method for automatic acoustic music similarity is shown to have
weaknesses [20], still systems using it are currently seen as the de-facto state of the art
as they ranked first in the last four Music Information Retrieval Evaluation Exchange
(MIREX,1 [12]) evaluations for Audio Music Similarity and Retrieval.2 MIREX is a
yearly community-based framework for the formal evaluation of Music Information
Retrieval (MIR) systems and algorithms.

The high ranks in the listening tests and evaluations make the method a tempting
and challenging target for broad usage in real applications.

1.1 Contributions

The contributions of this paper are four-fold:

– First, we present a filter-and-refine method based on FastMap which allows
quick music similarity query processing. It is designed to work with very large
music databases which use Gaussian timbre models and the symmetric Kullback–
Leibler divergence as music similarity measure.

– Second, we show how a rescaling of the divergence values and a new FastMap
pivot object selection heuristic substantially increase the nearest neighbor recall
of the algorithm.

1http://www.music-ir.org/mirexwiki/
2See http://www.music-ir.org/mirex/200{6,7,8,9} for detailed results.

http://www.music-ir.org/mirexwiki/
http://www.music-ir.org/mirex/200{6,7,8,9}

Multimed Tools Appl

– Third, we show how to use the proposed method with recent music similarity
measures which linearly combine the Kullback–Leibler divergence with rhythmic
similarity measures.

– Finally, we present an implementation of a music recommendation system using
the proposed techniques which handles a 2.5 million tracks evaluation collection
in a very efficient way.

2 Related work

Scalable music recommendation systems are already the subject of a number of
publications. The first content-based music recommendation system working on
large collections (over 200,000 songs) was published by Cano et al. [9] in 2005. They
present a music recommendation system relying on a diverse range of audio features
including rhythmic as well as timbre parameters. Together these features form a
music similarity feature vector. They do not report on special indexing techniques.

In 2007 Cai et al. [7] presented a music recommendation system which uses
LSH to scale their acoustic music similarity algorithm. A single song is represented
by about 30 high-dimensional vectors. Those are obtained using techniques from
fingerprinting algorithms [6]. Their music similarity algorithm is evaluated using
a ground truth of twenty playlists but is never compared with other established
methods. They report an average query time of 2.5 s on a collection of about 100,000
tracks, which is rather high, as the LSH index needs to be searched multiple times to
compute similarity using their method.

Rafailidis et al. [28] propose to embed the audio similarity space into a low-
dimensional Euclidean space. To do so they adopt non-linear dimensionality reduc-
tion techniques, and use multidimensional indexing structures to reduce query times.

Casey and Slaney [10] describe a large scale system to scan collections for possible
derivate work. They represent their song features as high dimensional vectors and
use, like Cai et al. [7], LSH to scale their system. Although their system was not
designed for music recommendation, it shows how LSH can be effectively applied to
build large scale MIR systems.

Roy et al. [29] were the first to present a music recommendation system which
could be used for large databases using Gaussian timbre features. They use a
Monte-Carlo approximation of the Kullback–Leibler (KL) divergence to measure
music similarity. In principle, their method also resembles a filter-and-refine method
similar to the one proposed here. To pre-filter their results, they steadily increase
the sampling rate of the Monte-Carlo approximation. As the divergence values
converge they are able to reduce the number of possible nearest neighbors. In
comparison to the closed form of the KL divergence, which is used in recent music
similarity algorithms, this method is far more expensive to compute and yields worse
results [23].

Another method to better cope with multivariate Gaussian timbre models was
proposed in a publication by Levy and Sandler [21] a year later in 2006. They
propose to use Gaussians with a diagonal covariance matrix, instead of a full one
to compute music similarity. They report a ten-fold speedup compared to the full
Kullback Leibler divergence. However, the quality of this simpler similarity measure
is degraded resulting in worse genre classification rates.

Multimed Tools Appl

With mufin.com there also exists a first commercial content-based music recom-
mendation service that computes acoustic audio similarities for a very large database
of music (6 million tracks as of April 2009). Their website gives no information on
how their service works.3

Besides these approaches to build large scale music recommendation systems, a
number of general methods from the class of distance based indexing methods are
relevant for indexing the Gaussian features. These methods usually just require a
dissimilarity function. A member of this class are Vantage-Point (VP) Trees [32],
which build a tree structure that can be searched efficiently, but require a metric
distance measure. Another interesting and novel distance-based indexing method,
Distance-Based Hashing (DBH), was presented in 2008 by Athitsos et al. [3]. They
use FastMap to randomly embed arbitrary features in the Euclidean Space and
use LSH to index that mapping. As the effectiveness of this method depends on
the quality of the mapping FastMap produces, the findings of our paper could be
combined with DBH to omit the linear scan in the filter step of the method presented
here.

