
Estimating Perceived Tempo of Music
Audio Files

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

in der Studienrichtung

Informatik

Eingereicht von:

Richard Vogl, 0255290

Angefertigt am:

Department for Computational Perception

Betreuung:

Univ.-Prof. Dr. Widmer

Univ.Ass. Dipl.-Ing. Seyerlehner

Linz, Oktober 2009



Kurzfassung

Schlüsselworte: Musik Informationsgewinnung, Signalverarbeitung, Tempo Ex-

trahierung, wahrgenommenes Tempo, Noten Onset Erkennung, Inter Onset Inter-

val, maschinelles Lernen, Nearest-neighbor Klassifizierung, Supportvectormaschi-

nen, Genetische Algorithmen.

Die vorliegende Arbeit stellt eine alternative Methode zur Tempobestimmung

von Musik Dateien vor. In den meisten Arbeiten die sich mit diesem Thema

beschäftigen, wird versucht das Tempo eines Musikstückes auf irgendeine Art und

Weise direkt aus der digitalen Musikdatei zu berechnen. Diese Herangehensweise

beinhaltet einige Schwierigkeiten; mit einer davon muss man sich bereits vor dem

Berechnungsvorgang herumschlagen: Was ist überhaupt das richtige Tempo eines

Musikstückes? Ist es das notierte Tempo im Notenblatt oder eher das Tempo

mit dem ein Musiker mit dem Fuß wippt während er spielt? In dieser Arbeit

wird versucht den Berechnungsprozess von Vorne herein zu vermeiden, indem

Machine-Learning Algorithmen verwendet werden. Diese werden mit verschiede-

nen tempo- und geschwindigkeitsrelevanten Features der Musikdateien aus einer

Trainingsdatenbank trainiert. Das Tempo von unbekannten Musikstücken wird

dann mithilfe der trainierten Machine-Learning Algorithmen geschätzt.

Diese Technik wurde bereits von [SWS07] vorgestellt. In der vorliegenden Ar-

beit wird diese Technik weiter vorangetrieben um bessere Klassifikationsergebnisse

zu erzielen. Es kommen andere Machine-Learning Algorithmen, mehr Features

und ein zweistufiger Klassifizierungsalgorithmus zum Einsatz. Die so gewonnenen

Ergebnisse werden dann unter Zuhilfenahme einer Benutzerumfrage, in der Test-

personen die Geschwindigkeit zweier Musikstücke vergleichen, evaluiert. Dieser
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Schritt ermöglicht es das fragwürdige ‘Beats per Minute’ (BPM) Tempo, mit dem

die Dateien in der Trainingsdatenbank annotiert wurden, zu umgehen.

Die Ergebnisse sind vielversprechend, obwohl sie auch klar zeigen, dass im Bereich

‘Perceptual Tempo Estimation’ noch viel Forschung und Arbeit investiert werden

muss.



Abstract

Keywords: Music information retrieval, signal processing, tempo extraction, per-

ceptual tempo, note onset detection, inter onset interval, machine learning, nearest

neighbor classification, support vector machine, genetic algorithm.

This work is about an alternative method for tempo extraction of music audio files.

Most works on this topic try to compute the tempo of a piece of music in some way

using the waveform information stored in digital files. This method bears some big

problems; one of these raises already before the calculation process starts: What

is the correct tempo of a piece of music? Is it the score tempo notated in the sheet

music? Is it the tapping tempo, with which a musician would tap along with his

foot while playing?

In this work we try to omit the process of calculation by using machine learning

algorithms. They are trained with different tempo and speed related features from

audio files which’s tempi are known. The tempi of unknown music pieces are then

estimated using the trained machine learning algorithm.

While this method was already introduced by [SWS07], we push the work fur-

ther by trying to improve the estimation results using different machine learning

algorithms, more features and a two level estimation process. The results are

furthermore evaluated using a survey where probands compare the speed of differ-

ent music pieces. We omitted in this way the questionable annotated ‘beats per

minute’ (BPM) tempo of the files in our training databases.

The results are promising, although they also show that much research and work

has to be done in the field of perceptual tempo estimation.
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1 Introduction

1.1 Problem

Estimating the tempo of music is one of the fundamental problems in music in-

formation retrieval. Although it is quite simple for most humans to tap along

with the rhythm of a music piece, the problem can not yet bee seen as satisfyingly

solved for all kinds of music. The tempo of a piece of music is a very basic property

and therefore a very important measure for music similarity. Tempo information

can be used with any application based on music similarity, such as automated

music/artist recommendation, playlist generation and music library arrangement.

Exact tempo information could also be useful for music transcription and score

following. In art and entertainment tempo and rhythm information can be used

for visualization purposes such as automated light shows, as support tool for VJ’s

(video jockeys), other visual effects, etc . . . There are programs and tools which

can estimate the pace of electronic dance music quite accurate. They usually use

low pass filtering and a very simple onset detection mechanism (often realized in

hardware).

Given the very specific limitations of this kind of music (strong, monotonous and

tempo defining beat), such tools can’t be seen as a solution of the tempo estimation

problem. It is already quite hard to estimate tempo of non-electronic music with

strong rhythms (pop/rock), the problem gets even harder with classical music and

other kinds of music with even less defined rhythmic patterns such as ‘ambient’.
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1 Introduction 7

1.1.1 Types of Tempo

What is the tempo of a piece? This question is very fundamental but still can

not be answered globally. We could claim that a piece of music has several tempi

depending on the level of observation and/or application (compare [CL07]).

• Score tempo If existent, the score tempo would be the tempo notated in

the score sheets (in classical music e.g.). However, the real tempo of the

piece depends on how it is performed. Even if we synthesize the score by

means of midi reproduction, the perceived tempo could still differ from the

score tempo. Usually the perceived tempo would then be a integer frac-

tion/multiple of the score tempo.

• (Foot) tapping tempo The tapping tempo would be the frequency with

which a human being would tap subconsciously to the music. Usually this

would represent the perceived tempo. However, tapping experiments like

in [DGP99] revealed that the tapping tempo depends on multiple factors

like age and mood and is not consistent when comparing results of different

subjects.

• Fastest event tempo When looking at an onset-detection algorithm output

(see Section 4.3) we could try estimating the tempo calculating the smallest

common divisor of the inter onset intervals (times between the onsets, see

Section 4.5). The result would be the fastest regular beat in that specific

piece of music. If we found the right multiplier, we could obtain something

like the perceived tempo through the fastest event tempo. However, this

multiplier is likely to be different for every piece of music.

• Rate of measure The rate of measure depends on the score tempo and on

the meter of the piece. The length of one measure can be calculated from

the score tempo and the meter of the piece, therefore the rate of measure rm

is defined as rm = 1/tm, where tm is the length of one measure.
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1.2 Goal

The goal of this work is to find a method to sort music according to their perceived

tempo. This has not inevitably to be the score tempo nor tapping tempo. What

we are looking for is rather a mechanism which assigns music pieces a label which

allows a measure of similarity and order. Human probands should then confirm

the correctness of the assigned tempo in a survey. This is the only way to evaluate

the quality of the calculation of perceived tempo, since ground truth data in beats

per minute rather correspond to score tempo then to perceived tempo.

We try to achieve this goal by omitting any tempo calculation process/algorithm

and rather use machine learning to estimate the tempo. A possible problem we

might encounter lies in the training and test databases, which consist of files with

annotated BPM tempo, which might or might not be consistent with the perceptual

tempo. A better training and test database would consist of music files which are

sorted according to their perceived tempo.



2 Related Work

There are several works on tempo induction. We just want to present some few

works which are relevant for this work. In the course of MIREX’06, for example,

a tempo induction contest took place with several contestants. The algorithms

presented at this contest performed quite well and take use of interesting methods.

[ADR06] estimates tempo and tempo phase by using onset detection in eight sub-

bands. The periodicity of this onset functions is calculated using autocorrelation,

spectral product and spectral sum (see also [ADR04]). Then dynamic program-

ming is used to determine and track the optimum paths of tempo candidates. The

best paths are then time-averaged. For the MIREX’06 contest a second tempo

was calculated by using a single fusion method using majority rules for all paths

resulting from the single periodicity methods (autocorrelation, spectral product

and spectral sum).

[DB06] uses also an onset function combined with autocorrelation to find the

tempo. He uses a shift invariant comb-filter to extract the primary tempo. A

secondary tempo is then extracted using the primary tempo. The tempo phase

is calculated using a weighted impulse train which is correlated with the onset

function.

[Eck06] uses autocorrelation and additional phase information to enhance the re-

sults. This method was originally design to gather meter information of music.

[Pee06] uses also an onset function and their autocorrelation function (ACF). Addi-

tionally he uses the discrete fourier transform of the onset function which provides

a similar result as the autocorrelation function. The two signals are then combined

9



2 Related Work 10

to find the tempo using a combination of a Viterbi decoding algorithm (to find the

most probable ’tempo state‘ path) and a beat marking algorithm.

In [Set06] the so-called ‘Periodicity Transform’ (compare [SS01]) is used on features

extracted from the audio material.

[Uhl06] uses again spectrogram subbands to compute an onset function like ‘accent

signal’. Here the subbands are wighted by the amount of rhythmical information

contained in the band (to get the amount of rhythmicity, the ACF is used again).

The tatum1 values are then calculated using two methods, namely: ACF and a

two-way mismatch error function. Another ACF is calculated using the accent

signal. To obtain the tempo values some kind of expert system and a voting

mechanism is used.

[GD06] proposes several algorithms working on the same principle: Extracting

different tempo relevant features from the audio material and then calculating the

autocorrelation function of these features over time. The tempo phase is, again,

computed using a impulse train which is correlated with the feature functions.

Meter analysis could help to find the rate of measure and would provide additional

rhythmical information that could lead to the perceived tempo. [KEA06] presents

a method which takes use of hidden markov models to gather information about

the rhythmical structure of music data.

[PT07] uses a so called ‘energy envelope’ which is quite similar to an onset function.

They than compute a self-similarity matrix using a distance function (similar to

the AMDF — see section 4.4). The tempo is selected using ‘rhythmical signature’

clustering.

[SWS07] introduced at ISMIR’07 a very genuine and new approach on tempo in-

duction. In this work machine learning is used in a second stage to omit the often

1The Tatum grid is the ‘lowest regular pulse train that a listener intuitively infers from the
timing of perceived musical events’. The grid can be computed by using a histogram of
inter-onset intervals. The term was coined by J. A. Bilmes in an MIT Master’s thesis Timing
is of essence published in 1993 and named after the jazz musician Art Tatum. Compare
http://en.wikipedia.org/wiki/Tatum grid



2 Related Work 11

empirically designed tempo calculation processes. In a first stage tempo related

features are calculated from the audio signal. This features are the autocorrela-

tion function of a simple onset function and a modified, compressed version of

the fluctuation pattern (which was introduced in [Pam01]). The features with

the corresponding beat per minute (BPM) values form the ground truth for a k-

nearest-neighbor (KNN) machine learning algorithm. The feature vectors of new

songs which’s tempo should be determined are then classified using the KNN clas-

sifier. The results obtained with this approach are at least comparable to the

results in the tempo estimation contest of MIREX’06.

[Ahm07] is an interesting work on how tempo perception influences the human.

They measured how runners respond to music with different tempo in terms of

step frequency and motivation.



3 Algorithm Overview

The algorithm implemented in this work is based on the idea of [SWS07] to use

features and a machine learning algorithm to estimate the tempo of a given music

file. Where [SWS07] only uses two different features—namely ACF (see section

4.4) and FP (see section 4.6)—and solely KNN-classification (see section 5.1) this

work tries to improve the results by engaging at following points:

• Using more features: As described in section 4, a broad variety of fea-

tures was tested in this work to find a good feature set for tempo estimation

using machine learning algorithms.

• Comparing different machine learning algorithms: Aside from near-

est neighbor classification (NN, KNN, see section 5.1) we evaluated the capa-

bilities of support vector machines (SVMs, see section 5.2), a very powerful

machine learning algorithm.

• Using a two stage classification algorithm to engage the double/half

tempo problem

As already stated, we rather use tempo relevant features (like e.g. [GD06]) than di-

rectly audio/spectral data or an onset function calculated from this data—although

we use the onset function to calculate some features. We furthermore use just

small chunks of audio material instead of the whole file. This reduces calcula-

tion duration of the time consuming feature calculation process, but also brings

some problems as described in section 9. To further reduce calculation time for

evaluation runs, we implemented a caching system for features. We store the ex-

tracted feature information for every single audio file. As long as the features do

not change we do not have to recalculate them. The proposed algorithm uses

12



3 Algorithm Overview 13

Figure 3.1: The single steps of the tempo extraction algorithm.

two stages in the classification process. As stated in [SWS07], the tempo estima-

tion algorithm often estimates the tempo double or half of the real tempo. This

double/half errors could be avoided using the following two-staged classification

process: In the first stage a tempo-range is classified. Meaning that the music file

is assigned to one of N bins which correspond to a certain range of tempo. In the

second stage the tempo is estimated similarly as it is done in [SWS07]. Then it

is tried to combine the results of the two stages. In this work two methods are

proposed to do so: A kind of mapping into the estimated range and secondly the

estimation of the tempo just within the estimated tempo range. Figure 3.1 shows

an overview of all stages of the algorithm.



