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Kurzfassung

Zielsetzung dieser Dissertation ist es, inhaltsbasierte Musikempfehlungssysteme zu

verbessern. Neben einer allgemeinen Einführung in das Thema Musikempfehlungs-

syssteme und einer intensiven Diskussion von Evaluierungsmethoden für inhalts-

basierte Musikempfehlungssysteme werden Verbesserungen auf zwei verschiedenen

Abstraktionsebenen in dieser Dissertation behandelt:

Der erste offensichtliche Weg inhaltsbasierte Musikempfehlungssysteme zu ver-

bessern ist das zugrundeliegenden Musik-Ähnlichkeitsmaß zu verbessern. Da-

her werden aktuelle Methoden Ähnlichkeiten zwischen Musikstücken abzuschätzen

analysiert und Verbesserungsmöglichkeiten und Einschränkungen aufgezeigt. Dann

wird ein neuartiges Framework vorgestellt, das im Gegensatz zu aktuellen Meth-

oden das Spektrum nicht in einzelne Frames zerlegt verarbeitet sondern ganze

Blöcke von Frames betrachtet. Für dieses Verarbeitungsframework werden mehrere

neuartige Features definiert, die als Block-Features bezeichnet werden. Um auf Ba-

sis dieser neuen Features Musikempfehlungen generieren zu können, werden zwei

Ansätze vorgestellt. Der eine Ansatz ist ein Musikähnlichkeitsmaß direkt auf Basis

dieser Block-Features zu definieren, der andere zuerst eine Menge beschreibender

Schlagwörter vorherzusagen, um dann auf deren Basis paarweise Ähnlichkeiten

zwischen Musikstücken abzuschätzen. Schlußendlich wird vorgeschlagen beide

Ansätze zu kombinieren. Dieser Kombinationsansatz belegte den ersten Rang im

heurigen Audio-Musikähnlichkeitswettbewerb (MIREX 2010).

Der zweite Ansatz, inhaltsbasierte Musikempfehlungssysteme zu verbessern, be-

trachtet Empfehlungssysteme auf einer abstrakteren Ebene. Auf dieser Abstrakti-

onsebene wird ein Musikempfehlungssystem als ein Empfehlungsnetzwerk gesehen.

Eine Analyse dieser Empfehlungsnetzwerke zeigt, dass der einfache Ansatz, die N

ähnlichsten Musiktitel zu empfehlen, die Erreichbarkeit von Musiktiteln in diesem

Netzwerk stark vermindern kann. Dies kann den Nutzen von Musikempfehlungssys-

temen deutlich reduzieren. Um dieses Problem zu beheben, werden zwei Strate-

gien vorgestellt und untersucht. Es zeigt sich, dass beide Methoden die Er-

reichbarkeit von Musiktiteln innerhalb eines Empfehlungsnetzwerkes signifikant

verbessern können.
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Abstract

This thesis aims at improving content-based music recommender systems. Besides

a general introduction to music recommendation and an in-depth discussion of

evaluation methods of content-based music recommender systems, improvements

on two different abstraction levels are considered in this thesis:

The first and most obvious way to improve a content-based music recommender

system is to improve the underlying music similarity measure that is used to gener-

ate the recommendations. State-of-the-art frame-level audio similarity algorithms

are analyzed and improvements and limitations are discussed. Then a novel block-

level feature extraction framework and a set of novel block-level features are in-

troduced. To generate recommendations based on these block-level features two

approaches are presented. One approach is based on directly estimating similari-

ties based on the block-level features, and the other approach performs a mapping

onto a semantic tag space before estimating pairwise song similarities. Finally, it

is proposed to combine these two approaches. This combination approach ranked

first in the MIREX 2010 Audio Music Similarity and Retrieval task.

The second way of improving content-based music recommenders considers a more

abstract level of a music recommendation system. At this higher level of abstrac-

tion a music recommender system is interpreted as a recommendation network.

Based on the analysis of the emerging recommendation network it will be shown

that a straightforward top-N recommendation approach can significantly impact

the reachability of songs in a music recommendation network. This can radically

reduce the usability of music recommender systems. Two strategies to alleviate

this issue are presented and evaluated. It will be shown that both strategies can

significantly improve the reachability of songs within a music recommendation

network.
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1 Introduction

1.1 Motivation and Vision

While just a few years ago people were mainly looking for and buying music from

local CD stores, the way people search for music and the way people consume

music has radically changed. Thanks to portable music players like the iPod and

mobile Internet access music can be listened to everywhere and at any time. It

is not only the way people consume music that has completely changed, but also

the variety of songs that is available. Today even the most obscure type of music

is available for download from modern music online platforms. Thus, the problem

is no longer to store or transmit digital music, but to assist users and help them

find music they like. Assisting users in their music search is the task of a music

recommender system.

Many of the popular music services today have a music recommender system at-

tached. However, the majority of these systems is based on conventional collab-

orative filtering algorithms that analyze for example user ratings. This thesis,

in contrast, focuses on another well-known approach in Music Information Re-

trieval (MIR), namely content-based music recommendation. The idea of a

content-based music recommender systems is that the machine itself can “listen”

and understand music on its own. The ultimate goal would be that the machine

can then act as a musical expert and assist the user in her search task and point

her to new interesting songs like a good friend would do. Furthermore, the ma-

chine could then help to automatically organize and visualize a music collection

according to the user’s taste or mood. From a technical point of view such content-

based music recommender systems significantly differ from other recommendation

8
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techniques. Instead of accumulating e.g. user ratings or information from the web,

they directly analyze the music audio signals and generate recommendations based

on the information extracted from the signals themselves.

While content-based music recommenders have been a hot topic in academia for

some years now, recently the first commercial applications and products popped

up on the market. One of the first companies that introduced a real commercial

product were Bang & Olufsen who presented the BeoSound5, the first commercial

home entertainment center with automatic playlist generation based on content

analysis inside. Many start-up companies working on content-based recommenda-

tion like for example The Echo Nest1, mufin2 or sonarflow 3 have been founded.

Another example for the growing interest in content-based techniques is the FM4

Soundpark 4, an online music platform of an Austrian radio station. The main

drawback of content-based music recommender systems is that these systems still

lack in quality. This essentially means that the machine is recommending items

that according to humans are not appropriate recommendations in a given context.

The goal of this thesis is to further improve the usability of content-based music

recommenders. Improvements on two different abstraction levels are considered in

this thesis:

� The first and most obvious way to improve a content-based music recom-

mender system is to improve the underlying music similarity measure that

is used to generate the recommendations. State-of-the-art frame-level audio

similarity algorithms are analyzed and improvements and limitations are dis-

cussed. Then a novel block-level feature extraction framework and a set of

novel block-level features is introduced. To generate recommendations based

on these block-level features two approaches are presented. One approach

is based on directly estimating similarities based on the block-level features,

and the other approach performs a mapping onto a semantic tag space be-

fore estimating pairwise song similarities. Finally, it is proposed to combine

1http://the.echonest.com/
2http://www.mufin.com/
3http://www.sonarflow.at/
4http://fm4.orf.at/soundpark/
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these two approaches.

� The second approach considers a more abstract level of a music recommenda-

tion system. At this higher level of abstraction a music recommender system

is interpreted as a recommendation network. Based on the analysis of the

emerging recommendation network it will be shown that a straight forward

top-N recommendation approach can significantly impact the usability of

music recommendation systems. Two strategies to alleviate this issue are

presented and evaluated.

The next section presents the outline of this thesis and summarizes the major

contributions presented in this thesis.

1.2 Organization & Contributions

This thesis is organized in seven chapters. Chapter 1 contains an introduction to

the field of music recommendation by giving an overview on basic recommendation

approaches and introducing some fundamental terms that will be used throughout

this thesis. Furthermore, the important relation between music similarity and

music recommendation is discussed.

Then in Chapter 2 basic digital signal processing techniques are introduced.

This brief introduction specifically focuses on music signal processing techniques

that are then used in the descriptions of the music processing algorithms in the

consecutive chapters.

Chapter 3 of this thesis focuses on evaluation methods and metrics for music

recommender systems. First, direct evaluation methods of assessing the quality

of music recommender systems are discussed. Then the evaluation via genre clas-

sification, which is a common workaround to evaluate content-based systems, is

presented. Genre classification is a practical and cost efficient evaluation method,

which makes this evaluation method especially suitable for academic prototyping.

However, in the context of music recommendation, genre-classification-based qual-

ity measures can be extremely over-optimistic because of album, artist and portfolio
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effects. The influence and impact of artist and album effects on the evaluation mea-

sures that are used in this thesis are investigated. The conducted experiments show

that the application of an artist filter to remove album and artist effects is a must

in the context of music recommendation. Furthermore, artist and album effects

not only require to carefully design genre classification based evaluation methods,

but also require to compile specific evaluation collections containing songs by many

different artists. Therefore, one further contribution of this thesis to the evalua-

tion of music recommender systems are three genre classification datasets that are

made publicly available. Some other contributions to the evaluation of music rec-

ommender systems via genre classification are based on the results of a conducted

listening experiment. In this listening experiment humans were asked to classify

a set of songs according to a predefined genre taxonomy. The collected data is

then used to make the automatic classification results comparable to human clas-

sification results, which is typically not possible on standard datasets as for these

datasets typically no human reference classification results have been collected.

Additionally, automatic and human classification results are not only compared to

each other but for the first time are also compared to two collaborative-filtering

based algorithms (see 1.3). The results from this comparison indicate that the

collaborative approach outperforms both the automatic approach and individual

humans. This finding strongly supports the idea of hybrid music recommender

systems combining a content-based and a collaborative-filtering based algorithm.

Chapter 4 is the second of the four main chapters and presents the author’s

contributions to the analysis and the improvement of frame-level audio similarity

algorithms. This chapter starts with an introduction to frame-level algorithms, also

often called Bag-Of-Frames (BoF) approaches, and gives an overview of different

variants. Then two novel variants to compute frame-level similarities are presented.

These two novel variants are used to analyze two specific aspects of the BoF

approach. Using the first variant, called Multi-Level Vector Quantization (MLVQ),

it is investigated if the distribution model itself, which can be either parametric or

non-parametric, does have an influence on the resulting similarity estimates. The

second variant of the BoF approach that is based on Nearest Neighbour Density

Estimation (NNDE) will then be used to identify exactly those audio frames that
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make two songs sound the same from a machine’s point of view. The insights

gained from the analysis of the NNDE approach resulted in a novel frame selection

strategy that improves the quality of frame-level similarity algorithms. Still, the

main conclusion of this chapter is that frame-level similarity algorithms can only

identify simple timbral song relations, but are difficult to extend or improve and

are rather limited in identifying interesting musical similarities as needed for music

recommender systems.

One possible limiting factor of frame-level audio similarity algorithms is that they

are not able to capture temporal information, neither short term temporal infor-

mation like the spectral evolution of a played piano tone, nor long term temporal

information like rhythm or beat. To overcome these limiting factors a novel block-

processing framework is proposed which will be presented in Chapter 5. This

block-processing framework is inspired by the feature extraction process of the

so-called Fluctuation Patterns proposed by Pampalk et al. [Pampalk et al., 2002].

A set of six novel block-level features has been developed that can be extracted

within the proposed block-processing framework. Because of its vector space rep-

resentation the proposed feature set is not only useful to visualize a song’s model,

but can also be used for music classification in a straight-forward way. The submit-

ted algorithm based on the block-level feature set ranked first in the MIREX 2010

Audio Classification (Train/Test) Tasks, which is a clear indicator for the high

descriptive power of the proposed feature set. Furthermore, based on these block-

level features two novel audio similarity measures are defined. The first approach

directly combines the distance estimates of the individual block-level features into

an overall similarity measure. The second approach performs a mapping over a

semantic space by predicting tag affinities using the extracted block-level features.

Both approaches are evaluated and compared to state-of-the-art algorithms. Fur-

thermore, numerous combinations of state-of-the-art approaches are evaluated to

identify any potential for further improvements. One of these combinations, fusing

the block-level similarity and the tag-based similarity measure, was submitted to

the MIREX 2010 Audio Music Similarity and Retrieval Task and ranked first in

this competition. Thus, the proposed algorithms can be considered to be state-of-

the-art in content-based music recommendation.
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Chapter 6 then focuses on improvements of music recommender systems on a

more abstract level by analyzing the emerging music recommendation network.

Although music recommender systems are often evaluated based on standard qual-

ity measures like music genre classification accuracies only, recent research work is

more and more focusing on the analysis of the resulting recommendation networks

[Celma and Cano, 2008, Celma and Herrera, 2008]. This thesis contributes to this

research direction by analyzing music recommendation networks with respect to

their navigability. More precisely, it is shown that hubs (highly reachable graph

nodes) and sources (not reachable graph nodes) naturally exist in any top-N rec-

ommendation network. Unfortunately, both hubs and sources can decrease the

usability of recommendation networks. Furthermore, it is empirically shown for

two real world datasets (a music recommendation network and a movie recom-

mendation network) that the number of sources (the number of items that are

not reachable via browsing the recommendations) can be a serious problem within

recommendation networks as it can be a non-negligible portion of all items. Fi-

nally, two approaches to improve the browsability of recommendation networks

are presented and evaluated.

In Chapter 7 the author’s conclusions on the obtained results are presented and

an outlook on future research directions for music recommender systems is given.

The next section starts with a brief introduction to the field of music recommen-

dation.

1.3 Music Recommenders: Types of Systems and

Focus of Thesis

Today recommendation is a hot and widespread topic in various application areas

and not restriced to music at all. Some very well-known recommender systems

are those used at Netflix.com5 to recommend movies and the recommender system

5http://www.netflix.com/
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used at Amazon.com6 to recommend a large variety of products. There also exist

some not that well-known application areas of recommender systems like news

recommendation or blog recommendation. And the number of services that make

use of recommendation engines is steadily growing.

However, independent of the application area and the products that are recom-

mended, the basic recommendation scenario [Sarwar et al., 2001, Celma, 2008] is

in principle the same. Recommending basically means to predict a subset Iua of

items out of all items I = {i1, ..., im} that are available through a service such that

the items in Iua are interesting for a specific active user ua ∈ U out of all users

U = {u1, ..., un}. Furthermore, there exists some knowledge about the user ui’s in-

terest in form of a list of items Iui , which for example have been rated by the user.

In this thesis we focus on a special recommendation scenario, where the user is

currently focusing on a specific item ia out of all items, the active item. The active

item is typically the current song the user is listening to. Naturally, the number of

recommended items |Iua | should be far smaller than the total number of items m.

For practical reasons (e.g. the display space) the number of recommended items is

often restricted to contain at most N items. In this case one speaks of top-N rec-

ommendation [Sarwar et al., 2001, Karypis, 2001, Lam. and Riedl, 2004]. Based

on this formal definition of a recommendation scenario the important question is

how to generate recommendations.

With respect to music recommender systems one can identify three principal rec-

ommendation approaches [Barrington et al., 2009, Celma, 2008]: the Metadata-

based Approach, the Content-based Approach and Hybrid Approaches. Metadata-

based approaches can be further subdivided according to the type of metadata that

is used and the way it is collected. Figure 1.1 visualizes a categorization of music

recommender systems.7 In the following these types of recommender systems are

briefly reviewed and the relation of this thesis to the different types of systems is

6http://www.amazon.com/
7It is worth mentioning that there exist three further general recommendation approaches

(the Demographic Filtering-based Approach, Utility-based Approach and Knowledge-based

Approach)[Burke, 2002], but in the context of music recommendation these approaches have

not yet received any attention so far and are therefore not considered in this thesis.
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Figure 1.1: Categorization of music recommender systems.

emphasized.

1.3.1 Metadata-based Approaches

Metadata-based approaches use information about music that is not directly deriv-

able from the audio signal itself, but has been associated with a specific song

by a human subject. This can be any explicit metadata like genre, tags, artist,

song names or user ratings or any kind of implicit metadata like purchase infor-

mation, play counts or skip rates. All metadata-based approaches are collabo-

rative approaches as no single person can ever annotate (neither implicitly nor

explicitly) the complete music universe. Thus, in some publications this cate-

gory is denoted collaborative approaches instead of metadata-based approaches

[Adomavicius and Tuzhilin, 2005]. Here we further distinguish four types of meta-
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data-based approaches, namely Collaborative Filtering-based Approaches, Web-

Mining-based Approaches, Tag-based Approaches and Expert-based Approaches.

Metadata-based approaches are not in the main focus of this thesis, but in chapter

3, which compares the genre classification performance of automatic and human

classification, also two collaborative filtering based systems are evaluated, to cover

a broader range of recommendation approaches (see section 3.4.3.3). Furthermore,

in 5.4 a music recommendation system based on automatically estimated tags is

presented. Thus, the research work presented in this thesis also has a weak re-

lation to tag-based music recommendation systems. The following subsections

briefly introduce the four subtypes of metadata-based systems. Wherever com-

mercial solutions exist in the area of music, one of these is also briefly discussed.

1.3.1.1 Collaborative Filtering Approaches

The collaborative filtering approach has already been intensively studied in aca-

demic research and has been successfully used in many commercial recommenda-

tion applications. A classical collaborative filtering system allows users to rate

items e.g. on a five star scale. For example many modern music players like

Apple’s iTunes or the Microsoft Media Player allow to collect explicit ratings typ-

ically on a five star rating scale. Besides explicit ratings, many of these systems

also collect a lot of implicit user feedbacks based on the user’s actions. For exam-

ple stopping or skipping songs could indicate that a user dislikes a specific song.

Furthermore, one typically distinguishes two different variants of collaborative fil-

tering: item-based and user-based systems [Wang et al., 2006, Sarwar et al., 2001,

Celma, 2008]. User-based collaborative filtering systems first estimate similarities

among users based on the collected ratings and then recommend items that have

been bought by similar users. In item-based collaborative filtering first similarities

among items are estimated. Then items that are similar to items the user has been

interested in are recommended.

One well-known example of a real world music recommender system that is most

likely based on collaborative filtering is Apple’s Genius. Although the details of

the music recommendation engine are kept secret, according to Barrington et al.
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[Barrington et al., 2009] some informal experiments give some clues that Apple

is using collaborative filtering to compare the seed song’s metadata to iTunes’

massive database of music sales (over 50 million customers who have purchased

over 5 billion songs). Unfortunately, it is unknown if and how the Genius engine

has affected Apple’s music sales.

1.3.1.2 Tag-based Approaches

The tag-based approach is also known as collaborative tagging, social classification,

social indexing, social tagging or Folksonomy. In tag-based systems users assign

descriptive terms, so-called tags, to each song. All terms assigned to a specific

song together form a song description. Songs or artists with similar descriptions

are considered to be similar too. One example of such a popular music folksonomy

is last.fm. One advantage of tag-based systems is that the visualizations of a

song’s tag model, so-called tag clouds, can be used to immediately explain to

users why two artists are considered similar or related by the system. However,

one disadvantage is that tags are often assigned at the artist level. At the track

level data is very sparse and tags are often not available. Additionally, there exist

a number of issues related to the tags themselves. For example synonyms like

“Hip-Hop” and “HipHop” and personal tags like “My Favorite” pose a problem.

1.3.1.3 Web-Mining-based Approaches

Web-mining-based approaches are quite related to tag-based approaches. In con-

trast to tag-based systems, where the tags are explicitly assigned by users, web-

mining based systems rely on descriptive terms extracted from web pages. Such

systems are based on the traditional methods of information retrieval. Typically

either term profiles are extracted from a set of web pages, or simple page counts

or web co-occurrences are used [Schedl and Knees, 2009]. Another important dif-

ference to tag-based systems, where users can potentially use any term to tag a

song, is that web-mining based systems often filter the document terms with a

controlled dictionary of musical terms. However, web-mining-based systems are
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often not reliable and can typically not provide recommendations at the song level.

With respect to music recommendation, web-based systems have so far only been

used in academic research.

1.3.1.4 Expert-based Approaches

Expert-based systems do not collect information about music from a crowd of users,

but rather rely on explicit metadata assigned by musical experts. Expert-based

approaches are special in the sense that only trustworthy and well-trained experts

collaborate in the annotation process. Of course manually annotating songs is

costly and does not scale well. Furthermore, although the musical experts are typ-

ically well-trained there can still be inconsistencies in the annotations. Probably

the only music service that is based on meta information assigned by music experts

is Pandora8. The music experts at Pandora manually quantify properties of songs

that are related to melody, harmony and rhythm, to instrumentation, orchestra-

tion, arrangement, lyrics, singing and vocal harmony. Over 400 different musical

attributes are quantified for each song. Based on this information the Pandora

Music Service then generates personalized Internet Radio Streams and offers the

ability to buy the songs or albums at various online retailers. Since 2008 Pandora

is not only available on PC platforms but also on many mobile devices. Currently

Pandora has 700,000 tracks in its library and 48 million users who listen for 11.6

hours per month on average. While Pandora was already founded back in 2000,

the company reported its first profitable quarter at the end of 2009 with about

$50 million in annual revenue. This is another indicator for the growing interest

in music recommendation services.

The expert-based approach is the last of the four important types of metadata-

based approaches. The next section now presents a fundamentally different cate-

gory of approaches: the content-based approach.

8http://www.pandora.com/
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1.3.2 Content-based Recommendation Approaches

In contrast to metadata-based approaches, which are based on user created meta-

data, content-based approaches instead try to analyze the content of digital objects

directly. The content-based approaches are basically restricted to digital objects

like images, videos, music or e-books. The basic approach is to extract meaningful

features out of the digital objects and to generate comprehensive object represen-

tations from these. Thus, there exists a functional or mathematical dependency

between the content of a digital object and its representation (see figure 1.2).

Figure 1.2: Feature Extraction process of content-based recommender systems.

Content-based recommendation approaches belong to the category of item-based

recommendation approaches, where recommendations are generated based on item-

to-item similarities. Content-based recommender systems estimate similarities

among items by matching the extracted object representations. Hence, each

content-based recommendation algorithm basically has to perform two steps:

� First, extract features out of the content of a digital object and combine

these features into a meaningful object representation.

� Second, define a similarity function among the object representations that

corresponds to the human perception of the item-to-item similarity.

For many domains like video, text, images and audio, how to define a set of appro-

priate features and the corresponding similarity function is still an open research

question. Within this thesis the definition of feature sets and similarity functions

for digital music signals are investigated. Particularly, this thesis will concentrate

on the analysis of standard music similarity algorithms and on the definition of

novel meaningful song representations and the corresponding similarity functions

(in Chapters 4 and 5).
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The clear advantage of content-based methods is that they do not require any

metadata, they are perfectly scalable and can generate recommendations for com-

pletely unknown and unrated songs. Furthermore, the generated recommenda-

tions are to some extent “objective” and are consequently not biased towards

well-known or popular items. However, the content-based approach also has some

major drawbacks. For example content-based approaches are not able to capture

any contextual information or cultural information. Only information that can be

derived from the content of a digital object can be extracted and used to generate

recommendations. In practice, however, it is often hard to extract and adequately

map information that is inside the content of a digital object onto a perceptually

meaningful descriptor. Thus, the main problem of content-based techniques is that

they are often not satisfactory with respect to recommendation quality. Improving

the recommendation quality of content-based music recommender systems is the

main goal of this thesis.

