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ABSTRACT
Automated music playlist continuation is a common task of music
recommender systems, that generally consists in providing a fitting
extension to a given playlist. Collaborative filtering models, that
extract abstract patterns from curated music playlists, tend to pro-
vide better playlist continuations than content-based approaches.
However, pure collaborative filtering models have at least one of
the following limitations: (1) they can only extend playlists profiled
at training time; (2) they misrepresent songs that occur in very
few playlists. We introduce a novel hybrid playlist continuation
model based on what we name “playlist-song membership,” that is,
whether a given playlist and a given song fit together. The proposed
model regards any playlist-song pair exclusively in terms of feature
vectors. In light of this information, and after having been trained
on a collection of labeled playlist-song pairs, the proposed model
decides whether a playlist-song pair fits together or not. Experimen-
tal results on two datasets of curated music playlists show that the
proposed playlist continuation model compares to a state-of-the-
art collaborative filtering model in the ideal situation of extending
playlists profiled at training time and where songs occurred fre-
quently in training playlists. In contrast to the collaborative filtering
model, and as a result of its general understanding of the playlist-
song pairs in terms of feature vectors, the proposed model is addi-
tionally able to (1) extend non-profiled playlists and (2) recommend
songs that occurred seldom or never in training playlists.
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1 INTRODUCTION
The automated continuation of music playlists enables music rec-
ommendation scenarios such as playing and sequentially extending
a music stream (similar to traditional radio broadcasting) or sug-
gesting to the user fitting songs to extend their own music playlists.
In both cases, it is crucial to identify candidate songs that fit a
given playlist, and this is a particularly challenging question. By
analyzing interviews with practitioners and postings to a dedicated
playlist-sharing website, Cunningham et al. [9] identified that the
playlist curation process is complex and influenced by a variety
of factors like mood, theme or purpose. Furthermore, they found
that the agreement among practitioners on curation rules was only
reduced to rather loose guidelines.

A successful approach to music playlist continuation relies on
mining collaborative information through the analysis of curated
music playlists. In particular, collaborative approaches based on
statistical models explain curated playlists in terms of a defined
quantitative criterion, providing a principled approach to modeling
the fitness of songs in playlists. In contrast to pure content-based
approaches, collaborative approaches tend to reveal more abstract
patterns over playlists and songs, but the good performance of
collaborative approaches is strongly dependent on the availabil-
ity of a large volume of training data. This requirement is easily
compromised. Firstly, the amount of carefully curated playlists is
rather scarce (especially compared to the abundant–but not curated–
listening logs derived from music streaming services). Secondly,
music consumption is inescapably biased towards popular songs [7],
resulting in a vast majority of songs occurring in very few playlists.

We introduce a novel hybrid playlist continuation model that
combines curated music playlists with multimodal song features.
The curated music playlists are used to derive training examples
of playlist-song pairs that fit and playlist-song pairs that do not
fit. The multimodal song features make the proposed model ro-
bust to data scarcity problems. The proposed model is designed
to flexibly evaluate the fitness of any playlist-song pair, making it
possible to extend any playlist by selecting suitable songs among
any set of song candidates. In contrast to previous hybrid playlist
continuation models, the proposed model is a feature-combination
hybrid [6], having the advantage that the collaborative information
and the song features are implicitly fused into a single enhanced
recommender system.

The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the hybrid playlist
continuation model. The evaluation methodology is described in
Section 4. Section 5 describes the datasets of curated playlists and
song features used in our experiments. Section 6 elaborates on the
results. Finally, conclusions are drawn in Section 7.
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2 RELATEDWORK
A well-researched approach to automated music playlist contin-
uation relies on the song content. Pairwise song similarities are
computed on the basis of features extracted from the audio sig-
nal (possibly enriched with social tags and metadata) and used to
enforce content-wise smooth transitions [14, 24, 26, 29, 33]. Recom-
mendations based on content similarity are expected to confer co-
herence to the playlist. However, pure content-based recommenda-
tions can not capture complex relations and, in fact, it does not hold
in general that the songs in a playlist should all sound similar [25].

Collaborative Filtering (CF) has been proven successful to reveal
underlying structure from, in general, user-item interactions [1, 34].
In particular, CF has been applied to music playlist continuation by
regarding each playlist as a user’s listening history, on the basis of
which songs should be recommended. Previous research has mostly
focused on playlist-neighborhood CF models [5, 16, 20], but Aizen-
berg et al. [2] also present a latent-factor CF model tailored to mine
Internet radio stations, accounting for song artist, time of the day
and song adjacency. An important limitation of most latent-factor
and playlist-neighborhood CF models is that they need to profile
the playlists at training time in order to extend them, by computing
their latent factors or finding their nearest neighbors. As a conse-
quence, such models can not extend playlists unseen at training
time. To circumvent this issue, Aizenberg et al. [2] replace the latent
factors of unseen playlists by the latent factors of their songs, and
Jannach and Ludewig [21] show how to efficiently implement a
playlist-neighborhood CF model that can extend unseen playlists
in reasonable time. Song-neighborhood CF models can in general
extend unseen playlists, because they only require pairwise song
similarities [35, 39]. A common limitation of all pure CF methods
is that they are only aware of the songs occurring in the training
playlists. Thus, songs that never occurred in the training playlists,
to which we refer as “out-of-set” songs, can not be recommended.