The idea of using FastMap-related techniques for computationally heavy, non-
metric similarity measures and nearest neighbor retrieval was already demonstrated
by Athitsos at al. [2] in 2004 to speed up classification of handwritten digits. In MIR
research, FastMap was also already used by Cano et al. [8] to map the high di-
mensional music timbre similarity space into a 2-dimensional space for visualization
purposes.

Finally, we like to mention an approach to deal with high dimensional statistical
distance measures pursued by Garcia [18]. He uses modern graphics processors
(GPUs) to compute the divergences, as they offer very high floating-point perfor-
mance and parallelism. Garcia shows how a linear brute force nearest neighbor
scan be accelerated on a GPU by a factor of about 40, compared to a plain C
implementation on a standard CPU.

3 Preliminaries

3.1 Data

Throughout this paper we use a collection of 2.5 million songs to evaluate the
performance and show the practical feasibility of our approach. The 2.5 million tracks
consist of 30 s snippets of songs. The tracks are assigned one or more of 22 musical
genres and were gathered by crawling through an online music store offering free
audio previews. The database is representative of music that is listened to in the
western hemisphere. More in-depth information about this collection is presented in
[17], where a random subsample of the collection was used and evaluated.

3.2 Similarity

We extract timbre features from the snippets and compute a single Gaussian timbre
representation using the method proposed by Mandel and Ellis [22].

3http://www.mufin.com/us/faq.html

http://mufin.com
http://www.mufin.com/us/faq.html

Multimed Tools Appl

We compute 25 Mel Frequency Cepstrum Coefficients (MFCCs) for each audio
frame (cf. [27]), so that a Gaussian timbre model x finally consists of a 25-dimensional
mean vector μ, and a 25 × 25 covariance matrix �. For performance reasons we also
precompute and store the inverted covariance matrix �−1.

To compute acoustic timbre similarity we use the symmetrized variant (SKL) of
the Kullback–Leibler divergence (KL, [26]). The Kullback–Leibler divergence is an
asymmetric information theoretic divergence measure. It is a measure of difference
between two probability distributions. For two D-dimensional, multivariate normal
distributions x1 ∼ N (μ1, �1) and x2 ∼ N (μ2, �2) the closed form Kullback–Leibler
divergence (KL) and the symmetrized variant (SKL) are given by:

KL(x1, x2) = 1

2

[
log

(|�2|
|�1|

)
+ tr(�−1

2 �1) − (μ2 − μ1)
T�−1

2 (μ1 − μ2) − D
]

(1)

SKL(x1, x2) = 1

2
KL(x1, x2) + 1

2
KL(x2, x1). (2)

A query for similar songs is processed in a linear scan by computing the SKL
between the Gaussian x1 of the seed song and all other songs in the database. The
songs with the lowest divergence to the seed song are its nearest neighbors and
possible recommendations.

3.3 Nearest neighbor recall

To compare the effectiveness of the nearest neighbor retrieval variants evaluated,
we use what we call nearest neighbor (NN) recall. We define it as the ratio of true
nearest neighbors found by some algorithm (NNfound) to the real number of true
nearest neighbors (NNtrue) as computed by an exhaustive search.

recall = |NNfound ∩ NNtrue|
|NNtrue| (3)

4 The method

To build our filter-and-refine method for fast similarity queries we use an adapted
version of FastMap [14], a Multidimensional Scaling (MDS) technique. MDS [11]
is a widely used method for visualizing high-dimensional data. FastMap takes the
distance matrix of a set of items as input and maps the data to vectors in an arbitrary-
dimensional Euclidean space. It was developed in the mid 90s and was since then
extended in various ways like BoostMap [2] or MetricMap [31]. These extensions
were designed to improve the quality of the mapping of the objects. For our purposes,
the original FastMap algorithm produces excellent results.

FastMap is straightforward to use even for large databases since it only needs a low
and constant number of rows of the similarity matrix to compute the vector mapping.
However, FastMap requires the distances to adhere to metric properties.

Multimed Tools Appl

4.1 Original FastMap

The original FastMap [14] algorithm uses a simple mapping formula (4) to compute
a k-dimensional projection of objects into the Euclidean vector space.

The dimension k is arbitrary and can be chosen as required. Usually higher
dimensions yield a more accurate mapping of the original similarity space.