Some of the research results of this thesis have already been used in a commercial

environment. One example for the application of the results of this thesis is the

frame-selection strategy proposed in section 4.3.3. This strategy is used in Bang

& Olufsen’s BeoSound5, the first commercial available home entertainment cen-

ter with automatic playlist generation inside. Another example is the Continuous

Frequency Activation (CFA) feature (see section 5.2.7), which has been used to

implement a speech-music discrimination system for a large Chinese telecom solu-

tions provider. Furthermore, the analysis of the recommendation network of the

FM4 Soundpark (see section 6.2.2) helped to identify weaknesses related to the

browsability of the recommendations and so contributed to the improvement of

the recommender system that is attached to the FM4 Soundpark. These examples

indicate that content-based techniques are already mature enough in some areas to

be used in commercial applications. Especially with respect to content-based mu-

sic recommender systems is seems that such systems will get another boost in the

context of hybrid music recommender systems. Hybrid recommender systems are

typically combinations of content-based and metadata-based systems (see section

1.3.4) that in combination solve many of the problems of individual recommenda-

tion approaches. Some of these well-known problems will be discussed in the next
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section.

1.3.3 Well-Known Problems of Recommender Systems

This chapter presents some well-known weaknesses of many recommendation ap-

proaches. Although some of these issues are frequently discussed in the context of

collaborative-filtering-based systems only, most of them also apply to other rec-

ommendation approaches presented so far. In the following the most prominent

issues are presented and then in table 1.1 it is indicated which recommendation

approach is affected by the aforementioned problems.

� The Sparsity Problem (SP)

Recommender systems often return poor recommendations, when they do not

have much meta information on either the items or the users [Burke, 2002,

Claypool et al., 1999]. In the context of music recommendation, for example,

there typically exists little meta-information for unknown artists. Another

problem is that even if metadata is available, it is often only available at the

artist level and not at the song level.

� The Cold-Start Problem (CSP)

The Cold-Start Problem can be interpreted as a special case of the Spar-

sity Problem [Schein et al., 2002]. For newly added items or new users that

recently joined an online platform, recommendations are hard to generate

because the system has no meta information at all about the new user or the

new item.

� The Gray-Sheep Problem (GSP)

For individuals with a significantly different opinion from the group opin-

ion most recommender systems cannot generate adequate recommendations,

simply because they do not consistently agree or disagree with any group of

people [Claypool et al., 1999]. Such individuals will rarely, if ever, receive

accurate predictions.
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� The Popularity-Bias Problem (PBP)

Many recommender systems, especially metadata-based systems, tend to

have a popularity bias, which means that popular items are recommended

very frequently, while unpopular or unknown items are not recommended

at all [Celma and Cano, 2008] and consequently stay hidden in the so-called

long tail [Brynjolfsson et al., 2003, Anderson, 2006, Brynjolfsson et al., 2006].

� No Explanations Problem (NEP)

Another drawback of many recommendation approaches is that they fol-

low a black box paradigm. Such systems provide recommendations, but

do not provide user understandable explanations for the generated recom-

mendations. Explanations help to make recommendations transparent and

scrutable for the user [Kay et al., 2001, Barneveld and Setten, 2004]. Fur-

thermore, explanations can be beneficial to help users understand and accept

recommendation errors, but can also help alleviate fears related to perfect or

too personal recommendation. For example many users feel observed (“how

could the machine know that”), which can reduce the user’s trust in the

system [Tintarev and Masthoff, 2007].

� Portfolio Effect (PE)

The term portfolio effect [Burke, 2002] describes the undesired situation,

where identical or near identical items are recommended. For example the

portfolio effect [Tintarev and Masthoff, 2006] is well-known in news recom-

mendation, but also huge recommendation engines like Amazon.com have to

deal with this problem. For instance, customers that have purchased many

books by a specific author may get recommendation lists where all top-5 en-

tries are books by that author [Ziegler et al., 2005]. Such recommendation

sets clearly provide marginal utility for a user. With respect to music espe-

cially content-based recommender systems suffer from a related effect, the

artist effect (see 3.3.1). The artist effect describes recommendation situations

where only songs by the same artist as the query song are recommended.

In addition to these well-known problems also the scalability and the recommenda-

tion quality are important criteria for recommender systems. A compact overview
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which of the presented recommendation approaches are affected by which issues,

is given in table 1.1. Scalability (SA) and Recommendation Quality (RQ) have

been rated by the author on a three level scale (1=good, 2=medium, 3=poor) and

reflect the author’s personal opinion.

Taking a look at this comparison it seems that expert-based systems are a good

solution. However, in practice these systems are rarely used because of their

poor scalability. Furthermore, one can observe that the gray sheep problem is a

fundamental one and cannot be solved by any recommender system. For “gray-

sheep” the only solution is personal recommendation. Another general issue is

the portfolio effect. Only tag-based systems seem not to be much affected by

the portfolio effect, which is indicated by the conducted experiments in section

5.5, where automatically estimated tags are used. In contrast to the gray-sheep

problem the portfolio effect can be solved technically by using topic diversification

techniques. One straight-forward solution to resolve some of the issues related

to a specific recommendation approach (especially the cold-start problem and the

sparsity problem) is to combine two or more recommendation approaches. Such

combinations are then called hybrid recommendation systems.

Approach SP CSP GSP PBP NEP PE SA RQ

Collaborative Filtering 1 1

Tag-based 1 1

Web-Mining-based 1 3

Expert-based 3 1

Content-based 1 2

Table 1.1: Recommendation approaches and their issues (a check indicates that

the approach is not affected by the specific problem, whereas a cross

indicates that the approach is affected).
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1.3.4 Hybrid Recommendation Approaches

The idea of hybrid recommender systems is to combine two or more recommenda-

tion techniques in order to gain better performance and simultaneously eliminate

specific issues of the underlying recommendation approaches [Burke, 2002]. In the

literature many, often rather complex, ways of combining recommender systems

have been proposed. Burke distinguishes seven different combination approaches

(Weighted, Switching, Mixed, Feature Combination, Cascade, Feature Augmenta-

tion and Meta-level).

In music recommendation, hybrid systems have not yet received much research

attention. In the simplest case, a metadata-based approach and a content-based

approach are combined to improve the recommendation quality and to simulta-

neously solve the cold-start, the sparsity or the popularity-bias problem of the

metadata based approach. In [Knees et al., 2008, Knees, 2007] Knees et al. make

use of content-based item similarities to infer tag models for songs where no tag

models are available. Another simple mixing approach has been proposed in

[Tiemann and Pauws, 2007]. More advanced combinations have been proposed

in [Donaldson, 2007] and [Yoshii et al., 2008]. Although the results obtained via

these first hybrid algorithms look promising, to the best of the author’s knowledge

there do not yet exist any commercial solutions that are based on a hybrid rec-

ommendation approach. Still, hybrid recommender systems seem to be the future

in music recommendation, as they can alleviate the weaknesses of the individual

approaches.

The last section of this chapter points out the relation of music similarity algo-

rithms and music recommendation, because similarity-based recommendation will

be the focus of this thesis.
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1.4 From Music Similarity to Music

Recommendation

The most widespread application of a content-based music similarity measure is

that one can easily build a music recommendation engine simply by recommending

the songs that sound most similar to a given query song according to the similarity

measure. Thus, many publications focusing on Music Similarity implicitly assume

that the actual application scenario will be Music Recommendation. Often these

terms are even used interchangeably and some important differences between music

similarity and music recommendation are left out.

The most important difference between Music Similarity and Music Recommenda-

tion is that not all songs that “sound similar” are also good recommendations. For

example it is quite obvious that users would be annoyed if just songs by the same

artist as the query song or by just one other artist appear in the recommendations.

Unfortunately, this is often the case if the recommendations are generated with

a content-based similarity measure: songs by one artist are of course often very

similar to each other, because of the very specific style and the specific recording

conditions. From an acoustic point of view the characteristic style of an artist

is related to the instrumentation, the singing voice and the type of music being

played, which are all in some way reflected in a good similarity measure. Thus, it

is relatively easy to identify songs by one and the same artist using audio similarity

algorithms. This effect is known as artist effect. In some cases even album-specific

production effects are reflected in the spectral representation of songs, which is

respectively called album effect. Artist and album effects are not a problem per

se, but they do become one in the context of recommendation, as such recom-

mendations provide only marginal utility for users and could be easily generated

by searching for the artist’s name9. A simple and straight-forward solution is to

simply filter out songs from the same artist as the query song, which is called artist

filtering (see 3.3.1).

9Interestingly, similar effects are also known from other recommendation domains like, for

example, news recommendation, under the term portfolio effect (see 1.3.3).
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Post-filtering the music recommendation lists can, however, significantly impact

the typically accuracy-based quality criteria. Thus, the main differences between

content-based music recommendation and music similarity is the way how such

systems must be evaluated. Especially using an artist filter is a must with re-

spect to the evaluation of music recommendation. This will also be experimen-

tally shown in Chapter 3.3.1. This also raises the need for novel evaluation

datasets that contain songs from a large number of different artists. Further-

more, in the context of recommendation it is no longer enough to just focus on

accuracy-based evaluation criteria only, but the research has to focus on other as-

pects of the user experience. Other evaluation criteria beyond accuracy like topic

diversification [Ziegler et al., 2005] and navigability of recommendation networks

[Seyerlehner et al., 2009a] and, most of all, user satisfaction become important

criteria that clearly differentiate content-based music recommendation from music

similarity estimation algorithms.



2 Music Signal Processing
Fundamentals

This chapter briefly introduces the fundamentals of digital audio signal processing

with a special focus on music signal processing. These fundamentals are then used

in Chapters 4 and 5 to compactly describe the feature extraction process of the

presented algorithms. For a more detailed introduction to general digital audio pro-

cessing the interested reader is referred to [Zölzer, 2002, Oppenheim et al., 2004].

2.1 Digital Audio Signals

An analog audio signal x(t) can be transformed into a digital signal x[n] repre-

sentation by an analog-to-digital converter (ADC). An ADC samples the analog

signal in equidistant time intervals of duration Ts, the sampling period, and quan-

tizes each amplitude sample by approximating the continuous amplitude values

by a relatively small set of discrete symbols of typically 16-bit integer values. The

sampling rate fs = 1/Ts of the digital audio signal is the reciprocal of the sampling

interval and is given in Hertz (Hz).

From a practical point of view with respect to Music Information Retrieval the mu-

sic audio signals to be analyzed are all digital audio signals that are most frequently

stored encoded for example as mp3 -files. Therefore decoding and resampling of

audio files plays an important role. Decoding is a necessary but time consuming

step to reconstruct the raw digital audio signal in Pulse Code Modulation (PCM)

from the compressed audio files. Resampling is necessary to ensure that all input

27
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signals of the feature extraction stage have the same sampling rate. Typically, a

low sample rate like 11kHz or 22kHz is used in many MIR applications. This is a

first step to reduce the enormous amount of audio data. Although there exist some

audio features, for example the Zero-Crossing Rate, that can be computed from

the time-domain representation of an audio signal, the majority of well-known au-

dio features [Peeters, 2004] including those investigated in this thesis are derived

from the frequency domain representation of an audio signal.

2.2 Spectrum Analysis

The spectrum of an audio signal describes the distribution of energy over the

frequency range and can be generated via a Fourier Transform of the signal. For

digital signals the discrete variant, the Discrete Fourier Transform (DFT), is used.

X[k] = DFT(x[n])] =
N−1∑
n=0

x[n]e−j2πnk/N k = 0, 1, . . . , N − 1. (2.1)

The DFT can be computed for any discrete and finite signal x[n] of length N and

is based on the assumption that the finite signal x[n] of length N is one period of a

periodic signal x̃[n] with a period of length N . The Fourier Coefficients X[k] then

correspond to the Fourier Coefficients X̃[k] of the periodic signal x̃[n]. Together the

N complex-valued Fourier Coefficients X[k]1 form the discrete Fourier spectrum

of the discrete signal x[n].

As the counterpart to the DFT there also exists the inverse Discrete Fourier

Transform (iDFT), which transforms a spectrum back from the discrete frequency

domain to the discrete time domain.

x[n] = iDFT(X[k]) =
1

N

N−1∑
k=0

X[k]ej2πnk/N n = 0, 1, . . . , N − 1. (2.2)

1The square brackets are used to differentiate the discrete spectrum from the continuous spec-

trum.
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The iDFT can be useful to re-synthesize a spectrum e.g. in the case the spec-

trum has been modified by an algorithm to be able to listen to the result of the

modification.

Based on the discrete Fourier spectrum one can compute the magnitude spec-

trum |X[k]| and the phase spectrum ϕ[k].

|X[k]| =
√

Re(X[k])2 + Im(X[k])2 (2.3)

ϕ[k] = arctan
Im(X[k])

Re(X[k])
(2.4)

Often logarithmic amplitude scale is used to plot the magnitude spectrum, which

can be obtained according to equation 2.5.

X[k]dB = 20 log10 (|X[k]|) (2.5)

The frequency resolution of the discrete Fourier transform is linear. Hence, the

Fourier coefficients are equidistant samples of the continuous spectrum. Given

that the signal x(t) was sampled at a sampling rate fs the continuous spectrum

is sampled at the frequency points k fs
N

, where k is running from 0 to N − 1. In

practice the DFT is computed by the fast Fourier Transform (FFT), an efficient

algorithmic implementation of the DFT and the Fourier Coefficients are often

called frequency bins or FFT bins.

Figure 2.1 shows a real world audio signal x[n] taken from a Wagner Opera and the

magnitude spectrum thereof. In the lowest plot the frequency is given in Hertz.

The audio signal was sampled at 22 kHz. The magnitude spectrum is mirrored

around the Nyquist frequency (11 kHz in this example) as the input signal is a real-

valued signal and the resulting Fourier Coefficients around the Nyquist frequency

are conjugated. For audio signals this is always the case as they are always real-

valued. In MIR the spectrum is therefore typically only considered up to the

Nyquist frequency.
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Figure 2.1: Visualization of an audio signal, the magnitude spectrum and the mag-

nitude spectrum in dB.

With respect to MIR the linear frequency resolution of the DFT is not ideal, as a

linear frequency resolution does not correspond to the human perception of sound.

In the next section four acoustic scales are presented that better correspond to the

logarithmic human frequency perception.

2.3 Auditory Scales

In many audio applications it can be useful to mimic the human listening process.

One example is lossy audio compression. Such codecs make use of the limitations

of the human auditory system by simply removing parts of an audio signal that

are not perceived by humans anyway. In content-based MIR the analysis of audio

signals should account for the human perception of sound so that just the percep-

tually relevant information of an audio signal is further processed. For this reason
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MIR and Psychoacoustics, the study of subjective human perception of sound, are

closely related research fields.

One aspect of the human perception of sound that is well-known is the fact that the

frequency resolution of the human auditory system is not linear, but logarithmic.

To account for the logarithmic human perception of sound in MIR, the linear

frequency spectrum of the DFT is typically compressed according to an auditory

scale. The most popular auditory scales that are used to perform this mapping

from linear to logarithmic frequency resolution are the Mel-Scale, the Bark-Scale,

the ERB-Scale and the Cent-Scale. For all four scales the relation between linear

frequency scale (fHz)and logarithmic frequency scale is defined by an equation,

which is summarized in the following.

2.3.1 Mel-Scale

The Mel-Scale is a perceptual scale that has been defined in [Stanley et al., 1937].

The scale is based on the results of a pitch comparison listening experiment. The

Mel-Scale is frequently used in MIR applications and also in many speech recog-

nition applications, as the Mel-scaled spectrum is the basis to compute the widely

used Mel Frequency Cepstral Coefficients (MFCCs), a compact representation of

the spectral envelope of an audio frame (see 2.4.4).

fmel = 2595 log10

(
fHz
700

+ 1

)
(2.6)

2.3.2 Bark-Scale

The Bark-Scale is another psychoacoustic scale proposed by Eberhard Zwicker in

1961 [Zwicker, 1961]. He proposed to subdivide the audible frequency range into

critical bands. The definition of critical bands is based on the observation that

humans can no longer distinguish two tones, whenever their frequency difference

is smaller than the critical bandwidth. In such a case the inability of the auditory
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frequency-analysis mechanism to resolve the two tones is linked to a beating or

roughness sensation. Today often the ERB-Scale is used instead of the Bark-Scale.

fbark = 13 arctan(0.00076fHz) + 3.5 arctan((fHz/7500)
2) (2.7)

2.3.3 ERB-Scale

The human auditory system can be modeled as an array of overlapping band-

pass filters known as auditory filters. Each auditory filter typically corresponds

to a critical band. Using the equation 2.8 of the Equivalent Rectangular Band-

width (ERB) one can estimate the bandwidth BW of an auditory filter at center

frequency fc in Hertz.[Moore, 1998].

BWHz = 24.7 (0.00437fc + 1) (2.8)

It is important to note that the formula above converts a frequency (in Hz) to a

bandwidth (also in Hz). To convert a frequency in Hz to a frequency in units of

ERB-bands, the following formula is used

fERB = 21.4 log(0.00437fHz + 1). (2.9)

2.3.4 Cent-Scale

The Cent-Scale is a logarithmic scale for musical intervals e.g. the interval of a

semitone corresponds to 100 cent and an octave corresponds to 1200 cent. Given

the frequencies of two notes fa and fb the interval ∆fcent in cent is

∆fcent = 1200 log2(
fa
fb

). (2.10)
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The relation of the linear frequency fHz to the frequency in cent fcent is defined

via a reference frequency. As reference frequency fb = 440 ∗ ( 1200
√

2)−5700) is used

[Goto, 2003]. Consequently, the reference frequency is 5700 cent below the concert

pitch of 440 Hz. The conversion from Hertz to Cent is defined by

fcent = 1200 log2

(
fHz/(440 ∗ (

1200
√

2)−5700)
)
. (2.11)

In contrast to Mel, Bark and ERB the Cent-Scale is not a psychoacoustic scale, but

a musical scale. In the next section the presented auditory scales are compared.

2.3.5 Comparison & Mapping

To compare the different auditory scales the mapping-function from linear to loga-

rithmic scale is plotted for a frequency range from 0 to 22050 Hertz (see figure 2.2).

The different scales fcent, fmel, fbark and fERB are all normalized by dividing

them by the maximum value of each scale. One can see that all the auditory scales

significantly differ from the linear scale and clearly exhibit a logarithmic charac-

teristic. The scales can be sorted according to the non-linearity of the mapping.

Thus, Bark and Cent are the more extreme scales while the mappings of ERB-

and Mel-Scale are more moderate.

To wrap a linear frequency spectrum obtained via the DFT according to one of

the auditory scales, one first defines frequency bands of equal bandwidth in the

logarithmic domain. Via mapping the upper and the lower frequency boundary

back onto the linear scale, one can then identify those frequency bins that fall

into the corresponding frequency band. Now, to combine the linear frequency bins

that fall into a logarithmically spaced band there exist two approaches. First, one

can perform a hard mapping, where each bin belongs to exactly one logarithmic

band and each band only contains distinct bins. Or, one can have a soft map-

ping, where the logarithmic bands are overlapping and each bin belongs to two

logarithmic frequency bands but just to some degree. Figure 2.3 visualizes both

mappings approaches for the Mel-Scale. In the upper plot the frequency intervals
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Figure 2.2: Comparison of auditory scales.

on the y-axis (the frequency in Mel) have equal bandwidth, while on the x-axis

(linear frequency resolution) the size of intervals is logarithmically increasing. The

weighting of the bins for both hard and soft mapping are illustrated in the upper

and the lower plot. For the soft mapping triangular filters are used, while for the

hard mapping all bins are equally weighted as illustrated in figure 2.3. It is worth

mentioning that this mapping of linear to logarithmic frequency scale could also be

realized directly via designing a specific filter bank of FIR or IIR filters. However,

it is common practice in MIR to first compute the linear FFT and then perform

this mapping onto a logarithmic auditory scale for performance reasons.

Up to this point the spectrum of audio signal as a whole has been discussed. In the

following Time-Frequency Representations (TFR) are introduced, which represent

the time-localized, short-time frequency content of an audio signal.
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Figure 2.3: Visualization of hard versus soft mapping according to the logarithmic

Mel-Scale.

2.4 Time-Frequency Representation

One assumption of the Fourier transform is that the analyzed signal x(t) is a

stationary signal, which basically means that the frequency content is constant over

time. Unfortunately, the frequency content of audio signals is typically changing

over time. Therefore, audio signals fall into the category of so-called non-stationary
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signals, but fortunately belong to a specific subclass called quasi-stationary signals.

Quasi-stationary signals are non-stationary signals but can be modeled as being

stationary within local time frames. To be able to capture the changing signal

characteristics over time Time-Frequency Representations (TFR) are used.
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Figure 2.4: Windowing of an audio signal using a Hanning window function .

2.4.1 The Short-Time Fourier Transform

The most popular TFR is the Short-Time Fourier Transform (STFT) or windowed

Fourier transform. To achieve time-localization, short signal excerpts of length

N , which are assumed to be stationary, are consecutively cut out of the audio

signal. Such short signal excerpts are called audio frames. The function that is
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used to extract an audio frame out of the whole audio signal is called window

function. Figure 2.4 visualizes the frame wise processing of an audio signal. The

size of an audio frame is called frame size or window size. Audio frames can be

overlapping depending on the hop size, the number of skipped samples between

two consecutive audio frames. To determine the local frequency content each

audio frame is transformed to the frequency domain using the DFT. The resulting

local-frequency spectrum of an audio frame is often simply referred to as frame.

Mathematically the STFT can be defined according to equation 2.12, where w[n]

is the window function and m defines the position of the window. The definition

of the STFT that is used here is discrete in both time and frequency.

STFT [x[n]] ≡ X[m, k] =
N−1∑
n=0

x[n]w[n−m]e−j2πnk/N (2.12)

2.4.2 Window Functions

It is well-known that the window function w[n] that is used to “cut” the individual

audio frames out of an audio signal has a non-negligible impact on the obtained

discrete Fourier spectrum. The influence of the window function on the spectrum

can be deduced from the convolution theorem. Given that the discrete Fourier

transform of the signal x[n] is X[k] and the discrete Fourier transform of the

window function w[n] is W [k]

x[n]
F↔ X[k] (2.13)

w[n]
F↔ W [k] (2.14)

and the audio frame y[n] is the multiplication of the audio signal with the window

function

y[n] = x[n]w[n] (2.15)

then the discrete Fourier spectrum of the windowed signal y[n] is the convolution

of the discrete Fourier spectrum of the discrete Fourier transform of the signal and

of the window function.

Y [k] = X[k] ? W [k] (2.16)
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Thus, each frequency component of the original spectrum is convoluted with the

Fourier transform of the window function. For example windowing of a simple

cosine signal of frequency ω causes its Fourier transform to have non-zero values

at frequencies other than ω, although the analyzed signal does not contain these

frequency components. This effect is known as leakage effect. Figure 2.5 visualizes

this leakage effect for a cosine signal of 1000 Hz and a rectangular window and

for the same cosine signal and a Hanning window. The leakage effect can be

interpreted as smearing of the frequency spectrum. The Fourier transform of the

window function defines how the frequency spectrum is smeared.

In the worst case frequency components of a signal cannot be resolved because

of leakage effects. The width of the main beam of the Fourier transform of the

window function defines how close two frequency components can be till one can

no longer resolve them. The level of the side lobes define the masking level for

other frequencies i.e. spectral components of small amplitude can be hidden by

the leakage effect resulting from components with large amplitude. There exist

various window functions, as for example Hanning, Kaiser or rectangular window.