Zheleva et al. [41] propose a latent-variable playlist model based
on Latent Dirichlet Allocation (LDA) [4]. They found that a vari-
ation of the basic LDA model that takes listening sessions into
consideration provides better playlist continuations. In a similar
line, Chen et al. [8] present a playlist model named Latent Markov
Embedding, that exploits radio playlists to learn an embedding
that projects songs into a Euclidean latent space. Both models can
extend playlists without precomputing playlist profiles, but they
can only recommend songs occurring in training playlists.

Hybrid models combining CF and song features are a common
approach to mitigate the difficulties of CF models to represent
infrequent songs. Hariri et al. [16] represent the songs in hand-
curated playlists by topic models derived from social tags and then
mine frequent sequential patterns at the topic level. The scores of
a CF model are re-ranked according to the next topics predicted.
The approach proposed by Jannach et al. [20] pre-selects suitable
next songs based on the weighted combination of scores yielded by
a playlist-neighborhood CF model and content-based similarities.
The song candidates are then re-ranked to match the recent songs.
In both cases, the hybridization follows from the combination of
independently obtained scores by means of weighting heuristics
or re-ranking. For example, the CF prediction for a song occurring

only in a few training playlists would be boosted with content-
based information. However, the prediction for an out-of-set song
would solely rely on the content-based component.

Similar to our approach, Van den Oord et al. [40] also relate song
content with collaborative patterns using a deep neural network.
The network is trained to predict the CF factors of a song given its
log-compressed mel-spectrogram. However, the two approaches
are fundamentally different. Our approach integrates collaborative
information and song features into a standalone enhanced recom-
mendation model that can decide if any playlist-song pair matches.
In contrast, the model proposed in [40] tries to transform audio fea-
tures into more abstract collaborative features, which still need to
be processed to yield a final recommendation. Also, its performance
is naturally upper-bounded by CF.

For a more comprehensive survey onmusic playlist continuation,
we point the interested reader to [5] or Chapter 13 in [34].

3 HYBRID PLAYLIST CONTINUATION
In this section we introduce the proposed hybrid playlist continua-
tion model, including: basic concepts and notation, the data used to
train it, the model definition, how to use it to recommend playlist
continuations and finally some implementation details.

3.1 Basic Concepts and Notation
Let P be a collection of music playlists. Let S be the universe of
songs available, including at least all the unique songs occurring in
the playlists of P , but possibly more. A song s ∈ S is represented by a
feature vector xs ∈ RD , whereD is the song-feature dimensionality.
A playlist p ∈ P of length Tp is regarded as a set of songs and it
is represented by a feature matrix Xp ∈ R

Tp×D that contains, in
each row, the feature vector of each song in the playlist. Different
playlists may have different lengths.

We want to remark that, by considering a playlist as a set of
songs, we are disregarding its song order. This assumption may
seem counterintuitive because the process of listening to a playlist
is inherently sequential. However, our preliminary studies on the
importance of song order in curated music playlists indicate that the
order is actually not crucial to recommend continuations to such
playlists. Even though more research is required to fully understand
the impact of the song order, we feel confident that disregarding
the song order does not harm the contribution of the current work.

Throughout the paper, we take advantage of standard set op-
erations and notation [23, chap.1] to precisely express relations
between playlists and songs. We advance here common expressions
that we normally use. A playlist p is a set of songs and thus it is a
subset of the universe of songs, i.e., p ⊆ S . Then, the set difference
S \p corresponds to all the songs in the universe S that do not belong
to the playlist p. A song s can be regarded as playlist of one song,
i.e., as the singleton set {s}. Given a song in a playlist s ∈ p, the set
difference p \ {s} removes the song s from the playlist p. Despite
the use of set operations and notation, for the sake of clarity we
continue using the word “length” instead of “cardinality” to refer
to the number of songs in a playlist.
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3.2 Playlist-Song Training Examples
The proposed hybrid playlist continuation model is based on what
we name “playlist-song membership,” that is, whether a given
playlist and a given song fit together. In Section 2 we have dis-
cussed the complexity of deciding which songs fit together and
how approaches that exploit collaborative information are able
to reveal more abstract relations than content-based approaches.
Therefore we use curated playlists as a form of collaborative im-
plicit feedback [18, 31] to derive training examples of playlist-song
pairs that fit, as well as of playlist-song pairs that do not fit.

