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Abstract

The quest for understanding how pianists interpret notated music to
turn it into a lively musical experience, has led to numerous models of mu-
sical expression. Several models exist that explain expressive variations
over the course of a performance, for example in terms of phrase structure,
or musical accent. Often however expressive markings are written explic-
itly in the score to guide performers. We present a modelling framework
for musical expression that is especially suited to model the influence of
such markings, along with any other information from the musical score.
In two separate experiments, we demonstrate the modelling framework for
both predictive and explanatory modelling. Together with the results of
these experiments, we discuss our perspective on computational modelling
of musical expression in relation to musical creativity.

1 Introduction and related work

When a musician performs a piece of notated music, the performed music typ-
ically shows large variations in expressive parameters like tempo, dynamics,
articulation, and depending on the nature of the instrument, further dimen-
sions such as timbre and note attack. It is generally acknowledged that one of
the primary goals of such variations is to convey an expressive interpretation of
the music to the listener. This interpretation may contain affective elements,
and also elements that convey musical structure (Clarke, 1988; Palmer, 1997).

These insights have led to numerous models of musical expression. The
aim of these models is to explain the variations in expressive parameters as a
function of the performer’s interpretation of the music, and most of them can
roughly be classified as either focusing on affective aspects of the interpretation,
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or structural aspects. An example of the former is the model of Canazza et al.
(2004, 2002), which associates perceptual dimensions of performance to physical
sound attributes. They identify sensorial and affective descriptions of perfor-
mances along these dimensions. Furthermore, the rule based model of musical
expression used by Bresin and Friberg (2000) allows for modelling both struc-
ture and affect related expression. For the latter, they use the notion of rule
palettes to model different emotional interpretations of music. These palettes
determine the strength of each of a set of predefined rules on how to perform
the music.

A clearly structure-oriented approach is the model by Todd (1992), in which
tempo and dynamics are (arch-shaped) functions of the phrase structure of the
piece. Another example is Parncutt’s (2003) model of musical accent, which
states that expression is a function of the musical salience of the constituents of
a piece. Timmers et al. (2002) propose a model for the timing of grace notes.
Lastly, Tobudic and Widmer (2003) use a combination of case based reasoning
and inductive logic programming to predict dynamics and tempo of classical
piano performances, based on a phrase analysis of the piece, and local rules
learnt from data.

A structural aspect of the music that has been remarkably absent in models
of musical expression, are expressive markings written in the score. Many mu-
sical scores, especially those by composers from the early romantic era, include
instructions for the interpretation of the notated music. Common instructions
concerning the dynamics of the performance include forte (f ) and piano (p),
indicating loud and soft passages, respectively, and crescendo/decrescendo for
a gradual increase and decrease in loudness, respectively. Some less common
markings prescribe a dynamic evolution in the form of a metaphor, such as ca-
lando (“growing silent”). These metaphoric markings may pertain to variations
in one or more expressive parameters simultaneously.

At first sight, the lack of expressive markings as a (partial) basis for mod-
elling musical expression might be explained by the fact that, since the markings
appear to prescribe the expressive interpretation explicitly, modelling is trivial,
and therefore without scientific value. However, modelling the influence of ex-
pressive markings is far from trivial, for various reasons. Firstly, expressive
markings are not always unequivocal. Their interpretation may vary from one
composer to the other, which makes it a topic of historical and musicological
study (Rosenblum, 1988). Another relevant question concerns the role of dy-
namics markings. In some cases, dynamics markings may simply reinforce an
interpretation that musicians regard as natural, by their acquaintance with a
common performance practice. That is, some annotated markings may be im-
plied by the structure of the music. In other cases, the composer may annotate
markings precisely at non-obvious places.

When dealing with historical recordings in empirical studies of musical inter-
pretation, a practical difficulty with expressive markings is that in many cases,
it is unknown which edition of the score (if any) the performer used. Often
several editions of musical scores exist, and these editions may have different
expressive annotations, due to revisions by the composer, music educators, or
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the publisher.
Another challenging fact is that even when the corresponding edition of

the score for a performance is known, it lies within the artistic freedom of the
performer to interpret annotations differently, play them with modifications, or
ignore them altogether. Even if this complicates a straight-forward approach to
modelling the effect of expressive annotations, this freedom forms part of the
basis for music performance as a creative activity. In that sense, a model that
captures how a musician deals with performance annotations in the score, can
be regarded as a description of the musician’s creative behaviour. Such a model
however is not a model of the creative process itself, but of an artifact resulting
from a creative process.