In MIR the Hanning window (see equation 2.17) is rather popular and if not stated

otherwise, is used in this thesis as the standard window function.

w[n] = 0.5(1− cos(2π(n− 1)

N
)), 0 ≤ n < N (2.17)

2.4.3 Time-Frequency Trade-off

Although it would be desirable, a Time-Frequency Representation cannot have

arbitrary time and frequency resolution. For the STFT this trade-off between

time and frequency resolution is known as Uncertainty Principle. The Uncertainty

Principle states that one cannot simultaneously increase both the time and the

frequency resolution of a STFT. The time resolution ∆T is defined by the window

size. Given that an audio frame contains K samples the time resolution is ∆T =

KTs, where Ts is the sampling period. The frequency resolution ∆f of a STFT is

the frequency interval between two consecutive Fourier Coefficients, which is ∆f =
fs
K

as the discrete frequency bins are equidistant samples of the Fourier spectrum.
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Figure 2.5: Windowing of an audio signal using a Hanning window function .

Based on the relation between sampling rate and sampling period fs = 1
Ts

one can

infer the inverse relation of the time-resolution ∆T and frequency-resolution ∆f

of the STFT.

∆f =
fs
K

=
1

KTs
=

1

∆T
(2.18)

A special visual representation of the STFT is the spectrogram. In a spectrogram

time increases linearly across the horizontal axis and frequency increases across the

vertical axis. For each audio frame along the horizontal time axis the corresponding
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magnitude spectrum |X(f)| is vertically visualized as gray scale or color values.

Figure 2.6 shows the spectrograms of two STFT with different time-frequency

resolutions. For spectrograms and in general in MIR a logarithmic amplitude

scale is used (see equation 2.5) as the human loudness perception is also roughly

logarithmic. In figure 2.6 one can see that using a higher time resolution (lower

plot) allows to better capture onset times, while using a better frequency resolution

allows to better resolve the frequency components of sustained tones, which are

resolved in a more fine-grained way.

The following two subsections now focus on two specific TFR. The first TFR is

based on the well-known Mel Frequency Cepstral Coefficients (MFCCs) and is a

standard representation commonly used in MIR. The second TFR is the Cent-

Spectrum and will be used by many of the algorithms presented in this thesis.

2.4.4 Mel Frequency Cepstral Coefficients (MFCCs)

Mel Frequency Cepstral Coefficients (MFCCs) are one way to represent the spectral

envelope of the spectrum of an audio frame. The spectral envelope is defined as

the shape of the power spectrum of a short segment of an audio signal, e.g., an

audio frame [Schwarz and Rodet, 1999]. In figure 2.7 the spectral envelope of

the power spectrum of an audio excerpt of a violin is visualized. The spectral

envelope captures perceptually important information about the corresponding

sound excerpt. One important aspect of a spectral envelope is that sounds with

similar spectral envelopes are generally perceived as similar.

To represent the spectral envelope of an audio frame via an MFCC vector one

has to perform three steps. First, the linear frequency resolution of the magni-

tude spectrum is mapped onto the logarithmic Mel-frequency scale as described

in section 2.3.5. Then the obtained Mel-Spectrum is transformed to logarithmic

amplitude scale according to equation 2.5. Finally, the logarithmic Mel-spectrum

is decorrelated by a Discrete Cosine Transform (DCT). The resulting DCT coeffi-

cients are the Mel Frequency Cepstral Coefficients. To get a compact and smooth

approximation of the spectral envelope only the first few DCT coefficients are kept.
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Figure 2.6: Spectrogram of the same audio excerpt for two different window sizes.

In the upper plot the frequency resolution is better (twice as high),

while in the lower plot the time resolution is higher (twice the number

of frames).

Keeping only the first few coefficients can also be interpreted as low-pass filtering

the logarithmic Mel-spectrum. As the name already indicates there exists a strong

relation between the MFCCs and the Cepstrum, the inverse Fourier Transform of

the Log-spectrum, as defined in equation 2.19.

cn =
1

N

N−1∑
k=0

ej
2π
N
nk log |X[k]| (2.19)
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Figure 2.7: Spectral Envelope of a violin (from [Schwarz and Rodet, 1999]).

In contrast to the definition of the Cepstrum in practice for the computation of

MFCC vectors the discrete cosine transform is used instead of the inverse Fourier

transform. In figure 2.8 three Time Frequency Representations are compared.

In the upper plot the magnitude spectrum is visualized, in the middle plot the

Mel-spectrum and in the lower plot the MFCC representation is shown. One

can see that because of the DCT compression the direct relation to the spectral

representation is lost for the MFCC representation.

In the next section the Cent-Spectrum is introduced and it is empirically shown

that the auditory Cent-scale is especially suitable for music signals.

2.4.5 Cent Spectrum

While many signal processing techniques in MIR simply use the Bark- or the Mel-

Scale to account for the logarithmic frequency perception of the human ear, here a

simple experiment is presented that indicates that the Cent-Scale is indeed a good

choice to account for the musical nature of digital audio signals in MIR.

The main idea of this experiment is that the frequency resolution of a Time-
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Figure 2.8: Three Time-Frequency Representations (the Spectrogram, the Mel-

scaled Spectrogram and MFCCs) .

Frequency representation should be adapted in such a way that the actually ob-

served frequency content of music signals can be adequately represented. To obtain

a model of the typical frequency content of audio files all songs of the ’1517-Artists’

evaluation collection (see 3.2.3) were transformed to the frequency domain and

the magnitude spectrogram was computed. Then mean and standard deviation

for each frequency bin over all magnitude spectrograms of all files were computed

separately for each genre to also reveal genre specific effects.

Figure 2.9 shows the results of this experiment. Some frequency bins have higher
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Figure 2.9: Observed mean over the frequency content of the audio files of the

’1517-Artist’ evaluation collection.

mean and variance than others. This is indicated by the peaks in these plots.

Additionally, in figure 2.9 the tics of the x-axis have been adjusted such that the

intervals correspond to semitone steps according to the Cent-Scale. A semitone is

equal to an interval of precisely 100 cent. The tics start at 5050 cent. The borders

of the semitone intervals precisely fall into the valleys for both the empirical mean

and the empirical standard deviation of the frequency bins in the plots. Conse-

quently the Cent-Scale perfectly fits the observed frequency distribution and the

cent-scaled frequency bins would maximize the captured variance. Furthermore,

one can see in figure 2.9 that the influence of the western musical scale differs de-

pending on the genre. Some genres like Classical and Jazz, which have been picked

here as examples, show like many other genres a strong influence of the western

musical scale, whereas the influence seems to be marginal for the genre Hip-Hop.

Thus, not only from a musical point of view, but also based on this observation
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it seems reasonable that the Cent-Scale as a logarithmic auditory scale is a good

choice for music signals.

It is worth mentioning that taking advantage of the western musical scale is not

a fundamentally new idea, but is the basic idea of the constant Q transform

[Brown, 1991], which is known to be especially suitable for music signal process-

ing. Thus, the Cent-Spectrum is related to the constant-Q transform and can

interpreted as a fast approximation thereof, but with a constant analysis window

length for all frequency bins.

Many of the presented algorithms in this thesis are based on the Cent-Spectrum.

To obtain the Cent-Spectrum during the STFT a Hanning window with a window

length of 2048 samples is used. For performance reasons a hard mapping of the

the linear magnitude spectrum onto Cent-Spectrum is performed and logarithmic

amplitude scale is used. The last section of this chapter focuses on audio nor-

malization techniques, which are useful to make spectral representations intensity

invariant.

2.5 Audio Normalization

Audio normalization is an important pre-processing step, as audio files are often

recorded at different volume levels. From a technical point of view this means that

the whole audio signal x[n] is amplified by a constant factor a.

x̂[n] = ax[n] (2.20)

The magnitude spectrum |X̂[k]| of the amplified signal is also scaled by the con-

stant factor a as the Fourier transform is a linear transformation.

|X̂[k]| = a|X[k]| (2.21)

As most of the algorithms process the magnitude spectrum on a logarithmic ampli-

tude scale (in dB) we focus on the amplified magnitude spectrum. The amplified

magnitude spectrum (in dB) is offset by a constant.

20 log10(|X̂[k]|) = 20 log10(a|X[k]|) = 20 log10(a) + 20 log10(|X[k]|) (2.22)
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In many cases it can be advantageous to be intensity invariant, which can be

achieved via an audio normalization. A simple approach that is used in some audio

applications is to subtract the mean of each frame. Removing the mean of each

frame of course makes the spectral representation invariant to the constant offset.

Especially for systems that use MFCCs this can be easily realized as the first MFCC

coefficient represents the mean over the whole frame. Thus, by removing the first

coefficient, MFCC vectors get intensity invariant. However, by using such an

approach the local intensity information is lost, as all frames will have zero mean.

The only information left is the spectral envelope of the audio frame. In this thesis

a variant of this standard audio normalization approach is used. To keep some

local intensity information but still make the whole audio signal intensity invariant

the constant offset of a frame is estimated not just based on a single local frame,

but using a fixed size neighborhood (for the audio normalization performed in this

thesis a neighborhood of +-100 frames is used) around each frame. From each

frame the mean of its neighborhood is removed to obtain the intensity invariant

Cent-Spectrum. This intensity invariant representation is then called normalized

Cent-Spectrum and is a commonly used time-frequency representations in this

thesis.

This chapter has introduced all the necessary signal processing fundamentals that

will be used in the subsequent chapters of this thesis to describe the audio similarity

algorithms that are then used to generate music recommendations.



3 Evaluation of Music Similarity
Algorithms in the Context of
Recommendation

This thesis focuses mainly on qualitative improvements of content-based music

recommender systems. Consequently, one central aspect is to measure the quality

of music recommender systems. This chapter will present general evaluation meth-

ods of music recommender systems, quality measures and the genre classification

datasets that are used in throughout this thesis. In the context of genre classifica-

tion two special issues will be discussed. First the negative impact of album and

artist effects and second how to also make the genre classification performance of

automatic systems comparable to human performance on the same dataset. The

next section will start with an introduction to standard evaluation methods of

music recommender systems.

3.1 Direct Evaluation of Recommender Systems

Basically there exist two methods to evaluate music recommender systems. Music

recommender systems can either be directly evaluated via listening experiments,

or via A/B-tests. Both methods will be briefly introduced in the following.

47
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3.1.1 Listening Experiments

The outline of a typical listening experiment is as follows: First, to set up the

experiment an appropriate number of participants is needed depending on the

required statistical power. Then to each participant a seed song and a list of

recommendations is presented. The recommendation list contains the recommen-

dations generated by two or more systems in randomized order. The participants

then have to rate the individual recommended songs, hence they have to decide if

these are appropriate recommendations or not. In practice one can only perform

a limited number of listening tests as listening experiments are in general expen-

sive, require a lot of human resources and are typically time consuming. Thus,

for general prototyping and fast evaluation of new approaches listening tests are

not well-suited, but for yearly competitive evaluations, e.g. the Audio Similar-

ity and Retrieval (AMS) task of the Music Information Retrieval Evaluation

eXchange (MIREX)1, listening test can be very enlightening and especially can

help to monitor the scientific progress.

3.1.2 A/B-Tests

The second possibility to perform a direct evaluation is an A/B-test [Ash, 2008].

For an A/B-test a large group of users is required. The set of users is then split

into two subgroups of equal size. Then depending on the user’s group the rec-

ommendations generated by system A or by system B are presented. For both

groups the user’s actions like click-rate, songs-skips, retention time or number of

song purchases are measured. Any significant difference in recommendation qual-

ity is expected to have an impact on the measured user actions aggregated over

all users. Unfortunately, to perform A/B-tests one essentially needs access to an

online music platform that is already heavily used. Thus, this is mainly a practi-

cal solution for companies that have an already established business, but not for

scientific research.

1http://www.music-ir.org/mirexwiki
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Clearly for rapid scientific prototyping both evaluation methods are not suitable.

Consequently, it is common practice to use a workaround to evaluate music rec-

ommender systems: genre classification.

3.2 Genre Classification - A Workaround

As both direct evaluation methods are no practical solutions for prototyping, in

MIR research one tries to automatize the evaluation process. The basic assump-

tion that automatic evaluations are based on is that songs that “sound similar”

are also good recommendations. Thus, by estimating pairwise song similarities a

ground truth for the automatic evaluation can be defined. However, generating a

reliable ground truth with respect to song or artist similarity is a well discussed

[Ellis et al., 2002], but still open problem. One main issue is that the effort of esti-

mating pairwise song similarities grows quadratically with the number of songs in

a dataset. Consequently, directly estimating pairwise song similarities e.g. based

on a listening test is only feasible for very tiny datasets. Furthermore pairwise song

similarities are hard to obtain, since musical similarity itself is a not well-defined

concept [Ellis et al., 2002].

In fact by taking a look at how people organize their music it turns out that

estimating pairwise song similarities is not a human way to assess musical sim-

ilarity. Typically, humans organize their music collections by defining different

subcategories. These categories as a whole reflect music that is for some reason

considered similar. In many cases these categories correspond to genres. In some

other cases the categories cover some period of time e.g. the “80ies”. Often such

categorization schemata are also inconsistent. For example results of an informal

experiment show that about 10% of all songs in a personal music collection are

duplicates, which can be interpreted as one indicator for inconsistencies that exist

in human categorization schemata.

Nonetheless, it is common practice to make use of these user defined categories,

which are assumed to contain groups of similar songs, and interpret the categoriza-

tion as ground truth. This way the task of evaluating music recommender systems
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can be interpreted as a classification problem, where the songs in the recommen-

dation list should belong to the same category as the query song. This allows to

automate the evaluation procedure of music recommender systems. Once a col-

lection is organized into categories, the collection can be used as ground truth to

evaluate different recommendation algorithms.

As this is the standard approach in MIR the evaluations conducted in this thesis

follow this procedure and assess the quality of music recommender systems in an

indirect way, via music classification. Of course any music categorization schema

for example based on mood, instrumentation or singing voice can be used for

music classification. However, the most widespread and most popular way to sub-

categorize music is according to the musical genre. This is also reflected by the

typically genre based classification datasets that are used for evaluations. For this

reason this evaluation method is often referred to as music genre classification.

One big advantage of genre as classification criterion is that for many songs genre

information can be automatically collected from the web, record labels or from

personal music collections.

While it seems straightforward to compare different music recommendation sys-

tems via genre classification, using genre information as evaluation criterion re-

quires a careful design of the evaluation procedure. First of all, although genre

information is widely used to organize and structure music collections, genre def-

inition and attribution is generally accepted to be subjective [Sordo et al., 2008].

Sordo et al. show based on some large-scale analyses that some genres are clearly

defined both by experts and the wisdom of crowds, while for other genres it is

difficult to get a common consensus on their meaning. Thus, there is some general

consensus on genre labels, but the perception of genre can vary from individual

to individual. Furthermore, one has to accept that there do exist genre incon-

sistencies (or genre ambiguities) and annotation errors in any genre classification

dataset. Therefore to correctly cope with these problems, it would be necessary

to get rid of a single ground truth annotation and reflect multiple opinions in the

evaluation datasets. This problem will be addressed in section 3.4.4 of this chapter,

where two quality measures based on the user ratings obtained from a listening

experiment are defined.
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Another problem with respect to the evaluation via genre classification are the

genre classification datasets themselves. On the one hand, some of the datasets

that are used in the literature are not publicly available, which makes the com-

parison of systems impossible as a comparison of classification results is only valid

on one and the same dataset. On the other hand, most of the datasets that are

publicly available have not been designed to be used for the evaluation of mu-

sic recommender systems. Because of the presence of strong album-, artist- and

portfolio-effects the results obtained on these datasets are unreliable (see section

3.3). To address this problem the datasets used in this thesis are all (except one

dataset of minor importance) publicly available. Three of the datasets presented

in section 3.2.3 are novel and have been carefully designed to help facilitate the

evaluation process via genre classification.

Finally, it is not only important to have appropriate evaluation datasets, but also

to use appropriate quality measures to measure and compare the performance of

different music recommendation system on a specific dataset. The quality measures

that are used in this thesis are presented in the following subsection and the

reliability of these quality measures is then investigated in subsection 3.2.2.

3.2.1 Quality Measures

Within this thesis three different quality measures are used with respect to genre

classification experiments. Two quality measures, the k-Neighbor Accuracy and R-

Precision, are related to a query or recommendation scenario and the third quality

measures is the standard Classification Accuracy which is a common evaluation

metric for arbitrary classification tasks.

3.2.1.1 Query-Scenario based Quality Measures

Both quality measures presented in this subsection (k-NA and R-Prec) are related

to a query scenario, where the algorithm is asked to return a set of recommenda-

tions given a query song. For such a result set one counts the number of correctly
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returned songs. A song in the result set is assumed to be correct w.r.t. our eval-

uation if the genre is the same as the genre of the query song. The following

paragraph gives a mathematically more precise definition of the various quality

measures we computed.

Consider a music collection of n tracks separated into p genres, then a classification

function classify , which counts the number of songs belonging to genre g in a result

set of size r given Si as query song, is defined by

classify(Si, g, r) =
n∑
j=1

G(Sj) == g ∧R(Sj|Si) < r (3.1)

where G(Sj) denotes the genre of song Sj and R(Sj|Si) denotes the rank according

to the similarity measure of the song Sj given the song Si as query song.

3.2.1.1.1 k-Neighbor Accuracy (k-NA) The k-Neighbor Accuracy2 for a col-

lection of size n is given by

k-NA =

∑n
i=1

∑k
j=1 classify(Si,G(Si), k)

kn
. (3.2)

The k-NA is an important measure because in quite many applications only the

top ranked songs (i.e., the adequate recommendations) are of use. Unfortunately,

the k-NA is extremely prone to artist and album effects (see section 3.3). Thus, the

k-NA should be used only in combination with an artist filter. It is also important

to note that the k-NA is not comparable to the classification result of a k-NN

classifier. In k-NN classification the genre of the song to be classified is unknown

and is estimated based on the genre of the k in the recommendation set, whereas

k-NA is the percentage of songs in the recommendation set that have the same

genre as the query song.

3.2.1.1.2 R-precision (R-Prec) The R-precision, in contrast to the k-NA, con-

siders all songs of the genre of the query song. Hence, for a given query song the

2With respect to the MIREX Audio Music Similarity and Retrieval evaluation the k-Neighbor

Accuracy is called Neighborhood Clustering instead.
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size of the result set is equivalent to the size of the song’s genre. The R-precision

for a query song Si is defined according to [Aucouturier, 2006]

prec(Si) =
classify(Si,G(Si), nG(Si))

nG(Si)
. (3.3)

The global R-precision over a whole collection is defined as the mean over all songs.

R-Prec =

∑n
i=1 prec(Si)

n
(3.4)

3.2.1.2 Classification-Scenario based Quality Measures

In contrast to the query scenario, where the genre of the query song is known,

in a classification task the genre labels have to be predicted by the classifier.

Furthermore, in a classification scenario both query song and recommendation list

are not defined, but the collection of songs is just split into a training set and a

test set. It is then the task of the classifier to correctly predict the class labels

of the songs in the test-set given the songs in the training-set as training data.

Thus, the classification-scenario is more general and any arbitrary classification

algorithm can be used for a genre classification task, but only the results obtained

via nearest neighbor classification have a semantic interpretation in the context of

the evaluation of music recommender systems. Still the results obtained by other

classifiers than the nearest neighbor algorithms are useful to identify the general

discriminative power associated with a specific feature set.

3.2.1.2.1 Classification Accuracy (CA) For all classification experiments that

are conducted in this thesis the classification accuracy as a standard quality mea-

sure is reported. Since genre classification is in general a multi-class classification

problem, the overall classification accuracy is used to summarize the obtained

classification performance.

classification accuracy =
number of correctly classified instances

number of total instances
(3.5)
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As a name convention within this thesis classification accuracies are always de-

noted by the classifier name concatenated with “CA” for classification accuracy

e.g. “SVM CA” or “5-NN CA”. The classification accuracies reported in this

thesis are either based on a leave-one out cross-validation or on ten times 10-fold

cross-validation. In case of cross-validation the average of the accuracy over the

individual runs is reported, as the obtained results can vary depending on the

random splits into the cross-validation folds.

3.2.2 Reliability of Quality Measures based on Genre
Classification

As genre classification is only a workaround to evaluate music recommender sys-

tems one main question is how reliable the obtained quality measurements are.

Hence, do systems that achieve higher genre classification scores really generate

better music recommendations than systems with a lower score?

A deeper insight into the relationship between genre classification scores and rec-

ommendation quality can be gained by analyzing the data collected by the MIREX

Audio Music Similarity and Retrieval Tasks. In [Pohle, 2010] Pohle showed that

there does exist a strong correlation between the user similarity ratings and the

genre classification accuracies for the MIREX 2007 competition. Here these ex-

periments are extended and the results obtained in 2009 and 2010 are analyzed

in more detail to further emphasize the strong correlation between user similarity

ratings and genre classification-based quality measures.

Within the MIREX Audio Music Similarity and Retrieval Tasks each algorithm

has to compute a similarity matrix for an evaluation collection containing 7000

songs. Out of this similarity matrix the top-5 most similar songs for 100 different

query songs are determined. Then human graders are asked to rate the songs

that are proposed by the participating algorithms and presented together in ran-

domized order for a given query song. Two scores have to be assigned by the

human graders for each song: the broad-score and the fine-score. The broad-score

measures the degree of similarity to the query song on a three level scale (“not
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similar”, “somewhat similar”, “very similar”). The fine score can be any value in

between the continuous interval of 0 to 100. Besides the human evaluation judg-

ments also objective statistics are derived from the distance matrices generated

by the algorithms. These objective statistics also include the k-Neighbor Accuracy

(k-NA) for different neighborhood sizes (5, 10, 20 and 50). Both artist filtered

and non-artist filtered results are reported. Figure 3.1 shows the obtained results

of the participating algorithms in 2009 and 2010. The left plots show the original

data, whereas in the right plot the scales of the quality metrics have been adjusted

via mean-variance normalization to bring the quality measure to the same scale.

Even visually one can see that there does exist a strong correlation between the user

generated similarity assignments and automatically obtained genre classification

accuracies. In table 3.1 the Pearson correlation coefficient between the two human

generated similarity scores and the reported objective statistics (k-NA, k-NA artist

filter) are summarized. Obviously, the artist filtered k-NA quality measures yield

a higher correlation with the human similarity ratings. Regarding the not artist

filtered quality measures those considering a bigger neighborhood seem to better

correspond to the human judgments. For the artist filtered quality k-NA measures

a neighborhood size of k = 20 seems to have optimal predictability of the human

similarity assessments. Thus, in general one can conclude that using a larger

neighborhood size is advisable. Another interesting detail is that there does exist

an extremely strong correlation between the broad and the fine score. For the

MIREX 2009 competition the correlation coefficient between these two scores is

0.9978 and for the MIREX 2010 competition the correlation coefficient is 0.9983.

Consequently, the judgments of the human graders are very consistent over both

scores.

Altogether, the analysis of the MIREX data shows that genre classification-based

quality criteria are quite reliable quality indicators in the context of music simi-

larity estimation. Although this MIREX task clearly focuses on music similarity

and not explicitly on music recommendation, this result still provides some justi-

fication for using genre classification as an automatic evaluation method for music

recommender systems. Interestingly, one of the author’s personal findings from

participating in the MIREX evaluation as a grader is that many of the proposed
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Figure 3.1: Analysis of the user assigned broad and fine scores and the neighbor-

hood accuracies (left: original scores; right: normalized scores).

songs by the participating algorithms seemed to come just from a single artist or

are just perfectly similar to each other, which makes listening to the long evalu-

ation lists a tiring task. To increase the diversity of the proposed songs using a

portfolio filter (as proposed in section 3.3.2) in the evaluation would be a good

idea especially in the context of evaluating music recommendation.