To project objects into a k-dimensional Euclidean vector space, 2k pivot objects
from the collection are selected. The original algorithm uses a simple random
heuristic to select those pivot objects: for each dimension (j = 1..k), (1) choose a
random object xr from the database, (2) search for the most distant object of xr using
the original distance measure D() and select it as the first pivot object x j,1 for the
dimension, (3) the second pivot object x j,2 is the object most distant to x j,1 in the
original space.

After the 2k pivot objects have been selected, the vector representation of an
object x is computed by calculating F j(x) for each dimension (j = 1..k):

F j(x) = D(x, x j,1)
2 + D(x j,1, x j,2)

2 − D(x, x j,2)
2

2D(x j,1, x j,2)
(4)

This method depends on metric properties of D to produce meaningful mappings.
However, it has been noted that FastMap works surprisingly well also for non-metric
divergence measures [2].

FastMap only requires a distance function D and pivot objects to compute the
vector mapping. Therefore it can be instantly applied to map the Gaussian timbre
models with the SKL as the distance function to the Euclidean vectors (ignoring the
fact that the SKL is not metric).

4.2 A filter-and-refine method using FastMap

To use FastMap to quickly process music recommendation queries, we initially map
the Gaussian timbre models to k-dimensional vectors. In a two step filter-and-refine
process we then use those vectors as a pre-filter: given a query object we first
f ilter the whole collection in the vector space (with the squared Euclidean distance)
to return a number (f ilter-size) of possible nearest neighbors. We then ref ine the
result by computing the exact SKL on the candidate subset to return the nearest
neighbors. By using the SKL to refine the results, the correct nearest neighbor
ranking is ensured. We set the parameter f ilter-size to a fraction of the whole
collection.

The complexity of a single SKL comparison is much higher than a simple vector
comparison, so using the squared Euclidean distance to pre-filter the data results
in large speedups compared to a linear scan. Table 1 compares the computational
cost (in floating point operations, flops) of the SKL to the squared Euclidean
distance d2 using different vector dimensions (k) to pre-filter nearest neighbor
candidates.

Unfortunately, as we show in the next section (Section 4.3), applying FastMap to
the problem without any modifications yields very poor results.

Multimed Tools Appl

Table 1 The computational complexity (in floating point operations, flops) of computing the
squared Euclidean distance (d2) is, even for high mapping dimensions like k = 60, much lower than
the cost of computing a single SKL comparison

Divergence Flops Flops/f lopsSKL

SKL, mf cc = 25 3,552 1
d2, k = 20 60 0.017
d2, k = 40 120 0.034
d2, k = 60 180 0.051

To compute the squared Euclidean distance between two k dimensional vectors 3k flops are
required, whereas computing the SKL between two m-dimensional Gaussian distributions requires
1
2 (11m2 + 9m + 4) flops (= 3,552 flops for the SKL between two 25-dimensional Gaussians). The
SKL is computed using an optimized implementation [30]

4.3 Modifications

In our implementation we have included two important modifications which improve
the quality of FastMap mappings for nearest neighbor retrieval. The modifications
are centered around two thoughts: (1) a metric divergence measure would produce
better vector mappings, and (2) a more specialized heuristic for pivot object selection
could produce better mappings especially for the near neighbors, which are at the
center of our interest.

4.3.1 Rescaling

The SKL already has the important metric properties of being symmetric and non-
negative, but fails to fulfill the triangle inequality. We try to correct this by rescaling
the SKL. The SKL (2) is very similar to the Jensen–Shannon Divergence (JSD, 5),
another symmetrized and smoothed (but very expensive to compute) version of the
Kullback–Leibler divergence:

JSD(x1, x2) = 1

2
KL(x1, x1,2) + 1

2
KL(x2, x1,2) (5)

x1,2 = 1

2
(x1 + x2). (6)

As the square-root of the JSD is proven to be a metric divergence measure [13], we
were hoping for similar corrective effects for the SKL. Before mapping the objects
xi ∈ X to a k-dimensional vector (4), we propose to rescale the original symmetric
Kullback–Leibler divergences (SKL) with the square-root:

D(x1, x2) = √
SKL(x1, x2). (7)

We have experimentally verified the effect of rescaling on a collection of 100,000
Gaussian timbre models (Table 2). The models were computed using randomly
selected songs from the 2.5 million songs collection and the triangle inequality was
checked for all possible divergence triples. The table shows that taking the square-
root makes the SKL obey the triangle inequality in more than 99% of the cases. The
table also includes a comparison of other common ways to rescale the SKL using
eλSKL() (see [24] or [22]).