To ease the reading we say that a playlist-song pair that fits is a
“match,” while a playlist-song pair that does not fit is a “mismatch.”
In the context of implicit feedback it might be more accurate to use
the term “no-match” rather than “mismatch,” to stress the fact that
missing feedback does not necessarily reflect negative feedback,
but we keep the latter for simplicity.

Our basic assumption is that any playlist p ∈ P implicitly defines
matches with its own songs, in the sense that any song s ∈ p
matches the shortened playlist ps = p \ s , i.e., the original playlist p
where the song s has been removed. We further assume that any
song not occurring in the playlist p is a mismatch to the shortened
playlist ps . Thus a mismatch is obtained by randomly drawing a
song from the remaining songs S \ p. In this way we can derive
training examples of matching and mismatching playlist-song pairs.
Precisely, we follow Algorithm 1, that given a playlists collection P
and a universe of songs S yields as many matching as mismatching
playlist-song pairs.

Algorithm 1 Derive playlist-song matches and mismatches.
Input:

P ▷ playlists collection
S ▷ universe of songs

Output:
matches ▷ list of playlist-song matches
mismatches ▷ list of playlist-song mismatches

1: matches = [] ▷ initialize empty lists
2: mismatches = []
3: for p ∈ P do
4: for s ∈ p do
5: ps = p \ {s} ▷ remove s from p
6: s+ = s ▷ s is a match to ps
7: s− = sample(S \ p) ▷ draw a mismatch to ps
8: matches.append((ps , s+)) ▷ store train. examples
9: mismatches.append((ps , s−))
10: end for
11: end for
12: return matches, mismatches

It is important to observe that, in general, considering playlist-
song pairs observed in curated playlists as matches, and any playlist-
song pairs not observed in curated playlists as mismatches, would
yield many more mismatches than matches. This strong class imbal-
ance is well-known in the domain of recommender systems [1, 34]
and can be tackled with different approaches such as cost-sensitive
learning [18, 31] or sampling techniques [27]. As we have seen in

actual
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Figure 1: Sketch of the hybrid playlist continuation model. Given
any playlist-song pair, its featurematrix and vector are transformed
to hidden representations that are then used to decide if the playlist-
song pair is a match or a mismatch. The model is trained on labeled
playlist-song pairs derived from Algortithm 1.

Algorithm 1, we opt for the latter, and derive a balanced number of
matching and mismatching training examples.

The training examples derived from Algorithm 1 are formatted
in order to use them within the proposed playlist continuation
model. Each playlist-song pair (p, s ) is represented by its feature
matrix and vector (Xp , xs ), and it is labeled with yp,s ∈ {0, 1},
where 1 indicates a matching playlist-song pair and 0 indicates a
mismatching playlist-song pair. The final training dataset consists
of all the triplets {(Xp , xs ),yp,s }.

3.3 Model Definition and Learning
The proposed hybrid playlist continuation model has to be able
to decide if any given playlist-song pair constitutes a match or a
mismatch. We generally devise this model as a deep neural network
consisting of a “feature-transformation” component f and a “match-
discrimination” componentд (Figure 1). The feature-transformation
component takes any playlist-song pair (p, s ) as input, represented
by the corresponding feature matrix and vector (Xp , xs ). The song
feature vector xs is transformed to an H -dimensional hidden repre-
sentation f (xs ) ∈ RH . The playlist feature matrix Xp is song-wise
subject to the same transformation, obtaining a hidden representa-
tion f (Xp ) ∈ R

Tp×H (where we slightly abuse notation for f ). Both
hidden representations are passed together through the match-
discrimination component that predicts the probability of the playlist-
song pair being a match: д

(
f (Xp ), f (xs )

)
∈ [0, 1].

The transformation component f and the match-discrimination
component д depend on sets of learnable weights θ f and θд , re-
spectively (omitted so far for the sake of clarity). The weights are
adjusted on the basis of the training examples {(Xp , xs ),yp,s } de-
rived from Algorithm 1, by comparing the model’s predicted match
probability for a pair (p, s ) to the actual match label yp,s ∈ {0, 1}.
Precisely, the sets of weights θ f , θд are estimated to minimize the
following binary cross-entropy cost function

L

(
θ f ,θд

���
{
(Xp , xs ),yp,s

})
=

−
∑
p,s

yp,s log
(
ŷp,s
)
+
(
1 − yp,s

)
log
(
1 − ŷp,s

)
,

(1)

where ŷp,s = д
(
f (Xp ), f (xs )

)
is the model’s prediction for the

playlist-song pair (p, s ).
In Section 1 we pointed out that the proposed playlist continua-

tion model is a feature-combination hybrid [6], that is, it implicitly
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fuses content-based and collaborative information into a joint rec-
ommender system. Equation 1 clearly shows how the proposed
model relies on matching and mismatching playlist-song pairs de-
rived from curated music playlists, while regarding playlist-song
pairs in terms of their feature representations.