In the next section the genre classification datasets that are used within this thesis

for evaluation are presented.
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MIREX 2009

with Artist Filter without Artist Filter

indicator fine broad fine broad

5-NA 0.9856 0.9836 0.9422 0.9439

10-NA 0.9886 0.9869 0.9339 0.9367

20-NA 0.9906 0.9893 0.9553 0.9586

50-NA 0.9873 0.9857 0.9860 0.9884

MIREX 2010

with Artist Filter without Artist Filter

indicator fine broad fine broad

5-NA 0.9966 0.9958 0.9933 0.9945

10-NA 0.9966 0.9962 0.9935 0.9949

20-NA 0.9964 0.9967 0.9939 0.9957

50-NA 0.9957 0.9966 0.9946 0.9965

Table 3.1: Pearson correlation between genre neighborhood accuracy, k-NA for (k

= 5, 10, 20 and 50), and human assigned broad and fine scores for the

MIREX 2009 and MIREX 2010 results.

3.2.3 Genre Classification Datasets

In this thesis eight different genre classification datasets are used for the evaluation.

Three of these (“GTZAN”, “ISMIR 2004 Genre” and “Ballroom”) are well-known

datasets and should help to make the evaluation results comparable to previous

results in the literature. However, we suspect that there is a significant artist

effect in these three datasets. For the other five datasets (“Homburg”, “1517-

Artists”, “Annotated”,“103-Artists” and “Unique”), artist information is available

and we use an artist filter to prevent any artist or album effects. Table 3.2.3

gives a compact overview on the used datasets. Detailed information on the class

distribution of each dataset can be found in Appendix A.
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dataset #tracks #artists #genres smallest / largest class

103-Artists 2445 103 21 1.8% / 10.43%

1517-Artists 3180 1517 19 3.963% / 5.88%

Annotated 190 190 19 5.26% / 5.26%

Unique 3115 3115 14 24.59% / 0.83%

GTZAN 1000 N/A 10 10.00% / 10.00%

ISMIR 2004 1458 N/A 6 3.57% / 43.9%

Homburg 1886 1463 9 2.49% / 26.72%

Ballroom 698 N/A 8 8.6% / 15.9%

Table 3.2: A comparison of genre classification datasets used in this thesis.

3.2.3.1 GTZAN

The GTZAN dataset contains 1000 song excerpts (30 seconds) evenly distributed

over 10 genres. Unfortunately, there is no artist information available and the

number of different artists is unknown. However, we expect an artist effect in this

dataset, as listening to some of the songs reveals that some artists are represented

with several songs.

3.2.3.2 ISMIR 2004 Genre

The ISMIR 2004 Genre dataset was used as ground truth in the first public eval-

uation of content-based algorithms in 20043. There exist two different versions of

the dataset. In our evaluation we will use the larger dataset consisting of 1458

full length tracks distributed over 6 genres. The class distribution is unequal.

The dominating class “classical” comprises 43.9% of all songs. Artist information

is only partially available, but the number of different artists is rather low and

consequently a strong artist effect is to be expected.

3http://ismir2004.ismir.net/ISMIR Contest.html



3 Evaluation of Music Similarity Algorithms in the Context of Recommendation59

3.2.3.3 Ballroom

The ballroom collection consists of 698 song excerpts (30 seconds) of 8 different

dance music styles (Cha-cha, Jive, Quickstep, Rumba, Samba, Tango, Viennese

Waltz and Waltz). The genre distribution is quite uniform. The category with

the fewest examples is represented by 8.6%, the largest category by 15.9% of

all examples. Artist information is missing, but for a part of the songs album

information is available. We expect that there exists an album or artist effect

on this dataset, since there are often many examples that seem to belong to one

album.

3.2.3.4 Homburg

The “Homburg” dataset [Homburg et al., 2005] contains 1886 songs by 1463 dif-

ferent artists. Consequently, the artist effect should be relatively small, but still

we will use an artist filter on this dataset since artist information is available. The

rather short song excerpts of 10 seconds length are unequally distributed over 9

genres. The largest class contains 26.72%, the smallest class 2.49% of all songs.

3.2.3.5 1517-Artists

This genre classification dataset consists of freely available songs from down-

load.com45. It has been previously used in [Seyerlehner et al., 2008] and also in

[Seyerlehner et al., 2009c]. To ensure reasonable track quality approximately the

190 most popular songs (according to the number of total listenings) were selected

for each genre. Altogether there are 3180 tracks by 1517 different artists dis-

tributed over 19 genres. It is worth mentioning that this collection has an almost

uniform genre distribution, contains tracks from a large number of different artists,

and can be freely downloaded from the author’s personal homepage6.

4http://music.download.com/
5The http://music.download.com/ began redirecting all artist pages and category doors to

corresponding pages on their sister music site Last.fm on March 2009.
6www.seyerlehner.info
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3.2.3.6 Unique

Dataset “Unique” contains 30 seconds song excerpts from 3115 popular and well-

known songs distributed over 14 genres and was used in [Seyerlehner et al., 2010b].

The dataset is compiled in such a way that no two songs by one and the same artist

are in the dataset. Consequently, there is no need to apply an artist filter. The

class distribution is skewed. The smallest class accounts for 0.83%, the largest

class for 24.59% of all songs.

3.2.3.7 Annotated

The “Annotated” dataset is basically a subset of the songs of the “1517-Artists”

dataset. For each genre some examples have been randomly drawn of which very

untypical examples were manually removed. Furthermore, the imprecisely defined

genre “Religious” was removed and the genre “Easy Listening & Vocals” was split

into two separate genres. All artists in this dataset are unique and all genres

consist of an equal number of songs. This dataset has been used in a user study

on human genre classification [Seyerlehner et al., 2010a]. Besides the ground truth

genre information, the genre ratings from the participants of the user study are

available for this dataset. For this reason this dataset was named “Annotated”.

3.2.3.8 103-Artists

The “103-Artists” is the only in-house collection that is used in this thesis. It is one

of the first larger genre classification datasets and has been used in [Pampalk, 2006]

and [Pohle, 2010] and was named DB-L there. On average there are 23.74 songs per

artist in this collection and an average of only 4.9 artists per genre. Consequently,

on this dataset one can observe an extreme artist effect. Because of the extreme

artist effect this dataset is not an adequate dataset for the evaluation of music

recommender systems and has only been used in some early experiments.

In the following section the impact of album and artist effects on the evaluation

results will be discussed in detail.
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3.3 Artist and Album Effects

One major issue related to the evaluation of music recommender systems via music

genre classification is that production specific effects can have a great influence on

the quality measures introduced in 3.2.1. The influence of production specific

effects on the introduced quality measures can be explained as follows:

Naturally, songs of the same artist often sound very similar to each other, because

of the very specific characteristics of the artist. From an acoustic point of view the

characteristic style of an artist is related to the instrumentation, the singing voice

and the type of music played. As a consequence, even the spectral representa-

tions of the songs of one artist are often very similar to each other. Consequently,

identifying songs of one and the same artist is relatively easy using spectral audio

similarity algorithms. This effect is known as artist effect. In some cases even

album specific production effects have an important influence on the spectral rep-

resentation of songs, which is then called album effect. Artist and album effects are

not a problem in the context of music similarity computation, as it is reasonable

to assume that all songs of one artist sound similar. In the context of recom-

mendation it is however problematic, since then in many cases the recommended

songs will be songs of the same artist as the query song, which can be annoying

for users. A music recommender system should clearly present interesting and

probably complex relationship among songs, but not trivial ones, which can easily

also be generated by simply searching for the artist’s name. While one could argue

that it is rather restrictive not to allow songs of the same artist as the query song

in the recommendation list, the most promising way to overcome this problem is

to have two different browsing modes: one to explore the music space and another

one to further explore a specific artist.

As only non-trivial musical similarities are interesting for recommendation, it is

important for proper evaluation of music recommender systems to ensure that

songs from the same artists are not in both training and test sets for classification-

scenario based quality measures. For query-scenario based quality measures songs

of the same artist as the query song should be removed from the result set prior

to the evaluation. In both cases artist information is used for filtering during the
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evaluation process. For this reason this filtering operation is called artist filter

and has been initially proposed by Pampalk et al. [Pampalk et al., 2005]. In the

following section the influence of artist and album effects on the evaluation results

is discussed.

3.3.1 Artist Filter

The artist effect has been first observed by Pampalk [Pampalk, 2006] on rather

small datasets. Some researchers speculated that artist and album effects would

be less sever on large datasets. Recently, Flexer et al. [Flexer and Schnitzer, 2009]

could show on a large scale dataset, that both artist and album effects can be

observed even on large datasets. Their results indicate that not using an artist

filter yields very over-optimistic results, when nearest neighbor quality measures

are used. They could also show that the database size clearly influences genre-

classification-based quality measures. Small datasets are too optimistic if no or

only an album filter is used, but they are somewhat too pessimistic if an artist

filter is applied. Thus, in this thesis a conservative approach is taken and an artist

filter is used wherever possible, in such a way that the obtained results are rather

pessimistic.

3.3.1.1 Influence of Artist and Album Effects on Evaluation Metrics

Not all quality measures are equally influenced by artist and album effects. To

illustrate the different influences of the artist effect on the quality measures an ex-

periment was set up. A classic frame-level similarity algorithm, the Single Gaussian

(SG) approach (see section 4.2.2), is used to compute song similarities. The k-NA,

the k-NN CA and the R-Prec quality measures (see 3.2.1) are computed for both

cases, with and without artist filter. For nearest neighbor based quality measures

the neighborhood size is varied from 1 to 50 neighbors.

Figure 3.2 visualizes the result. The k-NA is extremely influenced by the artist

filter. The difference is extreme for small neighborhood sizes for both quality mea-
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Figure 3.2: Comparison of the influence of an artist filter on different quality mea-

sures for varying neighborhood size k.

sures, but decreases with growing neighborhood size. As the R-precision is not in-

fluenced by the neighborhood size, it stays the same for a varying k. Interestingly,

the R-precision is not much influenced by the artist filter. To obtain the classifi-

cation results for the k-NN classifier (k-NN CA) a leave-one-out cross-validation

was performed. Without using an artist filter, the k-NN CA is decreasing with

increasing neighborhood size, while it is increasing if an artist filter is used. This

behavior of the k-NN classifier can be explained by the fact that in the case that

no artist filter is used, the first nearest neighbors belong to the same artist and are

consequently reliable estimates of the genre. However, this is a rather untypical

behavior of the k-NN classifier, as in a typical classification task the classifica-

tion accuracy would increase with increasing neighborhood size till the optimal

neighborhood size is reached and would then decrease with a further increasing
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neighborhood size. This untypical behavior of the k-NN classifier can even be used

to detect the presence of a strong artist effect (see 5.5). For example if the 1-NN

classifier outperforms all other k-NN classifiers, then it is rather likely that the

obtained results are too optimistic due to the presence of an artist or album effect.

Independent of the neighborhood size the obtained quality measures significantly

differ depending on the application of an artist filter. Especially nearest neighbor

based quality measures are extremely influenced by the artist effect. However,

nearest neighbor based evaluation criteria are important as the nearest neighbors

of a query song are the songs that would actually be recommended by a system.

On the one hand, the influence of an artist filter is decreasing with increasing

neighborhood size, therefore it is advisable to use a large neighborhood size for

evaluations. On the other hand, the neighborhood size used for evaluation should

not exceed a plausible recommendation list size. Neighborhood sizes in between

5 to 20 seem therefore most appropriate. Still the choice of an appropriate neigh-

borhood size also depends on the dataset and should never exceed the minimum

number of artists per genre, if an artist filter is used.

3.3.1.2 Genre Prediction based on Artist Information

To further demonstrate the strong relation between artist and genre information

another experiment was conducted. In this experiment it is shown that one can

obtain high classification accuracies for nearest neighbor quality measures, with-

out using any content-based techniques, but just using meta information like artist

names, song names or album names. One can assume that this information is in

general available for any song, either because it is stored in the file itself — e.g., in

the id3 tags — ,or encoded in the filename, or it can be obtained by using audio

fingerprinting techniques to identify any anonymous file. In the conducted exper-

iment solely the filenames are analyzed. Dataset “103-Artists” is used because

the filenames often, but not always contain artist, song or album names like one

can expect in a typical user collection. Then song similarities are estimated by

estimating string similarities on the filenames. As a measure of the similarity of
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two filenames we use a string similarity algorithm that is based on the longest com-

mon substring of the two strings. Given two string s1 and s2 the string similarity

measure that is used is computed by

d =
length(LCS(s1, s2))

min(length(s1), length(s2))
, (3.6)

where LCS is a function that returns the Longest Common Substring of both

strings.

Table 3.3 summarizes the obtained quality measures for this string similarity al-

gorithm (LCS) for both cases, with and without artist filter. For comparison also

the classification accuracies obtained by the classic Single Gaussian (SG) approach

summarized in table 3.3. The baseline values are obtained by randomly choosing

the nearest neighbor songs to a given query song. Interestingly, although the LCS

algorithm has no information about the musical content of a song, classification

accuracies far above the baseline and outperforming those of the Single Gaussian

approach are obtained when no artist filter is used. By applying an artist filter,

the classification accuracies of LCS approach radically drop and hardly outper-

form the baseline. Obviously, a song’s genre can be predicted with high accuracy

solely based on the artist information. However, the song similarities and the

genre predictions of the string based similarity approach are obviously only based

on the artist information. Using an artist filter then reveals that the string based

approach — as expected — cannot identify any more complex and interesting re-

lations among songs. In contrast for the Single Gaussian approach a significant

decrease in classification performance can be observed — also expected —, but

the classification results after artist filtering are still far above the baseline. As it

is important in the context of music recommendation to identify interesting and

no trivial relationships among songs, one can see from this experiment that using

an artist filter is a must-do with respect to the evaluation of music recommender

systems. In the next section the concept of an artist filter is further extended to

an even more restrictive filter, the portfolio filter.
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Longest Common Substring (LCS)

indicator without af Baseline with af Baseline

1-NA 0.7607 0.0618 0.0769 0.0470

5-NA 0.7233 0.0595 0.0470 0.0464

10-NA 0.6772 0.0603 0.0401 0.0470

15-NA 0.6246 0.0581 0.0470 0.0456

20-NA 0.5752 0.0588 0.0380 0.0462

1-NN CA 0.7607 0.0618 0.0769 0.0470

5-NN CA 0.8180 0.0691 0.0376 0.0474

10-NN CA 0.8192 0.0659 0.0303 0.0511

15-NN CA 0.8074 0.0704 0.0258 0.0479

20-NN CA 0.7988 0.0695 0.0213 0.0425

R-Prec 0.1507 0.0414 0.0544 0.0367

Single Gaussian (SG)

indicator without af Baseline with af Baseline

1-NA 0.7677 0.0618 0.2793 0.0470

5-NA 0.6741 0.0595 0.2658 0.0464

10-NA 0.6058 0.0603 0.2554 0.0470

15-NA 0.5515 0.0581 0.2473 0.0456

20-NA 0.5108 0.0588 0.2398 0.0462

1-NN CA 0.7677 0.0618 0.2793 0.0470

5-NN CA 0.7333 0.0691 0.2986 0.0474

10-NN CA 0.7264 0.0659 0.3104 0.0511

15-NN CA 0.7072 0.0704 0.3174 0.0479

20-NN CA 0.6908 0.0695 0.3182 0.0425

R-Prec 0.2321 0.0414 0.1750 0.0367

Table 3.3: Comparison of artist filtered and not artist filtered quality indicators for

a simple string similarity based approach (LCS) and the classic Single

Gaussian (SG) approach on dataset “103-Artists”.
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3.3.2 Portfolio Filter

The portfolio effect is an undesired effect for example known in news recommen-

dation. There the recommendation lists often contain identical or nearly identical

news messages only. With respect to music recommendation there exists a similar

effect. Often all the recommended songs, although not from the same artist as the

query song (which can be ensured using an artist filter), are songs of a single artist

only. Such a recommendation list definitely lacks in diversity. To increase the di-

versity of recommendation lists in this thesis it is proposed to use a portfolio filter.

While an artist filter ensures that songs in the recommendation list are not from

the same artist as the query song, a portfolio filter ensures that there is only one

song per artist in each recommendation list. Thus, a portfolio filter is even more

restrictive than an artist filter and forces content-based recommender systems to

increase the diversity of the recommendations. In chapter 5.5 the impact of the

portfolio effect on the evaluation result will be investigated.

3.3.2.1 Portfolio-filtered Datasets

An easy way of realizing an artist filter or even a portfolio filter is to construct a

dataset where only one single song per artist is in the dataset. Using this approach

no special evaluation procedures are necessary. Additionally, the generalization

capabilities of the methods are better evaluated, as only non trivial similarity

relationships exist in such a dataset. Furthermore, such an approach also leads

to reduced database sizes and speeds up the evaluation time. The only drawback

of realizing an artist or portfolio filter this way is that datasets containing many

different artists are more difficult to compile. For the evaluations conducted in this

thesis one such special dataset was compiled, the “Unique” dataset (see 3.2.3),

which contains only one song per artist.

The next section presents the author’s efforts to also make results of automatic

genre classification comparable to human genre classification performance to be

able to judge how state-of-the-art automatic classification algorithms compare to

humans.
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3.4 Comparison of Human, Automatic and

Collaborative Classification

Although genre classification datasets help to assess the quality of music recom-

mender systems, genre classification by itself does only allow to assess the relative

performance of systems to each other, but does not provide any information on

how a system performs compared to human judgment. To make the classification

accuracies obtained on a genre classification dataset comparable to the perfor-

mance of human beings, a listening experiment was designed. The results of this

listening experiment and the comparison of the performance of humans and au-

tomatic methods are presented in the following subsections. The next subsection

starts with a review of related work on this topic.

3.4.1 Related Work

In general genre as an evaluation criterion is a well-discussed topic [Ellis et al., 2002]

[Geleijnse et al., 2007] [Sordo et al., 2008] [McKay and Fujinaga, 2006]

[Craft et al., 2007] and it is broadly accepted in Music Information Retrieval (MIR)

as an evaluation criterion for content-based systems (see section 3.2). As a con-

sequence there exist numerous publications focusing on comparing automatic sys-

tems to each other using genre information. There also exists some scientific work

on evaluating the human abilities to classifying music into genres. Most notably

Gjerdingen et al. in [Gjerdingen and Perrott, 2008] showed that humans are very

fast at classify music into genres. About 300ms of audio are enough for humans to

come up with the same categorization decision as with 3000ms of audio. Bella et al.

in [Bella and Peretz, 2005] investigated the human ability to classify classical mu-

sic into sub-genres. Furthermore, Guaus et al. [Guaus and Herrera, 2006] study

the effect of rhythm and timbre modifications on the human music genre catego-

rization ability. They find that timbre features provide more genre discrimination

power than rhythm.

However, there exists little work on comparing automatic to human performance
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on the same genre classification task. In [Soltau et al., 1998] Soltau et al. men-

tioned that the genre confusions observed in a listening experiment are similar

to those of a proposed automatic system, but no evaluation to directly com-

pare human to automatic performance was conducted. The only work that re-

ally focuses on a comparison of human to automatic classification performance

is the work of Lippens et al. [Lippens et al., 2004] and dates back to 2004. In

[Lippens et al., 2004], a listening experiment is conducted were 27 human listen-

ers manually classified a collection of 160 songs (the “MAMI dataset”), into 6

possible genres by listening to 30 seconds excerpts. The average performance of

the participants (76%) is then compared to an automatic classification approach

with a classification performance of 57%, and the baseline accuracy (26%). Un-

fortunately, the MAMI dataset and the survey data are not publicly available.

To be able to also compare state-of-the-art systems to human classification, a lis-

tening experiment quite similar to the one presented in [Lippens et al., 2004] was

conducted.

3.4.2 The Listening Experiment

In this listening experiment 24 persons were asked to do exactly the same task the

machine was asked to solve, namely to categorize a set of songs into 19 genres.

The participants of this survey were aged between 20-40 and most of them had no

specific musical background, but can be characterized as typical mainstream music

consumers. The songs were drawn randomly from the “1517-Artists” dataset (see

section 3.2.3) in such a way that each genre is represented by 10 songs. Details on

the resulting dataset, called “Annotated”, can be found in Appendix A. While it

seems that just selecting 10 songs per genre is at the lower bound for a descrip-

tive subset of a genre, the number of songs that can be used in such a listening

experiment is of course limited by the available human resources. With respect to

the conducted listening experiment many of the participants reported that it took

them many hours to complete the survey and far longer than expected.

Comparing the conducted listening experiment presented here to the listening

experiment in [Lippens et al., 2004] there are some important differences in the
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data, the design of the experiment, and the analysis of the results:

� Unique Artists

To prevent artist effects and album effects [Flexer and Schnitzer, 2009], no

two songs by one and the same artists are in the dataset used for the listening

experiment. This is very important as artist and album effects can have a

huge biasing influence on the obtained classification accuracies, especially on

small datasets.

� Number of Genres

The number of genres (19) in our listening experiment is significantly larger,

and the musical scope is broader than in the MAMI dataset.

� Equal number of tracks per genres

Each genre is represented by 10 representative songs, making this a balanced

classification task that is not biased towards a popular, dominating genre like,

e.g., “Pop&Rock”.

� Explicit Genre Annotations

There exists a ground-truth genre label per song that has been assigned

by the artists that produced the songs via the music platform. The genre

categories are the same as used by the music platform7.

� Publicly Available Data

The music files used in the presented experiment and the genre votes obtained

through the listening experiment are both publicly available.8 This will allow

others to compare other methods not presented here to human performance

in the future.

� Collaborative Result

In section 3.4.3.3 the votes of the subjects are used to collaboratively estimate

a song’s genre. Thus, we are able to also compare the collaborative result

of all subjects to both individual results as well as automatic classification

systems.

7music.download.com
8www.seyerlehner.info
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It is important to note that it is not claimed that the genre annotations of this

dataset are particularly correct and we are aware that there might even exist

inconsistencies in this genre taxonomy. However, this is true for any dataset as

genre and genre taxonomies by definition are ambiguous and inconsistent. Still, it

is important to see that for comparative evaluations as presented here annotation

errors are not crucial since all evaluated approaches have to deal with the same

annotation errors. Furthermore, with respect to genre inconsistencies it is proposed

in section 3.4.4 to use so-called user scores as evaluation criteria, which allow to

account for existing genre ambiguities.

The experiment was carried out as follows: Each participant was instructed to

move the 190 anonymized full-length audio files into a set of folders representing

the 19 genres, plus an extra folder “other” in case they had no idea what genre a

song might belong to. Then a list of the files in the directory structure representing

the genres was generated by a script and returned by each subject via e-mail.

Finally, these files were parsed to obtain the votes of each individual.

3.4.3 Comparison of Approaches

3.4.3.1 Human Classification

The collected information from the listening experiment is represented as a set T

of tuples t = (ut, st, ĝt, gt), where ut (1 to 24) identifies the participant and st (1

to 190) the rated song. The ground truth genre of the song st is denoted gt ∈ G,

where G is the set containing the 19 ground truth genres. ĝt ∈ G+ represents

the genre predicted by participant ut. G+ is the set of genres plus the “other”

category. The classification accuracy of subject u with respect to the given ground

truth annotation is then given by

accu =

∑{t∈T |ut=u}
t ĝt == gt
|{t ∈ T |ut = u}|

(3.7)

A look at Figure 3.3 shows that there is a huge variation in the performance of

individual participants. Obviously the individual results heavily depend on the
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Figure 3.3: Ordered classification accuracies of the participants.

musical knowledge of the individuals. The worst participant exhibits a classifica-

tion accuracy of 26%, which is still far better than the baseline (guessing), which

would be 5%. The classification rate of the best individual is 71%. The average

classification accuracy obtained by the participants is 55%, the median is also

55%. Figure 3.3 visualizes the classification accuracies achieved by the individual

participants sorted from the worst to the best participant.