4 Feature Extraction

In this chapter all the features used for tempo estimated are introduced and their

calculation schemes and algorithms are explained. Furthermore, the preprocessing

steps for feature calculation or important algorithms and their parameters used

by feature calculation methods are explained.

4.1 Signal Preprocessing

To have a common point to start, every audio file is preprocessed and converted

to a certain wave format. Since we are not going to use the whole song—in some

training sets there are already just excerpts (see Section 7.1)—a section from the

middle of the file is used. Considering the silence at the beginning and ending of

music files and a possible intro/outro this seems to be a better choice than starting

at the very beginning of a file. If the contained audio signal is long enough, up to

12 seconds are used. If the file contains less than 12 seconds of audio material, the

whole content is used.

4.1.1 Implementation

The first step is to analyze the audio files. For further processing we want the data

in 8kHz sampled one-channel (mono) audio. The down-sampling is done using the

Matlab® built in function resample, which performs also a low pass filtering to

meet the Nyquist-Shannon sampling theorem.

14



4 Feature Extraction 15

Preprocessing of the files happens in the first few lines of r extract features.m.

First the files sample rate and format is read, then the data (up to 12 seconds from

the middle of the file) is read. Afterwards the data is converted to the already

mentioned 8kHz mono format.

4.2 Frequency Transform

In signal processing, transforming the source signal into a frequency domain is a

very common step. It spreads out the sum of all the single frequency-components

and makes it possible to extract single events and information about this events.

The most common way is to use the fourier transform ([Wik09b]) where the com-

ponents of the signal are calculated by means of sines and their phase. The formal

definition for a continuous signal x(t) is:

x̂(ω) =
1

2π

∫ ∞
−∞

x(t) · eiωtdt. (4.1)

Where x̂(ω) are the complex frequency components of frequency ω. To calculate

the single values of a discrete signal xn the discrete fourier transform (DFT) is

used. The single frequency values x̂ω are given by the following equation:

x̂ω =
1

2π

N−1∑
n=0

xn · ei2π
kn
N . (4.2)

If we want to perform a DFT for signals with sizes N which are a power of two

number, we can use the so-called ‘fast fourier transform’ (FFT) which is a very

effective way of calculating the DFT. The FFT has a runtime complexity of only

O(NlogN)) while the traditional DFT has an O(N2).

If we divide the whole signal into small windows and perform a DCT (or FFT

respectively) for every window, we get a so-called ‘short-time-fourier-transform’

(STFT) spectrogram. We have now a two dimensional matrix with the single

frequency components as complex values (which can be interpreted as phase and

magnitude pairs) dependent of time (usually x-axis) and frequency (y-axis). In-

herent for this kind of transform is the usage of ‘windows’ and ‘window overlap’.
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The spectral information is always calculated for a certain window (number of

digital values of audio signal). Whereas the window overlap indicates the amount

of samples reused in the next window. Since we are mainly interested in the rhyth-

mical information a relative small window size, which results in a low frequency

resolution, will do. On the other hand a bigger window-overlap is desired since

we want to locate the acoustical events exactly. Most features which are used in

this work are based on some kind of spectrogram calculated from the raw audio

data. There are some possibilities to alter the spectrogram and/or calculate it in

a slightly different way. The following chapter is a short discussion of different

possibilities for altering a STFT spectrogram.

Frequency Resolution Since the human auditory system does not work linearly

in frequency space, the interpretation of the spectrogram in hertz (Hz) as we receive

it from any fourier transform may be inadequate. There have been introduced some

alternative frequency scales which are more conform with the human auditory

system.

1. Chromatic Scale: The idea is to use only frequency bands which corre-

spond to tones in an equally spaced scale. If we use A4 as our base tone

(n = 0) for note frequency calculation, the single note frequencies for a

chromatic scale can be calculated using:

f(n) = 440 ·
(

b
√

2
)n

(4.3)

Where f(n) is the frequency of the nth tone starting with n = 0 at A4

(440Hz). b is the number of tones in an octave which is usually 12. If we

want to divide the octave into cents, we can use b = 12 · 100. Naturally

a transformation from Hz to a chromatic scale adds additional calculation

time. Experimentation showed that algorithms like the ‘goertzel algorithm’

([Wik09c]) or comb filters are much slower than performing a full range FFT.

Empirical evaluation showed that there were no significant improvements for

onset detection.

2. Mel Scale: The Mel scale (based on melody) is a frequency scale proposed

by [SVN37] based on pitch comparison experiments. The conversion from
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Hz to Mel can be done using this equation:

m = 1127.01048 · loge (1 + f/700) (4.4)

Since this scale represents properties of the human perception of tone heights

its often used for feature calculation which are used in music-similarity ap-

plications.

3. Bark Scale: The Bark scale is somewhat related to the Mel scale, but based

on different experiments. The scale is divided in 24 ‘critical bands’ , based

on the human auditory system (see [Zwi61]). The formula to calculate the

Bark frequency band is given by:

b = 13 · arctan(0.00076 · f) + 3.5 · arctan
(
(f/7500)2) , (4.5)

or can be approximated—if Mel frequency is given—by 1 Bark ≈ 100 Mel.

Absolute Magnitudes of Spectrogram If we take the absolute values of the

complex number of the STFT spectrogram, we get the magnitudes of the sines

which are part of the original signal. This values are proportional to the sound

pressure (which is converted by a microphone and digitalized by a analog digital

converted). If the complex value C is given, we obtain the magnitude using:

r = |C| =
√
<(C)2 + =(C)2 (4.6)

Again, the human auditory system does not perceive volume linearly or propor-

tionally to sound pressure, therefore there exist some alternative scales.

1. Decibel Scale: Bel is a logarithmic unit of measurement that expresses the

magnitude of a certain sound pressure relative to a reference level (usually

the threshold of human hearing 0B, pref = 20µPa. Usually the values are

given in decibel (dB = 1/10Bel). Given the sound pressure p the dB value

can be calculated as

Lp = 20 · log10

(
p

pref

)
[dB] (4.7)
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The sound pressure values provided are usually the RMS (root mean square)

values. The multiplication with 20 results from the factor 10 to get the

result in deci Bel. The factor 2 can be explained with the definition of 1 Bel,

which is the logarithmic proportion of two power/energy values. Since the

voltage induced by the microphone is (in a certain range) proportional to

the sound pressure (therefore U = p · k, where k is a constant provided by

the microphone) and the power of the voltage is given by P = U2 · R, the

initial equation for Lp could be written as:

Lp = log10

(
(p · k)2 ·R

(pref · k)2 ·R

)
= log10

(
p2

p2
ref

)
= 2 · log10

(
p

pref

)
[B] (4.8)

In most cases we do not really know how loud the given wave signal is

compared to the threshold sound pressure. We can therefore reformulate the

formula for calculating the dB value to:

Lp = 20 · log10 (p)− 20 · log10 (pref ) [dB] (4.9)

Since pref is constant the whole expression on the right side of the minus

sign is a constant, resulting in

Lp = 20 · log10 (p) + Lpref
[dB]. (4.10)

The reference value is therefore just a additive expression which can be omit-

ted if we normalize the calculated results anyway. Furthermore this additive

expression is changed if the signal is amplified while playing (which is in fact

done every time music is played since the reproduction with the exact same

volume is practically not possible) and therefore not important, if we do not

want to compare the absolute volume of two different music pieces.

2. Energy Spectrogram: Using the above defined value for the power induced

by the microphone (which is proportional to energy of the signal) we get:

E = p2 · k (4.11)

Omitting again the multiplicative constant we simply get E = p2.
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3. Phone/Sone Scale: Phone was proposed as perceived loudness level by S.

S. Stevens. The scale is designed to compensate the difference on perceived

loudness with same sound pressure level (SPL) over different frequencies.

One phon is defined as a 1kHz tone with 1dB (pref = 20µP ) SPL. Sone

was also proposed by S. S. Stevens in 1937 and is a measure for perceived

loudness too. One Sone is defined as 40 Phon which is a 1Khz tone with

40dB (pref = 20µP ). The scale is then designed so that a doubling of the

Sone value is perceived as doubling of the loudness. The Sone value of a

signal also depends on the frequency of the signal. See also [Wik09e] and

[FZ99].

Phase Spectrogram Naturally we can also use the phase information encoded

in the complex values. If C the complex value is provided, we receive the phase

values using:

ϕ = ∠(C) =


arccos

(
<(C)
|C|

)
if =(C) ≥ 0

− arccos
(
<(C)
|C|

)
if =(C) < 0

undefined if |C| = 0

(4.12)

The problem with phase values is, that a stationary sine has a constant value in the

STFT spectrogram, but his phase will constantly change at a given rate propor-

tional to the frequency. Furthermore the mapping into the range [−π...π] causes

discontinuities in the phase spectrogram. This problem can partially be solved

using the first differential of the phase spectrogram, resulting in almost constant

values for stationary sine signals. This procedure is illustrated in Figure 4.1 where

phase values are used to calculate an onset function.

Another way to address this problem would be to calculate the expected phase

change rate for a stationary sine in frequency bin n and subtract the expected

values from the actual values. This would result also in almost constant values for

stationary sines which are exactly in bin n and linear raising values for sines close

to the bin. The expected values can be calculated using:

φexpected = t · fn · 2π (4.13)
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Figure 4.1: Using phase information to extract onset function

Where t is the time of the current frame of the STFT spectrogram and fn is the

frequency of the current bin.

The final feature extraction algorithms use multiple and different kinds of spectra

since every spectrogram has its own advantages and disadvantage.

implementation For the frequency transform process implemented in Matlab®

the spectrogram function is used. The frequency scale and magnitude scale trans-

formation is performed after the spectrogram calculation using helper functions like

melscale.m. The frequency transformation is performed in the onset.m function

at the very beginning. Parameters which influence the frequency transform are

also passed to onset.m and are:
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• usemel if true, spectrogram will be transfered into melscale before onset

function calculation.

• usephicorr if true, phase values will be corrected by means of removing

phase growth for stationary signals.

• lpfrequ lowpass frequency for spectrogram. if not equal zero, all signal parts

below lpfrequ will be canceled out before calculation.

• p parameter struct with FFT parameters.

– p.fs sample frequency in Hertz (8000 Hz)

– p.fft time FFT window in milliseconds (32 ms)

– p.fft hoptime FFT hop-time in milliseconds (4 ms)

– p.mel filters number of Mel filter banks (40)

4.3 Onset Detection

Music can be interpreted as a list of discrete acoustic events—similar as music

is stored in midi files. Such acoustic events can be broken down into several

parts: ‘onset,’ ‘attack,’‘transient’ and ‘decay’. In Figure 4.2 the single parts are

illustrated in context of a played note. Most acoustic events can be described by

this model although the instances can assume very different shapes. E.g. a single

violin note can extend over several seconds which means it can have a very long

transient, talking in terms of our model. On the other hand percussive signals

such as finger snaps for example, can be very short with an overall duration of a

split second. The onset is therefor a certain point in the described model and in

time—namely the very beginning of such a discrete acoustic event. Onset detection

is the search for these beginnings. The acoustic events are mainly notes played

by instruments including/especially percussive events (see [Kla99]). Whenever

working with rhythm, tempo or notation in terms of audio signals, finding the

discrete events is a crucial step. Since we want to know the exact time an event
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Figure 4.2: ‘Onset,’ ‘attack,’ ‘transient’ and ‘decay’ in the case of a single note (in

[BDA+05]).

starts, it is the onset we are looking for. Onset detection usually takes place in

two stages (see [BDA+05] and [Dix06]):

1. Calculation of onset function

2. Selection and labeling of prominent peaks of the onset function

4.3.1 Onset Function Calculation

In the first stage a so-called onset function is calculated. In an onset function

every value corresponds to a certain point of time in the audio signal. Peaks in the

onset function indicate onsets in the audio signal. [BDA+05] does not use the term

onset function but rather calls the calculation of his onset functions ‘reduction’.

The onset of a new note played usually results in some kind of change in the

audio signal. Onset function calculation therefore aims at reflecting the amount

of ‘change’ occurring in the signal. The most simple way to do this might be to

use the envelope of the audio signal (see [BDA+05]). To calculate a simple onset

function one could calculate the derivative of the envelope. The envelope can be
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calculated via squaring and low-pass filtering the signal. This could be done using

following equation:

e(t) =

∑w/2
i=−w/2 s(t+ i)2

w
(4.14)

Where s(t) is the source audio signal, e(t) the envelope and w the window size for

smoothing (low-pass filtering). This window size strongly depends on the sample

rate. For envelope calculation windows with a length around 25ms perform well.