3.4 Playlist Continuation
Once it has been trained, the proposed model is used to predict
playlists continuations in the following way. Suppose that we rec-
ommend a continuation to playlist p using the universe of songs S .
To avoid the recommendation of songs already present in the
playlist, we restrict the set of candidate songs to S \ p. We let
the model predict the matching probability of the playlist-song
pair (p, s ), for each candidate song s ∈ S \p. This operation is linear
in the number of candidate songs. We then rank the candidate songs
in order of preference to extend p. The ranked list of song candi-
dates can be used differently depending on the recommendation
scenario. For example, in case of extending a radio stream one could
recommend the top result, or assisting a user in identifying relevant
songs to extend a playlist, one could show the top K results, or the
results with predicted matching probability above a threshold. We
detail the evaluation methodology followed for our experiments in
Section 4.

3.5 Model Implementation
The results presented in this work (Section 6) were obtained by
using the model architecture detailed in Table 1. The model hyper-
parameters were selected on a withheld validation set, choosing
those that yielded best validation cost. The model was implemented
using Lasagne [11] and Theano [37].

4 EVALUATION
A large-scale on-line evaluationwhere users could assess the quality
of the playlist continuations recommended by the proposed model
should be the preferred option [34], but would require a complex
infrastructure beyond the scope of this work. Instead we design
an off-line evaluation experiment, similar to previous approaches
in the literature [2, 5, 16, 20], where we assess the ability of the
proposed model to recover withheld playlist continuations. Even
though off-line experiments can not faithfully assess the quality of
playlist continuations as would do it a user, we deem reasonable
to assume that if a playlist continuation approach consistently
achieves better off-line performance than another, it will likely
perform better in practice as well.

4.1 Off-line Experiment and Metrics
As a reminder, let P be a collection of music playlists and let S be the
universe of songs available, including at least all the unique songs
occurring in the playlists of P , but possibly more. Given a playlist p,
we assume that a continuation pc , proportionally shorter than p,
is known and withheld for test. This assumption on the length of
the continuation pc follows the evaluation methodology used by
Aizenberg et al. [2], but differs from the approach of Bonnin and
Jannach [5], Hariri et al. [16] and Jannach et al. [20], where the
withheld continuations have a single song regardless of the length
of the playlist p.

Table 1: Architecture of the hybrid playlist continuation model.
The input to the model are the features (Xp, xs ) of a playlist-song
pair (p, s ). Xtp denotes the t -th row of the feature matrix Xp , i.e.,
the t -th song of the playlist p . The upper part of the table corre-
sponds to the feature transformation component f , and the lower
part of the table corresponds to the match-discrimination compo-
nent д. The boldface layers DEk, BNk in the transformation compo-
nent f share their weights for all the songs in the playlist p and for
song s (Section 3.3). The dimensionality of each layer is annotated in
parentheses. DE: Dense layer, RE: Rectify non-linearity, BN: Batch
Normalization [19], DR: Dropout [36].

To prevent the model from recommending songs already present
in the playlist p, we only consider the songs in S \p, and rank them
according to the model’s predicted probability that they match p.
Since this is an off-line experiment, now we do not really prepare a
recommended playlist continuation for a user to evaluate. Instead,
we compute different evaluation metrics based on the ability of the
playlist model to rank the songs within the playlist continuation pc
in top positions of the list of ranked song candidates. For each song
in the withheld continuation pc , we compute its rank within the
whole list of ranked song candidates. For the whole continuation
pc , we compute the average precision given the whole list of ranked
song candidates. Finally, for the whole continuation pc , we compute
the recall within lists of top 10, top 30 and top 100 ranked song
candidates [28, chap.8]. Even though lists of top 30 or top 100
song candidates may seem impractical for actual recommendation
scenarios, these are common list lengths used to evaluate playlist
continuations in off-line experiments [2, 5, 16, 20].

This process is repeated for all the playlists we set to extend,
and a summary of the described evaluation metrics over all the
playlist continuations is reported, namely the median rank, the
mean average precision (MAP) and the mean recall at 10, 30 and 100.