Aggregating the individual results of all users yields the overall classification result.

Figure 3.4 shows the confusion matrix with respect to the ground truth. Altogether

55% of all song-genre assignments of the participants were correct. However the

performance depends on the genre. While some genres seem to be well-defined

(e.g. “Comedy&Spoken Word”, “Electronic&Dance”, “Hip-Hop”), there is almost

no agreement among the participants for the genres “Folk” and “Vocals”. For the

other genres the participants agree to a certain extent. The most significant genre

confusions are “Folk” - “Vocals”, “Alternative&Punk” - “Rock&Pop”, “EasyLis-

tening” - “NewAge”, “Country” - “Folk”, “Blues” - “Jazz”, “Reggae” - “Hip-Hop”
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Figure 3.4: Confusion matrix of the classifications of the experiment with respect

to the ground truth annotation. Entry i, j is the percentage of user

votes that predicted class j when the true class was i.

and “Latin” - “EasyListening” and vice versa. These confusions indicate genre am-

biguities, but can also be interpreted as some sort of genre similarities. Also, many

genre pairs are never or extremely rarely confused, which implies that it is very

easy for humans to distinguish these genres. Based on the user votes one can

define the genre-song voting matrix V = (vg,s), where vg,s denotes the number of

times the participants voted for genre g given song s:

vgs =
{t∈T |st=s}∑

t

ĝt == g (3.8)

The genre-song voting matrix is visualized in figure 3.6. One can even visually

see that the majority of the participants agree with the ground truth information
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for most of the songs. In contrast to the confusion matrix, the genre-song voting

matrix visualizes the classification result for each song separately and is a compact

representation of the results of the listening experiment. To further analyze the

votes one can define the number of different genres D(s) the participants have

assigned to a specific song s:

D(s) =
G+∑
g

vgs > 0 (3.9)

Figure 3.5 (left) shows a histogram of the number of different genres D(s) the

user voted for. Although there are 20 options to choose from, in general the

participants did not vote for more than 8 different genres. This indicates that

some genres are not relevant at all for some songs. Furthermore one can identify

the most frequently estimated genre, the second most frequently estimated genre

and so on, for each song. Then the number for votes for the k (1 to 20) most

frequently estimated genre over all songs can be aggregated. The percentage of

the accumulated votes relative to the total number of votes is visualized in figure

3.5 (right). Consistent with the histogram in figure 3.5, all votes are within the

12 most frequently estimated genres. In general there exists a strong consensus

among the participants on a song’s genre. The most frequently predicted genre for

each song is responsible for 64% of all votes. The two most frequently predicted

genres of each song, together represent 80% of all votes (see figure 3.5). Therefore,

one can conclude that the majority of the participants strongly agree on just one

or two possible genre assignments for most of the songs.

3.4.3.2 Automatic Classification

To compare human to automatic classification performance five different automatic

classification methods are used. The choice of the evaluated approaches contains

classical and state-of-the-art systems. Only complete genre classification systems

as proposed in the literature are evaluated. Thus, the evaluated systems extract

different feature sets and are based on different classification approaches. Two

of the evaluated classification systems (SG-NN and RTBOF-NN) are based on

nearest neighbor classifiers. The other three algorithms (GT-SVM, BLF1-SVM,
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Figure 3.5: Histogram of the number of different genres per song the participants

have voted for (left) and percentage of the accumulated number of

votes for the k most frequently assigned genres per song (right).

BLF2-SVM) are based on a support vector machine classifier. The reported classi-

fication accuracies are obtained via leave-one-out cross-validation. The automatic

classification methods are briefly described below.

3.4.3.2.1 Single Gaussian (SG-NN) The Single Gaussian Nearest Neighbor

Classifier (SG-NN) is based on the classic Bag of Frames (BoF) approach (see

4.2). Each song is modeled as a distribution of Mel Frequency Cepstrum Coeffi-

cients (MFCCs). A single multivariate Gaussian distribution is used to model the

distribution of MFCCs of a song. To identify the nearest neighbors the Kullback-

Leibler (KL) divergence between two models is computed. The SG algorithm is

the by now “classic” and de-facto standard method to compute timbral similarity.

3.4.3.2.2 Rhythm Timbre Bag of Features (RTBOF-NN) The Rhythm Tim-

bre Bag of Features Nearest Neighbor Classifier (RTBOF-NN) is a state-of-the-art
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music similarity measure proposed by Pohle et al. in [Pohle et al., 2009]. This

measure ranked first in the MIREX 2009 music similarity and retrieval task and

has proven to be statistically significantly better than most of the participating

algorithms. In contrast to the classic Single Gaussian approach this RTBOF-NN

Classifier reflects the current state-of-the-art in nearest neighbor music classifica-

tion.

3.4.3.2.3 Block-Level Feature (BLF-SVM) The Block-Level Feature Support

Vector Machine approach (BLF-SVM) is a genre classification algorithm based

on block-level features (see chapter 5). An earlier version of this algorithm only

using the Spectral Pattern, the Delta Spectral Pattern and the Fluctuation Pattern

participated in the MIREX 2009 Audio Genre Classification task and took rank

14 out of 31[Seyerlehner and Schedl, 2009]. However, no statistically significant

difference to the winning algorithm was found. This approach will be denoted

BLF1-SVM. Additionally, we also evaluate an improved variant of this algorithm,

which we call BLF2-SVM here. This algorithm includes three additional block-

level features (Spectral Contrast Pattern, Correlation Pattern and Variance Delta

Spectral Pattern). This improved variant outperformed most of the participating

algorithms on different train-test-set task in the MRIEX 2010 competition and is

one of the state-of-the-art methods in automatic genre classification.

3.4.3.2.4 Marsyas (MARSYAS-SVM) The Marsyas (Music Analysis, Retrieval

and Synthesis for Audio Signals) framework9 is an open source software that can

be used to efficiently calculate various audio features. For a detailed description of

the extracted features we refer to [Tzanetakis and Cook, 2002]. This algorithm has

participated in the MIREX Genre Classification task from 2007 onwards, and the

features as well as the classification approach have been the same over the years.

The framework is used to extract the features exactly as for the MIREX 2009

contest (MARSYAS version 0.3.2). Then the WEKA Support Vector Machine

implementation to perform cross-validation experiments is used. This method

9http://marsyas.info
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is closest to the automatic approach by Lippens et al. [Lippens et al., 2004] and

should help to make our experiment more comparable to this previous experiment.

3.4.3.3 Collaborative Classification

In this subsection two straight-forward collaborative classification approaches (CV

and CSS-NN) based on the users’ aggregated votes are presented.

3.4.3.3.1 Collaborative Voting (CV) The Collaborative Voting (CV) approach

is simple. The genre most participants have voted for is the predicted genre of a

song. This method basically combines the individual classification results of the

participants following the majority rule like a meta-classifier.

3.4.3.3.2 Collaborative Filtering (CF-NN) The Collaborative Filtering Near-

est Neighbor Classifier (CF-NN) is related to an item-based collaborative filtering

approach. Each song is represented by its voting profile, which corresponds to

the column vector of a song in the genre-song voting matrix (see figure 3.6). One

can then derive song similarities by comparing the voting profiles of the songs.

To compare song profiles the city-block distance (l1 norm) was used in our ex-

periments. The song similarity information can then be used to perform nearest

neighbor classification.

3.4.3.4 Comparison

In figure 3.7 the classification results of the automatic methods, the collaborative

approaches and the individual results of the participants are visualized together,

sorted according to the achieved accuracy. Clearly, the content-based approaches

perform worse than most of the participants, whereas the collaborative approaches

achieve high classification accuracies and outperform most of the participants.

Comparing the best content-based approach (BLF2-SVM) to the best collabora-

tive approach (CF-NN) it turns out that the latter achieves almost double the
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Figure 3.6: Visualization of the genre-song voting matrix. Tracks are sorted ac-

cording to the ground truth genre.

classification accuracy of the content-based approach. Taking a look at the var-

ious content-based methods, we can see that there exist clear differences. The

classical timbral similarity measure performs worst, just outperforming the worst

participant. The classic MARSYAS-SVM approach does not perform much better.

Both recent methods RTBOF and BLF2-SVM show an improvement in classifica-

tion accuracy over the “classic” approaches. This indicates that the improvements

in automatic classification reduced the gap between human and automatic classi-

fication, but still there exists a difference of about 10 percentage points between

the best automatic method and the average human participant. Furthermore,

based on the obtained results we can define an upper bound on the achievable

classification accuracy for automatic methods on this dataset. Clearly because of

inconsistencies of the classification taxonomy and possible annotation errors none

of the evaluated methods will ever reach perfect classification accuracy. However,

as all evaluated methods have to deal with these problems the classification re-
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Figure 3.7: Comparison of classification results of the individual participants, au-

tomatic methods and the collaborative approaches.

sult of the CF-NN approach can be interpreted as an upper bound for automatic

methods on this dataset.

3.4.4 Evaluation based on User Data

One of the main disadvantages of using the classification accuracy as evaluation

criterion is that such experiments heavily depend on the quality of the ground

truth annotations. To improve the quality of the ground truth one can of course

ask an expert to define the genre annotations, but still the evaluation would just

depend on a single opinion and, as already pointed out, there will always exist

some annotation errors due to the inconsistency of the genre taxonomy itself.

To overcome these limitations it is proposed to perform a user centric evaluation

by aggregating the collected genre votes of the participants of the listening exper-
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iment. Thus, the ground truth is no longer based on a single opinion, but on the

aggregated opinions of all the participants regarding the genre affinity of a given

song. This way the obtained data from the listening experiment can not only be

used to make automatic classification methods comparable to human classification

performance, but this information can also be used to account for genre ambigu-

ities whenever genre classification is used in an evaluation, as already proposed

in [Craft et al., 2007] and [Lippens et al., 2004]. The basic idea for such a quality

measure is straight-forward: If even humans are unsure about a genre label then it

will be hard for the machine to get the label right.

To reflect these uncertainties of the genre annotations in a quality measure, a

user score is defined similarly to [Lippens et al., 2004]. A user score measures the

agreement of the predictions of an automatic method with the genre assignments

of the humans participating in the listening experiment. Thus, any algorithm can

collect points for each song s in the dataset according to the agreement with the

user votes. In particular, for each song s ∈ S the classification of the algorithm

into genre ĝs ∈ G is rated by the number of times this genre was voted for (vĝs,s)

relative to the number of times the participants voted for the most frequently

predicted genre (max({vg,s|g ∈ G})).

US1 =
1

|S|

s∈S∑
s

vĝs,s/max({vg,s|g ∈ G}) (3.10)

Extending the idea in [Craft et al., 2007], another straight-forward definition of a

user score — this score is denoted US2 — is to take the number of collected points

relative to the maximum number of points one can obtain on the dataset.

US2 =
s∈S∑
s

vĝs,s/
s∈S∑
s

max({vg,s|g ∈ G}) (3.11)

The difference of the two scores is that for US1 each song contributes equally,

whereas for US2 it is more important to correctly predict songs where the partici-

pants agreed pretty much on a single genre. One important advantage of both user

scores is that they no longer rely on the ground truth annotation, but are solely

based on the user ratings. By definition both scores are in the range between 0

and 1.
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Approach US1 US2 CA

BLF2-SVM 0.5615 0.5080 0.4579

RTBOF-NN 0.4352 0.3827 0.4253

BLF1-SVM 0.3672 0.3382 0.3421

MARSYAS-SVM 0.3217 0.3031 0.2953

SG-NN 0.3156 0.2791 0.2779

RND 0.0578 0.0673 0.0584

Table 3.4: Comparison of the user scores (US1, US2) and the classification accu-

racy (CA) obtained for the automatic approaches presented in section

3.2.

Table 3.4 summarizes the user scores and the classification accuracy for the auto-

matic classification methods presented in section 3.4.3.2. To our knowledge this is

the first comparison of automatic classification methods also accounting for genre

ambiguities in the literature. The ranking of the analyzed algorithms is the same

for all quality criteria. However, taking genre ambiguities into account clearly

changes the evaluation result. For example the difference between the BLF2-SVM

and the RTBOF-NN is relatively bigger for the users scores compared to the classi-

fication accuracy. An improvement of a user score over the classification accuracy

reveals that the misclassified songs are not classified into an arbitrary, completely

unrelated genre, but into a genre that users find similar, or tend to confuse also.

This method is advocated for future evaluations of genre classifiers, whenever ap-

propriate data are available.

3.5 Conclusions

Genre classification is a practical, cost efficient and reliable workaround to evaluate

music recommender systems, which is especially well-suited for rapid prototyping

as is typically done in academic research. However, there also exist some issues

related to the evaluation based on genre classification. Especially, artist and al-
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bum specific production effects can lead to over-optimistic quality measures. To

get reliable quality estimates an artist filter has to be used and the application

of the even more restrictive portfolio filter is recommended. Furthermore, the re-

sults of the conducted experiments indicate that using small neighborhood sizes

for nearest-neighbor based quality measures can lead to unstable and unreliable

quality estimates. It is therefore advisable to use larger neighborhood sizes. The

k-NA or k-NN CA with k=10, 15 or 20 seem to be most appropriate. Furthermore,

the evaluation of music recommender systems would profit by using user-centric

evaluation metrics like the evaluated user-scores, as these evaluation metrics no

longer depend on a single ground truth annotation, but on many aggregate user

judgments.

Furthermore, some important conclusions result from the presented listening ex-

periment. First of all, one can conclude that there is some progress with respect to

automatic genre classification, as the gap between automatic methods and human

classification has decreased. However, the best performing automatic method in

the conducted experiment still performs about 10 percentage points worse than

the average human participant. Thus, there is still a gap between automatic and

human classification performance. Furthermore, it could be shown that collabora-

tive approaches outperform both automatic methods and individual human per-

formances. This indicates that collaboratively collecting meta-information about

music, e.g., via a music platform is a very powerful method and is also the clear

trend in the music business. For content-based methods this implies that they

are most beneficial in situations where no other data is available. For instance, in

cold start situations, or in special application scenarios where no access to collab-

oratively collected meta-data is possible, or as one component of a more complex

hybrid music recommender system.



4 Improving Frame-Level Music
Similarity Algorithms

4.1 Music Similarity Algorithms: An Introduction

Ideally a content-based music audio similarity metric should approximate the ill-

defined “sounds like” relation for songs (e.g SongA “sounds like” SongB). In this

thesis this similarity information will then be used to generate recommendations

to support browsing and exploring a given music corpus (see Chapters 1 and 3).

However, approximating this “sounds like” relation is not a trivial task, especially

since this relation depends on the individual perception of various musical aspects

(e.g. instrumentation, rhythmic structure, singing voice, timbre, melody, tempo

or lyrics). This chapter will focus on a specific type of music similarity algorithms

often referred to as Bag-of-Frames (BoF) approaches1 that extract information

related to a song’s timbre. Although the first variants of frame-level similarity al-

gorithms have already been proposed in the late 90ies, this rather classic type of al-

gorithms is still widely used for example as one component in many state-of-the-art

algorithms participating in the last runs of the MIREX Audio Music Similarity and

Retrieval Task 2. Unfortunately, it is well-known [Aucouturier and Pachet, 2004]

that for these types of algorithms there does exist a “glass ceiling”, beyond which

no further improvement seems to be possible. However, the reason for this class

ceiling is still not yet completely understood. In section 4.4 three limiting factors

1BoF approaches are also named frame-level similarity algorithms to emphasize the difference

to the so-called block-level algorithms that will be presented in chapter 5.
2http://www.music-ir.org/mirex/

83



4 Improving Frame-Level Music Similarity Algorithms 84

have been identified. Thus, in general there are still some insights to be gained into

the BoF approach itself. Furthermore, the ability of BoF algorithms to generate

non-trivial recommendations (see 3.3) has not yet been studied in detail and will

be in the focus of this chapter.

This chapter will report on two variants of the Bag-of-Frames approach that have

been proposed to analyze and better understand the BoF approaches with the

ultimate goal to identify possible ways for improvements. This chapter is organized

as follows: First in section 4.2 an introduction to the Bag-of-Frames approach is

given. Then in the second section two questions are investigated:

� First, a vector quantization based variant of the BoF approach is presented.

Based on this variant it will be analyzed if using non-parametric distribution

models instead of parametric or semi-parametric models can help to improve

the recommendation quality of a BoF approach.

� Secondly, to better understand which frames really make two songs sound

the same from a machine’s point of view a nearest neighbor density estima-

tion based similarity algorithm is proposed. Based on the obtained results

a frame-selection strategy has been developed that leads to a qualitative

improvement of frame-level algorithms.

Finally, section 4.4 then concludes on the obtained results and discusses the general

limitations of frame-level algorithms. The next section gives an introduction to

the Bag-of-Frames approach and presents different algorithmic variants known in

the literature.

4.2 The Bag-of-Frames Approach (BoF)

The general idea of the BoF approach is to model a song as the long-term dis-

tribution of local features. As local features, which are typically extracted on

a frame-by-frame basis, commonly the Mel Frequency Cepstral Coefficients (see

2.4.4) are used. MFCCs are a compact representation of the spectral envelope of
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a short audio frame and were and are still one of the most widespread features

in the MIR community. Since the spectral envelope characterizes the timbre of

a short audio frame, the distribution of all local MFCC vectors is related to the

overall timbral characteristic of a song.

One essential part of the BoF approach is the strategy that is used to model the

distribution of the local features, because both memory requirements and runtime

depend on the used distribution model. Furthermore, it seems that the type of

distribution model (e.g. parametric or non-parametric) also has some influence

on the recommendation quality, which will be investigated in section 4.3.1. For

this reason many different variants of the BoF approach have been proposed in

the literature. The following four sections, where BoF algorithms are categorized

according to the type of the distribution model, give an overview on these different

variants of the BoF approach and point out their advantages and disadvantages.

4.2.1 Gaussian Mixture Models

Some of the first approaches [Logan and Salomon, 2001] to model timbral simi-

larity were based on Gaussian Mixture Models (GMM), a semi-parametric way of

modeling a distribution. Although GMM based frame-level music similarity algo-

rithms have been intensively studied in the literature [Aucouturier and Pachet, 2004,

Levy and Sandler, 2006], today semi-parametric models like GMMs are rarely used.

One of the major drawbacks is the time consuming training process, which relies

on the Expectation Maximization (EM) algorithm. The second crucial shortcoming

is that comparing two distributions modeled by a GMM is not trivial at all. Often

the similarity of two distribution models is measured by computing the Kullback-

Leibler (KL) divergence [Kullback and Leibler, 1951]. The KL divergence is a

measure of the relative entropy of two probability distributions, P and Q.

DKL(P ||Q) =
∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (4.1)

However for GMMs there exists no closed form formula to compute the KL di-

vergence. The only way to compute the KL divergence is to approximate it via
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Monte-Carlo sampling of MFCC vectors from one distribution and estimating the

likelihood of the sampled vectors given the other distribution, which of course is

quite computationally expensive. Another popular variant to compute the distance

of two distributions is the Earth Movers Distance (EMD)[Rubner et al., 1998]. Un-

fortunately, the EMD is quite expensive to compute as well. Altogether, it can

be summarized that GMM based BoF approaches are computationally not suit-

able for real world applications, which leads to the development of more efficient

frame-level algorithms.

4.2.2 Single Gaussian Model

To speed up the overall process various simplified distribution models were un-

der consideration (e.g. GMMs with diagonal covariance matrices only, or with a

reduced number of components). Surprisingly, it turned out that a single mul-

tivariate Gaussian distribution of MFCCs can perform as well as mixture mod-

els [Mandel and Ellis, 2005, Levy and Sandler, 2006]. This did not only reduce

the size of the models themselves, but also simplified the computation of the

KL divergence a lot, since a closed form exists for the KL divergence for sin-

gle Gaussians. Given the parameters of two Gaussians p(x) = N(x;µp,Σp) and

q(x) = N(x;µq,Σq) the KL divergence can be computed by

2KL(p||q) = log
det Σq

det Σp

tr(Σ−1q Σp) + (µq − µp)TΣ−1q (µp − µq)− d (4.2)

where tr is the matrix trace and d the dimensionality. Using this closed form

expression the computational costs of comparing two song models are radically

reduced. Furthermore, the training process simplifies to the computation of mean

and covariances over MFCC vectors, altogether resulting in a dramatically im-

proved performance of the similarity measure. Because of the compact song model

and the rather efficient overall performance the SG model is today the de-facto

standard algorithm for computing timbral similarity.

Nevertheless, it is important to note that the Single Gaussian (SG) model has

also some disadvantages. Altogether, the similarity computation for an entire
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collection is still expensive — to be more precise, it will require (N2−N)/2 distance

computations, because the KL distance does not fulfill the triangle inequality and

therefore one cannot easily apply more powerful search strategies. It would be

desirable to have a vector space model instead, because this would enable non-

exhaustive search strategies like KD-trees or Local Sensitive Hashing (LSH) to

identify the most similar items in a music catalog.

4.2.3 Vector Quantization Model

Vector Quantization (VQ), as a non-parametric distribution model, has not re-

ceived much research attention, since parametric methods (SG or GMMs) seem

to outperform models generated via VQ [Aucouturier, 2006]. Interestingly, the

first frame-level algorithms were actually based on vector quantization [Pye, 2000,

Foote, 1997]. Pye and Foote proposed a supervised tree-based quantization scheme

to learn a decision tree from the test set which splits the MFCC feature space

into maximally discriminative regions with respect to the associated genre. For

each song of the training set they compute a histogram over the leaf nodes of

the tree, after subdividing the MFCC vectors according to the trained tree struc-

ture. These histograms are then compared to genre histogram templates by using

euclidean or cosine distance to predict the genre. Although this tree-based quan-

tization schema allows to efficiently generate a global quantization structure, this

quantization method is limited because of its supervised nature and the simple

tree learning algorithm. A more appropriate way to come up with a global parti-

tioning of the feature space are unsupervised clustering algorithms, e.g. k-means

or self-organizing maps. Self-Organizing Maps (SOMs) have been proposed by

[Vignoli and Pauws, 2005] and have been evaluated in [Levy and Sandler, 2006].

The SOM-VQ approach, according to the results in [Levy and Sandler, 2006],

seems to perform worse than the SG or GMM variant. The k-means clustering al-

gorithm has been investigated in [Aucouturier, 2006] by Aucouturier. Additionally,

he also investigates a supervised variant known as Learning Vector Quantization

(LVQ). For both variants he reports classification results about 15% less precise

than GMMs. However, all these results are based on not-artist filtered classifica-
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tion experiments, which are useful to evaluate similarity algorithms in general, but

not in the context of recommendation (see 3.3). In section 4.3.1 a comparison of

parametric versus non-parametric distribution models with respect to the ability

to generate non-trivial music recommendations is carried out.