Multimed Tools Appl

Table 2 Percentage of Gaussian object triples fulfilling the triangle inequality (D(x, z) ≤ D(x, y) +
D(y, z)) with and without rescaling

Divergence % triangle inequality

SKL() 91.57%

1 − eλSKL(), λ = − 1

100
93.71%

1 − eλSKL(), λ = − 1

50
95.60%√

SKL() 99.32%

The triangle inequality was checked for all possible triples in a collection of 100,000 randomly
selected Gaussian timbre models

4.3.2 Pivot object selection

To select the pivot objects needed to map an object x to a vector space, the original
algorithm uses two objects for each dimension which lie as far away from each other
as possible (see Section 4.1). In contrast to the original heuristic we propose to select
the pivot objects using an adapted strategy: (1) first we randomly select an object xr

and compute the distance to all other objects; (2) we then select the first pivot object
x1 to be the object lying at the distance median, i.e. the object at the index i = �N/2�
on the sorted list of divergences; (3) likewise, the second pivot object x2 is selected to
be the object with the distance median of all divergences from x1 to all other objects.

1 10 100 200 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Nearest Neighbors

N
ea

re
st

 N
ei

gh
bo

r
R

ec
al

l

A, Median, none
B, Basic, none

C, Median, √ x

D, Median, e−1/100 x

E, Median, e−1/50 x

Fig. 1 Nearest neighbor (NN) recall of two pivot object selection methods (median: the proposed
pivot object selection heuristic, basic: the original Fastmap heuristic) in combination with three
divergence rescaling methods (no-rescaling, eλx,

√
x). NN recall is averaged over five independent

evaluation runs (10,000 queries per run), each time using a new random collection. Parameters:
k = 40, f ilter-size = 10%, collection size = 100,000

Multimed Tools Appl

By using pivot objects at the median distance we avoid using objects with
extremely high divergence values which often occur in the divergence tails when
using the SKL. Since we are particularly interested in optimally mapping the near
neighbors and not the whole divergence space, this strategy should also help in
preserving the neighborhoods.

4.3.3 Improvements

Finally, we measure how these modifications improve the filter-and-refine method
by experimentally computing the nearest neighbor (NN) recall of each change on
a 100,000 songs collection. Figure 1 shows the result of the experiment. A huge
improvement in the nearest neighbor recall can be seen for all strategies which use
the median pivot object selection heuristic (A, C, D, E) compared to the original
FastMap heuristic (B). The figure also shows that rescaling the SKL values helps to
further increase the NN recall. The suggested strategy (C) using the median pivot
object selection strategy together with square-root-rescaling gives the best results.

5 Combined music similarity measures

Besides using single Gaussian timbre models and the SKL to compute acoustic music
similarity, recent approaches enhance the quality of a music similarity measure by
mixing multiple similarity components. For example Pampalk [24] and Pohle [27]
combine the single Gaussian timbre models with rhythmic structures to better
capture more aspects of similarity.

In this section we want to show the applicability of the previously proposed
method to a similarity measure which linearly combines the SKL with rhythmic
similarity using Fluctuation Patterns (FPs) [25]. Fluctuation Patterns describe the
amplitude modulation of the loudness per frequency band. We closely follow the
implementation outlined in [24] to compute the FPs: (1) cutting a MFCC spectrogram
into three second segments, (2) using a FFT to compute amplitude modulation
frequencies of loudness (range 0–10 Hz) for each segment and frequency band, (3)
weighting the modulation frequencies based on a model of perceived fluctuation
strength, (4) applying filters to emphasize certain patterns and smooth the result.
The resulting FP is a 12 (frequency bands according to 12 critical bands of the Bark
scale [15]) times 30 (modulation frequencies, ranging from 0 to 10 Hz) matrix for
each song. The distance between two FPs xi and x j is computed as the Euclidean
distance (ED):

ED(xi, x j) =
√√√√ 12∑

k=1

30∑
l=1

(
xk,l

i − xk,l
j

)2
(8)

To linearly combine the two similarity measures in a meaningful way, each
distance has to be normalized to unit variance. To do so we compute the standard
deviation for each distance measure (σ√

SKL and σED) on an independent test
collection. The final combined similarity measure is defined as:

SKL&ED(x1, x2) = 0.7

√
SKL(x1, x2)

σ√
SKL

+ 0.3
ED(x1, x2)

σED
(9)

Multimed Tools Appl

Table 3 1-NN genre classification experiment results (with artist filter) on six different collections

Collection, size Genres Single Gaussian Combined

F&R Full Scan F&R Full Scan

#1, N = 16,781 21 30.17% 30.28% 31.21% 31.29%
#2, N = 9,369 16 28.55% 28.66% 31.97% 32.10%
#3, N = 2,527 22 28.27% 28.78% 31.16% 31.04%
Ismir 2004, N = 729 6 64.47% 64.88% 65.57% 65.57%
Ballroom, N = 698 8 53.86% 53.43% 55.73% 55.73%
Homburg, N = 1851 9 42.84% 42.78% 43.27% 43.21%