4.2 Weak and Strong Generalization
We consider two different evaluation settings (Figure 2), that were
also proposed by Aizenberg et al. [2]. The first setting, or “weak
generalization” setting, considers a single set of playlists with their
corresponding withheld continuations. The playlists are used to
train the proposed playlist continuation model. Once trained, the
model predicts lists of ranked song candidates to extend the very
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training playlist continuation

strong generalizationweak generalization

Figure 2: Illustration of the considered evaluation settings. We fig-
uratively picture the datasets as matrices where playlists are stored
in rows, and each element in a playlist is a song. The red stripes
indicate the playlists used to train the model. The blue stripes in-
dicate the playlists that the model has to extend. The green stripes
indicate the withheld continuations used for evaluation. The weak
generalization setting considers a set of playlists and their withheld
continuations. The model is trained on the playlists. Once trained,
we assess the ability of the model to extend the very same training
playlists. The strong generalization setting considers two indepen-
dent sets of playlists. The first set of playlists is used to train the
model. Once trained, we assess the ability of the model to extend
the playlists from the second set of playlists.

same training playlists. The model is then evaluated using the with-
held continuations as describe above. We refer to this evaluation
setting as “weak,” because the playlist continuation model extends
playlists that it has seen before. In Section 2 we discussed that some
playlist continuation models (e.g., a latent-factor CF model), need
to compute a playlist profile at training time in order to extend a
playlist. Such models can operate in the weak generalization setting.
The second setting, or “strong generalization” setting, considers
two independent sets of playlists. The first set of playlists does
not need known withheld continuations because it is only used
to train the model, while the second set of playlists does require
withheld continuations for evaluation. The playlist continuation
model is trained on the playlists from the first set. Once trained,
the model is shown the playlists from the second set and it predicts
lists of ranked song candidates to extend them. The model is then
evaluated using the withheld continuations as described in Sec-
tion 4.1. We refer to this evaluation setting as “strong,” because the
playlist continuation model extends playlists that it has never seen
before. Playlist continuation models that require a precomputed
playlist profile to extend a playlist can no operate in the strong
generalization setting.

4.3 Collaborative Filtering Baseline
We compare the proposed playlist continuation model to a latent-
factor CF baseline. We choose the state-of-the-art Weighted Matrix
Factorization (WMF) model introduced by Hu et al. [18] because it
is specifically designed to perform CF on implicit feedback datasets.
We apply WMF to the task of playlist continuation by regarding
playlists as listening histories. We set a matrix with as many rows as
playlists and as many songs as unique songs in the playlists. In other
words, the general CF user-item matrix becomes a playlist-song ma-
trix. If a given playlist contains a given song, then the corresponding

cell in the matrix is set to 1. Otherwise, the cells are set to 0. The
original model by Hu et al. [18] expects frequency information for
each observation, e.g., the number of times a user viewed a website
or the play counts of a user for a specific song. This frequency infor-
mation is leveraged to assign appropriate confidence levels to each
observation in the matrix. Curated playlists lack such frequency
information because they are static lists compiled by practitioners,
shared on-line and finally encoded as binary values that only indi-
cate which songs belong to the playlists. Thus, we assign the same
weight to all the observations, but we tune this weight to yield best
validation cost on a withheld validation set. We also experiment
with different weights for the L2-regularization term. We use the
publicly available implementation of WMF by Frederickson [15].

WMF can only operate on the weak generalization setting be-
cause it needs to precompute playlist profiles, in this case playlists
factors, in order to extend the playlists. Furthermore, as any pure
CF model, WMF can only recommend songs occurring in training
playlists. Details regarding the comparison of the proposed playlist
continuation model and this CF baseline are included in Section 6.

5 DATASETS
We evaluate the proposed playlist continuation model on two
datasets of hand-curated playlists, along with song features de-
rived from the Million Song Dataset1 (MSD) [3].

The “AotM-2011” dataset [30] is a playlists collection derived
from the Art of the Mix on-line database.2 Each playlist in the
AotM-2011 dataset is represented by a list of song titles, artist
names, and links to the MSD identifiers, where available. We also
have access to a private playlists collection from “8tracks,”3 an
on-line platform where users share playlists and that supports
listening to them through streaming. Each playlist in the 8tracks
collection is represented by song titles and artist names. We use
fuzzy string matching to resolve them against the MSD, adapting
the code released by Jansson et al. [22] for a very similar task.
The string matching results in roughly 2,5M song identifiers from
the 8tracks dataset (many are spelling duplicates) resolved into
241,123 song identifiers from the MSD. Linking the 8tracks dataset
to the MSD enables the extraction of song features and makes the
comparison to the AotM-2011 dataset fair.