In this paper, we describe a framework that allows for modelling, among
other things, the effect of annotated expressive markings on music performances.
This framework follows an intuition that underlies many studies of musical ex-
pression, namely that musical expression consists of a number of individual
factors that jointly determine what the performance of a musical piece sounds
like (Palmer, 1996). With this framework, expressive information from human
performances can be decomposed into (for now predefined) components, by fit-
ting the parameters of a linear model to those performances. We will refer to
this as the linear basis modelling (LBM) framework.1

Learnt models serve both predictive and explanatory purposes. As a pre-
dictive tool, models find practical application in tasks such as automatic score-
following and accompaniment. In an explanatory setting, a model fitted to data
reveals how much of the variance in an expressive parameter is explained by each
of the basis functions (representing structural aspects of the musical score).

The outline of the paper is as follows: In section 2, we describe the LBM
framework, and discuss possible types of basis functions. The experimentation
(section 3) consist of two parts: In subsection 3.1, we show how the model is
used to represent dynamics in real performances, and perform experiments to
evaluate the predictive value of the model, as trained on the data. In subsec-
tion 3.2, we use fitted models to quantitatively assess differences between the
way pianists interpret expressive markings. The results are presented and dis-
cussed in section 4. In that section, we also relate our approach to the question
of creativity in the context of musical expression. Conclusions and future work
are presented in section 5.

2 Linear basis models of musical expression

As stated in the introduction, a common view is that variation in the expressive
parameters of music is shaped jointly by a variety of different structural and
affective aspects of the music, in combination with the performer’s expressive
intentions. Depending on these intentions, such aspects may determine expres-

1We use the term framework to refer to the general modelling methodology, including
techniques to estimate parameters, and to predict new performances. By model, we mean an
instantiation of this methodology, using a fixed selection of basis-functions.
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Figure 1: Example of basis functions representing dynamics annotations

sive variations directly, but it is also likely that they shape the performance
through highly complex interactions.

The purpose of the LBM framework is to explore the simpler relationships
between these aspects of the music and its expressive performance. It does so
by relying on several strongly simplifying assumptions. Firstly, each expressive
parameter depends only on score information; this implies that both mutual
dependencies between expressive parameters and temporal dependencies within
parameters are not modelled explicitly. Secondly, as the name suggests, expres-
sive parameters are modelled as depending linearly on score information.

Before we describe the notion of basis functions representing score features,
and the LBM framework, we provide an illustration in figure 1, to clarify the
general idea. The figure shows a fragment of notated music with dynamics
markings. The first four curves below the notated music represent each of the
four markings as basis functions. The basis functions evaluate to zero where
the curves are at their lowest, and to one where they are at their highest. Note
that each of the basis functions is only non-zero over a limited range of time,
namely the time where the corresponding dynamic marking takes effect in the
music. The bottom-most curve is a weighted sum of the basis functions ϕ1 to
ϕ4 (using unspecified weights w), that represents an expressive parameter, in
this case the note dynamics.

2.1 Representation of score information as basis functions

In the past, the MIDI format has been often used as a representation scheme
for musical scores. Being intended as a real-time communication protocol how-
ever, this scheme is not very suitable for describing structural score information
beyond the pitches and onsets of notes. By now, the more descriptive Mu-
sicXML format (Good, 2001) is widely used for distributing music. The types
of information we will refer to in this subsection are all contained in a typical
MusicXML representation of a musical piece.

4



 �� � �� ��� �
��

cresc.

x1 x2

x3 x4

x5

x6

note ϕstaccato(.) ϕgrace(.) ϕpitch(.) ϕpitch2 (.) ϕcrescendo(.)

x1 1 0 72
127

( 72
127

)2 0.00

x2 0 0 76
127

( 76
127

)2 0.25

x3 0 0 72
127

( 72
127

)2 0.25

x4 0 0 67
127

( 67
127

)2 0.25

x5 0 1 74
127

( 74
127

)2 0.75

x6 0 0 76
127

( 76
127

)2 0.75

Figure 2: A score fragment illustrating various kinds of basis functions (see text
for explanation)

We define a musical score as a sequence of elements that hold information,
and may also refer to other elements. For our purposes, it is relevant to dis-
tinguish between note elements, and non-note elements. Note elements hold
local information about individual notes, such as pitch, onset time, and dura-
tion information, but also any further annotations that describe the note, such
as whether the note has a staccato sign, an accent, a fermata, and whether it is
a grace note. Non-note elements represent score information that is not local to
a specific note. Examples are expressive markings for dynamics (p, f, crescendo,
et cetera), tempo (lento, ritardando, presto, et cetera), but possibly also time
and key signatures, and slurs.

The purpose of basis functions for modelling expression is to capture some
structural aspect of the score, and express the relation of each score note to
that aspect, as a real number between 0 and 1. If we denote the set of all note-
elements by X , then a basis function has the form: ϕ : X → [0, 1]. Although this
suggests that the evaluation of a basis function on a note element only depends
on that element, many interesting types of basis function take into account
the context of the note. Therefore, it is convenient to think of a note element
as holding a reference to its context in the piece it occurs in (for example, to
determine whether it occurs inside the scope of a crescendo sign).