Using the above (Section 4.1) mentioned sample rate of 8kHz this would result in

a window of 200 samples. Once the envelope is calculated it can be downsampled

to a rate of 100Hz. This is about the threshold of the rate at which the human

ear can distinguish between two acoustical events (see [Moo97], [Dix06] uses the

same fs for his onset functions). Now we can calculate an onset function using the

discrete first differential of the envelope e′(t).

e′(t) = e(t)− e(t− 1) (4.15)

This procedure is illustrated in Figure 4.3. However, the envelope is not a very

robust way to calculate an onset function. A very common strategy to obtain

onset functions is via the spectrogram. In case of [DSD02], [Kla99], [NTI04] and

[BDA+05] the audio signal is first split into a number of frequency subbands using

filters. For these subbands the onset function is separately calculated. This single

onset functions are then combined again in different ways. The method of splitting

up the signal into different frequency ranges follows the human auditory system

which also treats frequency bands separately like stated in [Sch98]. [Dix06] presents

several algorithms to extract robust onset functions from spectral information

omitting splitting up the signal into subbands. In this work the exact onsets are

not required but rather a tradeoff between onset labeling precision and calculation

time had to be found. For this reason splitting up the signal into subbands is

not used since that multiplies the calculation time by the number of subbands

used. Most of the algorithms which are implemented in this work are taken from

[Dix06]—some have been altered slightly. The methods which have been analyzed

further are listed below:

• Spectral Flux:

If we take the absolute values of the STFT spectrogram, one can observe dis-
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Figure 4.3: Calculating onset function via signal envelope.

continuities along the time axis whenever a note onset occurs. The idea is to

extract this discontinuities by means of calculating the first order derivative

over time of the absolute values of the spectrogram. If we now take only the

positive values of the derivative of the spectrogram (half-wave rectified) and

sum over all frequency bins, we get a one-dimensional onset function. This

onset function is then defined as:

SF (n) =

N
2
−1∑

k=−N
2

H (|X(n, k)| − |X(n− 1, k)|) . (4.16)

Where H(x) = x+|x|
2

is the half-wave rectifier function. The procedure is

similar to using the derivative of the envelope but with some advantages:

Calculating the derivative in frequency domain is more robust in case of

multiple or close onsets in different frequency bins. Furthermore low-pass

filtering is not needed since the vibrant nature of the audio signal is elimi-

nated due to transformation to frequency domain. Figure 4.4 illustrates the
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single steps to obtain an onset function using the equation shown above.

[SWS07] uses a similar approach. The only difference is the conversion of

Figure 4.4: Using spectral fluctuation to calculate an onset function.

the spectrogram to a 40-bin mel-frequency spectrogram and using dB for

scaling the values (as described in [Ell07]). In this work one can choose by

parameter setting if onset function calculation should use a mel-frequency

scale or not. Conversion to dB is not implemented since empirical testing

did not show any improvement when using dB.

• Phase Deviation:

Contrary to the method presented before this detection algorithm solely uses

the phase information of the STFT spectrogram. In this case the second
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derivative is used. This is because the phase in the STFT of a stationary

sinusoid is more or less a linear function. Calculating the first derivative

produces therefore values proportional to the frequency of the sinusoid. The

second derivative then produces a similar image to the first derivative of the

absolute values which can be used again to calculate the onset function. To

do this the sum over the frequency bands is calculated. The onset function

can be written as:

PD(n) =
1

N

N
2
−1∑

k=−N
2

|ψ′′(n, k)| . (4.17)

Another very important point that has to be considered is the range of the

phase-values which reaches from −π to π. After every calculation step (ex-

cluding the sum) values which fell out of this range have to be mapped back

into it. Otherwise the resulting artifacts might corrupt the onset function

quality. The single images from signal via phase diagram to the onset func-

tion are shown in Figure 4.1.

• Complex Domain:

Since we already used the magnitudes and the phase to calculate an onset

function the question arises if we could just use the whole complex values to

get an onset function which combines both information of phase and value.

So what is done here is in fact just the first derivative of the complex values

with a corrective term for the phase. Onset function and phase correction

values are defined as:

CD(n) =

N
2
−1∑

k=−N
2

|X(n, k)−XT (n− 1, k)| (4.18)

where

XT (n, k) = |X(n, k)| · eψ(i,k)+ψ′(i,k). (4.19)

Since the phase of a stationary sine in the spectrum is already changing

constantly at a given rate, the expected value for the phase value has to be

calculated with φexpected(i, k) = φ(i− 1, k) + (φ(i− 1, k)− φ(i− 2, k)) where

φ′(i, k) = φ(i− 1)− φ(i− 2) describes the rate of change of the sine—which
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is proportional to the frequency of the sine. To obtain a real-valued onset

function we then sum over the absolute values. Figure 4.5 shows a diagram

with two complex values, the expected third value and a real third value

which is not part of the stationary signal. One can also observe how the

phase difference is used to calculate the next expected value

Figure 4.5: Complex values (X(a)..X(a − 2)) of a frequency bin, expected value

for X(a) and difference.

• Weighted Phase Deviation:

A Problem when using solely phase values to create an onset function is

that frequency bands which contain no significant signals have a random

phase. This random values now add much noise to the onset function if

they are equally treated. The idea here is now to multiply the phase values

(their second derivative in fact) with their corresponding absolute values. So

that the above mentioned random phase values of nonexistent frequency are

canceled out. We define the onset function as:

WPD(n) =

N
2
−1∑

k=−N
2

|X(n, k) · ψ′′(n, k)| . (4.20)

This is quite similar to the CD function where both phase and value are used

for onset function calculation but with a different kind of combination.
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• Rectified Complex Domain:

The onset function is defined as

RCD(n) =

N
2
−1∑

k=−N
2

RCD(n, k) (4.21)

where

RCD(n, k) =

|X(n, k)−XT (n− 1, k)| , if |X(n, k)| ≥ |X(n− 1, k)|

0, otherwise
.

(4.22)

This equation is an improved version of the CD procedure. Similar as in the

equation for the SF onset function the values are half-wave rectified. This

reduces the risk that hard offsets as in staccato played notes and percussive

sounds result in peaks in the onset function. To do a half-wave rectification

of the complex values, we only use the difference of complex values whenever

the difference of the absolute values is positive. Although this is not really

half-wave rectification, we call this procedure rectified complex domain onset

function because of the similarity to the process of half-wave rectification.

• Selected Phase Deviation:

Empirical experimentation showed that the WPD function does not really

show improvement compared to the results of the PD equation.

SPD(n) =

N
2
−1∑

k=−N
2

|ψ′′(n, k)| · SF (n). (4.23)

This equation presents another way to combine phase and value of the spec-

trogram. Here the SF onset function (which is calculated solely using ab-

solute values of the spectrogram) is used to weight all bins of the phase

spectrogram. Doing this, only onset candidates are considered and amplified

if the phase shows also a prominent change. On the other hand false onset

function peaks are dampened if the phase is continuous.

As always the source material on which the calculation is based has much influence

on the resulting onset function. In case of onset function calculation the source
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material is the STFT spectrogram. As already described in Section 4.2 there

are two parameters which have strong influence on the resulting spectrogram.

This parameters are the window size for which the fourier-transformation is done,

and the overlap which defines how many samples are used again by the next

window. Instead of overlap many authors use the term ‘hopsize’ which is defined

as hs = ws− ol, where hs is the hopsize, ws is the used windowsize and ol is the

overlap. Using hopsize instead of overlap has the advantage that when keeping the

hopsize constant while changing the window size, the sample rate of the resulting

signal stays unchanged. To get a resulting sample rate of more then 100Hz for

our onset function, and keeping our audio sample rate of 8kHz we have only a

very small range to vary the hopsize: hs = [1..8000/100] = [1..80]. Choosing a

hopsize of only a few samples results in a very spiky onset signal and is therefor not

adequate. [SWS07] amongst others uses a hopsize of 32 samples which proved to

work well in this work too. Empirical experiments using 64 samples (the next and

last power of two number in that range) as hopsize showed no significant change.

Trying to get a resulting sample rate of exactly 100Hz would lead to using a hopsize

which is not an integer divisor of the window sizes (which ought to be a nth power

of 2 to be able to use the FFT algorithm). This would further lead to complex

calculations for chunk overlap when splitting the source audio signal into smaller

parts (see Section 6). Furthermore the mapping of the single samples of the onset

function back to the original audio signal, which is already quite complex (also see

Section 6) because of the nonlinear influence of the window size on the relative

position of onset peaks in the onset function, would be further complicated.

The window size has a direct influence on the frequency resolution of the spec-

trogram. Choosing a very small window size brings the resulting onset functions

very close to the envelope signal we discussed before. The separation of the sin-

gle frequency bands is a very important step towards robustness of the resulting

onset function. The larger the window size the better this separation comes out.

However, the length of the used window has a second effect on the resulting onset

function. The longer the window is, the more it acts as some kind of smoothing

operator. The smoothing can be desirable to some point, but at a certain window

length onset peaks start to merged. [Dix06] uses a window size of 2048 at a signal
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sample rate of 44.1 kHz which results in a window length of 46ms. Keeping the

same window length at a sample rate of 8kHz we get a window size of about 372

samples which would suggest to use 256 or 512 samples as window size. Most of the

experiments were conducted with window sizes of 256, 512, 1024 and 2048 samples

since a window size of 256 samples is still quite spiky. Figure 4.6 illustrates the

influence of window size on the onset function.

Figure 4.6: Two different window sizes for SF, CD and PD onset function.

A rather unwanted effect of the window used for spectrogram calculation is the

fact that the longer the window is, the farther the calculation process at a certain

sample n of the audio signal ‘looks’ into the future. Namely, the sample nl =

n+ws− 1 has already an impact to the onset function when we are calculating at

the point n (ws be the window size and nl the last sample of the window used).
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The impact of samples far away from the current point of calculation grows as

the window size grows. The question is now, how to obtain the exact point in

time respectively the sample of the original audio signal to which a certain point

(e.g. a peak) of the onset function corresponds. The most obvious solution to

this problem is probably following idea: If a peak occurs in the spectrogram, the

resulting onset function will have a maximum exactly when the window spans over

the whole onset and the onset is exactly in the center of the window. This would

result in the mapping function:

sa = (sos − 1) ∗ hs+
ws

2
+ 1 (4.24)

t(sos) =
sa
fs

=
(sos − 1) ∗ hs+ ws

2
+ 1

fs
, (4.25)

where t(sos) is the time and sa the sample of the audio signal to which the point

sos (number of sample) of the onset function will be mapped, hs is the hopsize ws

is the window size and fs the sample frequency of the audio signal. Unfortunately

empirical testing on this problem has shown that the fraction of the window length

which has to be added is not constant and the relation to the window size not even

linear. The phenomenon which can be observed is that the larger the window size

is, the more of the onset in the spectrogram has to be in the window to produce

a peak in the resulting onset function. Furthermore the delay depends also on

the type of onset function calculation used. For a small range of window sizes

(128-512 samples) this can be more or less successfully modeled with a linear

correction factor. To get the precise delay, which is needed for accurate evaluation

over different window sizes, we have to formulate a nonlinear function based on

empirical data obtained from experiments with different window sizes with every

onset function. Figure 4.7 shows an excerpt of a table with different onset-

delays resulting from different window sizes. The expected onsets where taken

from corresponding midi files and given in seconds. To get the expected sample

point we used equation 4.25 avoiding any correction and transforming it to get:

sos expected =
tos real · fs − 1

hs
+ 1. (4.26)

The estimated peaks were selected by the in Section 4.3.2 described peak selection

algorithm. The differences in column five are calculated with d = sos expected −
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Figure 4.7: Samples of onsets (SF function) using different window sizes resulting

in different delays.

sos real . The percentage of this difference in relation to the window size is then

given as pws = d·hs
ws

. As expected we can also observe that the hopsize has no

influence on the delay. Figure 4.8 shows the nonlinear relation between the

percentage of window size added as delay and the window size itself. In booth

images one can observe that this relation seems to be of logarithmic nature. The

last row of the table in Figure 4.7 shows the results if we calculate

k =
ws

log2(pws)
. (4.27)

k stays almost constant for most onsets and window sizes. If we take in account the

little variation of calculated peaks, the standard deviation of k seems acceptable.
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Figure 4.8: Nonlinear relation between window sizes and delay as percents of win-

dow size.

If we now create an equation which expresses this logarithmic relation, we get

c(ws) = log2(ws) ∗ ws ∗ k (4.28)

as corrective factor. Where k is the mean of the in Figure 4.7 calculated values

for k. To get this correction value a table with 8 different onsets for every onset

functions was created. The resulting equation for t(sos) is then given by

t(sos) =
(sos − 1) ∗ hs+ c(ws) + 1

fs
. (4.29)

With this approximation formula for c(ws), the results for mapping from onset

function samples back to time values is significantly improved for a wide range

of window sizes. This is important especially for evaluating the quality of onset

detection in Section 4.3.3.

The function which uses the results of onset function calculation should be provided

with uniform data no matter which onset function calculation algorithm was used.