The table compares the genre classification accuracy of the filter-and-refine (F&R) approach
presented in this paper with a full exact linear scan using two different similarity measures (the
Combined/improved features and the standard Single Gaussian features). It can be seen that the
F&R approach yields the same results as the full scan. Parameters for the F&R method: k = 40,
f ilter-size = 5%

The weights of the combined measure (0.7 for the timbre- and 0.3 for the
rhythmic-component) were taken from [24]. In a genre classification experiment
we show that the combined measure indeed performs better (see Table 3, column:
Combined).

A genre classification experiment is a standard evaluation to test the quality of a
music recommendation algorithm. It assumes that each song in a music collection is
labeled with a genre. A nearest neighbor classifier is then used to compute the genre
classification accuracy, the ratio of correctly classified tracks to the total number of
tracks. In each query we exclude songs from the same artist, as this leads to overly
optimistic genre classification results (see [16] for a discussion).

To quantify the effects, we have done nearest neighbor classification experiments
with and without the filter and refine method using six different collections (three
in-house collections and three public datasets: the Ismir 2004 Magnatune music
collection,4 the Homburg collection [19] and the Ballroom collection.5 Table 3
summarizes the results. It appears that the decrease due to the F&R method is
negligible. Classification accuracy decreases only by about 0.1% for the two large
collections and by about 0.5% for the two small collections.

Music genre classification accuracy increases in all four tested collections by up to
3.5% compared to the results of the previous evaluation using only the SKL as the
similarity measure (Table 3, column: Single Gaussian).

5.1 Filter-and-refine

The proposed F&R method can be applied to the combined similarity measure
SKL&ED without any modifications. We use the previously introduced median
pivot object selection strategy to select good pivot objects for FastMap using the
afore mentioned combined similarity measure. Additionally, we use a rescaled
variant of the SKL in the linear combination (9) to increase the cases where the
SKL - and thus the SKL&ED—behaves like a metric. This property is discussed in
the next paragraphs.

4http://ismir2004.ismir.net/genre_contest/index.htm
5http://mtg.upf.edu/ismir2004/contest/rhythmContest/

http://ismir2004.ismir.net/genre_contest/index.htm
http://mtg.upf.edu/ismir2004/contest/rhythmContest/

Multimed Tools Appl

The triangle inequality is defined between the distances of three points: D(x, z) ≤
D(x, y) + D(y, z). It is a basic property of every metric distance measure. This
inequality also holds for any linear combination of two metric distance measures
D1 and D2:

α1 D1(x, z) + α2 D2(x, z) ≤ α1(D1(x, y) + D1(y, z))

+ α2(D2(x, y) + D2(y, z)). (10)

Therefore a linear combination of a non-metric (i.e. SKL) and a metric distance
(i.e. Euclidean) could only violate the triangle inequality where the non-metric
measure does. Since we have experimentally shown that rescaling the SKL by taking
the square root makes the divergence almost metric, the linear combination inherits
this property and should deliver comparable results with FastMap.

In a genre classification experiment (see Table 3, column: Combined) we confirm
that the F&R approach indeed works well with the combined similarity measure.
Like in Table 3 (column: Single Gaussian) it can be seen that the genre classification
accuracy decreases only very little with the F&R method (0.1%); in one collection
the approximative method even returns better results than a full exact search.

We conclude that the combined similarity measure SKL&ED can be used
alongside the proposed filter-and-refine method, improving the quality of the music
recommendations.

6 Implementation

The implementation of the filter-and-refine music recommendation engine is
straightforward: in an initial step the whole collection is preprocessed with the
proposed mapping method, transforming the database objects into a k-dimensional
vector space. This is a linear process since only 2k pivot objects have to be selected
and each object in the database is mapped to a vector once, using (4). Our imple-
mentation saves the pivot objects for each dimension and the vector mappings to
disk. This allows fast restarting of the system and easy processing of new objects.

To query for similar objects we use the previously described filter-and-refine
method, filtering out a predefined number (f ilter-size, a percentage of the collection
size) of nearest neighbor candidates using the vector representation and refining the
result with the exact SKL.

This outlines the general method we propose, but obviously two parameters which
have a huge impact on the retrieval quality (nearest neighbor (NN) recall) and the
query speed have not been discussed yet: the number of vector dimensions k and the
f ilter-size.