4.2.4 Hidden Markov Models

Besides parametric, semi-parametric and non-parametric distribution models, also

stochastic generative models have attracted some research attention in the litera-

ture. In contrast to distribution models, where the temporal sequence of the local

audio features is completely ignored, generative models do not assume that the

local audio features are independent, but consider their temporal relation. One

of the most popular generative models are the Hidden Markov Models (HMM)

which explicitly account for the temporal evolution of local audio features. Sur-

prisingly, Aucouturier [Aucouturier, 2006] could show that using generative models

like HMM does not improve the quality of frame-level algorithms and that gen-

erative models are at best equivalent to simpler static distribution models. This

is surprising, as distribution models consider frame-permutations of the same au-

dio signal as identical, while for example listening to an inverted (from the end

to the beginning) audio track is perceptually significantly different. Moreover,

comparing the HMMs of two songs is computationally expensive. To compare

two models, first, a sequence of observed MFCC vectors has to be generated by

each of them. Then the likelihood of observing the generated sequence by the

other HMM has to be computed mutually. While more recent generative models,

e.g., the Hierarchical Dirichlet Process [Hoffman et al., 2008] definitely reduce the

computational burden, generative models seem to be more useful in the context of

genre or tag classification than for music similarity estimation and are not in the

focus of this chapter. In the next section the influence of the distribution model

on the recommendation quality of BoF approaches is studied.
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4.3 Analysis and Improvements

4.3.1 Analysis 1: Parametric versus Non-parametric
distribution models

Previous research work [Aucouturier, 2006] on the comparison of parametric and

non-parametric distribution models showed that BoF approaches using parametric

distribution models achieve in general a higher genre classification accuracy than

algorithms using non-parametric distribution models, if no artist filter is used. In

this section it will be shown that both types of distribution models achieve the

same results with respect to their ability to identify non-trivial song relations as

needed for music recommendation, i.e. in case that an artist filter is applied. The

main assumption is that the recommendation quality of vector quantization ap-

proaches is not limited by the type of the non-parametric modeling strategy itself,

but that the achievable recommendation quality is more related to the quality of

the underlying codebook. Generating codebooks of high quality via clustering all

local feature vectors of all songs is unfortunately computationally extremely bur-

densome and is typically circumvented via random sub-sampling the local features,

resulting in poor codebooks. In the following a novel Multi-Level Vector Quanti-

zation (MLVQ) schema is proposed that radically reduces the computational costs

of generating high quality codebooks.

4.3.1.1 A Multi-Level Vector Quantization Approach (MLVQ)

The proposed MLVQ approach is based on Lloyd’s variant [Lloyd, 1982] of the

k-means clustering algorithm that is used to partition the overall feature space of

local audio features into k quantization regions. In this variant of the BoF approach

the frames of the normalized cent spectrum (see 2.4.5) serve as local audio features.

The whole universe of audio features that would have to be partitioned contains

a huge number of audio frames. To be more precise it contains all audio frames

of all songs in an evaluation collection. From this point of view Lloyd’s iterative

refinement heuristic is indeed a good choice as it is known to converge very quickly.
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However, for the standard k-means clustering algorithm there is no guarantee

on the quality of the resulting partitioning. It depends heavily on the chosen

initial vectors. To address this problem a special seeding algorithm, proposed

by Arthur and Vassilvitskii [Arthur and Vassilvitskii, 2007], which is known as

the k-means++ algorithm, is used. If initialized with this seeding technique, the

total error of the resulting clustering can be expected to be O(log k) worse than

the optimal clustering. Thus, seeding ensures some quality guarantees on the

generated global codebooks. Still, to deal with large audio collections the number

of local feature vectors has to be reduced to come up with a global codebook in

reasonable time.

Figure 4.1: Overview of the Multi-Level Vector Quantization (ML-VQ) approach.

One way of reducing the number of feature vectors is to simply randomly sub-

sample the overall distribution of feature vectors. Another way is to make use

of Aucouturier’s observation that the quality of the codebook increases with the

number of songs used to generate the codebook, rather than the number of frames

per song [Aucouturier, 2006]. Redundant feature vectors from a single song just

increase computational costs, but do not improve the quality of the global parti-
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tioning of the feature space. Consequently, it seems to be advantageous to already

remove redundant feature vectors at the song level. To do so, the k-means++

algorithm is used to cluster the feature vectors within individual songs first and

then pass these song-level cluster centers to the global codebook generation stage,

where once again a k-means++ algorithm is used to generate the final codebook.

Figure 4.1 gives an overview on this process. This multi-level clustering archi-

tecture greatly reduces the computational costs, of course depending on both the

number of cluster centers at the song-level and the number of cluster centers in

the final codebook generation stage. Figure 4.2 shows such a codebook learned

from dataset “1517-Artists”.
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Figure 4.2: An example of a codebook generated by the MLVQ approach.

4.3.1.2 Song Model Generation

Once a general codebook has been constructed, song models based on this code-

book have to be generated. A histogram H over the k quantization units (cluster

centers) of the codebook is built. Each local feature vector Xj of all n local feature

vectors is mapped to its closest codebook vector Cuj , where uj is the index of the

closest codebook vector and is computed according to equation (4.3).

uj = arg min
l∈{1,...,k}

|Xj − Cl| (4.3)

Hi =
1

n

n∑
j

uj == i (4.4)
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For each codebook vector Ci we end up with a corresponding histogram bin Hi in-

dicating the relative frequency of local feature vectors mapped to the i-th codebook

vector, see equation (4.4). The resulting normalized histogram forms a probability

distribution. Figure 4.3 visualizes the histogram models of four songs. To measure

the distance between codebook vectors and the local audio features the Manhattan

or L1 distance is used.
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Figure 4.3: Four examples of histogram song models generated by the MLVQ

approach.

4.3.1.3 Comparison

Various types of distance measures can be used to compare two histograms. In

[Foote, 1997] euclidean and cosine distance are proposed. In our experiments the

histogram intersection as introduced by Swain and Ballard for image indexing

[Swain and Ballard, 1991] is used. Given a pair of histograms, I and M , each

containing m bins, the histogram intersection distance is defined by equation (4.5).

D(I,M) = 1−
∑m
i=1 min(Ii,Mi)∑m

i=1Mi

(4.5)

In the special case where the sum over the histogram bins is constant — for our

probability distributions the sum over all bins is always one (
∑m
i Ii =

∑m
i Mi = 1)

— the histogram intersection reduces to the Manhattan or L1 distance.
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D(I,M) = 1−
∑m
i=1 min(Ii,Mi)∑m

i=1Mi

=
1

2n

m∑
j=1

|Ii −Mi| (4.6)

Histogram intersection is a very simple and fast distance measure, which can even

be computed incrementally [Swain and Ballard, 1991]. It is important to note

that the histogram intersection distance is a full featured metric implying non-

negativity, identity of indiscernibles, subadditivity and symmetry. Consequently

any histogram can be interpreted as a point in a normed vector space, which

probably allows to apply more powerful search algorithms, e.g., Locality Sensitive

Hashing (LSH). This could be especially useful in the context of very large audio

archives and is an essential advantage over the KL divergence, for example, which

does not fulfill the triangle inequality and is not symmetric by itself.

4.3.1.4 Results and Conclusions

In our experiment the proposed non-parametric MLVQ approach is compared to

the SG algorithm as a well-known parametric variant of the BoF approach. The

comparison is based on the “1517-Artists” genre classification dataset. The full

length audio tracks down-sampled to 11kHz serve as input signals for this experi-

ment. The Neighbour Accuracy (NA) and the R-precision (R-Prec) serve as quality

indicators (see 3.2.1). Table 4.3.1.4 summarizes the obtained results for the two

approaches and a random baseline algorithm. Both artist-filtered and not-artist-

filtered results are reported. In line with the results reported in [Aucouturier, 2006]

the SG model outperforms the MLVQ approach, when no artist filter is used. With

artist filter, however, the MLVQ approach achieves a better result. Thus, we can

conclude that the VQ model does not fit the observed distributions as closely as

the SG model. By closely fitting the observed distribution, the SG model can

even model artist specific aspects of songs. Still, the VQ approach models the

general shape of the distribution in an adequate way so that genre specific aspects

are captured. Based on this result we can expect equal performance of both with

respect to their ability to identify non-trivial recommendations. Thus, the MLVQ

approach might also be a good choice to generate recommendations, especially
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AF indicator MLVQ SG RND

w
it

h
o
u
t 1-NA 36.65% 37.33% 5.03%

5-NA 28.16% 28.22% 5.63%

R-Prec 0.138 0.141 0.061

w
it

h
1-NA 22.83% 21.57% 4.97%

5-NA 19.96% 18.70% 5.58%

R-Prec 0.136 0.140 0.050

Table 4.1: Evaluation results for three similarity algorithms: Multi-Level Vector

Quantization (MLVQ), Single Gaussian (SG), Random Guess (RND).

because it has some additional advantages compared to the SG algorithm. For

example, in contrast to semi-parametric and parametric modeling approaches, the

MLVQ approach does not suffer from the hub problem (see 6.2.3) that much. This

will be shown in section 6.2.3. Additionally, the intersection distance that is used

to compare two histograms is a full-featured metric. This allows to use more effi-

cient search algorithms to identify similar songs within a music catalog. Another

advantage of the MLVQ algorithm is that the song models can easily be resyn-

thesized [Seyerlehner et al., 2008], which then allows to analyze which properties

of a song are actually captured by a song model. Nonetheless, there also exist

some disadvantages. First of all the training phase to generate a codebook is still

computationally expensive and furthermore, there does not exist a straightforward

solution to update the learned codebook and the generated models whenever new

songs are added to an existing database.

Altogether, the conducted analysis shows that non-parametric distribution models

do not perform worse than parametric distribution models, at least not with respect

to the ability to identify non-trivial recommendations. The second analysis that

is presented in this chapter will focus on identifying those audio frames that make

two audio track similar according to BoF approaches.
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4.3.2 Analysis 2: Why do songs sound the same from the
machine’s point of view?

Although BoF approaches are widely used to compute content-based audio similar-

ity, it has not yet been analyzed in the literature which are actually those MFCC

vectors that make two songs similar from a machine’s point of view. In this section

these feature vectors are identified via analyzing the contribution of the individual

MFCC vectors to the KL divergence of two songs. To be able to compute the in-

dividual contribution of a feature vector to the KL divergence an even more direct

approach to modeling the distribution of MFCC vectors is used by applying near-

est neighbour density estimation. Using a nearest neighbour density estimation

method has several advantages compared to GMMs and SG. First of all, common

parametric forms rarely fit densities actually encountered in data, in particular be-

cause all the “classical” parametric densities (e.g. the Gaussian distribution) are

unimodal, whereas many practical problems involve multi-modal densities. An-

other general advantage of non-parametric in contrast to parametric procedures

is that they can be used with any distributions and without the assumption that

the form of the underlying densities are known. Unfortunately, estimating the KL

divergence of two songs via nearest neighbour density estimation is not a practi-

cal solution due to the computational complexity. For this reason it has not been

used much in the literature. In the only related work [Godfrey and Chordia, 2008],

where kernel density estimation is used, each dimension of a MFCC vector is mod-

eled independently of the others for performance reasons. In this section, where

BoF approaches are studied and analyzed, performance is not an issue, but it is of

course important for the conducted analysis that the existing dependencies of the

dimensions of the MFCC vectors are correctly modeled. Thus, in the next subsec-

tions it will be first discussed how to derive correct density estimates using nearest

neighbour estimation and then how to identify those frames which contribute most

to the KL divergence of two distributions of MFCC vectors.
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4.3.2.1 Nearest Neighbour (NN) density estimation

Given a set of n points sampled from an arbitrary distribution, one can estimate

the density p(x) at or around a point x by counting the number of sample points

that fall into a small region around x. If k is the number of points in that region

and V is the volume of the region, one can estimate the density p̂(x) at point x

according to equation (4.7).

p̂(x) =
k/n

V
(4.7)

This method is called nearest neighbour density estimation [Duda et al., 2000],

[Bishop, 2006]. Given infinitely many sample points, the radius r could be chosen

infinitely small and the estimate p̂(x) would converge toward the true probability

p(x). In practice, given a finite sample set, r is a crucial application-specific

parameter. In the following, NN density estimation will be used to model feature

distributions. Together with an estimation of the KL divergence, this will permit

to analyze the role of individual sample points in the computation of similarities.

4.3.2.2 Estimating the KL divergence

Given n MFCC vectors of a song, one can directly estimate the density at each

vector x by counting the number k of MFCC vectors with a distance ≤ r from

x, and taking k/n as an estimate of (proportional to) the density of p(x). For

two sets XP and XQ representing two songs, we first reduce the larger set so that

both sets have equal sizes (|XP | = |XQ|). This can be easily achieved by randomly

removing points from the larger set and should have little influence on the overall

distribution.

The usual approach to compare two distributions P and Q of two songs is to

compute the discrete KL divergence:

D̂KL(P ||Q) =
∑
x

p̂(x) log
p̂(x)

q̂(x)
, (4.8)

where x ∈ XP ∪ XQ. Inserting the density estimates according to equation 4.7

one arrives at the following expression for the KL divergence, where kx,p denotes
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the number of points in the small region around x for distribution P and kx,q for

distribution Q respectively. np is the number of sample points of distribution P

and nq the number of sample points of distribution Q.

D̂KL(P ||Q) = V
∑
x

kx,p/np log
kx,p/np
kx,q/nq

(4.9)

Note that the larger set of sample points is reduced so that the number of sample

points n is the same for both distributions P and Q. Therefore the estimate of

the KL divergence can be further reduced.

D̂KL(P ||Q) =
V

n

∑
x

kx,p log
kx,p
kx,q

(4.10)

Unfortunately, this approximation is numerically unstable, because whenever the

NN estimate of the probability density q̂(x) is zero (which can happen depending

on the radius r), log p̂(x)
q̂(x)

will be undefined. We decided to circumvent this problem

by increasing kx,p and kx,q by one so that the estimates p̂(x) and q̂(x) cannot

become zero. We can also derive the symmetric KL divergence DKLsym .

D̂KLsym(P ||Q) = D̂KL(P ||Q) + D̂KL(Q||P )

=
∑
x

p̂(x) log
p̂(x)

q̂(x)
+
∑
x

q̂(x) log
q̂(x)

p̂(x)

=
∑
x

(p̂(x) log
p̂(x)

q̂(x)
+ q̂(x) log

q̂(x)

p̂(x)
)

=
∑
x

(q̂(x)− p̂(x)) log
q̂(x)

p̂(x)

=
∑
x

(p̂(x)− q̂(x)) log
p̂(x)

q̂(x)

=
V

n
(
∑
x

(kx,p − kx,q) log
kx,p
kx,q

)

(4.11)

Since the symmetric KL divergence is used as a distance measure and V/n is a

constant factor, V/n can safely be neglected for our purpose. From equation 4.11
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it can bee seen that the estimate of the KL divergence is a sum over all sample

points. Thus, it is easy to compute the contribution of an individual vector x to

the overall KL divergence.

4.3.2.3 Validation of the Approach

To validate the proposed nearest neighbour density approach and the implemen-

tation thereof, it is compared to the standard Single Gaussian (SG) method with

KL-divergence (see 4.2.2). As validation dataset the “Annotated” dataset is used.

The main reason for this small classification dataset is the high computational cost

of comparing two distributions using the nearest neighbour density method. Fig-

ure 4.4 shows the results of the genre classification. For the NN density estimation

the radius r has been varied in between 20 to 60. The dotted line represents the

neighbour accuracy obtained by the SG algorithm, which does not depend on the

radius r. The radius that is used for NN density estimation has a significant influ-

ence on the neighbour accuracy. Around the optimum the NN density estimation

approach outperforms the SG algorithm. But that is not the point of this exper-

iment. The important aspect of this experiment is that the NN approach itself

and the implementation thereof is correct, because the classification accuracy is

far above the baseline and close to the result obtained using the SG approach for

an appropriate radius r. Thus we can make use of this approach to analyze and

understand the BoF in more detail.

4.3.3 A simple Frame Selection Strategy

To analyze which frames make two songs similar from a machine’s point of view,

a little tool has been developed that loads two audio files, computes their spectral

representation, and calculates the similarity value based on nearest neighbour den-

sity estimation. Furthermore, it sorts and visualizes the audio frames according

to their contribution to the overall distance (see figure 4.5). Using the developed

tool many pairs of songs have been manually analyzed to find out which frames

make them appear similar to the machine. What jumps to the eye is that frames
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Figure 4.4: Neighbour Accuracy (NA) for the NN density approach of different

smoothness for dataset “Annotated”.

with rather low energy tend to contribute quite a lot to the similarity judgment.

This is especially interesting as those frames are of course not the most salient

ones with respect to human perception. This finding is supported by a related

observation that was reported in [Godfrey and Chordia, 2008] were Godfrey et al.

present different methods to analyze and reduce the hubness (see 6.2.3) of frame-

level similarity algorithms. From a technical point of view frames with low energy

will of course have a low euclidean distance to each other, which implies that the

density of low energy frames will be high. Thus the KL divergence for those frames

will only be low if the other song has an equal amount of, e.g., silent or almost

silent frames. Consequently, songs having low energy frames will more likely match

songs that have low energy frames as well, although from a human point of view

the similarity of two songs is surely related to the dynamic parts of a song and is

not too much influenced by the silent parts of a song. We therefore decided to in-

vestigate whether removing those low energy frames before building a model would

improve audio similarity measures. To select frames of high energy, we determine
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Figure 4.5: The tool that has been developed to analyze the contribution of indi-

vidual frames to the KL divergence.

the energy of each frame after mapping onto the mel-scale by summing across the

mel bands. Then all the frames are sorted according to their energy and a given

percentage of frames is dropped (e.g 50%). We then compute the model as usual,

but for the remaining frames only. This frame selection strategy can be applied to

any BoF approach. In the next section the frame selection strategy is evaluated

via classification experiments. For the SG model the improvement in quality that

can be achieved with this simple frame selection strategy is illustrated.

4.3.3.1 Evaluation of the proposed Frame Selection Strategy

To evaluate the proposed frame selection strategy the SG algorithm is modified.

First, the classification accuracy using all frames (the original algorithm) is com-

puted. Then before building the distribution model systematically 10%, 20%, ...,

80% and 90% of the frames are removed according to their energy as described

in section 4.3.3. This strategy is called Frame Selection (FS). Additionally, we

compare this strategy against a random frame selection strategy (RND), where

we remove the same percentage of frames by choosing the frames to be removed

randomly. To prevent collection specific effects two different genre classification

datasets were used to evaluate the proposed strategy. Both artist-filtered and not
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Figure 4.6: Neighbour Accuracies (NA) of the proposed frame selection strategy

and of a random selection baseline-strategy for dataset “1517-Artists”

(left) and dataset “103-Artists” (right).

artist-filtered results are reported. With respect to recommendation the artist-

filtered results are of course more relevant. In all our evaluations we present

results for the 4-NA, because some of the genres of the “103-Artists” dataset do

not contain more than 4 different artists, and measuring the accuracy for more

than the top 4 recommendations would return invalid classification results in com-

bination with an artist filter. Figure 4.6 shows the genre classification results for

the “1517-Artists” and “103-Artists” datasets, respectively. A look at the results

for the random frame selection strategy shows that the SG model is remarkably

stable. Even with up to 90% of all audio frames removed, the classification accu-

racy decreases only marginally. Furthermore, for both datasets we can observe the

same effect, an improvement in classification accuracy when we remove low energy

frames using the proposed frame selection strategy. For both collections we can

reach a classification optimum if we remove between 50% and 70% of all frames,

giving an improvement of about 3 percentage points in classification accuracy on

our datasets.

To conclude, using the NN density estimation approach a simple “Frame-Selection”

has been developed that can help to improve the recommendation quality of BoF

approaches. Another interesting finding is that while BoF approaches are based on
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the euclidean distances between spectral features, the euclidean distance between

local spectral features obviously does not correspond to the human similarity per-

ception in some cases. One example is that human beings would not claim that

two songs are similar because they share some silent parts, although these silent

frames will have a low euclidean distance to each other. In the next section ad-

ditional experiments are presented to demonstrate the general limitations of BoF

approaches.

4.4 Limitations and Conclusions

4.4.1 Limitations of Frame-Level Algorithms

In the literature it is well-known that the performance of frame-level similarity

algorithms with respect to genre classification is fundamentally bounded. This

behavior is known as “glass ceiling” [Aucouturier and Pachet, 2004]. The impor-

tant question is of course why are distribution models over low level features not

representative of musical genres [Marques et al., 2010]. One can identify at least

three aspects of the BoF approach that explain this inability: Pitch Dependency,

the Inability of Matching Components in Polyphonic Music and Loss of Temporal

Information.

4.4.1.1 Pitch Dependency

One limiting factor of the BoF approach is the pitch dependency of the local

spectral features (e.g. MFCCs). In contrast to humans, who would identify two

violin-tones played at different pitch as similar, frame-level algorithms based on

MFCCs are not able to infer this relation. This can be demonstrated using the

NN density estimation approach presented in the previous chapter. Figure 4.7

visualizes the MFCC vectors of the 12 semi-tones of an octave played by a soprano



4 Improving Frame-Level Music Similarity Algorithms 103

saxophone3. Additionally, also the pairwise euclidean distance of the MFCC vec-

tors are visualized in figure 4.8 (a). These distances can be used to analyze which

frames can be matched by the NN density based BoF approach. If the distance

between two MFCC frames is smaller than r, then these frames are “matched” by

that BoF variant. In the last section it was found that an optimal value for r is

37. In figure 4.8 (b) only those distances of matching frames, where the distance is

smaller than r, are set to 1 and otherwise to 0. Obviously, the majority of frames

of different semi-tones do not match, while the short silent part in between the

played notes do match. This indicates that MFCC vectors are pitch-dependent

and that tones that are played at different pitches but by the same instrument

are not found to be similar by frame-level similarity algorithms, which is definitely

a weakness limiting the achievable recommendation quality. In the following a

related experiment is conducted that shows the inability of the BoF approach to

capture similarities among components in polyphonic music.
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Figure 4.7: MFCC representation of the 12 semi-tones played by a soprano

saxophone.

3The instrument sample was taken from the free musical instrument samples library of the

University of Iowa, http://theremin.music.uiowa.edu/MIS.sopranosax.html
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Figure 4.8: Pairwise distances between the MFCC vectors of the 12 semi-tones of

a soprano saxophone (a). In (b) one can see that in the best case

some frames of adjacent semi-tones can be matched by the NN density

estimation approach.

4.4.1.2 Inability of Matching Components in Polyphonic Music

In [Aucouturier et al., 2007] Aucouturier found that the BoF approach is a suffi-

cient model for soundscapes, but not for polyphonic music. He argues that sound-

scape signals are very homogeneous and statistically redundant, while polyphonic

music signals are far more heterogeneous. This heterogeneity can be explained

by the fact that music signals are typically complex mixtures of different sound

sources. Unfortunately, frame-level algorithms can only identify similarities be-

tween mixtures of signals if these mixtures consist of approximately the same

components. For example a BoF approach is not able to identify any similarity

between one component of a mixture and the mixture itself. Figure 4.9 visual-

izes the MFCC representation of the 12 semi-tones of the soprano saxophone in

4.7 combined with an a-capella accompaniment4. The 12 semi-tones can still be

identified in the MFCC representation, but one can also observe that the MFCC

vectors have changed significantly. The modified signal was appended to the origi-

nal signal. Figure 4.10 shows the pairwise distances of the MFCC representation of

4An excerpt of an a-capella song from the Golden Gate Quartet out of the “103-Artists” dataset

served as a-capella accompaniment.
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the original with the appended modified signal. As previously done, those frames

that can be matched by the NN density estimation approach for a radius r = 37

are visualized in the lower plot. The upper left quarter of the illustration is the

same as in 4.8. The lower left and the upper right quarter are those that indicate

matches between the soprano saxophone and the mixture of the soprano saxophone

and the a-capella accompaniment. Interestingly, most of the frames from the mix-

ture signal cannot be matched to the soprano saxophone signal that is inside the

mixture. Of course this effect will be even worse for more complex music signals

containing many instruments and a singing voice. Thus, the often high number of

sources in a polyphonic music signal could be an explanation for their heterogene-

ity. Furthermore, this example clearly shows the inability of the BoF approach to

match individual components within polyphonic music signals. Thus, one future

research direction could be to decompose music signals into their sources prior to

modeling them, e.g. using the harmonic and percussive decomposition proposed

in [Pohle et al., 2010]. In the following subsection the loss of temporal information

resulting from the distribution models of frame-level algorithms is discussed.
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Figure 4.9: MFCC representation of the 12 semi-tones played by a soprano saxo-

phone with an a-capella accompaniment.
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Figure 4.10: Pairwise distances between the MFCC vectors of just the 12 semi-

tones of a soprano saxophone and the mixture of a soprano saxophone

with an a-capella accompaniment. There are almost no matches be-

tween the mixture and solo saxophone.
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4.4.1.3 Loss of Temporal Information

The third and most obvious problem of frame-level algorithms is that the temporal

relation of the MFCC vectors is completely lost because of the distribution model.