To normalize the onset function we use mean and standard deviation of the onset

function to eliminate DC offset and scale the y-values to a certain level. This

procedure can be mathematically written as

fn(x) =
f(x)− µf

σf
(4.30)
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where

µf =
1

N

N∑
x=1

f(x) (4.31)

and

σ2
f =

1

N

N∑
x=1

(f(x)− µf )2. (4.32)

4.3.2 Onset Peak Selection

After calculating the onset function we have to find the prominent peaks in the

onset function. These peaks represent the onsets. Bello et. al. ([BDDS04],

[BDA+05]) solely uses an adaptive thresholding to separate significant peaks from

noise. The peaks are then identified using every local maximum exceeding the

threshold. This algorithm only works satisfyingly if the onset function is very

robust containing very little noise and onsets cause distinct peaks. [Dix06] uses

a set of constraints which have to be satisfied for detecting a peak. Since this

method is more robust when dealing with noisy onset functions it seemed the

better choice when working with more simple onset function generation algorithms.

The constraints used and their parameters have a big impact on the quality of

the peak-picking algorithm. A tradeoff has to be made between false positives

and false negatives returned. If we take for example the threshold, less peaks

are return when increasing the threshold. Assuming that the false positives are

less prominent peaks, the threshold is directly proportional to the ratio of false

positives to false negatives. In this work it is more important to receive significant

peaks from the peak picking algorithm rather then receiving all onsets. Required

are only the onsets which define the tempo.

The peak selection algorithm implemented in this work follows the implementation

in [Dix06]. A peak in the onset function has to meet several conditions to be
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recognized. This conditions are:

f(n) ≥ f(k) for all k such that n− w ≤ k ≤ n+ w (4.33)

f(n) ≥
∑n+w

k=n−m·w f(k)

m · w + w + 1
+ δ (4.34)

f(n) ≥ gα(n− 1) (4.35)

where 2·w+1 is the size of the window in which the peak has to be a local maximum.

m · w + w + 1 is the size of the window for which the mean is calculated. A peak

has to be higher than this mean plus the threshold δ. gα is a dynamic threshold

function which follows the signal slowly, given by:

gα(n) = max (f(n), α · gα(n− 1) + (1− α) · f(n)) (4.36)

The parameter α regulates the pace at which the function follows the signal and

has to be in the range 0 < α < 1. Figure 4.9 illustrates the effects of every

constraint on the peak picking algorithm. As shown in Figure 4.9, the function

Figure 4.9: Onset function, peak picking criteria and the resulting peaks selected.
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gα has been enhanced in this work. It does not only takes in account peaks before

but also peaks after the current sample. The idea was to enhance peak detection

for noisy and spiky onset function signals where some smaller peaks could appear

before the real onset peak. The new formula for gα is then given by:

gα1,α2(n) = max (gbα1(n), gfα2(n)) (4.37)

where

gbα1(n) = max (f(n), α1 · gbα1(n− 1) + (1− α1)f(n)) (4.38)

and

gfα2(n) = max (f(n), α2 · gbα2(n+ 1) + (1− α2)f(n)) . (4.39)

The function now has two parameters α1 and α2 which can be adjusted separately.

α1 regulates the ‘memory’ and α2 the ‘anticipation’ of the dynamic threshold. The

parameters for peak picking are summarized in the following list:

1. w: The half-window size for local maximum calculation. Overall window

size is given by: w + 1 + w.

2. m: Factor for window which is used for floating threshold calculation. Overall

window size for floating threshold is given by: m · w + 1 + w.

3. δ: The threshold value for floating thresholding. Will be added to the mean

of the floating threshold window.

4. α1: ‘Memory’ of dynamic threshold function.

5. α2: ‘Anticipation’ of dynamic threshold function.

4.3.3 Evaluation

To evaluate the onset functions a test set containing about 2,5 hours of piano

music was used. Although piano music is not the only target application for the

framework developed in this work, its a good source for onset detection since the

single events contain a certain amount of percussive sounds and therefor the onsets



4 Feature Extraction 37

can be localized very exactly. The true onset values were extracted from midi files

which have been recorded simultaneous to the audio files on a piano with sensors

to capture information about the played notes and pedal states. A small amount

of the test files are synthesized midi files of music played on a midi keyboard. The

synthesizer used was ‘The Grand 2’1 by Steinberg. Table 4.1 lists all files used for

evaluation.

Filename Recorded Duration

Batik1990 Mozart kv279.wav X 00:16:28
Batik1990 Mozart kv280.wav X 00:15:06
Batik1990 Mozart kv281.wav X 00:14:38
Batik1990 Mozart kv282.wav X 00:15:00
Batik1990 Mozart kv283.wav X 00:15:00
Mozart kv284.wav # 00:26:16
Batik1990 Mozart kv330.wav X 00:18:48
Batik1990 Mozart kv332.wav X 00:18:04
beethoven moonlight1.wav # 00:06:06
beethoven moonlight2.wav # 00:02:04

Table 4.1: Files used for test set

To evaluate the quality of onset detection, the onsets of the test set are calculated

using one of the above presented onset function algorithms. Then the peaks are

selected using our peak selection algorithm. The onsets extracted in this manner

are then compared to the true onsets provided by the corresponding midi files.

Multiple onsets in the midi files (chords) are merged if they are closer then 16ms

and if there were no separate onsets detected. This tolerance time was chosen

because 10ms is the threshold of distinguishable onsets (see [Moo97]) and 16ms

is the next power of two number which results in a tolerance field of 4 samples

at a wave file sample frequency of 8kHz and an STFT spectrogram hopsize of 32

samples. The merging was implemented because multiple onsets do not have to

be (and can not by these algorithms!) detected in this application since they do

not change the rhythmical information. On the other hand when onsets which are

closer than 16ms are detected, it should not be penalized. The time of 16ms is

also used as tolerance for detecting onset matches to a real onset from the midi

1http://www.steinberg.net/de/products/legacyproducts/legacyproducts thegrand2.html
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file. [Dix06] uses a tolerance of 50ms which seems quite large and explains the

good results while not using correction for onset delay caused by STFT windows.

Since there are many parameters which influence the quality and characteristic

of onset detection the question arises how to report and compare the results and

quality of the introduced onset detection algorithms. The most common way is

using a receiver operating characteristic (ROC) curve. To be able to calculate

and construct this curve we need to define some statistical values before. First we

define the set of correct estimated onsets (points in time) which correspond to real

onsets (true positives or correct classified onsets) as:

c = {x ∈ test,∃treal : |treal − test| ≤ Tt} . (4.40)

where test is the set of estimated onset times, treal the set of real onset times and

Tt the tolerance time. The number of correct classified onsets is then calculated

as

Nc = |c| . (4.41)

The number of estimated onsets which are no real onsets (false positives) and the

number of not detected real onsets (false negatives) can be calculated with

Nf+ = |test| −Nc (4.42)

and

Nf− = |treal| −Nc. (4.43)

With this statistical values of our detected onsets we can now calculate some

error statistics following [Wik09d] which was also used in [Dix06]. We use the

term ‘precision’ as a measure for exactness or fidelity which tells how many of the

estimated onsets are really onsets. High precision does not allow conclusion on

how many of the real onsets have been found. Precision is defined as:

P =
Nc

|test|
(4.44)

On the other hand ‘recall’ defines a measure which allows conclusion on how many

of the real onsets have been found by the onset calculation algorithm. Recall is

defined as:

R =
Nc

|treal|
(4.45)
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Often a combination of precision and recall is used to find the best parameter

settings. One measure often used is the so-called ‘f-measure ‘ which can be written

as:

F =
2 · P ·R
P +R

(4.46)

However, since the wanted onsets/onset function depends on the features which

should be extracted we are not always interested in the best combination of pre-

cision an recall. For inter onset interval calculation (Section 4.5) this may be the

case, but for autocorrelation calculation (Section 4.4) a high precision is more im-

portant than recall. Using precision and recall we can now draw the mentioned

ROC curve like shown in Figure 4.10.

The resulting values for precision, recall and f-measure for the different onset

functions are displayed in Table 4.2. For this table only the values with highest f-

measure were chosen. ROC curves for different parameter settings for peak picking

are shown in Figure 4.10 and Figure 4.11. Here the two main parameters (δ:

threshold, α1/α2: dynamic threshold) of peak picking were varied.

OS Function Precision Recall F-Measure E (ms)

SF 92.82 82.56 87.39 4.96
PD 19.14 74.15 30.43 5.97
WPD 26.73 60.36 37.05 6.47
CD 35.66 56.35 43.68 8.78
RCD 51.85 71.22 60.01 7.30
SPD 71.41 83.13 76.83 5.35

Table 4.2: Results for onset detection.

OS Function Precision Recall F-Measure E (ms)

SF 95.60 94.12 94.86 6.01
PD 54.45 36.25 43.52 6.21
WPD 47.23 75.52 58.12 14.41
CD 61.17 70.20 65.38 13.84
RCD 69.28 83.95 75.91 10.05
SPD 74.36 92.13 82.30 6.90

Table 4.3: Results for onset detection, using 50ms tolerance.
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Figure 4.10: ROC curve using different threshold levels (δ) and no dynamic thresh-

old for peak picking.

The results for SF function are comparable to them presented in [Dix06] the other

functions perform not as well. This may be due to the fact that [Dix06] uses

a larger tolerance field for correct onset matching (50ms vs. 16ms) and audio

material with higher resolution (44.1kHz vs 8kHz) which result in more available

samples for the same window length. Table 4.3, Figure 4.12 and Figure 4.13 show

results using 50ms tolerance as in [Dix06]. The results presented in this work

are more precise by means of the absolute mean error in ms shown in Table 4.2.

This may be caused by the correction term used for onset delay caused by STFT

windowing. This higher precision also allows us to use a larger window size for

STFT (128ms@8kHz=1024 Samples vs. 46ms@44.1kHz=2048) which also allows

us to use a lower sample frequency for source audio files without needing zero

padding for STFT.

In this work the onsets are used as basis for features which allow a very exact guess

on the tempo. [JR01] also mentions works which use wavelet transformation to ex-
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Figure 4.11: ROC curve using different dynamic threshold levels (α1/α2) at a fixed

threshold for peak picking.

tract an onset function. [NTI04] uses convolutional-kernel operations on the STFT

spectrogram to extract onset information. The methods used in this paper are base

on image processing algorithms where the use of convolutional-kernels is a common

way to localize shapes. Since convolution is always a very time-consuming opera-

tion this method was not considered further to be implemented in this work. Other

genuine and interesting ways to obtain the note onsets are introduced in [DG02],

[KP04] and [YD07], where amongst others Support-Vector-Machines (SVM’s) are

used to detect onsets. Since the complexity of these algorithms would go beyond

the scope of this work, they are just mentioned here.
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Figure 4.12: ROC curve using 50ms tolerance with dynamic threshold.

4.3.4 Implementation

Onset Function Calculation Onset detection is split up into the two main stages,

onset function calculation and onset peak picking, like explained in Section 4.3.

Onset function calculation is done in the function onset.m. Input parameters for

onset.m are:

• source: Source signal. Can be a vector with signal or a filename of a wave

file.

• method: Method/algorithm to use for onset function calculation. Imple-

mented methods are: spectral flux (SF), phase deviation (PD), complex

domain (CD), rectified complex domain (RCD), weighted phase deviation

(WPD) and selected phase deviation (SPD). See Section 4.3 for details.

• bounds: Vector with two values which represent bounds for source signal.

Only values between the provided indices will be used. If bounds is empty,
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Figure 4.13: ROC curve using 50ms tolerance without dynamic threshold.

all values of source signal will be used.

• usemel: If true, the spectrogram frequency resolution will be transfered into

melscale before onset function calculation.

• usephicorr: If true, the phase values of spectrogram will be corrected by

means of removing phase growth for stationary signals. See Section 4.2 for

details.

• lpfrequ: Lowpass cut-off-frequency for spectrogram. If not equal zero,

all signal parts below lpfrequ will be canceled out before onset function

calculation.

• p: Parameter structure with STFT parameters.

The function returns a vector which represents the onset function calculated. A

second parameter returned is the calculated STFT spectrogram. Since it is used
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for some other feature extraction it is returned here so it has not to be calculated

again later. The onset detection function m-file onset.m is designed to be modular

so it is quite easy to add new onset detection functions. onset.m makes use

of the onsetDelayCorr.m to remove onset delay caused by STFT windowing.

If new onset function are added, onsetDelayCorr.m should also be modified to

support the new onset function. To get the empirical estimated delay factor the

osfncdelay.wav and osfncdelay.mid files should be used.

Peak Picking Peak picking is implemented in the getpeaks.m m-file. Input

parameters are:

• signal: The onset function signal in which the peaks are to be located.

• win: The window size divided by two (full window size = 2 ∗ win+ 1).

• wf: A factor for the first part of the window for thresholding (full window

size = win ∗ wf + 1 + win).

• thres: The threshold value for peak picking.

• memory: A scalar or vector with two elements which provide the coefficients

for the dynamic threshold. First value of the vector provides ‘memory’ and

second provides ‘anticipation’.

• visu: If true, a figure will be plotted which visualizes the onset function

with selected peaks and criteria.

The function returns two values. The first vector represents the amplitudes of the

selected peaks (which can be useful for later onset analysis). The second vector

holds the indices from the onset function where prominent peaks where found.