6.1 Recall and speed

It is obvious that a larger f ilter-size results in better NN recall values but higher
computational costs. Likewise, a higher k used for the vector mapping results in
a more accurate mapping of the divergence space, but with each dimension the
computational costs to compute the squared Euclidean distance in the pre-filter steps
are increased.

Multimed Tools Appl

Figure 2 evaluates different parameter combinations of k and f ilter-size and their
impact on nearest neighbor recall and computational cost (and thus query speed).
The diagram was compiled using a collection of 100,000 Gaussian timbre models. It
shows the 10-NN retrieval recall and query speed (computational cost in terms of
flops).

The figure shows that a parameter combination of k = 20 and f ilter-size = 5%
can be selected to achieve about 93% 10-NN recall. This combination would take
only 7% of the query time required by a linear scan with the SKL. If a 10-NN
recall of 81% is acceptable a parameter combination requiring only 3.5% of the
computational cost of a linear scan is possible (k = 20 and f ilter-size = 2%). Almost
perfect 10-NN recall values (> 98%) can be reached when setting f ilter-size to about
10% of the collection size, which still requires only 11% of the time a linear scan
would need.

This evaluation shows how to select a good parameter combination. In Section 6.2
we plot a similar diagram (Fig. 3) to select the best parameters for a 2.5 million
song collection, achieving 99% 1-NN, 98% 10-NN and 95% 100-NN recall on the
collection with a combined music similarity measure.

10
-N

N
 R

ec
al

l

flops / flopsSKL

Filter-Size

Fig. 2 Plot relating the nearest neighbor recall and the floating point operations resulting from
different filter-and-refine parameter combinations to a full linear scan (f lops/ f lopsSKL). Recall is
computed for the 10 nearest neighbors for different parameter combinations of k and f ilter-size in a
collection of 100,000 songs. The experiment was run 10 times, recall is averaged. A good combination
(good recall, low computational cost) would be mapped to the upper left corner of the plot

Multimed Tools Appl

1 10 100 200 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nearest Neighbors

N
ea

re
st

 N
ei

gh
bo

r
R

ec
al

l

0.1%

0.4%

0.6%

1%

2%

5%

8%

10%

Filter_Size:

Fig. 3 NN recall with different f ilter-sizes evaluated with 25,000 songs on the 2.5 million songs
collection using the combined similarity measure. With a f ilter-size of 5% one can achieve 96%
100-NN recall and 98% 10-NN and 99% 1-NN recall. k = 40

6.2 Prototype

To demonstrate the practical feasibility of using the proposed method with very large
music databases, we built a prototype music recommendation system working on a
music collection of 2.5 million songs. The system should be able to answer queries
for the 10 nearest neighbors (10-NN) with high speed and accuracy compared to a
full linear scan. It should be easy to browse and explore.

Before building the prototype system, we first decided to use the combined but
computationally more expensive music similarity measure SKL&ED as it produces
better music recommendations. We then ran an evaluation to determine the best
f ilter-size for the described use-case (see Fig. 3). In the figure we see that even for a
f ilter-size of only 5%, the true 1-NN and 10-NN are retrieved almost every time on
a 2.5 million song collection. A f ilter-size of 2% still returns the true 10-NN in 94%
the time.

We finally assemble all components which were gradually introduced in this
paper and build a simple music recommendation web application for the collection.
Figure 4 shows a screenshot of the application: To get a music recommendation a user
first has to search the database for a seed song by using the query text-field. After
the user has selected the desired seed song by clicking it, ten music recommendations
are computed instantly using the proposed filter-and-refine method. The screenshot
shows the recommendations the system returned for the seed song I Won’t Forget
You by the Punkrockerz. The recommendations can be listened to by clicking the
Flash music player. It is possible to browse the recommendation system by clicking
on a suggested song to make it the seed for a new query.

Multimed Tools Appl

Fig. 4 The prototype web music-recommendation system displaying ten recommendations com-
puted on a collection of 2.5 million tracks. The recommendations listed are the eight nearest
neighbors found by the audio similarity measure for the seed song by the Punkrockerz

Q
ue

ry
 R

un
tim

e
(s

ec
)

Full Scan
Filter-and-Refine
(10%)

Filter-and-Refine
(5%)

Filter-and-Refine
(2%)

Filter-and-Refine
(1%)

Fig. 5 Comparison of the time it takes to query a 2.5 million song collection for nearest neighbors
using a full scan compared to a scan using the proposed filter-and-refine method. A single CPU core
of a standard Intel Core Duo CPU (2.5 GHz) was used and all Gaussian timbre models/Fluctuation
Patterns were loaded to RAM

Multimed Tools Appl

6.3 Performance

As high performance is a key objective, we measured the actual query response times
of the system. Figure 5 compares the query response times of three different f ilter-
size settings (f ilter-size = 1%, 2%, 5%, 10%, k = 40) to a full linear scan using the
SKL&ED. The final system is capable of answering music recommendation queries
in 0.34 s on a 2.5 million songs collection while returning about 94% of the correct 10
nearest neighbors compared to a linear scan, which takes 10.28 s on the same system.