Note that defining basis functions as functions of notes, rather than functions
of score time, increases the modelling power considerably. It allows for modelling
several forms of musical expression related to simultaneity of musical events.
Examples are: the micro-timing of note onsets in a chord (chord spread), an
expressive device that has hardly been studied empirically; and the accentuation
of the melody voice with respect to accompanying voices by playing it louder,
and slightly earlier (melody lead) (Goebl, 2001).

In the following, we will propose several types of basis functions.
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2.1.1 Indicator basis functions for note attributes

The simplest type of basis function is an indicator function that evaluates to one
wherever a specific characteristic occurs, and to zero otherwise. For example,
we can define a function ϕstaccato for notes that have staccato annotations, and
a function ϕgrace for grace notes. Both types of functions are illustrated in
figure 2. By including ϕgrace as a basis function for dynamics, it can account
for any systematic deviations in dynamics of performed grace notes. Similarly,
ϕstaccato can reasonably be expected to account for part of the variance in note
articulation.

2.1.2 Basis function representation of a polynomial pitch model

The motivation to include pitch as a factor for modelling expressive dynamics
comes from the observation that in at least two large corpora of piano perfor-
mances (of different music, and by different performers) there is a statistical
dependence of note dynamics, measured as MIDI velocity, on note pitch. Both
corpora comprise exact measurements of the dynamics of played notes, through
the use of Bösendorfer’s computer controlled grand piano (see subsection 3.1.2).
2

Figure 3 shows the relation between dynamics and the pitch in a scatter plot
for two performance corpora. Dynamics and pitch are clearly not statistically
independent. Note however, that the relation does not appear to be perfectly
linear. Notes with lower pitches on average appear to be played louder than
expected based on a linear relationship. To find a good representation for the
dynamics-pitch relationship, we have fitted polynomials of different orders to
the data (see figure 3). The third order model was selected for its tendency to
map higher pitches to relatively moderate velocities, particularly for the Chopin
data. 3

This representation, which we call a polynomial pitch model, can be inte-
grated elegantly in the LBM framework, allowing joint estimation of the pa-
rameters of the pitch model and the parameters of other basis functions. The
inclusion of the pitch model is achieved simply by defining basis functions ϕpitch ,
ϕpitch2 , et cetera , that map notes to the respective powers of their (normalised)
MIDI pitch numbers. The first and second degree basis functions for pitch are
illustrated for the example fragment in figure 2.

2.1.3 Basis functions for expressive markings of dynamics

We distinguish between three categories of dynamics annotations (shown in ta-
ble 1), based on their meaning. The first category, constant, represents markings

2The loudness of a note depends on several factors, and the relation between the MIDI
velocity of a note performed on the Bösendorfer piano and its loudness is far from straight-
forward. The relation between sound pressure level and MIDI velocity on computer controlled
pianos has been investigated by Goebl and Bresin (2003). For the Bösendorfer piano this
relation is roughly linear from MIDI velocities 40 upwards, although it depends on pitch.

3Listening to synthesized model predictions revealed that a second order pitch model tends
to overemphasize higher pitches.
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Figure 3: Dependency of dynamics and pitch in Magaloff’s performances of
Chopin’s piano works (left); and Batik’s performances of Mozart’s piano sonatas
(right); Although the displayed lines were fitted on complete data sets; only a
subset of the data points are plotted, for convenience

Category Examples Basis function

Constant f, ff, p, dolce, agitato step

Impulsive fz, fp impulse

Gradual crescendo, diminuendo, perdendosi ramp + step

Table 1: Three categories of dynamics markings

that indicate a particular dynamic character for the length of a passage. The
passage is ended either by a new constant annotation, or the end of the piece.
Impulsive annotations indicate a change of sound level for only a brief amount of
time, usually only the notes over which the sign is annotated. The last category
contains those annotations that indicate a gradual change from one sound level
to the other. We call these annotations gradual.

Based on their interpretation, as described above, we assign a particular
basis function to each category. The constant category is modelled as a step
function that has value 1 over the affected passage, and 0 elsewhere. Impulsive
annotations are modelled by a unit impulse function, which has value 1 for notes
at the time of the annotation and 0 elsewhere. Lastly, gradual annotations are
modelled as a combination of a ramp and a step function. It is 0 until the start
of the annotation, linearly changes from 0 to 1 between the start and the end
of the indicated range of the annotation (e.g. by the width of the ‘hairpin’ sign
indicating a crescendo), and maintains a value of 1 until the time of the next
constant annotation, or the end of the piece. Three types of basis functions are
illustrated in figure 1, with a more detailed example of the ϕcrescendo function
in figure 2.
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2.1.4 Implication-Realization based basis-functions

Lastly, we include a more complex feature, based on Narmour’s (1990) Implication-
Realization model of melodic expectation. This model allows for an analysis of
melodies that includes an evaluation of the degree of ‘closure’ occurring at each
note4. Closure can occur for example due to metrical position, completion of a
rhythmic or motivic pattern, or resolution of dissonance into consonance. We
use an automatic melody parser that detects metric and rhythmic causes of
closure (Grachten, 2006), and represent the degree of closure at each note in a
basis-function.