4.4 Autocorrelation

The autocorrelation function (ACF) is a way to find repetitive patterns in signals.

Since the rhythmical structure of music is usually some kind of repetitive pattern,
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autocorrelation can be used to find rhythmical structures and their periodicity.

In this work the signals generated by our onset detection algorithms is used as

basis. We look for repetitive patterns in this onset-functions using autocorrelation

algorithms. The autocorrelation compares the signal s to itself shifted by a certain

lag τ and is defined as:

r(τ) =
1

N

N∑
x=1

s(x) · s(x+ τ) (4.47)

Where r(τ) is the autocorrelation value and N is the number of samples which

should be compared. In signal processing one usually has to deal with data of

limited size. Since we need to shift the signal to calculate the autocorrelation the

question is how to deal here with the limited data amount. If S is the number

of samples of the signal and the lag τ is given, we could now choose N so that

N = S − 2 · τ . This would provide us with the maximal number of samples to use

for correlation calculation. An alternative would be to choose N = S and fill the

missing samples (τ samples) with zeros (zero padding).

If we take a range [0..τmax] for lag’s we get the ACF which displays the autocor-

relation values in dependence of lag. Figure 4.14 (b) shows a typical ACF of one

of the piano samples from onset detection test set. When calculating the ACF we

have three possibilities for choosing N as mentioned above. If we use zero padding,

the autocorrelation values will get smaller as the lag grows since more and more

zeros will be involved. If we choose N = S − 2 · τ , the number of samples which

are compared (N) gets smaller as the current lag (l) grows. For ACF calculation

we have now a third possibility which is to choose N = S − 2 · τmax. This re-

sults in a constant N while not involving zero padding. The disadvantage of this

method is the relative small size for N . If we do not process data in real time, the

third method is often the better one since we can omit the problem of small N by

choosing S big enough to have a sufficient big N (method used in Figure 4.14).

Although using it for a different application (fundamental frequency estimation)

[CK02] gives an overview on the properties of the ACF and compares it to an

adapted version of a very kin function: the average magnitude distance function

(AMDF). The AMDF calculates the difference between shifted signal and source
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Figure 4.14: ACF (b), AMDF (c) and normalized AMDF (d) for lags [0..1000] of

SF onset function (a) for excerpt of moonlight1.wav.

signal rather then calculation a correlation value. It is defined as:

d(τ) =
N∑
x=1

(s(x)− s(x+ τ))2 . (4.48)

The main difference between the AMDF and ACF function is that similar signals

produce a high ACF value but a AMDF value close to zero. A big advantage

of the AMDF is that a value of zero means that the two signals are equal. The

ACF function output always depends on the amplitude of the source signal. To

normalize the AMDF values one could simply divide the values by the maximum

of all values:

d(τ) =

∑N
x=1 (s(x)− s(x+ τ))2

max(s)
. (4.49)
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A more sophisticated method of normalizing is presented in [CK02], where every

value is divided through the average over shorter-lag values.

d(τ) =

1 if τ = 0,

d(τ)/
[

1
τ

∑τ
i=1 d(i)

]
otherwise

. (4.50)

The resulting function does not have a zero value at lag τ = 0 but one and slowly

drops to zero at the first period of the signal. Another advantage is that there are

no multiplications involved which makes it quicker to compute compared to the

ACF function.

Figure 4.15 shows booth AMDF and ACF vectors of 545 songs arranged in an

matrix. The single AMDF respectively ACF vectors are the columns of the matrix.

The songs are sorted along the x-axis by their notated tempo. The music samples

used in this diagram are taken from the ‘songs’ test set presented in Section 7.

Figure 4.15: AMDF and ACF vectors for set of songs, ordered by their notated

tempo.

In [SWS07], [DB06], [Pee06], [Uhl06], [MM04], [ADR04] and [DPW03]—which

are all works on tempo extraction or rhythmic similarity—the ACF function is
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used at some point. [Eck06] uses the ACF on STFT phase values creating an

AC phase matrix. In this work both ACF and AMDF for feature calculation are

implemented.

4.5 Inter-Onset-Intervals

If we take a look at an onset function output and its detected peaks (e.g. Fig-

ure 4.9), we can see the inter-onset-interval (IOI) as the interval between two

detected onsets (peaks). IOIs are related to note lengths but are not necessarily

the length of the played note which is indicated by the onset. The calculation of

IOI can be formalized as:

IOI(i) =
sos(i)− sos(i+ 1)

fs
(4.51)

where IOI(i) represents the inter onset interval of onset function peak i, posi the

sample number of the onset function peak and fs the sample frequency of the onset

function. The division by fs is only necessary if we want the IOI in seconds. To

use the IOIs of an audio file as feature for tempo classification one could calculate

different statistical values like mean, standard deviation and medians. The most

common representation (as in [DPW03]) is to use a so-called IOI-histogram. In an

IOI-histogram we measure the number of samples an IOI consists and put all IOIs

of same length in one bin to create a histogram. Figure 4.16 shows an example for

an IOI-histogram. The single bins can be calculated by means of

HIOI(i) = |{∀j : i = IOI(j)}| (4.52)

In [DPW03] and [MM04] booth the consecutive as well as non-consecutive onsets

(all possible combinations of detected onset peaks) are used for IOI and IOI-

histrogram calculation. In this work one can choose if non-consecutive onsets

should be considered for IOI calculation. Non-consecutive IOI calculation could

be written as:

IOI = {∀i, j : i < j, sos(i)− sos(j)} (4.53)
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Figure 4.16: IOI-histogramm for audio excerpt (12s).

Where IOI in this equation represents the set of all IOI. It would be more com-

plicated to express this relation as function so the way of a set has been chosen.

Furthermore it is possible to use the height of the onset peaks to weight the

amount an IOI adds to the histogramm. The idea is that prominent onsets should

have more impact in the IOI-histogram. This can be realized by calculating the

histogram in this way:

HIOI(i) =
N∑
j=1

pos(j) ifIOI(j) = i

0 otherwise
(4.54)

In Figure 4.17 the results for four different possibilities for IOI-histogram calcu-

lation are shown. It shows that weighting does not make much difference, while

adding non-consecutive onsets produces a very similar image as calculation of ACF

or AMDF functions. Maximum IOI lengths which were chosen in the diagrams

(250 and 1000 samples, respectively) result of observations how long IOIs in an

average file (250 samples) are, or for compatibility to AMDF and ACF calculation

(1000 samples) when it comes to non-consecutive IOI which can theoretically be

as long as the audio excerpt.
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Figure 4.17: IOI-histograms of various files sorted by their notated tempo in BPM.

(b) and (d) computed adding non-consecutive IOIs, (c) and (d) using

IOI weighting.

4.6 Fluctuation Patterns

Fluctuation patterns (FPs) have been introduced by [Pam04] based on the idea

of the periodicity histograms presented in [Sch98]. Its an STFT spectrum based

feature which describes the amplitude modulation of the loudness of 20 frequency

bands. [SWS07] implements a compressed version where the frequency bands are

reduced to just one by summing across the frequency bands. The implementation

in this work follows [SWS07] and takes use of the in [Pam04] presented Matlab®

toolbox functions. Figure 4.18 shows booth the original fluctuation pattern and

the compressed version. The first step in calculation is a so-called sonogram (an

STFT spectrogram with a bark-frequency scale and a sone amplitude scale) then

the modulation frequencies of the single bands are calculated through a fourier

transform again. The details, formulas and implementation are found in [Pam01]
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Figure 4.18: FP for song excerpt and compressed FP after summing across fre-

quency bands.

and [Pam04]. Figure 4.19 shows the compressed FP feature of our 545 songs of

the test set.

Figure 4.19: Compressed FPs for 545 songs ordered by their tempo.
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4.7 Onset Density

The idea behind this feature is that music with more events in a certain amount of

time generates the impression of fast music. To calculate an onset density feature

we simply count the detected onsets and divide the amount by the number of

samples.

Figure 4.20: Onset density (b) and weighted OD output for 545 songs ordered by

tempo. A very weak tendency of growing OD and WOD for higher

tempo can be observed.

4.8 Activation Time

Activation time is a pseudonym for transient in the definition of Figure 4.2. Music

with long lasting notes suggest the impression of slow music. We try to extract

some kind of feature which reflects the activation times of the single notes. One
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Idea to calculate such activation time was to use onset/offset combinations pre-

suming the existence of an offset detection function. however, this is even harder to

implement than an onset detection function. Another idea was to use the so-called

spectral fingerprint (see [?] and Figure 4.21 ) of audio signals to extract note tran-

sient lengths. The spectral fingerprint is just a smoothed Mel spectrogram where

the values which exceed a certain threshold are set to one, and values below this

threshold are set to zero. This produced a fingerprint like image—thus the name.

We use this spectral fingerprint to get note on- and offset pairs and compute the

average length of active notes. The lower 6 bands hold most of the energy and are

almost always one, therefore they are for no use for this application and are ignored

when calculating the activation time (see Figure 4.21). Then the first differential

of every band is used to find matching onset/offset pairs and the average duration

is calculated using this information.

Figure 4.21: Spectral Fingerprint of an audio excerpt. The red line separates the

first six bands, which are ignored for activation time calculation.

4.9 Rhythm Pattern

The Rhythm Pattern feature is motivated by the idea presented in [FU01]—the

so called Beat Spectrum. [FU01] uses timbre features such as mel-frequency-
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cepstrum-coefficients (MFCCs) and a distance function between these feature vec-

tors to create a self-similarity matrix as shown in figure 4.22. In this work solely

Figure 4.22: Self similarity matrix of MFCC feature vectors for a 30 second excerpt

of an audio file. The distance function used for this matrix was a

normal euclidean distance.

the MFCCs of the potential onsets are calculated and compared. The distances

between the single onset points (their MFCCs) are then used to cluster the onsets

into ten groups. The expected result would be that the onsets of distinct instru-

ments/instrument combination are grouped together. What we receive is a pattern

representing the distinct onsets for every instrument. Such a Rhythm Pattern is

visualized in figure 4.23.

To use this ‘snapshot’ of the rhythmic structure of the music excerpt as a fea-

ture, the relevant information is extracted by using solely the mean and standard

deviation of the inter onset intervals per ‘channel’. The calculation of the inter

onset values is performed similar as presented in Section 4.5. Then the mean

and standard deviation for every channel is calculated and stored in two feature

vectors.
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Figure 4.23: Rhythm Pattern for audio sample.

4.10 Other Tempo Algorithms

One could use classic tempo calculation algorithms to calculate potential tempo

candidates which can be used as tempo related features. A motivation of us-

ing calculated tempo as a feature is following theory: Files on which the tempo

calculation fails might have certain musical features which cause the problem. If

different files have the same musical features, it is likely that the tempo calculation

algorithm makes the same mistake on both files - thus producing similar results.

Where the results of such files might be wrong in terms of BPM tempo values, the

results can be useful as features. One disadvantage of using the complete algo-

rithms is that most of the algorithms need much calculation time. For the use as

feature the tempo in BPM is not better than any value proportional to the tempo.

For that reason we can simplify most of the tempo calculation algorithms to a very

rudimentary form and use it as a tempo related feature.

Most of the more simple tempo calculation algorithms (e.g.: [Uhl06], [Pee06],

[MM04], [DB06], ... ) use the ACF of the onset detection function to calculate

the tempo of the piece of music. What we have done in this work is to use this

simple method (ACF respectively AMDF of onset detection function) and use the

position of the first peak (first valley respectively) as a value proportional to the

tempo which would be calculated by such algorithms. The result of this very

simple and straight forward method holds all the information we need, so we can
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use it as a tempo related feature.

4.11 Feature Post Processing

The larger feature vectors like ACF and AMDF, as well as the IOI-histogram

with non-consecutive onsets tend to be noisy and spiky which leads to bad results

with machine learning algorithms like KNN. Therefore, this larger feature vectors

are smoothed using a normal moving average filter. Furthermore, the vectors are

normalized by means of subtracting the mean and dividing through the standard

deviation.

4.12 Implementation

As described above, onset detection and frequency transform are performed in

several other files. The implemented feature calculation process can be found in

the r extract features.m file. Every feature mentioned above has its own block

in this file where all necessary calculation for feature extraction are done. For this

calculations Matlab® intern functions and function from ma-toolbox ([Pam04])

are heavily used. The calculation procedures follow the above described theo-

retical formulas. For more detailed information see the inline commentary in

r extract features.m.

The feature caching is done in the files isCached.m and readCached.m which

are booth used in r analyse files.m. r analyse files.m performs the block

calculation of feature for a given filelist.
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In some works on tempo induction the tempo is calculated from extracted features

in some way (see [APT+07], [GD06], [MM04], [DB06],...). Most of the other works

use an onset (detection) function, accent function or fluctuation pattern as basis

for their calculations (see [ADR06], [DB06]).

Other works using tempo related feature are e.g. [Tza02] where such features are

used for genre classification or [PK07] where tempo relevant features are used for

automated drum transcription.