As the parameter f ilter-size is statically set in the web application prototype, the
time taken to answer a query is constant for every request. Systems deployed for real
use could very easily implement a system-load dependent strategy and dynamically
vary f ilter-size with the number of concurrent pending requests. Implementing that
strategy would make the system capable of answering queries under high load with
constant speed at the cost of decreased accuracy (see Fig. 3).

7 Conclusions

We have described a filter-and-refine method for fast approximate music similarity
search in large collections. The method is primarily designed for the widely used
Gaussian music timbre features using the symmetric Kullback–Leibler divergence to
compute acoustic similarity. We show that the method can also be used with more
recent algorithms which linearly combine multiple music similarity measures.

Based on the described method we built a prototype music recommendation web
service which works on a collection of 2.5 million tracks. The system is able to answer
music similarity queries in about half a second on a standard desktop CPU.

By accelerating similarity queries by a factor of 10 to 30, we show how a large
scale music recommendation service relying on recent music information retrieval
techniques could be operated today.

Acknowledgements This research is supported by the Austrian Research Fund (FWF) under grant
L511-N15, and by the Austrian Research Promotion Agency (FFG) under project number 815474-
BRIDGE.

References

1. Andoni A, Indyk P, MIT C (2006) Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: 47th annual IEEE symposium on foundations of computer
science, 2006. FOCS’06, pp 459–468

2. Athitsos V, Alon J, Sclaroff S, Kollios G (2004) BoostMap: a method for efficient approximate
similarity rankings. In: Proceedings of the 2004 IEEE computer society conference on computer
vision and pattern recognition, vol 2

3. Athitsos V, Potamias M, Papapetrou P, Kollios G (2008) Nearest neighbor retrieval using
distance-based hashing. In: IEEE 24th international conference on data engineering, ICDE 2008,
pp 327–336

4. Bentley J (1975) Multidimensional binary search trees used for associative searching. ACM, New
York, NY, USA

5. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is ‘nearest neighbor’ meaningful?
In: Proceedings of the 7th international conference on database theory. Springer, London, UK,
pp 217–235

6. Burges C, Platt J, Jana S (2003) Distortion discriminant analysis for audio fingerprinting. IEEE
Trans Speech Audio Process 11(3):165–174

Multimed Tools Appl

7. Cai R, Zhang C, Zhang L, Ma W (2007) Scalable music recommendation by search. In: Pro-
ceedings of the 15th international conference on multimedia. ACM, New York, NY, USA, pp
1065–1074

8. Cano P, Kaltenbrunner M, Gouyon F, Batlle E (2002) On the use of FastMap for audio retrieval
and browsing. In: Proc int conf music information retrieval (ISMIR), pp 275–276

9. Cano P, Koppenberger M, Wack N (2005) An industrial-strength content-based music recom-
mendation system. In: Proceedings of the 28th annual international ACM SIGIR conference on
research and development in information retrieval. ACM, New York, NY, USA, pp 673–673

10. Casey M, Slaney M (2006) Song intersection by approximate nearest neighbor search. In: Proc
ISMIR, pp 144–149

11. Cox T, Cox M (2001) Multidimensional scaling. CRC Press
12. Downie JS (2008) The music information retrieval evaluation exchange (2005–2007): a window

into music information retrieval research. Acoust Sci Technol 29(4):247–255
13. Endres D, Schindelin J (2003) A new metric for probability distributions. IEEE Trans Inf Theory

49(7):1858–1860
14. Faloutsos C, Lin K (1995) FastMap: a fast algorithm for indexing, data-mining and visualization

of traditional and multimedia datasets. In: Proceedings of the 1995 ACM SIGMOD international
conference on management of data. ACM, New York, NY, USA, pp 163–174

15. Fastl H, Zwicker E (2007) Psychoacoustics: facts and models. Springer, New York
16. Flexer A (2007) A closer look on artist filters for musical genre classification. In: Proceedings of

the international symposium on music information retrieval, Vienna, Austria
17. Flexer A, Schnitzer D (2010) Effects of album and artist filters in audio similarity computed for

very large music databases. Comput Music J 34(3):20–28
18. Garcia V, Debreuve E, Barlaud M (2008) Fast k nearest neighbor search using GPU. In: IEEE

computer society conference on computer vision and pattern recognition workshops, 2008.
CVPR Workshops 2008, pp 1–6