2.1.5 Global and local bases

An important decision in the design of basis functions is whether a basis function
corresponds to a feature in general, or to a single instance of that feature. In
the case of a grace note basis function for example, the first approach results
in a single function that evaluates to one for all grace notes. We call such basis
functions global. In contrast, the second approach results in one basis-function
for every grace-note, evaluating to one only on the corresponding grace note.
We refer to these as local basis functions.

Whether one approach is to be preferred over the other may depend, among
other things, on the type of feature, on the purpose of the model, and the
amount of data available for fitting the model. Nevertheless, the choice has some
general implications. First of all, a local basis modelling approach will lead to
more basis functions, and thus to models with more parameters. This provides
more flexibility, and will result in better approximations of the expressive target
to be modelled. But the larger number of parameters also makes models more
prone to overfitting. Apart from that, using local basis functions in general
leads to the situation that different pieces are represented by a different number
of basis functions, depending on the (number of) annotations present in the
score. This makes prediction slightly more complicated (we deal with this in
subsection 2.3.1). Nevertheless, it makes sense in some cases to choose local
basis functions, for example when the interpretation of features is expected to
include outliers, or vary strongly from one instance to the other.

2.2 Model description

As mentioned in the introduction, each of the expressive parameters (y) is mod-
elled separately. LBM is independent of the interpretation of y. For example, in
(Grachten and Widmer, 2011) it is used to model dynamics, whereas in (Krebs
and Grachten, 2012), y represents expressive tempo. In this subsection, we will
use y without a specific interpretation, and we will refer to it as the target.

The central idea behind LBM is that it provides a way to determine the
optimal influence of each of a set of basis functions, in the approximation of

4Narmour’s concept of closure is subtly different from the common notion of musical closure
in the sense that the latter refers to ‘ending’ whereas the former refers to the inhibition of the
listener’s expectation of how the melody will continue.
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the target. The influence of a basis-function is expressed by a weight w. This
leads to the following formalisation: given a musical score, represented as a
list of N notes x = (x1, · · · , xN ), and a set of K predefined basis functions
ϕ = (ϕ1, · · · , ϕK), the sequence of N target values y is modelled as a weighted
sum of the basis functions plus noise ε:

y = f(x,w) + ε = ϕ(x)w + ε (1)

where we use the notation ϕ(x) to denote the N × K matrix with element
ϕi,k = ϕk(xi), and where w is a vector of K weights.

2.3 Learning basis function weights from data

Given performances in form (x,y) we use the model in equation (1) to estimate
the weights w, which is a straightforward linear regression problem. Under the
assumption that the noise ε is normally distributed, the maximum likelihood
estimation of w is the least squares solution, that is, the w that minimises the
sum of the squared differences between the predictions f(x,w) of the model and
the target y:

ŵ = argminw ‖y −ϕ(x)w ‖ (2)

The simplest approach to find the optimal w for a data setD = ( (x1,y1), · · · , (xL,yL) ),
is to concatenate the respective xl’s and yl’s in D into a single pair (x,y), and
to find ŵD according to equation (2), using x and y. However, this approach
can only be applied when there is a fixed set of basis functions across all pieces,
as is the case when only global bases are used.

Another, more general approach is to compute a vector ŵl for each perfor-
mance 1 ≤ l ≤ L according to equation (2). This allows the weight vectors ŵl

to be of different lengths (as with local bases). In that case, there is no single
estimate ŵD of the weights for all bases based on the performances in D. The
inference of appropriate weights for a new performance can now be regarded
as a regression problem given the estimated weight vectors (ŵ1, · · · , ŵL), and
a partition of those weights. In subsection 2.3.1, we describe this approach in
more detail.

2.3.1 Prediction with local and global bases

In the case of global bases, once a weight vector ŵD has been learnt from a
data set D, predictions for a new score x can be made easily, using equation (1),
leaving out the noise term ε. First, we construct the matrix of basis functions
ϕ(x) from x, and subsequently we apply the dot product of the matrix with the
learnt weights ŵD:

ŷD = f(x, ŵD) = ϕ(x)ŵD (3)

In the case of local bases, weight estimation is realised for each piece in
D individually, leading to a set of weight vectors (ŵ1, · · · , ŵL). As described
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in subsection 2.1.5, local basis functions are ‘instantiations’ of a basis function
‘class’. For example, a score may give rise to three bases of the class crescendo,
for each of three crescendo signs occurring in a score. In this way, we can
associate each estimated weight ŵj with the type of its corresponding basis
function cj . This leads to a set of pairs (cj , ŵj), to be used as training data for
any regression algorithm, to predict a weight w for a given basis function type c.
This approach allows for arbitrarily rich descriptions of basis-functions: rather
than characterising a basis function just as a crescendo, it might for example be
characterised as a crescendo following a piano, in a minor key context.