[SWS07] uses a different approach where the tempo is not calculated but rather

estimated through comparison of features and choosing the tempo of the most

similar instance. Using this procedure we avoid several problems that occur when

trying to calculate prominent peaks of ACF or IOI-histograms. Typically there are

multiple prominent peaks which are integer multiples of the real tempo—which is

one of the main problems of tempo estimation.

In the next sections machine learning algorithms which have been considered suit-

able for this work are introduced.

5.1 Nearest Neighbors

The nearest neighbor (NN) classifier is one of the simplest machine learning al-

gorithms. In nearest neighbor classification, distances between a feature vector

which’s class is unknown and all the training vectors is calculated. Distance func-

tions can be e.g. euclidean distance, cityblock distance or correlation. Then the

57
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class of the closest vector is returned as the class for the new vector. Since the

decision for the classification depends directly on the training data, training solely

consists of optional preprocessing of the feature vectors. The following list provides

the formulas and a brief description of some distance functions:

• Euclidean distance: The euclidean distance is the distance between two

points a, b in a n dimensional euclidean space with coordinates ai..an and

bi..bn and is defined as:

deuclidean(a, b) =

√√√√ n∑
i=1

(bi − ai)2 (5.1)

The single feature vectors are therefor interpreted as coordinates of points

in an n-dimensional euclidean space.

• Cityblock distance: Cityblock distance (also taxicab geometry or Man-

hattan distance) is defined as the sum of the (absolute) differences of their

coordinates. It is somewhat related to the idea of the AMDF. The cityblock

distance of two points a, b in an n dimensional space with coordinates a1..an

and b1..bn can be calculated:

dcityblock(a, b) =
n∑
i=1

|bi − ai| (5.2)

• Correlation: Here, the correlation of the two vectors is used as a measure

of distance. The use of correlation implies the interpretation of the feature

vectors as signals—which is in this case totally legitimately. If a and b are

vectors of length n with the discrete values a1..an and b1..bn, the correlation

is defined as:

dcorrelation(a, b) =

∑n
i=1 aibi√∑n

i=1(ai)
2
∑n

i=1(bi)
2

(5.3)

Correlation is in fact a measure of how similar two compared signals are.

An enhancement of the NN classifier is the k-nearest neighbor (KNN) classifier.

Here the first k nearest neighbors are used to calculate the class of the instance

which should be classified. There are several possibilities to combine these k classes

of the nearest neighbors:
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Consensus: All neighbors must have the same class, which is also assigned to the

classified instance. If there is no consensus, there is no decision and no class

is assigned. This method is suitable for decisions where only very secure

decisions can be accepted (e.g. in medicine). For this work this approach

is not appropriate since we have many classes (tempi) with possibly few

instances in every class.

Majority: The class most often occurred among the neighbors is assigned to the

classified instance. There are basically two ways to treat situations where

there are several classes with same occurrences:

Nearest neighbor: The class with the nearest neighbor among all candi-

dates is chosen.

Random: The class is randomly chosen form the possible candidates.

Mean: The mean of the classes of all neighbors (tempi) is calculated and assigned

to the classified instance. This alternative only makes sense in combination

with numerical classes like in this work the tempo itself.

Means of clusters with majority: The first step is to cluster all neighbors to

groups with similar tempo. Then the mean of the cluster with most instances

is calculated and assigned to the classified instance.

Figure 5.1 illustrates the influence on the number of used neighbors (k) on the

classification results. The consensus rule applied in Figure 5.1 would lead to a

zone (width depends on how much neighbors would be used) between the two

classes where new instances would not be assigned to any class.

In this work KNN classifiers with different values for k have been used. Due to

the large sizes of ACF/AMDF and IOI-histogram feature vectors, the distance

functions of choice were correlation and difference rather then the usually used

euclidean distance. The problem is that, when using euclidean distance, very

similar vectors are quite ‘far’ away because of the high dimensionality of our feature

vectors (≈1000).
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Figure 5.1: Feature space with training instances assign to two classes (stars and

circles) and an instance which should be classified (hexagon). Different

ks result in different classes assigned to the new instance.

5.1.1 Implementation

For the first experiments WEKA1 (see [WF05]) was used. For the implementation

in Matlab® the KNN implementation of the bioinformatics toolbox was used.

5.2 Support Vector Machine

Support vector machines (SVMs) are a class of machine learning algorithms which

are famous for their versatileness. They are used in different areas of engineering

as well as in medicine.

SVMs interpret the feature vectors as coordinates of a point in an n dimensional

space. The goal is to find an n − 1 dimensional hyperplane in that space that

splits the training data according to their classes. In fact not just any hyperplane

is wanted but the hyperplane that provides the largest distance to the closest

instances of each class. This plane is automatically the one which provides the

1http://www.cs.waikato.ac.nz/ml/weka/
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minimal generalization error. Because of this, this concept is also known as max-

imum margin classifier. We can formalize this decision process if we define our

input feature vector x = (x1, ...xn) and a decision function f(x). We assign x to

one class if f(x) ≥ 0 and to the other if not. We could now define

f(x) = 〈w · x〉+ b =
n∑
i=1

wixi + b, (5.4)

where w is the normal vector of the separating hyperplane and b is the bias—the

normal distance to the coordinate origin—of the hyperplane. The hyperplane itself

is therefore defined as:

〈w · x〉+ b = 0. (5.5)

Figure 5.2 shows a two dimensional feature space with samples separated by an

one dimensional hyperplane (a straight line). The parameters b and w of the plane

are also illustrated. The goal of training the SVM is therefore finding an optimal

Figure 5.2: A hyperplane separating two classes of a dataset with maximal margin.

w and b where the margin of the separating hyperplane is maximal.

The problem of the search for the optimal plane is solved using quadratic program-

ming (QP) solving algorithms like the sequential minimal optimization (SMO) al-

gorithm. This basic type of SVMs is called linear, hard-margin SVM. ‘Linear’
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because it works only on linearly separable data and ‘hard-margin’ because the

margin is chosen so that no data points are allowed on the wrong side of it.

One extension to linear-SVMs is to use so-called soft-margin constraints, which al-

low instances of the training data on the ‘wrong’ side of the separating hyperplane.

The optimization problem for choosing the hyperplane becomes now a trade-off

between margin size and penalty through wrong sided instances. Whereas with

hard-margin SVMs no solution could be found for training sets with continuous

transition, soft-margin SVMs are able to find the optimal separating hyperplane

within this data sets.

For handling non-linear separable training data another variant of the classic SVM

is used. The idea for non-linear SVM is to transform the training data into a higher

dimensional space where the single points are linearly separable. The transforma-

tion is usually avoided by using the so-called ‘kernel-trick’. The kernel-trick is a

way of using higher dimensional (up to infinite dimensional) spaces without know-

ing how many dimensions are used nor defining the transformation function. The

trick is to use a so-called non-linear kernel function which replaces all dot-products

for vector calculations in the normal space. A kernel function has to fulfill following

criteria:

Continuity: The kernel function has to be continuous which means that very small

changes in the input result in very small changes in the output. This can

formalized by the Cauchy definition of continuous functions. Let f be a

function R 7→ R and suppose c to be an element of fs domain. The function

f is continuous at the point c if for any ε

∀x,∃δ : ε > 0, δ > 0, |x− c| < ε⇒ |f(x)− f(c)| < δ. (5.6)

Which means: We should be able to find a δ for any ε however small so that,

for any x, if |x− c| < ε also |f(x)− f(c)| < δ. In the case of kernel function

that means that if we make small changes at one vector the resulting mapped

vector and therefore the scalar product should change only little.

Symmetry: The property of symmetry represents the commutativity of the scalar

product—which is replaced by the kernel—in the higher dimensional feature
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space. Meaning: If K is our kernel function and x, y are vectors of our feature

space, K needs to fulfill

K(x, y) = K(y, x) (5.7)

Positive semidefinite form: The kernel function K has to be a bilinear form

which fulfills

∀x : K(x, x) ≥ 0. (5.8)

To qualify as bilinear form, K has furthermore to satisfy following three

conditions:

K(u+ u′, v) = K(u, v) +K(u′, v) (5.9)

K(u, v + v′) = K(u, v) +K(u, v′) (5.10)

K(λu, v) = K(u, λv) = λK(u, v) (5.11)

With this properties one can define a variety of kernel functions. Some well known

kernel functions which fulfill the criteria defined above and have proven to work

well, are listed below:

Polynomial (homogeneous):

K(u, v) = (g 〈u · v〉)d (5.12)

Where d ∈ R/0 is the degree of the polynomial and g ∈ R is a factor for the

scalar product of the two vectors.

Polynomial (inhomogeneous):

K(u, v) = (g 〈u · v〉+ c)d (5.13)

Inhomogeneous variant of the polynomial, c ∈ R.

Radial Basis Function:

K(u, v) = exp
(
−g · |·v + u|2

)
(5.14)
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Gaussian Radial Basis Function:

K(u, v) = exp

(
−|·v + u|2

2σ2

)
(5.15)

Sigmoid:

K(u, v) = tanh (g 〈u · v〉+ c) (5.16)

Every kernel function has different properties regarding the mapping of the feature

vectors into the higher dimensional space. Therefore, the choice of the kernel

function depends on the distribution of the instances of the single classes.

If the machine learning algorithm should be trained on more then just one (respec-

tively two) classes, the normal SVM can be extended to do so. Multi class SVMs

are usually built using multiple SVMs. There are two very common methods to

so. We can either (a) use one SVM to separate one class from all others or (b)

one SVM for every pair of classes. When we want to classify a new instance using

variant (a), we use the class of the SVM which produced the higher output i.e.

the higher distance from its separating hyperplane. Using variant (b), we count

how often every SVM ‘wins’ against others and assign the class of the SVM which

won most often.

Another application for SVM is to use it for regression calculation. The idea

of support vector regression (SVR) is not to use the hyperplane to separate the

instances of two classes but rather to find a hyperplane which covers all data points

to approximate a function which generates the instances. Although equations for

defining the optimal plane differ from the original SVM the learning process is

quite similar (compare [SO98]).

For more detailed information about SVMs see [CST05], [CL09] or [Wik09f].

In this work SVM are used for tempo range classification. SVM can handle the

high dimensionality of our feature vector quite well (see Section 7. We also tried

to use SVR directly for tempo estimation. The results were much worse than with

KNN classification, most likely because of the high number of points in the very

high dimensional feature space.
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5.2.1 Implementation

We used three different SVM implementations in this work. First we tried to

experiment with the SVM learning algorithm in WEKA2 (see [WF05]). After

some time a Matlab® algorithm was written to perform class estimation using

Matlab® intern SVM functions. Since the Matlab® intern SVM implementation

did not offer enough parametrization possibilities, libsvn3 (see [CL09]) was used

later on as SVM implementation—also for GA parameter optimization.

5.3 Parameter Optimization

Since machine learning algorithms typically have a variety of parameters which in-

fluence the quality of the resulting classifier, it is important to trim the parameters

to get an optimal classification result. Parameter for machine learning algorithms

like the KNN classifier are more or less intuitive to choose—results can easily eval-

uated because of a countable amount of possibilities. In case of a KNN classifier

we would have to optimize the amount of neighbors, the distance metric and the

decision algorithm for choosing one class of all neighbors. Certain types of feature

vectors may imply a distance function which seems to be appropriate. Which kind

of decision algorithm makes sense can also be reasoned by looking at the model of

our problem. The optimal amount of neighbors can then be determined by eval-

uation with different values for k (neighbor count). Thus parameterizing a KNN

classifier is a very structured process.

When it comes to SVMs the task is more difficult. First we have to choose a type

of SVM. The decisions between soft/hard-margin SVMs, linear/nonlinear SVMs

and regression SVMs may be easy if the model of the problem is well known.

The choice of the kernel function and parameter settings for the kernel as well as

for nonlinear SVMs is a much harder problem. Lets start with the SVM kernels:

These are functions, usually Rn×Rn 7→ R (where n is the dimension of the feature

vectors) which cover three processes:

2http://www.cs.waikato.ac.nz/ml/weka/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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• The mapping of a feature vector into a higher dimensional (even infinite

dimensional) feature space.

• The calculation of the scalar or dot-product of our feature vectors in this

feature space.

• The inverse transformation of the result into the original feature space.

Usually the structure of the distribution of the sample points in the feature space is

not obvious (especially when the feature vectors are high dimensional). Therefore,

the choice of the kernel can usually not be made by analyzing the instances in our

feature space. Often it is a decision based on experience or experimentation. If

we do not have any experience with kernel functions in our feature space, we have

several possibilities to evaluate different kernel functions with experimentation.

Usually one would use numerical optimization to solve such types of problems.

The problem with parameters for kernels and kernel types is that we can not

make predictions of the resulting classification accuracy when making changes

in the parameter settings or choose a different kernel. The resulting accuracy

function (with respect to parameter settings and kernels) is therefore very chaotic

with many local minima. Therefore, we can neither use normal greedy numerical

optimization since it is likely to fail because such algorithms are prone to get

stuck in local minima. Nor can we try all possible combinations since we have

an infinite amount of kernel functions and parameter settings. There are some

algorithms which are known to be able to find the global optimum within such

problem spaces. Such algorithms are for example grid search, genetic algorithm or

simulated annealing.