19. Homburg H, Mierswa I, Möller B, Morik K, Wurst M (2005) A benchmark dataset for audio
classification and clustering. In: Proceedings of the international conference on music informa-
tion retrieval, pp 528–31

20. Jensen J, Christensen M, Ellis D, Jensen S (2009) Quantitative analysis of a common audio
similarity measure. IEEE Trans Audio Speech Lang Process 17(4):693–703

21. Levy M, Sandler M (2006) Lightweight measures for timbral similarity of musical audio. In:
Proceedings of the 1st ACM workshop on audio and music computing multimedia. ACM, New
York, NY, USA, pp 27–36

22. Mandel M, Ellis D (2005) Song-level features and support vector machines for music clas-
sification. In: Proceedings of the 6th international conference on music information retrieval
(ISMIR 2005), London, UK

23. Mandel M, Ellis DP (2007) Labrosa’s audio music similarity and classification submissions. In:
Proceedings of the international symposium on music information retrieval, Vienna, Austria—
Mirex 2007

24. Pampalk E (2006) Computational models of music similarity and their application in music
information retrieval. Doctoral dissertation, Vienna University of Technology, Austria

25. Pampalk E, Rauber A, Merkl D (2002) Content-based organization and visualization of music
archives. In: Proceedings of the tenth ACM international conference on multimedia. ACM, New
York, NY, USA, pp 570–579

26. Penny W (2001) KL-divergences of Normal, Gamma, Dirichlet and Wishart densities. Wellcome
Department of Cognitive Neurology, University College London

27. Pohle T, Schnitzer D (2007) Striving for an improved audio similarity measure. In: 4th annual
music information retrieval evaluation exchange

28. Rafailidis D, Nanopoulos A, Manolopoulos Y (2009) Nonlinear dimensionality reduction for
efficient and effective audio similarity searching. Multimedia Tools and Applications, pp 1–15

29. Roy P, Aucouturier J, Pachet F, Beurive A (2005) Exploiting the tradeoff between precision and
cpu-time to speed up nearest neighbor search. In: Proceedings of the 6th international conference
on music information retrieval (ISMIR 2005), London, UK

30. Schnitzer D (2007) Mirage—high-performance music similarity computation and automatic
playlist generation. Master’s thesis, Vienna University of Technology

31. Wang J, Wang X, Shasha D, Zhang K (2005) Metricmap: an embedding technique for processing
distance-based queries in metric spaces. IEEE Trans Syst Man Cybern Part B Cybern 35(5):973–987

32. Yianilos P (1993) Data structures and algorithms for nearest neighbor search in general metric
spaces. In: Proceedings of the fourth annual ACM-SIAM symposium on discrete algorithms.
Society for Industrial and Applied Mathematics Philadelphia, PA, USA, pp 311–321

Multimed Tools Appl

Dominik Schnitzer is pursuing a PhD at Johannes Kepler University Linz. He works as a research
assistant at the Department of Computational Perception at the Johannes Kepler University Linz
and at the Intelligent Music Processing and Machine Learning Group at the Austrian Research
Institute for Artificial Intelligence, Vienna. His research focus is on large scale music similarity
retrieval techniques. Schnitzer holds a MSc degree in computer science from the Technical University
Vienna, Austria.

Arthur Flexer is a senior researcher and project manager at the Intelligent Music Processing and
Machine Learning Group at the Austrian Research Institute for Artificial Intelligence, Vienna. His
research interests include machine learning, pattern recognition, and intelligent music processing.
Flexer holds a PhD in psychology from the University of Vienna.

Multimed Tools Appl

Gerhard Widmer is a professor and head of the Department of Computational Perception at
the Johannes Kepler University Linz, and head of the Intelligent Music Processing and Machine
Learning Group at the Austrian Research Institute for Artificial Intelligence, Vienna. His research
interests include machine learning, pattern recognition, and intelligent music processing. In 2009, he
was awarded one of Austria’s highest research prizes, the Wittgenstein Prize, for his work on AI and
music.

	A fast audio similarity retrieval method for millions of music tracks
	Abstract
	Introduction
	Contributions

	Related work
	Preliminaries
	Data
	Similarity
	Nearest neighbor recall

	The method
	Original FastMap
	A filter-and-refine method using FastMap
	Modifications
	Rescaling
	Pivot object selection
	Improvements

	Combined music similarity measures
	Filter-and-refine

	Implementation
	Recall and speed
	Prototype
	Performance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