3 Experimentation

This section consists of two experiments on different data sets. The first ex-
periment is intended to demonstrate the utility of the model as a method to
account for aspects of musical expression. For this experiment, we use a large
data set of precisely measured performances by a single professional pianist.
The evaluation considers both how well the expressive dynamics variations can
be represented by the model using various combinations of basis functions, and
how well the model, when trained on data generalises to unseen data.

The second experiment demonstrates how the model can be used as an anal-
ysis tool, to study differences between the expressive interpretations of different
performers. For this we use a smaller data set with loudness values computed
from commercial recordings of performances by various famous pianists.

In both experiments, we restrict our attention to expressive dynamics. The
main reason for this is pragmatic: dynamics annotations appear more frequently
than other types of annotations in the scores we are considering, and therefore
models of expressive dynamics serve better to demonstrate the utility of the
approach.

3.1 Experiment 1: Representation and prediction of ex-
pressive dynamics

The objective of this experiment is to assess how accurately expressive dynamics
can be represented and predicted using LBM. In particular, we are interested
which (combination) of the basis functions described above is most useful for
representation and prediction.

3.1.1 Method

We use the following abbreviations to refer to the different kinds of features:
DYN: dynamics annotations. These annotations are represented by one basis
function for each marking in table 1, plus one basis function for accented notes;
PIT: a third order polynomial pitch model (3 basis functions); GR: the grace
note indicator basis; IR: two basis-functions, one indicating the degree of clo-
sure, and another representing the squared distance from the nearest position
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where closure occurs. The latter feature forms arch-like parabolic structures
reminiscent of Todd’s (1992) model of dynamics.

We employ two different modelling approaches. In the first, all features are
represented by global basis functions (see subsection 2.1.5), and the weights
for the bases are estimated all at once by concatenating all performances in
the training set, as described in subsection 2.3. In the second scenario, we use
global bases to represent the features PIT, GR, and IR, and local bases for DYN.
In this case, we use the second weight estimation procedure described in 2.3,
in which weights are learnt per piece/performance pair. For the prediction
of expressive dynamics for unseen data, support vector regression (Schölkopf
and Smola, 2002) was used to estimate weights for unseen data, based on the
estimated weights from the training data (cf. subsection 2.3.1).

The total number of model parameters in the global scenario is thus 30
(DYN) + 3 (PIT) + 1 (GR) + 2 (IR) + 1 (constant basis) = 37, or less,
depending on the subset of features that we choose. In the local scenario the
number of parameters can either be larger or smaller than in the global scenario,
depending on the number of dynamics markings that appear in the piece. In
the evaluation, we omit the feature combinations that consist of only GR and
IR, since we expect their influence on dynamics to be marginal with respect to
the features DYN and PIT.

3.1.2 Data Set

For the evaluation we use the Magaloff corpus (Flossmann et al., 2010) – a
data set that comprises live performances of the complete Chopin piano works,
as played by the Russian-Georgian pianist Nikita Magaloff (1912-1992). The
music was performed in a series of concerts in Vienna, Austria, in 1989, on a
Bösendorfer SE computer-controlled grand piano (Moog and Rhea, 1990) that
recorded the performances onto a computer hard disk. The data set comprises
more than 150 pieces, adding up to almost 10 hours of music, and containing
over 330,000 performed notes. These data, which are stored in a native format
by Bösendorfer, were converted into standard MIDI format, representing note
dynamics in the form of MIDI velocity, taking values between 0 (silent), and
127 (loudest). For the purpose of this experiment, velocity values have been
transformed to have zero-mean per piece.

It is likely that Magaloff used manuscripts as scores, but we are uncertain
as to the exact version. To obtain dynamics markings from the scores, we
have used the Henle Urtext Edition wherever possible, which explicitly states
its intention to stay faithful to Chopin’s original manuscripts. The dynamics
markings are obtained by optical music recognition from the scanned musical
scores (Flossmann et al., 2010).

3.1.3 Goodness-of-fit of the dynamics representation

Table 2 shows a comparison of the observed expressive dynamics with the op-
timal fit of the model. The goodness-of-fit is expressed in two quantities: r is
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r R2

Basis (global) avg. std. avg. std.