Grid search: This method works good on flat fitness functions (solution quality

depending on parameter setting) with multiple local minima but can be

very time consuming if we have many parameters and/or large ranges for

parameters. Using grid search, we calculate the fitness function for every

point in a grid in our feature space. To obtain the grid we divide the ranges

for every feature dimension into equidistant pieces (depending on the feature

we can also use logarithmic, exponential,... etc. division). We then build all

possible combination of the obtained feature values and calculate the fitness
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function. The smaller the pieces for feature division, the better the results

but the more time consuming is the calculation. If the feature space is high

dimensional, the number of fitness calculations necessary raises very fast. A

small example should demonstrate that:

� We have a feature space with dimension D = 10 and want to perform

a grid search. How many calculations are necessary if the range of

every dimension is r = [−100..100] and the grid distance is d = 10?

How long would the calculation take if one fitness evaluation run takes

te = 1 second?

Every feature dimension would be divided into Nf = rmax−rmin

d
=

100+100
10

= 20 points. If we have a dimensionality of D = 10, we get

Ntotal = Nf
D = 2010 = 2 · 1011 grid points. The total calculation time

would therefor be t = Ntotalte = 2 · 1011 seconds which is more then

6000 years.

Because of the high dimensionality of some of the feature vectors used in this

work, grid search is not appropriate for SVM parameter optimization.

Genetic algorithm: Genetic algorithms are a class of algorithms which simulate

evolutionary properties of live like combination, mutation and survival of the

fittest on the level of genes. Usually the algorithm starts with some (e.g. 20)

parameter settings for the function which’s output should be optimized. At

first the parameter settings are created randomly. Then the algorithm starts

to combine single values of two parameter sets (combination) and/or changes

values randomly (mutation). The parameter sets which ‘survive’ (are kept

for the next round) are chosen by their fitness value.

Simulated annealing: In simulated annealing the behavior of metal atoms while

finding a state of least energy when cooling liquid metal is simulated. As

long as the temperature is high, the probability that an atom moves into a

position where its energy is higher, is relatively high, and becomes less and

less as the temperature falls. This behavior is transformed to our parameter

space and fitness function. We have a parameter which tells us the tem-

perature of the current state. If we are in a state with high temperature,
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the possibility of choosing a path in our solution room which results in a

worse fitnesses is relatively high and falls with the temperature. Simulated

annealing is therefore a greedy search with the possibility to go ‘uphill’ as

long as the temperature is not to low. The advantage is that its possible

for the algorithm to leave local minima. The whole algorithm can be done

with just one instance to optimize, or multiple, starting for example with

something similar as we use in grid search.

In this work genetic algorithms where used to find optimal parameter settings for

SVM tempo range classification and SVR tempo estimation.



6 Framework Implementation

The framework was developed using MathWorks™ Matlab®. For some features

external toolboxes as e.g. the ma-toolbox from [Pam04] were used. Matlab® offers

many function as for example machine learning methods such as the KNN classifier

and is therefore an ideal environment to develop frameworks for experimentation

purposes. Matlab® comes also with a simple implementation of support vector

machines. The first experiments with SVMs where realised with Matlab® intern

function. Later the libsvm1 (see [CL09]) framework was used due to performance

and parametrization reasons. For some experiments the Java implemented machine

learning framework WEKA2 (see [WF05]) was used.

6.1 Tempo Experimenter

The core element of the framework is a Matlab® GUI which unites all the func-

tionalities to experiment with the functions provided by the framework. Figure 6.1

shows the GUI and its components. The two lists in the upper left and right area

are file lists for training respectively test audio files. It is not necessary to add files

to to the test set, since the framework also offers methods to use the training files

for testing.

On the left side beneath the file list for training files are two option fields for the

classifiers used for tempo estimation. The left field configures the range classifier

(first stage), the right one the ‘tempo’ classifier (second stage). One can choose

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://www.cs.waikato.ac.nz/ml/weka/
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Figure 6.1: The GUI of the Matlab® framework which provides functionality to

use the functions of the framework comfortably.

the type of machine learning algorithm (KNN, SVM), the features to use (see

Section 4) and, in case of the range classifier, also the number of ranges and range

distribution. There are three different range distributions implemented:

• Linear Range Distribution: The tempo ranges are equally distributed

over the tempo range of the training files. Which means: If the slowest file

has a tempo of 40BPM and the fastest a tempo of 200BPM, the range is

160BPM. If we use four tempo ranges the first one reaches from 40BPM to

80BPM, the second from 81BPM to 120BPM, the third from 121BPM to

160BPM and the fourth from 161BPM to 200BPM.

• Logarithmic Range Distribution: This method is similar to the ‘Linear



6 Framework Implementation 71

Range Distribution’, only difference is that the limits of the ranges are not

distributed equidistantly but logarithmic.

• Even Samplesized Distribution: Using this method every tempo range

contains more or less the same amount of files (samples). The limits of the

ranges are chosen so that every range is equally filled with files. This method

is a good choice if the distribution of the tempo of the files is very uneven.

On the right side beneath the file list for test files are the options how the testing

samples should be generated. If the user provided test files in the file list, one can

choose ‘Use Test Set’ which means the files provided should be used to test the

classifiers. If no test files are given, one can choose between splitting the training

set into training and test set at a certain percentage (the files are randomized

before they are splitted) or using leave one out testing. The leave one out method

is very time consuming since the classifiers have to be trained again for every file.

Beneath the options for the test set we can configure how the two classifiers of the

first and second stage should be combined. One can chose between:

• Classify Tempo within Range: The first stage provides the range for

the tempo, the second stage then can only classify within this range.

• Map Tempo into Range: Here the second stage classifier first tries to

estimate the tempo within the full range of tempi. Then the result of the

first stage is used to map the tempo into the correct range by multiplying or

dividing the tempo by/through two.

In the very bottom of the GUI are two big buttons, the ‘Extract Features’ and

‘Classify’ button. The ‘Extract features’ button starts the feature extraction pro-

cess, but usually it is not necessary to manually extract the features, since this is

also done before the classifiers are trained. The extracted features are cached and

as long as the feature set has not changed or the cache is missing, the features will

not be recalculated. The ’Classify‘ button starts the training and classification

process. After the classification a window as shown in Figure 6.2 pops up and

visualizes the results of the classification process. The first panel shows the real

tempo in BPM (red) compared to the estimated tempo (blue), the estimated tempo
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corrected using the estimated ranges (green) and the estimated tempo corrected

using the real ranges (magenta). The last values is interesting since it indicates

how good the results could get if we where able to estimated ranges with 100%

accuracy.

Figure 6.2: .

The second panel shows the real ranges (red) and the estimated ranges (blue). In

the last panel the errors of the estimated tempi from the first panel are shown.

The errors are calculated using the error measure described by formula 7.2. An

error of 1 or -1 means the estimated tempo is twice or half the real tempo—2 or -2

then four times or a fourth of the real tempo and so on. The colors are the same

as in the first panel:

• blue: Estimated tempo without use of first stage classifier (without ranges).
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• green: Estimated tempo corrected with first stage results (using ranges).

• magenta: Estimated tempo corrected with real ranges.

Figure 6.3 shows the window which pops up when clicking on the ‘Detail’ button

below the file list. One can see the feature vectors of the features for the selected

files in the corresponding file list. The feature vectors are sorted by the notated

tempo of the files—therefor allowing a visual check for tempo related patterns in

the features.

Figure 6.3: Feature visualization of the GUI.



6 Framework Implementation 74

6.2 Survey Database and Webform

For the survey presented in Section 8 a very simple webform and database was

designed. The database consist of three tables called data, users and files. The

users table stores information about the people participating in the survey: the

name, and how often they participated. Since the specification of a name is vol-

untary this is solely for statistical purpose. The files table contains information

about the songs used for the survey, namely: file ID, file name, and the tempo in

BPM. The data table contains the information provided by the participants: time

and date of the vote, user ID, which files had to be compared (their ID) and the

vote provided by the participant (first file faster or second file faster).

The webform as shown in Figure 8.2 is a simple PHP3 script storing the input

in the database. As audioplayer a simple flash player taken from ‘Audio Player

Wordpress Plugin’4 was used.

3http://www.php.net/
4http://www.1pixelout.net/code/audio-player-wordpress-plugin/



7 Evaluation

7.1 Data

The test data for evaluation of the single tempo estimation algorithms consists

of three different data sets which origin from other works on tempo extraction.

[SWS07] uses the same combination of test sets. The ‘ballroom’ dataset is a well

known dance music collection from ‘BallroomDancers.com’ consisting of 698 audio

excerpts of 30 seconds. Figure 7.1 shows the tempo distribution of this dataset.

The tempo is given in beats per minute (BPM) which usually (but not necessarily)

corresponds to the speed of quarter notes in the piece.

Figure 7.1: Tempo distribution of song excerpts in ballroom training dataset.

The ‘Songs’ dataset (publicly available at the ISMIR’04 tempo induction con-

test website1) consists of 465 audio excerpts of 20 seconds. It contains music from

different genres including rock, classic, electronica, latin, samba, jazz, afrobeat, fla-

menco, balkan and greek. Figure 7.2 shows the tempo distribution of this dataset.

1http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/
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Figure 7.2: Tempo distribution of song excerpts in songs training dataset.

The third dataset called ‘Pop’ is a dataset created in [SWS07] by using music from

their personal music collection and searching tempo annotation for the single songs

on appropriate websites. It contains songs (full length) of popular music from

the last two decades. Figure 7.3 shows the tempo distribution of this dataset.

Figure 7.4 shows the tempo distribution of all three datasets merged together.

The features of this merged set are used for cross-validation of the single machine

learning algorithms.

Figure 7.3: Tempo distribution of songs in pop training dataset.

Figure 7.4: Tempo distribution of combined training set consisting of all three

datasets.
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7.2 Error Calculation

We are not always able to calculating the exact tempo of an audio track because

of the nature of the proposed algorithm. If we are asked to classify a song with

an tempo of 115.5 and there is no song in our training library with exact this

tempo, the algorithm will never return this tempo. There would be possibilities

to improve this drawback (like KNN with mean of n neighbors or SVR) but this

improvements would not really solve this problem. For the applications this work

aims on, this is not really a big problem. One can also control this behavior by

choosing the right files for the training library.

Knowing about this, we have to consider this circumstance also for the evaluation

process. Therefore, we define a window/a tempo range where an estimated tempo

is considered correct if it lies within this window. For the evaluation procedures

this tolerance window is always 4% of the ground truth tempo. This value has

also been proven to be adequate in [SWS07].

While we used precision and recall when dealing with onset detection, here the

accuracy measure is more useful. The calculation we use here follows [Wik09a]

and is defined as:

acc =
Nc

Ntotal

(7.1)

Where Nc is the number of correct estimated tempi (which lie within the 4% tol-

erance windwo) and Ntotal is the overal number of songs which had to be analysed.

A very interesting fact is, that often when the estimation was wrong, the estimated

tempo is an integer multiple or fraction of the real tempo (the question stays if the

annotated tempo is the real tempo). This is the kind of error we want to correct

with the two stage classification process presented in this work, so this errors are of

special interest to us. To see if the an error is of this kind, a special error measure

is used (like in [SWS07]). The formula for this error measure is:

e =

 t̂
t
− 1 t̂ > t

−
(
t
t̂
− 1
)

t̂ <= t
(7.2)
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Where t is the ground truth tempo and t̂ is the estimated tempo. Using this error

measure, double tempo errors result in values of 1 and half tempo errors result in

values of -1.

7.3 Results and Discussion

In this section the results of the classifiers trained with different features (and

feature combinations) are presented.

To evaluate the proposed algorithm we first analyze the performances of the single

stages separately. To do this we first try to estimate the tempi of our songs in the

training database with KNN classification (as proposed by [SWS07]). Then we

test the first stage by trying to put the songs into the correct tempo classes using

SVM classification. In the last step we take a look at the results if we combine

first and second stage.

7.3.1 Tempo Classification Results using KNN

The first series of evaluation runs were tempo estimation runs using KNN classi-

fication. The evaluation should provide information about how the parameters of

KNN classification influence the classification results. Details on the parameters

and their meaning are provided in Section 5.1. Figures 7.5, 7.6 and 7.7 show clas-

sification results using different parameter settings and number of neighbors.

Figure 7.8 shows the classification results ignoring double and half tempo errors.

This represents the optimal case when the first tempo estimating stage finds the

right tempo classes for every song and the mapping is able to map the tempo into

the right tempo range.

As mentioned in Section 5.1 the KNN classifier is not meant to work on data with

continuous values. The problem that a certain value can never be the result of a
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Figure 7.5: Accuracies for KNN classification using cityblock distance function.

Figure 7.6: Accuracies for KNN classification using correlation distance function.

KNN classifier if its not in the samples is addressed by a 4% tolerance window in

which the result is considered to be equal. The classifier perfomance itselfe is also

vulnarable to continous values: Already slightly different values are not considered

to vote for the same group. Therefore, the ground truth values should be rounded
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Figure 7.7: Accuracies for KNN classification using euclidean distance function.