5.1 Playlists Datasets
The AotM-2011 dataset contains a considerable number of artist-
and album-themed playlists. One may argue that such playlists
should be considered if they are important to playlist curators,
but we deem important to exclude them for two main reasons.
Firstly, we presume that playlists with several songs by the same
artist or from the same album may correspond to a not so careful
compilation process. Secondly, and most importantly, we utilize
song features that are partly derived from social tags (Section 5.2).
By manual inspection we observe that some tags inform about the
artist or the album. Thus, by rejecting artist- and album-themed
playlists we prevent evaluation problems regarding leaking artist or
album information. Note that, in any case, excluding these playlists

1https://labrosa.ee.columbia.edu/millionsong
2http://www.artofthemix.org
3https://8tracks.com

https://labrosa.ee.columbia.edu/millionsong
http://www.artofthemix.org
https://8tracks.com


SAC 2018, April 9–13, 2018, Pau, France A. Vall et al.

makes the problem harder. To discard artist- and album-themed
playlists we keep only the playlists with at least 7 unique artists
and with a maximum of 2 songs per artist (the thresholds were
manually chosen to yield sufficient training playlists after the whole
filtering process). The 8tracks dataset has not artist- or album-
themed playlists because the terms of use of the 8tracks platform
do not allow users to include in a playlist more than 2 songs by
the same artist or from the same album. However, we apply the
same filters to both datasets for the sake of consistency. To ensure
that the model learns from playlists of sufficient length, we further
filter both datasets by keeping only the playlists with at least 14
songs linked to the MSD. However, we also discard songs for which
features can not be extracted due to missing raw data and therefore
the final length of the playlists may be shortened.

In order to set up the training and the test sets, we discard
playlists that have become shorter than 5 songs after the song fil-
tering. For the weak generalization setting, we split each playlist
leaving approximately 80% of the songs as a training playlist and
the remaining 20% of the songs as a withheld continuation. For
the strong generalization setting, we split the AotM-2011 and the
8tracks playlists collections into two playlist-disjoint subcollections
each. In each case, the first playlists subcollection includes 80% of
the playlists, that will be used as training playlists. The second
playlists subcollection includes 20% of the playlists, that are fur-
ther split leaving approximately 80% of the songs as a playlist to
be extended, and the remaining 20% of the songs as a withheld
continuation. Figure 2 illustrates the different playlists splits in the
weak and strong generalization settings.

The filtered AotM-2011 dataset has 2,715 playlists with 12,355
songs by 4,097 artists. The filtered 8tracks dataset has 3,272 playlists
with 14,613 songs by 5,119 artists. Detailed statistics regarding the
distribution of unique songs per playlist, unique artists per playlist
and song frequency in the dataset are included in Table 2.

5.2 Song Features
The proposed playlist continuation model requires each song in
the playlists to be represented by a feature vector. We extract state-
of-the-art song features, namely i-vectors from audio, word2vec
semantic features from social tags and collaborative song latent
factors from independent listening logs. We concatenate these fea-
tures into a rich multimodal song feature vector. The choice of this
specific set of features is motivated by our recent study [38], that
elaborates on the performance of these and other song features for
the task of music playlist continuation, including the individual
performance of each type of feature, as well as their joint perfor-
mance when they are combined into a multimodal feature vector.
The feature extraction process is outlined below, but we refer the
interested reader to [38] for a comprehensive presentation.

We derive the features from the MSD, together with the accom-
panying “Last.fm Dataset”4 and the “Taste Profile Subset.”5 The
raw data available is the following. For the audio content, the MSD
splits songs into segments of variable length (typically under a sec-
ond) and provides 12-dimensional timbral coefficients (similar to
MFCCs) for each segment. The Last.fm Dataset provides song-level

4https://labrosa.ee.columbia.edu/millionsong/lastfm
5https://labrosa.ee.columbia.edu/millionsong/tasteprofile

social tags along with weights describing their relevance. Finally,
the Taste Profile Subset includes user-song play counts derived
from independent listening logs. The MSD also provides other song
features such as “danceability” or “energy,” that are expected to
summarize aspects of the audio at a high-level. However, these
features are not documented in the MSD nor were they in their
original source, the now discontinued Echo Nest API.6 Thus we do
not consider them for research purposes.

The extraction of i-vectors and word2vec semantic features re-
quires pretraining reference models on a large collection of repre-
sentative songs. For both the AotM-2011 and the 8tracks datasets,
we select playlists with at least 10 songs linked to the MSD, by
at least 5 artists, such that no artist has more than 2 songs in the
playlist. We assume that the unique songs in the resulting playlists
are representative. For each dataset, we further exclude the songs
that appear only in the corresponding weak-generalization training
split to minimize leaking information in the evaluation. We refer
to the final song collections as the “development song sets.” For
the AotM-2011 dataset we obtain 48,393 songs and for the 8tracks
dataset we obtain 47,617 songs.

For all the feature types we extract 200-dimensional feature
vectors. According to our experiments in this and our previous
work [38], vectors of this dimensionality carry enough information.