DYN 0.332 (0.150) 0.133 (0.117)
PIT 0.456 (0.108) 0.219 (0.097)
DYN+PIT 0.565 (0.106) 0.330 (0.122)
DYN+PIT+GR 0.567 (0.107) 0.332 (0.123)
DYN+PIT+IR 0.575 (0.102) 0.341 (0.120)
DYN+PIT+GR+IR 0.577 (0.102) 0.343 (0.120)

Basis (local)

DYN 0.497 (0.170) 0.276 (0.160)
PIT 0.456 (0.108) 0.219 (0.097)
DYN+PIT 0.670 (0.113) 0.462 (0.146)
DYN+PIT+GR 0.671 (0.113) 0.463 (0.146)
DYN+PIT+IR 0.678 (0.109) 0.471 (0.142)
DYN+PIT+IR+GR 0.678 (0.109) 0.472 (0.142)

Table 2: Goodness of fit of the model; See section 3.1 for abbreviations

the Pearson product-moment correlation coefficient, denoting how strongly the
observed dynamics and the dynamics values of the fitted model correlate. The
quantity R2 is the coefficient of determination, which expresses the proportion
of variance accounted for by the model.Average and standard deviations (in
parentheses) of the r and R2 values over the 154 musical pieces are listed in
table 2.

The results show that both the strongest correlation, and the highest coeffi-
cient of determination is achieved when using local basis for dynamics markings,
and including all features. This is unsurprising, since in the global setting a sin-
gle weight vector is used to fit all pieces, whereas in the local setting each piece
has its own weight vector. Furthermore, since adding features increases the
number of parameters in the model, it will also increase the goodness-of-fit. We
note however, that the r and R2 values are averaged over pieces, with a consid-
erable standard deviation, and that differences between outcomes may not all
be significant.

3.1.4 Predictive accuracy of the model

The additional flexibility of the model, by using local bases and adding fea-
tures, may increase its goodness-of-fit. However, it is doubtful that it will help
to obtain good model predictions for unseen musical pieces. To evaluate the
accuracy of the predictions of a trained model for an unseen piece, we perform a
leave-one-out cross-validation over the 154 pieces. The predictions are evaluated
again in terms of averaged r and R2 values over the pieces, which are shown in
table 3.

The average correlation coefficients between prediction and observation for
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r R2

Basis (global) avg. std. avg. std.

DYN 0.192 (0.173) 0.020 (0.100)
PIT 0.422 (0.129) 0.147 (0.111)
DYN+PIT 0.462 (0.125) 0.161 (0.156)
DYN+PIT+GR 0.462 (0.125) 0.161 (0.156)
DYN+PIT+IR 0.462 (0.124) 0.162 (0.155)
DYN+PIT+GR+IR 0.462 (0.124) 0.162 (0.154)

Basis (local)

DYN 0.192 (0.179) 0.024 (0.109)
PIT 0.415 (0.137) 0.149 (0.149)
DYN+PIT 0.459 (0.126) 0.151 (0.220)
DYN+PIT+GR 0.459 (0.123) 0.153 (0.195)
DYN+PIT+IR 0.455 (0.130) 0.141 (0.231)
DYN+PIT+IR+GR 0.457 (0.123) 0.188 (0.126)

Table 3: Predictive accuracy the model in a leave-one-out scenario; See sec-
tion 3.1 for abbreviations

the local and global basis settings are roughly similar, ranging from weak (r =
.19) to medium correlation (r = .46). In the global setting, increasing the com-
plexity of the model does not affect its predictive accuracy, whereas in the local
setting, maximal predictive accuracy is achieved for models of moderate com-
plexity (including dynamics, pitch, and grace note information). The decrease
of accuracy for more complex models is likely to be caused by overfitting.

Interestingly, the highest proportion of explained variance (R2 = .19) is
achieved by the predictions of the local model with all available features (DYN+PIT+IR+GR).
Note however, that the standard deviation of R2 is large in most cases.

3.2 Experiment 2: Analysis of expressive dynamics in
commercial recordings

The above experiments are all done using the performances of a single performer.
In the next experiment, we wish to highlight that the LBM framework can also
be used to study differences between performers.

3.2.1 Method

Given the performances of a number of pieces by different performers, we fit an
LBM to the expressive dynamics in the performances. The fitted weights are
then compared across pieces and performers.

By the nature of the data (see subsection 3.2.2), loudness measurements are
only available on a beat level. Moreover the measurements are only approximate,

13



Piece Performances
Op. 52 Kissin1998, Pollini1999, Zimerman1987, Horowitz1952/1981,

Rubinstein1959, Cherkassky1987, Ashkenazy1964, Perahia1994
Op. 15(1) Ashkenazy1985, Rubinstein1965, Richter1968, Maisenberg1995,

Leonskaja1992, Arrau1978, Harasiewicz1961, Pollini1968,
Barenboim1981, Pires1996, Argerich1965, Horowitz1957, Per-
ahia1994

Op. 27(2) Rubinstein1965, Arrau1978, Kissin1993, Leonskaja1992,
Pollini1968, Barenboim1981, Ashkenazy1985, Pires1996,
Harasiewicz1961

Op. 28(17) Sokolov1990, Arrau1973, Harasiewicz1963, Pogorelich1989,
Argerich1975, Ashkenazy1985, Rubinstein1946, Pires1992,
Kissin1999, Pollini1975

Table 4: Performances used for evaluation

so a fitting a complex model with many basis-functions is likely to capture a lot
of measurement noise. For that reason, we use only the DYN basis functions.