Figure 7.8: Accuracies for KNN classification using euclidean distance function.

Double or half tempos are considered correct.

to integers to improve classification performance. The results for rounded ground

truth values are shown in Figure 7.9, Figure 7.10 and Figure 7.11.

Table 7.1 shows best results of each parameter set. The best performing feature

is always ACF, the best performing number of neighbors is always 10.

The results for KNN classification are quite similar as presented in [SWS07]. The
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Figure 7.9: Accuracies for KNN classification using cityblock distance function.

Double or half tempos are considered correct. Ground truth values

(BPM) rounded to integers.

Figure 7.10: Accuracies for KNN classification using euclidean distance function.

Double or half tempos are considered correct. Ground truth values

(BPM) rounded to integers.

optimal feature seems to be ACF—all other features do perform much worse. For

the final estimation algorithm a KNN classifier with 10 neighbors and correlation

distance function was used. The feature used was ACF and the tempo values
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Figure 7.11: Accuracies for KNN classification using correlation distance function.

Double or half tempos are considered correct. Ground truth values

(BPM) rounded to integers.

Distance Ground truth Double errors Accuracy

Cityblock Rounded No 89.70% (acf)
Correlation Rounded No 89.98% (acf)
Euclidean Rounded No 89.93% (acf)

Euclidean Decimal No 88.00% (acf)

Cityblock Decimal Yes 72.95% (acf)
Correlation Decimal Yes 73.01% (acf)
Euclidean Decimal Yes 73.01% (acf)

Table 7.1: Results for tempo classification using solely KNN classifiers and single

features.

where rounded to integer values for KNN classification.

7.3.2 Tempo Class Classification Results using SVM

The SVM classification evaluation was done using the optimized parameters gen-

erated by the genetic algorithm. The SVM were trained with the single features on

different test sets. The amount of tempo ranges was also varied to find an amount
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of ranges where classification still works satisfyingly. Figure 7.18 shows all results

at a glance. Figure 7.12 shows the results of a three class SVM trained on the

songs data set. Figure 7.14 shows the results for the ballroom dataset, Figure 7.13

shows the results for the pop dataset and Figure 7.15 shows the results for all

datasets combined using three classes.

Figure 7.12: SVM classification results for songs dataset using three ranges.

One can easily see which features perform well in combination with SVM classifica-

tion. ACF, AMDF, FP, non consecutive IOI and consecutive IOI are definitely the

five best performing features. To see how the classification results changes when

using more tempo ranges, we trained SVM classifiers with five and seven classes.

We only used the pop dataset for figures with five respectively seven datasets in

this section since the SVM performed best with the pop dataset. If the results get

worse using more classes, one can see the change best when working with the best

performing dataset. Figures 7.16 and 7.17 shows the classification results for five

respectively seven datasets.

Figure 7.18 shows all results in one diagram. Table 7.2 shows SVM classification

results using feature combinations. In the lines commented with ‘majority vote’

the SVMs were trained for the single features and the results were combined after
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Figure 7.13: SVM classification results for pop dataset using three ranges.

Figure 7.14: SVM classification results for ballroom dataset using three ranges.

classification using a majority rule voting.

As one can easily observe, using all features in a single vector does not work well.

The resulting accuracy for the mix of all datasets with all features is just 35.78%.
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Figure 7.15: SVM classification results for all three dataset using three ranges.

Figure 7.16: SVM classification results for pop dataset using five ranges.

Therefore, we introduced a majority voting algorithm. We trained different SVMs

for every feature and combined the classification results afterwards using a simple

majority vote algorithm. If no consensus can be obtained, the vote of the first
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Figure 7.17: SVM classification results for pop dataset using seven ranges.

Dataset Feature Nr. of Ranges Accuracy

pop all 3 35.78%
all all (majority vote) 3 77.93%
all ACF, FP, IOINC, AMDF (majority vote) 3 75.12%
pop all (majority vote) 5 79.63%
pop ACF, FP, IOINC, AMDF (majority vote) 5 80.00%
pop all (majority vote) 7 64.22%
pop ACF, FP, IOINC, AMDF (majority vote) 7 74.45%

Table 7.2: SVM classification results using combination of features.

feature is taken—therefore, the features are sorted by their own accuracy (ACF

first).

The evaluation with SVM were all done with rounded BPM values and even sample

size distributed ranges. We used leave one out evaluation using the whole test set

for this test.
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Figure 7.18: All SVM classification results compared in one diagram.

7.3.3 Tempo calculation using Tempo class and Tempo

Classification

To combine the two classification stages, the best performing feature combinations

and parameter settings of the single stages have been used. For the first stage we

used five range SVM classifiers using five features, namely: ACF, AMDF, IOINC,

IOIC and FP. The results of this five SVMs are combined using majority voting.

The parameter settings for the SVM had been optimized by genetic algorithms.

For the second stage we use KNN classifiers using ACF feature, 10 neighbors and

correlation distance function.

We evaluated two possible combination methods for the first and second stage.

These methods are:

1. Mapping of estimated tempo into estimated range: Here we assume
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that whenever the estimated tempo is not within the estimated range, an

error occurred where the estimated tempo is a multiple of two of the real

tempo. Therefore, we divide/multiply the tempo so it is in the estimated

range. If the tempo can not be corrected (i.e. mapped into the estimated

range) this way, the original tempo is used.

2. Estimating tempo within estimated range: Here the range is first

estimated. Then, only samples which are within this tempo range are used

as training instances for the KNN classifier. This means the tempo of the

second stage will always be within the estimated range.

Figure 7.19 shows how the combination method influences classification results.

The results are quite similar for both methods. Estimating the tempo within the

estimated tempo range performs slightly better for almost all datasets.

Figure 7.19: Results for two staged classification using different combination

methods.

The second parameter which was evaluated in this section was the amount of ranges

used for tempo range classification. Here Figure 7.20 shows that five ranges work

best for all datasets except for the songs dataset.

In Figure 7.21 all results are shown again in a table. The results for every data

set including the combination of all sets, as well as the first and second stage
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Figure 7.20: SVM classification results with different amount of ranges and data

sets. All results obtained using ACF, AMDF, IOINC and FP features

with majority vote combination.

accuracies are shown. The evaluation shows that the range classifier can improve

the results of tempo estimation when the accuracy of the range classifier is high

enough.
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Figure 7.21: Results of combination of first and second stage.



8 Survey

Till now all we tried was to estimate the manually tagged tempo of our training set

of music files. The final goal of this work was to estimate tempo which corresponds

to the listeners perceptual tempo. We want to be able to sort music according to

their perceived tempo respectively find music with the same perceptual tempo. To

verify this a user survey was done which tries to evaluate the decisions made by

our algorithm lists.

8.1 Data

As data for the survey the files of the pop dataset were sorted into seven bins

according to their tempo. The boundaries for the tempo bins were: [0, 62.5, 87.5,

112.5, 137.5, 162.5, 187.5, 300]. To have a more or less linear distribution of

tempos in the set, the numbers of files was chosen almost equally over the bins.

A completely linear distribution was not possible because of the low number of

files in some bins (especially in the high-tempo bin). The actually chosen numbers

are: [14, 15, 17, 18, 16, 14, 6] - which still reflects the basic tempo distribution.

Table 8.1 shows the files and their annotated BPM-tempo used in the survey.

8.2 System

To make the survey accessible to a broad amount of test persons it was published

on a web server. The received data was stored in a database. The webform for
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Figure 8.1: Files used for survey with annotated tempo.

user input was held very simple to be accessible to people without any musical nor

computer-science background. The used interface is shown in Figure 8.2. To keep

the evaluation process simple only two songs are compared at a time. This reduces

the time needed for the probands and makes the evaluation more interesting since

a complete evaluation can be done very quickly and is more likely to be repeated

more often.
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Figure 8.2: Webform for user-survey. The colored blocks hold the simple audio

player and a radio button to choose the faster perceived song. The

button below confirms the choice and generates a new pair to compare.

8.3 Results

The resulting data of the survey consists of a list of pairwise compared songs. The

first thing we tried was to use this data as ordered-relation to create a directed

acyclic graph (DAG). Unfortunately but foreseeable, the gained data from the

survey was not acyclic. This means there where cycles in the relation like: Song A

is slower than song B, song B slower than song C and song C slower than song A.

This fact may also be a hint that humans do not have a absolute sense for tempo

and double/half errors are likely to be made by humans too.

The next try was to evaluate how many of the relations can be confirmed by (a)

the BPM tempo and (b) the estimated tempo. We did this by taking the real BPM

tempo and the estimated tempo of the files and checked if the choice the user made

is true regarding the BPM tempo and the estimated tempo. Here BPM tempo

scores with an accuracy of 75.67% and the estimation algorithm with 65.73%. This
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result has to be put into perspective regarding the fact that we are comparing a

well ordered list with a partially cyclic list, so 100% could never be reached by any

algorithm respectively tempo list. Another thing we have to take into account is

that we trained the algorithms on the BPM data (which was certainly not 100%

accurate—see Section 9) so it is not a surprise that the machine learning algorithm

do not perform better than the direct comparison in this case.

Another interesting question was, since the machine learning algorithm do not

concur as often with the user choice as the BPM tempo, how big are the mistakes

(in terms of distance) of the machine learning algorithm and the BPM tempo

respectively. To evaluate this we summed up the tempo difference of the two

songs where the estimated tempo/BPM tempo was in the wrong order regarding

the user choice. The absolute error for BPM tempo is then 35893 and the error for

estimated tempo 20806. If one wants to weight the error by the absolute tempo

values (we use the mean of both files here), so big absolute error at higher tempi are

not weighted as heavily as big absolute errors at lower tempi, we get an absolute

error of 301.34 for BPM tempo and 196.85 for estimated tempo. This leads to the

conclusion that the BPM tempo is more often correct when it comes to ordering

(which could be coincidence with this special data set) but the estimated tempo

is much closer to the perceived tempo as the absolute error is smaller.



9 Conclusion

One of the main difficulties of this work resulted from the fact that the training

files for the machine learning algorithms where labeled with BPM tempo. The

first problem was that the BPM tempo was most probably measured by humans.

Therefore, some of the songs had been labeled wrong or not accurate enough.

On the other hand it is very likely that the training database already contains

double/half tempo errors. A good example is the songs training database used in

this work. It shows in most evaluation that the algorithms perform very poorly

with this training database (see figures 7.19, 7.18). Reason for this might be

that the songs are labeled poorly: Some songs are in the pop as well as in the

songs database e.g. ‘The Winner Takes it All’ by ABBA but labeled differently in

both datasets: 128BPM respectively 122BPM. When estimating the tempo with

a click-along beat counter the 128BPM (the label in pop dataset) seemed to be

correct. The bad labeled test files have also a huge influence on the global results

when using all datasets—which can also be observed in Figure 7.19. For future

experimenting it would be important to recheck the training data to avoid bad

results caused by wrong ground truth data.

Another problem rose when putting together the song excerpts for the survey.

Usually most songs, except for those of electronic dance music genres, do not have

constant tempo over their whole length. This may reach from slight tempo varia-

tion, stronger tempo changes (like in classical music) or even parts with completely

different tempo or meter. An extreme example for this is the last song of the sur-

vey song list (see Figure 8.1): ‘Master of Puppets’ by Metallica. It contains a long

guitar solo in the very middle of the song. The song itself is labeled with 220BPM,

the guitar solo is accompanied by slow drums and more soft guitars than the rest
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of the song so a listener would be more likely to label it with 110BPM rather than

220BPM. The rest of the song is very fast, but as we just used the middle part

of the song the 220BPM are not really appropriate for this sample. A solution

for this problem would be to use ‘tempo tracks’ rather than one fixed tempo for a

song in the training database. This tempo track would provide a tempo function

over the whole length of the song. On the other hand we could try to estimate the

tempo of a song at more than just one position of the track.

Another important conclusion was, that the range classifier has to work very ac-

curate, to improve the global result. The range accuracy should be higher than

80% otherwise the combination of tempo and range classifiers lead to worse results

than tempo classification alone. This can be observed in Figure 7.21.

Of course another crucial factor for good results is feature calculation. For that

reason a big amount of work was invested into onset detection. The onset detection

function is the basis for the most of the best performing features (ACF, AMDF,

IOIC, IOINC) and therefore a important basis of the whole work. Some of the

features meant to provide additional information for the ‘perceived’ tempo part

(OD, RPAT) did not work very well, but finding such features would sure improve

classification results.

The evaluation of the machine learning part showed that most of the machine

learning algorithms perform equally well if configured properly. There may lie

more potential in optimizing feature calculation than experimenting with more

machine learning algorithms.

One of the interesting conclusions of the survey is that humans may also make

double/half error when estimating tempo. So the perceived tempo problem should

maybe be redefined in some way to reflect the very relative perception system of

humans. Maybe for untrained human ears there exist nothing like a absolute order

of songs concerning tempo. Maybe we should look for some kind of similarity

measure for tempo and some kind of fuzzy system to explain tempo relations like:

little slower, slower, somehow equally fast...
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