5.2.1 I-Vectors from Timbral Features. I-vectors were first intro-
duced in the field of speaker verification [10], but recently they have
also been successfully utilized for music similarity and music artist
recognition tasks [12, 13]. We build a Gaussian mixture model with
1,024 components on the entire pool of segment-level features of the
development song set. Using the unique songs in the playlists, we de-
rive the total variability space yielding 200-dimensional i-vectors.
Following the standard i-vector extraction pipeline, we further
transform the obatained i-vectors using a linear discriminant anal-
ysis model [17] fit on the training playlists.

5.2.2 Semantic Features from Social Tags. We collect the social
tags of all the songs in the development song set and build a music-
aware text corpus by fetching the English Wikipedia7 pages of the
collected tags. We run the continuous bag-of-words algorithm8 on
the text corpus to obtain a dictionary of 200-dimensional semantic
features for the most relevant words in the corpus. For each unique
song in the playlists, we look up its social tags in the dictionary. If
a tag is a compound of several words (e.g., “pop rock”), we compute
the average feature. Since a song may have several tags, the final
semantic feature is the weighted average of all its tags’ features,
where the weights are provided by the Last.fm Dataset and indicate
how relevant is each tag for each song.

5.2.3 Latent Factors from Listening Logs. We factorize the user-
song play counts from the MSD using the WMF model [18], that is
specially designed for implicit feedback datasets. We use a depth
of 200 factors. We discard the user latent factors, unrelated to the
playlist continuation problem, and keep only the song latent factors.

5.2.4 Multimodal Feature Vectors. For each song in the playlists,
we concatenate its i-vector, word2vec semantic feature vector and
6http://the.echonest.com
7https://en.wikipedia.org
8https://code.google.com/p/word2vec

https://labrosa.ee.columbia.edu/millionsong/lastfm
https://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://the.echonest.com
https://en.wikipedia.org
https://code.google.com/p/word2vec
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Table 2: Descriptive statistics for the playlists within the AotM-2011 and the 8tracks playlists datasets.We
report the distribution of the number of songs per playlist, the number of artists per playlist, and the song
frequency in the dataset (i.e., the number of playlists in which each song occurs).

Training set Test set
min 1q med 3q max min 1q med 3q max

AotM-2011
Songs per playlist 4 6 7 9 21 1 1 2 2 5
Artists per playlist 3 6 7 9 21 1 1 2 2 5
Song frequency 1 1 1 2 35 1 1 1 1 11

8tracks
Songs per playlist 4 6 8 10 30 1 2 2 2 8
Artists per playlist 3 6 8 10 28 1 2 2 2 8
Song frequency 1 1 1 2 119 1 1 1 1 27

collaborative song factors into a multimodal feature vector. Since
each individual feature vector is 200-dimensional, the final multi-
modal feature vector is 600-dimensional.

6 RESULTS
We evaluate the proposed playlist continuation model by conduct-
ing the off-line experiment described in Section 4.1, in both the
weak and the strong generalization settings proposed in Section 4.2,
using both the AotM-2011 and the 8tracks datasets. We also evalu-
ate the CF baseline presented in Section 4.3. Since it can only extend
playlists for which playlist factors have been computed at training
time, we can only evaluate it in the weak generalization setting. We
finally evaluate a random baseline that given any playlist-song pair
predicts a random probability of it being a match. The performance
of the random baseline is independent of the generalization setting.

Table 3 reports the performance metrics achieved by each of the
playlist continuation models. In the weak generalization setting,
the proposed playlist continuation model and the CF baseline show
comparable performance in both datasets. The proposed model is
able to rank the songs from the withheld continuations roughly 200
positions higher (better) than the CF baseline. On the other hand,
the CF baseline achieves slightly higher recall values than the pro-
posed model. By comparison to the random baseline, we see that the
proposed model and the CF baseline reveal non trivial patterns in
the data. However, we also note that the absolute performance met-
rics are rather low. Platt et al. [32] and McFee and Lanckriet [29]
also pointed out the low performances achieved when automated
music playlist continuation is evaluated as an information retrieval
task. They explained it by the nature of the playlist continuation
problem, namely a playlist may be extended by a number of poten-
tially relevant songs, but information retrieval off-line metrics only
accept exact matches to the withheld continuations. In this regard,
it is also worth noting that related works on the AotM-2011 and the
8tracks datasets report results comparable to ours [5, 20]. We also
observe that both the proposed model and the CF baseline achieve
slightly worse results on the AotM-2011 dataset than in the 8tracks
dataset. Since the differences are comparable for both models, we
believe that this is due to the specific properties of each dataset.