We use a local basis fitting approach, in which each piece/performance pair
is fitted individually.

3.2.2 Data

Data as precisely measured as that of the Magaloff corpus is not available for
other performers – at least not for several performers playing the same pieces
of music. We use loudness measurements from commercial CD recordings as an
alternative. The data for this experiment has been used earlier by Langner and
Goebl (2003). Loudness from the PCM data was calculated using an implemen-
tation of Zwicker and Fastl’s (2001) psycho-acoustic model, by Pampalk et al.
(2002). To reduce the effect of different recording levels, the data was trans-
formed to have zero mean and unit standard-deviation per piece, as in Repp
(1999). In addition to the loudness computation, beat-tracking was performed
semi-automatically, using BeatRoot (Dixon, 2001).

The data set includes multiple performances of four Chopin piano pieces: a
Ballade, a Prelude, and two Nocturnes. The performances for each piece are
listed in table 4.

3.2.3 Results

In columns 2 and 3 of table 5 (under meas. vs. fit), R2 and r measures are
shown per piece, averaged over all performers. Analysis of variance shows that
both R2 and r differ significantly across pieces: F (3, 8) = 30.15, p < .001, and
F (3, 8) = 26.51, p < .001, respectively5. No effect of performer on goodness-of-
fit measures was found.

5To meet the assumptions of ANOVA, the data set was restricted to the pianists for which
performances of all four pieces are available, namely Pollini, Rubinstein, and Ashkenazy
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Figure 4: Example of loudness curve and a fitted model; Solid curve: loudness
as measured from Rubinstein’s performance (1946) of Chopin’s Prelude (Op.
28, No. 17); Dashed curve: approximation of the loudness curve by the linear
basis model; loudness directives are displayed above the curves

meas. vs. fit measurement residual
Piece R2 r r r

Op.(No.) mean (sd) mean (sd) mean (sd) mean (sd)
15 (1) 0.90 (0.04) 0.95 (0.02) 0.88 (0.03) 0.50 (0.11)
27 (2) 0.76 (0.07) 0.87 (0.04) 0.80 (0.03) 0.56 (0.07)
28 (17) 0.66 (0.08) 0.81 (0.05) 0.76 (0.06) 0.61 (0.05)

52 0.86 (0.05) 0.93 (0.03) 0.82 (0.06) 0.48 (0.08)

Table 5: Mean and standard deviation of R2 and r per piece

Columns 4 (measurement) and 5 (residual) of table 5 summarise the cor-
relations between the loudness curves of performers. The r values in column
4 are computed on the measured loudness curves. Column 5 contains the r
values computed from the residual loudness curves, after the model fit has been
subtracted.

The variance of coefficients across pieces appears to be too large to reveal
any direct relationships between performers and coefficients, independent of the
piece. Within pieces however, significant effects of performer on coefficients are
present for the coefficients of some loudness directives. For example, in Op. 52.
there is an effect of performer on ff coefficients (F (7, 28) = 3.90, p < .005),
and in Op. 28 (No. 17), an effect of performer on fz coefficients (F (9, 90) =
25.75, p < .0001).

4 Discussion

In this section we discuss the results of both experiments described in the previ-
ous section. We conclude the section with a brief discussion on how we see the
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LBM framework in relation to creative aspects of expressive music performance.

4.1 Discussion of experiment 1

The results presented in experiment 1 show a substantial difference in the con-
tribution of dynamical annotations (DYN) and pitch (PIT) to the performance
of the model. The fact that pitch explains a larger proportion of the dynamics
variance than the annotations may be surprising, given that annotations are by
nature intended to guide dynamics. One may hypothesise that the effect of pitch
on dynamics is due to the fact that on a piano different keys must be struck
with different intensities to achieve the same sound pressure level (SPL) Goebl
and Bresin (2003). However, on the Bösendorfer, the pitches around C5 (midi
value 72) produce a higher SPL at the same MIDI velocity than lower pitches.
Thus, the pitch effect on dynamics is not a matter of SPL compensation.

Although the data set contains many performances, it is important to realise
that the results are derived from performances of a single performer, performing
the music of a single composer. The importance of pitch as a predictor for
dynamics may be different for other performers, composers, and musical genres.
Specifically, we hypothesise that the fact that pitch effect on dynamics is a
consequence of melody lead. This phenomenon, which has been the subject
of extensive study (see Repp (1996); Goebl (2001)), consists in the consistent
tendency of pianists to play melody notes both louder and slightly earlier than
the accompaniment. This makes the melody more clearly recognisable by the
listener, and may improve the sensation of a coherent musical structure. In
many musical genres, the main melody of the music is expressed in the highest
voice, which explains the relationship between pitch and dynamics.