However, randomly shuffling audio frames has a strong influence on the human

perception of music [Aucouturier and Defreville, 2009]. Aucouturier found via a

listening experiment that “for music however, the similarity relations that are

consensually established for normal signals are completely lost by splicing”. Thus,

local temporal information seems to be crucial for the human perception of music.

While this finding motivates models that incorporate more temporal information,

straightforward approaches of modeling the temporal relation of local spectral

features (for example HMMs) do not perform better than static models (see 4.2.4).

In this thesis another approach to capture some temporal information is proposed

by defining so-called block-level features that are intended to capture some local

temporal information in the local audio features themselves. This is the topic of

the following Chapter.

4.4.2 Conclusions

The presented analysis of frame-level algorithms reveals that the type of the dis-

tribution model is not crucial with respect to the ability of these algorithms to

generate non-trivial recommendations. Furthermore, based on a NN density es-

timation method a simple frame selection strategy has been identified that can

improve the recommendation quality of frame-level similarity algorithms. How-

ever, the main finding is that BoF approaches are rather limited in identifying

musical similarities among songs in general and only match songs that have very

similar spectra. The main reasons of these limitations seem to be that BoF ap-

proaches are not pitch invariant, cannot identify existing similarity relations in

case of multiple sound sources and do not capture any temporal information of

the analyzed signal. In the next chapter the latter deficiency will be addressed

by moving from frame-level algorithms to so-called block-level algorithms that can

also capture some temporal information of an audio signal.



5 Block-Level Music Similarity
Algorithms

In the last chapter frame-level music similarity measures have been analyzed and

the main finding of the previous chapter was that frame-level algorithms are rather

limited in their ability to capture non-trivial music similarity relations as it would

be necessary for music recommendation. One limiting factor that has been iden-

tified is the loss of temporal information that is a consequence of the distribution

model in combination with the local frame-level audio features. While the distri-

bution model does not consider any temporal relation among audio frames, the

local audio features themselves are not able to capture any temporal information,

because of the very tiny amount of audio data that is analyzed. To address this

problem in this chapter so-called block-level features are defined. In contrast to

frame-level features, the proposed features are defined on a consecutive sequence

of audio frames called block. This way the features themselves are able to capture

some local temporal information. Another important advantage of the proposed

block-level features that will be useful in this chapter is their simple vector space

representation, which allows to take advantage of the whole mathematical toolbox

that is available for vector spaces.

The outline of this chapter is as follows: First the basic idea of the conceptual

block processing framework is sketched. Then in section 5.2 seven novel features

that can be extracted within this conceptual framework are introduced. Section

5.3 and 5.4 then introduce two different approaches to compute music similarity

based on these block-level features. One approach is to directly define a music sim-

ilarity measure by combining the similarity estimates of the individual patterns,

108
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and the second approach is to define a similarity measure by performing a mapping

over a semantic tag space. Then in section 5.5 an extensive evaluation of the pro-

posed similarity algorithms is presented. Via genre classification experiments the

proposed algorithms are evaluated and compared to a set of music similarity al-

gorithms consisting of “classical” and “state-of-the-art” algorithms. Furthermore,

several combinations of the best performing algorithms are compared to identify

any potential for further improvement. Besides this in-house evaluation also the

results of the MIREX 2010 evaluation are discussed, where the proposed block-

level features have been used for three different tasks. Section 5.6 concludes on the

obtained results in this chapter. The next section starts with an introduction to

the block processing framework, the fundamental processing concept behind the

proposed block-level audio features.

5.1 The Block Processing Framework

The idea of processing audio block by block is inspired by the feature extrac-

tion process of the Fluctuation Patterns described in [Lidy and Rauber, 2005,

Pampalk et al., 2002, Rauber et al., 2003]. Here, the idea of processing time-

frequency representations block by block is generalized and serves as a general

processing paradigm, called the block processing framework. Following this block

processing paradigm, in addition to the Fluctuation Patterns several novel audio

features (see 5.2) have been defined that are useful to describe the content of an

audio signal. The basic block processing framework can be subdivided into two

stages: first, the block processing stage and second, the generalization stage.

5.1.1 Block Processing

For block-based audio features the whole spectrum is processed in terms of blocks.

Each block consists of a fixed number of spectral frames defined by the block

size. Two successive blocks are related by advancing in time by a given number of

frames specified by the hop size. Depending on the hop size blocks may overlap,
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Figure 5.1: Block by block processing of the cent spectrum.

or there can even be unprocessed frames in between the blocks. Although the hop

size could also vary within a single file to reduce aliasing effects, the features that

are introduced in this section are extracted using a constant hop size. Figure 5.1

illustrates the basic process.

Intuitively, a block can be interpreted as a matrix that has W columns defined by

the block width and H rows defined by the frequency resolution (the number of

frequency bins):

block =


bH,1 · · · bH,W

...
. . .

...

b1,1 · · · b1,W

 (5.1)

The main advantage of defining features on blocks of frames instead of defining fea-
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Figure 5.2: Generalization from block level features to song feature vectors, with

the median as summarization function.

tures on single frames, e.g. MFCCs, is that each block comprises a sequence of sev-

eral frames, which allows to perform some temporal processing within the local fea-

ture extraction process. It is important to note that there are fundamental differ-

ences between the block-processing framework and temporal modeling via texture

windows [Tzanetakis and Cook, 2002, Peeters, 2007, Meng et al., 2005]. Texture-

windows summarize and aggregate frame-level features by building low-order statis-

tics over a longer sliding time window. However, no explicit temporal processing

is performed. In contrast the block processing framework offers the possibility to

explicitly perform temporal processing, as all frames in a block are processed by

the local feature extraction process at once. This way the resulting features can

capture temporal information, e.g. rhythm or dynamics related properties, over a

longer local time span, which is defined by the block width.

5.1.2 Generalization

To come up with a global feature vector per song, the local feature vectors of

all blocks must be combined into a single representation for the whole song. To

combine local block-level features into a song model, a summarization function is



5 Block-Level Music Similarity Algorithms 112

applied to each dimension of the local feature vectors separately. Typical summa-

rization functions are, for example, the mean, median, certain percentiles, or the

variance over a feature dimension. Interestingly, also the classic Bag-of-Frames

approach (see 4.2) can be interpreted as a special case within this framework.

The block size would in this case correspond to a single frame only, and a Gaus-

sian Mixture Model would be used instead of the simple summarization function

considering each dimension separately. However, we explicitly do not consider dis-

tribution models as summarization functions here, as our goal is to define a song

model whose components can be interpreted as vectors in a vector space. The

generalization process is illustrated in Fig. 5.2 for the median as summarization

function.

In the following, for each of the proposed block-level features the local feature

extraction process for a block is specified and also the summarization function

that is used to generate the global song-level feature vector. While Fig. 5.2 depicts

the block level features as vectors, the features described below will be matrices.

This makes no difference to the generalization step, however, as the summarization

function is applied component by component; the generalized song-level features

will thus also be matrices.

5.2 Block-Level Features

In principle the proposed block-level features are not tied to any specific time-

frequency representation. However, in our implementation all proposed patterns

— except the CFA feature — are based on the normalized Cent-Spectrum (see

2.4.5), since the normalized Cent-Spectrum is an adequate time-frequency repre-

sentation for music signals and is additionally cheap to compute. The following

subsections describe the block-level features that are up to now defined within the

block processing framework.
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5.2.1 Spectral Pattern (SP)

The basic intention behind the Spectral Pattern is to characterize a song’s tim-

bre via modeling those frequency components that are simultaneously active. To

characterize the local frequency components and their dynamics the normalized

Cent-Spectrum is processed using short blocks containing 10 spectral frames only.

The blocks are overlapping because of the 5 frames hop size between two consecu-

tive blocks. The temporal processing step of the SP is to sort each frequency band

of the block along the time axis:

SP =


sort(bH,1 · · · bH,W )

...
. . .

...

sort(b1,1 · · · b1,W )

 (5.2)

This way the general frequency content and the general dynamics of a block is

kept, while specific timing aspects like the precise onset positions within a block

are ignored. To come up with a representative pattern for the whole song the 0.9

percentile is used as summarization function. Altogether, the Spectral Pattern

is slightly related to the Spectrum Histogram (SH) proposed by Pampalk et al.

[Pampalk et al., 2003]. In contrast to the SH the SP is not a histogram and the

global pattern is derived from the local loudness patterns. Thus, it is a general-

ization over the local dynamics of co-occurring frequency components.

5.2.2 Delta Spectral Pattern (DSP)

The Delta Spectral Pattern is inspired by the Delta MFCCs, the first derivate

of the static MFCCs (see 2.4.4). The Delta MFCCs are known to capture some

dynamic aspects of music signals. Regarding the DSP the goal is to quantize the

strength of onsets. For this reason a longer delay is used. The difference between

the original Cent-Spectrum and a copy of the spectrum delayed by 3 frames is

computed to emphasize onsets. The resulting delta Cent-Spectrum is rectified so

that only positive values are kept. Then we proceed exactly as for the Spectral
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Pattern and sort each frequency band of a block along the time axis. A block size

of 25 frames and a hop size of 5 frames are used, and the 0.9 percentile serves as

summarization function. It is important to note that the DSP’s block size differs

from the block size of the SP; both were obtained via optimization. This way the

two patterns are able to capture information over different time spans.

5.2.3 Variance Delta Spectral Pattern (VDSP)

The feature extraction process of the Variance Delta Spectral Pattern is the same

as for the Delta Spectral Pattern (DSP). The only difference is that the variance is

used as summarization function over the individual feature dimensions. While the

Delta Spectral Pattern (DSP) tries to capture the strength of onsets, the VDSP

should indicate if the strength of the onsets varies over time or, to be more precise,

over the individual blocks. A hop size of 5 and a block size of 25 frames are used.

5.2.4 Logarithmic Fluctuation Pattern (LFP)

To represent the rhythmic structure of a song we extract the Logarithmic Fluctua-

tion Patterns, a modified version of the Fluctuation Pattern proposed by Pam-

palk et al. [Pampalk et al., 2002]. For this pattern a block size of 512 and

a hop size of 128 are used. For each frequency band of the block the FFT

is computed to extract the amplitude modulations out of the temporal enve-

lope in each band. We only keep the amplitude modulations up to 600 bpm.

The amplitude modulation coefficients are weighted based on the psychoacoustic

model of the fluctuation strength [Fastl, 1982] according to the original approach in

[Pampalk et al., 2002]. To represent the extracted rhythm pattern in a more tempo

invariant way, we then follow the ideas in [Pohle et al., 2009, Jensen et al., 2009,

Holzapfel and Stylianou, 2009] and represent the periodicity dimension of the rhy-

thm pattern in log scale instead of linear scale. This is realized by summing across

the linear periodicity bins that fall into the 37 logarithmically scaled periodicity

bins. Finally, the resulting pattern is blurred with a Gaussian filter, but for the

frequency dimension only. The summarization function is the 0.6 percentile.
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5.2.5 Correlation Pattern (CP)

The Correlation Pattern is motivated by the fact that typically rhythm patterns

only reflect the periodicity of reoccurring musical events e.g. drum events, but not

their relative phase. For rhythm representations the temporal relation of reoccur-

ring events is of course crucial, as striking both high-hat and bass drum simulta-

neously and striking a high-hat in between the bass events results in a completely

different rhythm. To capture the temporal relation of loudness changes over differ-

ent frequency bands, first the frequency resolution of the normalized cent spectrum

is reduced to 52 frequency bands only. This was found to be useful by optimization

and also reduces the dimensionality of the resulting pattern. Then the pairwise

linear correlation coefficient, Pearson’s correlation (see equation 5.3), between each

pair of frequency bands is computed, which gives a symmetric correlation matrix.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
(5.3)

A related idea has already been proposed by Aylon [Aylon, 2006], who proposed

a descriptor called Band Loudness Intercorrelation (BLI). The BLI descriptor has

been used for music classification by Guaus [Guaus, 2010]. Besides some differ-

ences the main advantage of the CP over the BLI is that it is not computed over

the whole signal, but locally for each block separately, which is computationally

efficient, and a song-level descriptor is derived via using the 0.5 percentile as sum-

marization function. The CP can capture, for example, harmonic relations of

frequency bands when sustained musical tones are present. Furthermore, as al-

ready mentioned, rhythmic relations can be reflected by the CP. Using the above

example of bass and high-hat positive correlations between low and high frequency

bands would indicate that bass drum and high-hat are always hit simultaneously.

Conversely, if the high-hat and the bass drum are never played together this would

result in strongly negative correlations in the CP, which then results in specific

perceivable patterns. Such typical patterns of the CP can be found by visual-

izing the CP. For example the presence of a singing voice leads to very specific

correlation patterns, which is even more obvious for the CP computed based on a

time-frequency representation with a higher frequency resolution. In the current

implementation a block size of 256 frames and a hop size of 128 frames are used.
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5.2.6 Spectral Contrast Pattern (SCP)

The Spectral Contrast [Jiang et al., 2002] is a feature that roughly estimates the

“tone-ness” of a spectral frame. To characterize the tone-ness the difference be-

tween spectral peaks and valleys in several sub-bands is computed for each frame

within a block. As strong spectral peaks roughly correspond to tonal components

and flat spectral excerpts are often related to noise-like or percussive elements, the

difference between peaks and valleys characterizes the toneness in each sub-band.

In our implementation the Spectral Contrast is computed from the cent scaled

spectrum subdivided into 20 frequency bands. For each audio frame, we compute

in each band the difference between the maximum value and the minimum value

of the frequency bins within that band. This results in 20 Spectral Contrast values

per frame. The values pertaining to an entire block are then sorted along the time

axis within each frequency band, as already described for the SP above. A block

size of 40 frames and a hop size of 20 frames are used. The summarization function

is the 0.1 percentile.

5.2.7 Continuous Frequency Activation (CFA)

The Continuous Frequency Activation is the last block-level feature that is de-

scribed in this chapter. In contrast to the previous features it is not a high di-

mensional feature, but just a single scalar value. However, the CFA feature is a

perfect example on how one can exploit the temporal dimension within the feature

extraction at the block-level. Initially the CFA feature was designed as a robust

and powerful feature for automatic music detection [Seyerlehner et al., 2007].

The CFA feature is based on the observation that music tends to have more station-

ary parts than speech, resulting in perceivable horizontal bars within the spectro-

gram representation of an audio signal (see figure 5.3). This property was already

investigated by Hawley, who was interested in the structure of music [Hawley, 1993]

and who was the first to propose a simple music detector based on this. The hori-

zontal bars in the spectrogram are continuous activations of specific frequencies

and are usually the consequence of sustained musical tones. The CFA is designed
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to reliably detect these continuous frequency activations, even if other audio sig-

nals are present simultaneously. To detect music signals within mixtures five steps

are performed per block:

1. Emphasize local peaks

First, all local energy peaks within each frame of the block are emphasized.

This is realized by subtracting the running average from the power spectrum1

of each frame, using a window size of N = 21 frequency bins:

Xemph
i = Xi −

1

N

N
2∑

k=−N
2

Xmin(max(k,1),N) (5.4)

where Xi denotes the energy of the i-th frequency component of the current

frame. This step is useful to emphasize very soft tones, belonging to back-

ground music: if a soft tone is not masked by another signal over its entire

duration (which is unlikely, as non-music signals tend to be less station-

ary), the perceivable horizontal bars in the spectrogram are compositions

of consecutive local maxima. The idea is to emphasize these soft bars by

emphasizing all local maxima in the spectrum of a frame.

2. Binarization

Then, to ignore the absolute strength of activation (energy) in a given frame j

within the block, each frequency component Xemph
ij is binarized by comparing

to a fixed binarization threshold. The binarization threshold t = 0.1 was

chosen in such a way that even soft activations could be kept in the binarized

block. Only frequency bins which are obviously not active at all, will be set

to 0 using this low threshold.

Bij =

 1 Xemph
ij > t

0 Xemph
ij ≤ t

(5.5)

Neglecting the actual strength of the activation allows to focus on structural

aspects of the emphasized spectrogram only.

1In contrast to the other block-level features for the CFA the power spectrum is used instead

of the normalized Cent-Spectrum.
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3. Computation of the frequency activation

For each block the frequency activation function Activation(i) is computed.

For each frequency bin i, the frequency activation function measures how

often a frequency component is active in a block. To obtain the frequency

activation function of a block all binarized frequency bins Bij are simply

summed along the time axes. Thus, the frequency activation function con-

tains temporal information over many frames that cannot be captured by

simple frame-level features.

Activation(i) =
1

F

F∑
j=1

Bij (5.6)

Figure 5.3 shows the binarized emphasized power spectra of two blocks and

the resulting frequency activation functions. Subplot (b) is typical of blocks

containing music, whereas subplot (a) is representative of blocks without any

musical elements.

4. Detect strong peaks

Strong peaks in the frequency activation function of a given bock indicate

steady activations of narrow frequency bands. The “spikier” the activa-

tion function, the more likely horizontal bars, which are characteristic of

sustained musical tones, are present. Even one large peak is quite a good

indicator for the presence of a tone. The peakiness of the frequency acti-

vation function is consequently a good indicator for the presence of music.

To extract the peaks a simple peak picking algorithm extracts the height of

each peak [Seyerlehner et al., 2007], called peak value.

5. Quantify the Continuous Frequency Activation

To quantify the Continuous Frequency Activation of the activation function

of a block, the peak values of all detected peaks are sorted in descending

order, and the sum of the five largest peak values is taken to characterize

the overall “peakiness” of the activation function.

As a result of this block-level extraction process we obtain exactly one numeric

value for each block of frames, which quantifies the presence of steady frequency
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Figure 5.3: Binarized spectrogram of a block and the corresponding activation

function. Block (a) contains no music, whereas in block (b) music

is present.

components within the current audio segment. For blocks containing music the

resulting value should be higher than for blocks where no music is present, which

makes the CFA a perfect feature for music detection. However, this is not the only

application area of this feature. By using the median as summarization function

over the per block CFA values one obtains a single scalar value that quantifies if a

song contains many tone-like components. This scalar value can be used for sorting

and retrieval in the same way as the more advanced H2A ratio [Pohle et al., 2010],

which extends this idea.
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5.2.8 Summary

Together the proposed feature set forms a high-dimensional and powerful descrip-

tion of an audio track. One advantage of this feature set is that it allows to

visualize song models. Figure 5.4 visualizes the proposed block-level features —

except the CFA, which is a single scalar and not intended for visualization — for

two different songs, a Hip-Hop and a Jazz song. Another important aspect of the

proposed feature set is that the local features are not summarized via a distribu-

tion model. Instead, all the presented block-level features can be interpreted as

vectors in a vector space. This is a clear advantage of the proposed feature set

as the vector space representation allows to take advantage of the whole math-

ematical toolbox that is available for vector spaces. Consequently, the proposed

block-level features can be used in a straightforward way with any standard ma-

chine learning algorithm or with any standard dimensionality reduction method.

This is for example especially useful with respect to automatic genre classifica-

tion or automatic tag prediction, where the block-level features can be used in

a straightforward way. However, it is not as straightforward to directly define a

high-quality similarity measure based on these block-level features. For this reason

it will now be discussed how to combine six of the proposed block-level features

into a single similarity function.

Figure 5.4: Visualization of the proposed block-level features for a Hip-Hop song

(left) and a Jazz song (right).
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5.3 Music Similarity Estimation based on

Block-Level Features

In the previous section seven block-level features have been introduced. In this

section a similarity function is defined based on six of them (SP, DSP, VDSP, LFP,

CP, SCP). To define a music similarity measure a linear combination approach is

used: First, a similarity function is chosen for each pattern individually. In our

case for the six block-level features the Manhattan distance is used. Then, the

distance estimates of the individual patterns are summed to yield a combined

distance measure. However, combining the distances of the individual patterns

is not as straightforward as it seems. One main problem is that the patterns

themselves have different scales and consequently produce distances in completely

different numerical ranges. To reduce the influence of the individual numeric scales

of the distance estimates a special normalization strategy, called distance space

normalization is used, which is an important component of the proposed similarity

algorithm and will be presented in detail in the following subsection.

5.3.1 Distance Space Normalization

The proposed distance space normalization (DSN) is a modified variant of the nor-

malization approach that is used in [Pohle and Schnitzer, 2007], but allows for a

more intuitive interpretation. Each distance of a distance matrix Dn,m is normal-

ized by subtracting the mean and dividing by the standard deviation (Gaussian

normalization) over all distances in row n and column m (see figure 5.5). Thus,

each distance between two songs n and m has its own normalization parameters, as

all distances to song m and all distances to song n are used for normalization. This

way the normalization operation can also change the ordering within a column /

row. Interestingly, the ordering after the DSN can be drastically different from

the original ordering. Figure 5.6 shows a histogram of the change of the column

ranks over the whole distance matrix. Surprisingly, this change does typically have

a positive influence on the nearest neighbor classification accuracy as reported in
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Figure 5.5: Distance Space Normalization of a distance matrix.
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Figure 5.6: Change in column ranks as a consequence of the Distance Space Nor-

malization (DSN). Evaluated on the “1517-Artists” dataset for the

Spectral Pattern.

[Pohle et al., 2009]. This observation is confirmed by the classification results of

the individual components of the BLS algorithm before and after distance space

normalization, which are summarized in table 5.1.

Furthermore, the results in table 5.1 also show that the combination of the indi-

vidual components clearly outperforms the individual components. Additionally,

it turns out that removing any of the combined block-level features would reduce

the classification accuracy of the combined similarity measure. Thus, we can con-
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clude that all the components contribute to the overall similarity. It is also worth

mentioning that several other normalization approaches to combine the individual

components have been evaluated, but none outperformed the DSN approach de-

scribed here with respect to the achieved recommendation quality. However, this

normalization method has also a major disadvantage, which is the high runtime

complexity of O(N2).

5.3.2 Extended Distance Space Normalization

Based on the above mentioned observation that the DSN approach all alone can

help to improve nearest neighbor classification accuracy, the DSN based combina-

tion approach is extend by another final normalization step. Thus, the resulting

distance matrix is once more normalized after the individually weighted compo-

nents have been combined. This results in an improvement of the classification

accuracy from 36.49% to 37.69% (see Table 5.1). The overall combination method

of the BLS algorithm is visualized in figure 5.7 and is called extended distance

space normalization (EDSN). The next subsection will discuss how the component

weights and the parameter settings of the block-level features have been obtained.