As we have discussed in Section 4.2, the proposed playlist con-
tinuation model can evaluate any playlist-song pair, regardless of
whether the playlist and the song were observed before. This flexi-
bility enables the proposed model to extend playlists in the strong

generalization setting. However, the question is whether the pro-
posed model’s performance is harmed in this evaluation setting.
Still in Table 3, we observe that the median rank in the strong gen-
eralization setting is roughly 150 positions lower (worse) than in
the weak generalization for the AotM-2011 dataset. However, the
median rank remains stable for the 8tracks dataset. Similarly, the
recall values in the strong generalization setting are slightly lower
in the AotM-2011 dataset, but comparable for the 8tracks dataset.
Overall, even though the strong generalization setting poses a much
harder task, the proposed model shows a performance comparable
to its own performance in the weak generalization setting.

We now analyze the robustness of the proposed playlist contin-
uation model to recommend rare and out-of-set songs. Figure 3
shows the results from the off-line experiments discussed above as
a function of how often the songs in the withheld continuations
occurred in training playlists. We first focus on the weak generaliza-
tion results, where we can compare the proposed model and the CF
baseline. As expected, both models achieve best performances when
they recommend songs that occurred in 5 or more training playlists.
As we know, the CF baseline can not recommend out-of-set songs,
but we also observe that is has severe difficulties to recommend
songs occurring rarely in training playlists. The performance of
the proposed model on rare and out-of-set songs is not as good as
on songs occurring in five or more playlists. Nevertheless, the pro-
posed model is able to rank such songs much better than a random
model would (Table 3) and clearly better than the CF baseline.

We finally focus on the robustness of the proposed playlist con-
tinuation model to recommend rare and out-of-set songs in the
strong generalization setting. As before, we want to investigate if
the proposed model’s performance is harmed in this evaluation
setting, compared to its performance in the weak generalization
setting. Still in Figure 3, we observe that the behavior of the pro-
posed model in the weak and strong generalization settings is fairly
similar, in line with the overall results discussed above (Table 3).
This is an interesting finding because it provides an empirical in-
dication that regarding playlist-song pairs exclusively in terms of
their feature representations favors generalization and discourages
the specialization towards particular training playlists.

7 CONCLUSION
We have introduced a novel hybrid playlist continuation model
based on the general notion of playlist-song membership. The
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Table 3: Results achieved by the proposed playlist continuationmodel, the CF baseline and a random baseline on
the off-line evalauation experiment.We report themedian rank, theMAP and the recall (R) at lists of top10, top30
and top100 song candidates. The median rank compares to 12,355 song candidates for the AotM-2011 dataset and
to 14,613 song candidates for the 8tracks dataset. Lower is better. For MAP and R@{10, 30, 100} higher is better.

dataset generalization model med rank MAP R@10 R@30 R@100

AotM-2011 weak proposed 1230 1.35% 2.62% 6.32% 13.89%
CF 1444 1.96% 3.99% 7.84% 14.56%

strong proposed 1395 1.10% 1.93% 4.63% 11.65%
CF — — — — —

weak & strong random 6087 0.11% 0.20% 0.28% 0.79%

8tracks weak proposed 726 2.31% 4.34% 9.39% 20.02%
CF 1000 2.65% 5.06% 10.14% 19.60%

strong proposed 706 2.41% 4.20% 9.58% 19.36%
CF — — — — —

weak & strong random 7320 0.09% 0.12% 0.23% 0.66%

Figure 3: Results achieved by the proposed playlist continuation model and the CF baseline on the off-line experiment as a function of how
often the songs in the withheld continuations occurred in training playlists. We report the median rank (lower is better) and the recall at 100
(R@100, higher is better). The text annotations on top of each panel indicate the number of observations in each bar, which are the same for
the proposed model and the CF baseline.

model integrates collaborative information encoded in curated
playlists with state-of-the-art multimodal song features derived
from audio, social tags and independent listening logs. By design,
it regards playlists-song pairs exclusively in terms of their feature
vectors, seeking to discourage the specialization towards specific
playlists and songs. As a consequence, in contrast to CF models
limited to extending previously profiled playlists with songs seen at
training time, the proposed playlist continuation model can flexibly
decide the fitness of any playlist-song pair, regardless of whether
the playlist and the song were observed at training time. Further-
more, we follow a feature-combination hybrid approach, that is,
the different sources of information are implicitly fused into a stan-
dalone enhanced playlist continuation model. According to our
experimental results, the proposed model compares to a state-of-
the art CF model for the task of extending profiled playlists, when
sufficient training data is available. In contrast to the CF model,

the proposed model can additionally extend non-profiled playlists
without a significant performance loss, and recommend rare and
out-of-set songs with fair performance. We believe that the current
work provides a proof of concept for this newly proposed approach
to playlist modeling. The natural next step is the comprehensive
benchmarking of the proposed approach against other competing
techniques and the identification of improvable aspects.
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