This effect is clearly visible in figure 5, which displays observed, fitted, and
predicted dynamics for the final measures of Chopin’s Prelude in B major (Opus
28, No. 11). In this plot, the velocity of simultaneous notes is plotted at different
(adjacent) positions on the horizontal axis, for the ease of interpretation. Melody
notes are indicated with dotted vertical lines. It is easily verified by eye that the
velocity of melody notes is substantially higher than the velocity of non-melody
notes. This effect is very prominent in the predictions of the model as well. 6

Although observed and predicted dynamics are visibly correlated, figure 5
shows that the variance of the prediction is substantially lower than that of
the observation, meaning that expressive effects in the predicted performance
are less pronounced. The lower variance is most likely caused by the fact that
the model parameters have been optimised to performances of a wide range of
different pieces, preventing the model from accurately capturing dynamics in
individual performances. This suggests a separate treatment of musical pieces
with distinct musical characters.

6See www.cp.jku.at/research/TRP109-N23/BasisMixer/midis.html for sound examples
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4.2 Discussion of experiment 2

The results of experiment 2 show that the LBM in combination with DYN
basis functions accounts for a large part of dynamics in music performances
(66%–90%, depending on the piece; see table 5). The residual loudness after
subtracting model fits is substantially less correlated between performers. The
remaining correlation is an indication of factors that are not represented by
the model. Obvious candidates are pitch, and the number of simultaneously
sounding notes.

It is unlikely however, that the described method in its current form will
result in clear ‘coefficient profiles’ of performers, i.e. sets of coefficients that
uniquely characterise how a performer interprets annotations. Many decisions
on how to interpret annotations will depend on the context of the annotation
and on musical understanding of a level that is not easy to capture in a simple
mathematical model.

Nevertheless, LBM can be a useful tool to compare interpretations of differ-
ent performers for a particular piece or musical fragment. It provides estimates
of how (strongly) each annotation has shaped the dynamics of the performance.
Although the model provides only an approximation of the performed dynamics,
these estimates can often be meaningfully compared across performers.

4.3 LBM and creativity in musical expression

The LBM framework presented in this paper is an attempt to account for mu-
sical expression in a rather simple manner, namely as a weighted sum of score-
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determined basis functions. One may wonder whether such a model leaves any
room for other aspects of musical expression, such as the performer’s expressive
intentions, especially the affective information she wishes to transmit to the
listener.

Theoretically speaking, since the models factorise musical expression into
weights and basis functions, any expressive information should be captured ei-
ther in one, or in the other. In this paper, we have treated the basis functions as
a fixed part of the model, and the weights as parameters to be fit to data. One
(admittedly simplistic) way to conceive of the artistic freedom of performers, is
to regard the weights as a “palette” with which performers “colour” the per-
formance differently, depending on which basis functions receive high weights.
This idea has been proposed for a system of rules for musical expression (Bresin
and Friberg, 2000).

It is also plausible that expressive variation due to affective intentions, or
individual performer style, may be better modelled by adapting the basis func-
tions. Possibly, the shape of a crescendo, or a ritardando may be affect-specific,
or even performer specific. Some evidence for performer-specific final ritard
shapes has been found (Grachten and Widmer, 2009). To learn the shape of
basis functions from data however, constraints must be imposed to avoid that
the model is under-determined.

It should be stated clearly however, that the LBM framework is intended
as a tool for analysing artifacts, rather than the process that led to these arti-
facts. Analogously, the process of creating a new performance by using LBM,
should not be seen as modelling a cognitive process, let alone a creative process.
Whether a performance created by LBM could be regarded as creative by a
human listener is a philosophical question. We adhere to the view stated by
Widmer et al. (2009), that creativity is in the eye of the beholder. It is even
conceivable that the creativity is not just a (subjective) characteristic of the
performance, but also of the listener’s interpretation, by which she construes a
novel and unconventional performance as an enjoyable one.

5 Conclusions and future work

The work presented in this paper corroborates the growing insight in music
performance research, that even if musical expression is a highly complex phe-
nomenon, it is by no means fully unsystematic. We have described a linear basis
modelling framework to account for expressive variations in music performance.
Several types of basis functions were discussed. Using a relatively small set of
basis functions, it is possible to account for over 45% variance in the dynamics
of Magaloff’s performances of Chopin piano works. Prediction of performances
using a model trained on performance data unsurprisingly yields lower values,
but substantial positive correlations are still observed.

As an analytical tool, we have used the framework to quantise performance
differences between performers, and pieces. Results indicate that the variance
across pieces is too large to identify performer-specific expressive style, but
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within pieces, some performer-specific expressive effects were identified.
The LBM framework can be extended in two important ways. Firstly, we

believe the framework is well-suited to a probabilistic approach, in which prior
information on the distribution of weights is combined with estimates obtained
from performance data. Secondly, a strong limitation of the current model is
that basis functions must be defined manually. Dictionary learning techniques
developed in the field of sparse coding may be used to learn basis-functions from
performances.
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