Figure 5.7: Schematic structure of the combination approach.
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5.3.3 Optimization of the Similarity Measure

The features presented in section 5.2 come with a large set of parameters. For

example, one can compute these features for different block sizes, hop sizes, dif-

ferent percentiles and other parameters. To identify suitable parameter settings

for the individual components and find an optimal weighting of the components

these settings were optimized on dataset “1517-Artists” (see 3.2.3.5). Each block-

level feature was optimized separately. Unfortunately, a complete evaluation of

all reasonable parameter combinations was impossible, as each parameter setting

requires to recompute the feature on the whole collection, which was not tractable

computationally. Therefore, the optimization procedure was to vary each parame-

ter separately one after the other and pick the optimum. The “optimal” parameter

settings found by this still expensive optimization are those reported in section 5.2.

Component Weight 10-NN CA 10-NN CA (DSN)

LFP 1.0 26.70% 28.75%

SP 1.0 26.76% 26.82%

SCP 1.0 19.31% 20.47%

CP 1.0 23.36% 26.83%

VDSP 0.8 21.44% 24.18%

DSP 0.9 23.18% 25.28%

Combined 36.49% 37.69%

Table 5.1: Component weights of the optimized similarity measure and the respec-

tive nearest neighbor classification accuracies on dataset “1517-Artists”

of the components before and after distance space normalization (DSN).

Furthermore, also the weights of the individual components are found by a greedy

optimization: Initially, an equal weight is assigned to each component (wi = 1).

Then the weight of a randomly chosen component is reduced, if this results in

an improvement in classification accuracy. This step is repeated until no more

improvement is possible. The final weights that result from this optimization
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are summarized in table 5.1 and represent the final configuration of the proposed

block-level similarity measure (BLS). The recommendation quality of the BLS

algorithm is investigated in detail in section 5.5 of this chapter. In the following

section a second music similarity measure that is based on the proposed block-

level features is introduced. In contrast to the BLS algorithm, where a distance

function is defined directly based on the underlying features, the algorithm that is

presented in the following section performs a mapping onto a semantic tag space

before estimating song similarities.

5.4 Music Similarity Estimation based on

Auto-Tags

In this section a second similarity measure that is based on the proposed block-level

features is defined. In contrast to the BLS algorithm, where musical similarities

are estimated via directly comparing the individual block-level features, prior to

computing similarities among songs a mapping onto a semantic tag space is per-

formed. Such an approach is called semantic space approach, as songs are no longer

represented by the underlying features, but via semantic concepts instead.

5.4.1 The Semantic Space Approach

Tags are semantic textual annotations like for example “beat”, “fast” or “rock”

that are used to describe songs. Together all tags that are associated with a

song form a semantic description and can then for example be used to search and

browse the emerging semantic music space, which is called tag-based browsing. Of

course tag information can also be used to generate music recommendations e.g.

by recommending songs with similar tag annotations. While tags are typically col-

lected by large online music platforms like for example Last.fm2 that allow users

to annotate the songs they are listening to, there exist several other methods to

2www.last.fm
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collect tag information [Turnbull et al., 2008a]. Tags can also be obtained through

surveys, music annotation games or web-mining. Another variant, which is used

here as this thesis is focusing on content-based methods only, is to obtain tag in-

formation via auto-tagging. An auto-tagger is a purely content-based method that

predicts tags which might be associated with a song given a set of audio features

extracted out of the audio signal. Consequently, an auto-tagger transforms an

audio feature space into a semantic space, where music is described by words, via

predicting tags. While automatic tag prediction recently gained a lot of research

attention and can be considered an emerging research area in Music Information

Retrieval, the idea of predicting tags is relatively old. To the best of our knowledge

Berenzweig [Berenzweig et al., 2003] was the first to introduce a concept related

to auto-tags called “anchor space” and he also used this information to compute

music similarities among songs. However, it seems that in 2003 the lack in com-

putational resources and the unavailability of adequate tag sources limited further

development in this research direction. Then driven by the general growing inter-

est in tags in the MIR community in 2006 this idea was picked up again by West

[West et al., 2006] and then by Turnbull [Turnbull et al., 2008b], who introduced

a first formal definition of the tag prediction task.

The task of predicting tags can be interpreted as a special case of multi-label

classification and can be defined as follows: Given a set of tags T = {t1, ..., tA}
and a set of songs S = {s1, ..., sR} predict for each song sj ∈ S the tag annotation

vector y = (y1, ..., yA), where yi > 0 if tag ti has been associated with the audio

track by a number of users, and yi = 0 otherwise. Thus, the yi’s describe the

strength of the semantic association between a tag ti and a song sj and are called

tag affinities or semantic weights. If the semantic weights are mapped to {0, 1},
then they can be interpreted as class labels, which can be used for training and

evaluating tag classifiers.

In the following it will be first investigated if the proposed block-level features are

useful with respect to tag classification by comparing the results of a state-of-the-

art auto-tagger using a standard feature set and the proposed block-level feature

set. Then in subsection 5.4.3 a music similarity measure is proposed that is solely

based on automatically predicted tags.
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5.4.2 Block-Level Feature for Automatic Tag Prediction

In this section it will be demonstrated that the proposed block-level feature set

is also suitable for the task of automatic tag prediction. To show this, the pro-

posed feature set is compared to a standard audio feature set (SAF), which is

introduced in the next subsection. To compare these two feature sets exactly the

same tag classification approach is used for both sets. A two stage classification

approach called “stacked generalization” [Ness et al., 2009] is used in our experi-

ments. This procedure is a state-of-the-art tag classification approach and ranked

second (with respect to the per tag f-score) in the 2009 run of the MIREX tag

classification contest using the standard audio feature set (SAF) that will also be

used in our feature set comparison. Furthermore, this method was found to be

only insignificantly worse than the leading algorithm and it is already implemented

and publicly available via the MARSYAS (Music Analysis, Retrieval and Synthe-

sis for Audio Signals)3 open source framework. For this reason the auto-tagging

algorithm implemented by the MARSYAS framework is a perfect candidate for a

comparison.

Unfortunately, the proposed block-level feature set cannot be used as it is for tag

classification, because of the high dimensionality of this feature set. Together the

block-level feature form a feature vector of 9448 dimensions. As the runtime of

classification algorithms typically increases drastically with the dimensionality of

the feature vectors, directly using the block-level feature set is computationally

not tractable. For this reason in subsection 5.4.2.3 it is proposed to compress the

block-level feature set. In the following the standard audio features that are used

in the comparison and the tag classification datasets are briefly introduced.

5.4.2.1 “Standard” Audio Features

In the conducted experiments the described block-level feature set is compared to

a standard feature set (SAF) that can easily and efficiently be extracted by the

3www.marsyas.info
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MARSYAS framework. This standard feature set consists of the following fea-

ture: the Spectral Centroid, the Rolloff, the Flux and the Mel -Frequency Cepstral

Coefficients (MFCCs). Altogether, 16 numbers are extracted per audio frame.

To capture some temporal information a running mean and standard deviation

over a texture window of M frames is computed. The resulting intermediate fea-

tures of the running mean computation still have the same rate as the original

feature vectors. To come up with a single feature vector per song the interme-

diate running mean and standard deviation features are once more summarized

by computing mean and standard deviation thereof. The overall result is a single

64-dimensional feature vector per audio clip. A more detailed description can be

found in [Tzanetakis and Cook, 2002].

5.4.2.2 Datasets and Performance Measures

To assess the quality of the predicted auto-tags two datasets are used in the eval-

uation: the CAL500 and the Magnatagatune dataset.

The CAL500 dataset [Turnbull et al., 2008b] consists of 500 Western popular songs

by 500 different artists. These songs have been annotated by 66 students with pre-

defined semantic concepts that relate to six basic categories: instruments, vocal

characteristics, genres, emotions, preferred listening scenarios and acoustic qual-

ities of a song (e.g. tempo, energy or sound quality). These concepts were then

mapped to a set of 174 tags including positive and negative tags. Based on the user

data binary annotation vectors were derived by ensuring a certain user agreement

on the assigned tags.

The second dataset in our evaluation is the Magnatagatune [Law and Ahn, 2009]

dataset. This huge dataset contains 21642 songs annotated with 188 tags. The

tags were collected by a music and sound annotation game, the TagATune4 game.

The dataset also contains 30 seconds audio excerpts of all songs that have been

annotated by the players of the game. All the tags in the dataset have been verified

(i.e. a tag is associated with an audio clip only if it is generated independently by

4http://www.tagatune.org
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more than 2 players, and only tags that are associated with more than 50 songs

are included).

As a common performance measures for tag classification the well-known f-Score

is used. Additionally, as a second performance measure the G-mean is used. The

G-mean (5.10) [Wang and Japkowicz, 2009] is defined as the combination of Sensi-

tivity (Acc+), also known as true positive rate, and Specificity (Acc−), also known

as true negative rate. As such, it is a nice and compact measure that has the ad-

vantage of taking the class imbalance into consideration. This is important as the

class distributions of tag classification datasets are often extremely unbalanced.

Both measures can be computed globally over the entire (global) binary tag clas-

sification matrix, or separately for each tag and then averaged across tags. To

differentiate between global and averaged performance measures the averaged per

tag measures are named avg. F-Score and avg. Gmean, respectively.

f-Score =
2× precision× recall

(precision + recall)
(5.7)

Acc− = TN/(TN + FP) (5.8)

Acc+ = TP/(TP + FN) (5.9)

G-mean = (Acc− × Acc+)
1
2 (5.10)

5.4.2.3 Reducing the Dimensionality of Block-Level Features

To make the block-level features applicable to the task of automatic tag classifi-

cation, their dimensionality has to be reduced in order to make the classification

computationally tractable. The dimensionality reduction is realized by a standard

Principal Component Analysis (PCA) [Bishop, 2006]. Obviously, both the com-

pression rate and the achievable classification quality depend on the number of

principal components used to represent each block level-feature. An evaluation

is conducted to determine the number of principal components for each pattern

(LFP, SP, DSP, SCP, CP, VDSP) individually. The total variance captured by

the k most important principal components serves as criterion for the number of
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principal components to represent each pattern. For example, given that 80% of

the total variance should be kept, we compute the PCA for each pattern and then

keep the number of principal components so that at least 80% of the total variance

is accounted for. Thus, the prespecified variance determines the resulting feature

size for each pattern individually.

% of total variance dimensions (fold 1 / fold 2) f-Score G-Mean

0.65 37 / 36 0.4863 0.6651

0.70 49 / 47 0.4911 0.6687

0.75 66 / 64 0.4965 0.6727

0.80 89 / 88 0.4983 0.6740

0.85 126 / 124 0.4849 0.6715

0.90 190 / 189 0.4895 0.6675

0.95 321 / 316 0.4886 0.6668

0.99 655 / 647 0.4678 0.6511

uncompressed 9448 0.5015 0.6764

Table 5.2: G-Mean and f-Score performance results of the stacked generalization

tag classification approach for various compression levels (CAL500)

To evaluate the PCA compression for different percentages of the total variance

the CAL 500 dataset and two-fold cross-validation were used. To prevent possible

overfitting effects the principal components were estimated on the features of the

training set only. As a consequence, the dimensionality of the compressed feature

set differs for the two cross-validation folds. All experiments were carried out for

the same split into two cross-validation folds. The evaluation results are summa-

rized in table 5.2. One can see that a feature set capturing about 70% to 80% of the

total variance seems optimal in terms of tag classification quality. Interestingly,

even an extreme reduction of the feature space to only about 37 dimensions per-

forms comparably well. The best classification performance, however, is achieved

by the uncompressed feature set. It is also important to note that the decay in

classification quality with a high number of principal components is related to

the low number of data points that are available for the projection: the CAL500

consists of only 500 songs, in a feature space with 9448 dimensions. Altogether,
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one can conclude from these experiments that the proposed PCA compression

approach does not diminish the tag prediction quality too much and is therefore

a reasonable approach to reduce the size of the feature space of the block-level

features.

5.4.2.4 Comparison of Feature Sets

To compare the two feature sets we report on the presented performance mea-

sures obtained via 2-fold cross-validation on two different tag classification datasets

(CAL500 and Magnatagatune). The same cross-validation split was used for the

evaluated feature sets. These results are summarized in table 5.3. Both, the global

performance measures computed over the global binary classification matrix, and

the averaged per-tag performance measures are reported. SAF denotes the stan-

dard audio feature set and BLF-PCA denotes the PCA compressed block-level

feature set. BLF-FULL denotes the result of the uncompressed block-level feature

set, which we only report for the smaller CAL500 dataset, because it was com-

putationally not tractable on the larger Magnatagatune dataset. On the CAL500

dataset the BLF-PCA feature set consists of the 75 most important principal com-

ponents capturing 75% of the total variance. On the larger Magnatagtune dataset

the same variance threshold of 75% was used. For each performance measure the

highest score on each dataset is highlighted in bold face. 5 From table 5.3 one can

see that independent of the overall performance measure, either global or averaged

per tag, the compressed block-level feature set compares favorably to the standard

feature set. Summarizing these results we can conclude that block-level features

are suitable for automatic tag prediction. Based on this insight, in the follow-

ing, two music similarity algorithms are proposed that make use of the predicted

tag-information.

5It is worth mentioning that only the tag classification results of the second classification stage

of the stacked generalization tag classification approach are reported here. More detailed

results can be found in [Seyerlehner et al., 2010c].
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feature set dataset f-Score G-Mean

SAF CAL500 0.4582 0.64387

BLF-FULL CAL500 0.5015 0.67641

BLF-PCA CAL500 0.4965 0.6727

SAF Magnatagatune 0.3962 0.6252

BLF-PCA Magnatagatune 0.4201 0.6439

feature set dataset avg. f-Score avg. G-Mean

SAF CAL500 0.2577 0.3851

BLF-FULL CAL500 0.3061 0.4454

BLF-PCA CAL500 0.2908 0.4217

SAF Magnatagatune 0.1932 0.3784

BLF-PCA Magnatagatune 0.2185 0.4081

Table 5.3: Comparison of standard audio features (SAF) and block-level features

(BLF) for the stacked generalization tag classification approach.

5.4.3 Similarity Estimation using Auto-Tags

The idea of estimating similarities between songs by comparing their auto-tag pro-

files traces also back to Berenzweig [Berenzweig et al., 2003] and to web-retrieval

techniques, where term frequency vectors are often used to derive document sim-

ilarities. Recently, several music similarity algorithms based on auto-tags have

been proposed [Bertin-Mahieux et al., 2008] and have been evaluated during the

MIREX competition [Barrington et al., 2007, Bastuck, 2007, Bogdanov et al., 2009].

In contrast to these algorithms, which are mostly based on standard audio features,

the two algorithms proposed in this section are based on tag and genre affinities

that are estimated using the block-level features as described in the previous sec-

tion. The only difference to the previously presented auto-tagging algorithm is that

the stacked generalization classification approach of the MARSYAS framework is

replaced by the support vector machine implementation of the machine learning

toolbox WEKA. This will allows us to evaluated different types of classifiers in

future.
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Figure 5.8: Automatically predicting tags learned from different datasets.

For the auto-tag based similarity algorithms the auto-taggers that are used to

create the song profiles are constructed as follows: For each of the two tag clas-

sification dataset Magnatagatune and CAL500 a set of tag classifiers is learned.

Additionally, one genre classifier is trained for each genre classification dataset.

Depending on the dataset these classifiers of course predict different genre labels.

Besides the datasets presented in section 3.2.3 four additional genre classification

datasets are used to train genre classifiers. The tag and genre classifiers are then

used to automatically tag songs. The probabilistic predictions of a set of tag clas-

sifier are called tag affinity vector. The probability estimates of a genre classifier

are called genre affinity vectors respectively. Together all predicted tag affinity

vectors and genre affinity vectors for a song form the song profile. To generate

song profiles for a whole collection of files, for example the “1517-Artists” dataset,
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all files in the collection are tagged using all tag and genre classifiers, except the

genre classifiers that have been trained on the respective dataset itself. The whole

process is illustrated in figure 5.8.

The two variants to compute tag based similarity (TAG and TAGVS) that are

proposed here then only differ in the way the genre affinity vectors and tag affinity

vectors resulting from the different classifiers are combined into a single music

similarity measure.

5.4.3.1 Block-Level Feature based Auto-Tags (TAG)

The first variant makes use of the extended distance space normalization (EDSN)

approach (see 5.3.2) to combine the affinity vectors generated by different clas-

sifiers. Similarities among songs are estimated separately for the affinity vectors

produced by a single classifier. This is realized by computing the Manhattan dis-

tance among each pair of affinity vectors and results in one distance matrix for

each genre or tag classifier. Considering the example in figure 5.8 the genre affinity

vectors of dataset “Homburg” would be used to compute a distance matrix. An-

other distance matrix would be constructed for the “Magnatagatune” tag affinity

vectors. The obtained distance matrices are then fused into a single result dis-

tance matrix using the EDSN approach. Thus, as for the BLS algorithm the main

disadvantage of this approach is the quadratic runtime complexity of the EDSN

combination.

5.4.3.2 Block-Level Feature based Auto-Tags Vector Space Model
(TAGVS)

The second variant of the tag based music similarity algorithm does not combine

the affinity vectors via the EDSN method. Instead the affinity vectors of all classi-

fiers are simply concatenated into a single long feature vector before any distances

among songs are computed. As the number of probability estimates per dataset

depends on the number of genre or tag classifiers per dataset, the resulting affinity
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vectors are normalized by dividing by the number of classifiers before they are

combined. This way the affinity estimates from each dataset equally contribute to

the overall similarity estimate. Thus, each song is represented by a single feature

vector. For the example visible in figure 5.8 the genre affinity vector of dataset

“Homburg” and the “Magnatagatune” tag affinity vector would be concatenated

into a single feature vector. The overall similarity is then estimated as the Man-

hattan distance among these concatenated feature vectors. The main advantage

of this approach is that no distance space normalization is used. Consequently,

this variant can be used in combination with any advanced indexing and search

strategies and is so well-suited even for large datasets.

In this section a music similarity measure that is directly based on the proposed

block-level features (BLS) and two variants based on auto-tags (TAG and TAGVS)

have been defined. In the following section these algorithms are evaluated and

compared to a selection of prominent music similarity algorithms.

5.5 Comparison of Music Similarity Algorithms

In this section the three proposed block-level music similarity algorithms (BLS,

TAG and TAGVS) are evaluated and compared to a selection of prominent music

similarity algorithms, which are presented in subsection 5.5.1. Then results of the

evaluation are presented and discussed in subsection 5.5.2. Thereafter, to identify

any further potential for improvement, combinations of the three best performing

algorithms in the evaluation are investigated. Besides the results from this in-house

evaluation, in subsection 5.5.4 the results of the 2010 run of the public MIREX

evaluation are discussed, as block-level feature based algorithms were submitted

by the author in three categories: Audio Music Similarity and Retrieval, Audio

Genre Classification and Automatic Tag Classification.
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5.5.1 Algorithms

In this evaluation eight different music similarity algorithms are compared. First of

all, there are two by now “classic” algorithms — the Single Gaussian (SG, see 4.2.2)

algorithm and the G1C algorithm. Furthermore, two “state-of-the-art” (RTBOF,

MARSYAS) algorithms are included in the evaluation. Then there are the three

block-level feature based algorithms (BLS, TAG and TAGVS). Additionally, a

random similarity measure (RND) is used to indicate the baseline accuracy for the

various datasets. Three out of these algorithms (G1C, RTBOF and MARSYAS)

have not yet been presented and are briefly introduced in the following.

5.5.1.1 G1C: A combination of Single Gaussian and Fluctuation Patterns

The G1C algorithm [Pampalk, 2006] is a linear combination of a rhythm compo-

nent, the Fluctuation Patterns, three descriptors derived from the rhythm com-

ponent (Bass, Gravity and Focus) and a timbre component, the Single Gaussian

model. The G1C algorithm was one of the first algorithms that combined two as-

pects of musical similarity in a single algorithm. In 2006 this algorithm ranked first

in the MIREX Audio Music Similarity and Retrieval task. The major drawback

of this algorithm is the simple linear combination approach. In our evaluation the

G1C and the SG algorithm represent the by now classic similarity algorithms that

are used to evaluate the qualitative improvement over the years.

5.5.1.2 Rhythm-Timbre Bag of Features (RTBOF)

The Rhythm-Timbre Bag of Features approach (RTBOF) is a recent music similar-

ity measure proposed by Pohle et al. in [Pohle et al., 2009]. This measure ranked

first in the MIREX 2009 music similarity and retrieval task and has proven to be

statistically significantly better than most of the participating algorithms. Thus,

it reflects the current state-of-the-art in music similarity estimation. Basically,

it has two components – a rhythm and a timbre component similar to the G1C.

In contrast to the G1C algorithm these two components are combined using a
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distance space normalization approach (see 5.3.1). Each component consists of a

distribution model over local spectral features. The local audio features, described

in [Pohle et al., 2009], are complex and also incorporate some local temporal in-

formation over several frames. Because of its components this approach is called

Rhythm-Timbre Bag Of Features (RTBOF).

5.5.1.3 Marsyas (MARSYAS)

The MARSYAS (Music Analysis, Retrieval and Synthesis for Audio Signals) frame-

work6 is an open source software that can be used to efficiently calculate various

audio features. For a detailed description of the extracted features we refer to

[Tzanetakis and Cook, 2002]. This algorithm has participated in the MIREX Au-

dio Similarity and Retrieval task in 2007 and 2009 (there was no such task in 2008),

taking the 2nd and 7th ranks, respectively. The features as well as the similarity

computation were the same in 2007 and 2009. Consequently, this algorithm is also

useful to monitor the progress in music similarity estimation over the years.

5.5.2 Comparison of Algorithms

In this large-scale evaluation eight music similarity algorithms are evaluated on

seven different datasets (see 3.2.3). For each audio file the same song excerpt is

analyzed by all algorithms. Up to a maximum of 180 seconds of audio data are ex-

tracted from the middle of each track for analysis. All input signals are resampled

to 22 kHz. Only one audio channel is used. As quality indicators the k-Neighbour

Accuracy (k-NA) and the Classification Accuracy that is obtained using a k-NN

classifier (k-NN CA) are reported (see 3.2.1). The reported genre classification

accuracies of the k-NN classifier are averaged over 10 runs of a stratified 10-fold

cross-validation. For both the k-NA and the k-NN CA k is varied from 1 to 20.

Figure 5.9 visualizes the results of this evaluation for the k-NN CA and figure 5.10

visualizes the results obtained using the k-NA quality measure. As we are in this

6http://marsyas.info
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evaluation basically interested in non-trivial recommendations that would also be

useful in a real world scenario, artist filtered results are reported for those datasets

where artist information is available (“1517-Artist”, “Homburg”, “Unique”). The

other datasets are still useful to make the reported results more comparable to

previous work and point out the difference to artist filtered results.

The first outcome of this evaluation is that all similarity algorithms clearly outper-

form the random baseline for both quality measures. Regarding the baselines one

can observe that for the k-NN CA the random baseline stays constant for datasets

“1517-Artists” and “GTZAN”, while it increases on the other datasets. This in-

crease is related to the imbalanced class distributions of the respective datasets.

With increasing k, the random baseline of the k-NN classifier grows towards the

accuracy obtainable by always predicting the most frequent genre.

Furthermore, comparing the results obtained on the datasets to the left hand side

of figure 5.9 to the classification results on the datasets to the right hand side, one

can see that the classification accuracies are basically decreasing in the plots to the

left and increasing in the plots to the right. One can see that this behavior is clearly

related to the artist effect. For datasets “1517-Artist”, “Homburg” and “Unique”

we do not expect any artist or album effect because of the applied artist filter,

whereas for the other datasets we expect an artist effect (due to the nature of the

music collections). This phenomenon can be explained by the fact that for datasets

with an artist effect the first nearest neighbor of a given query song will likely be

a song by the same artist. As typically songs by the same artist belong to the

same genre the first nearest neighbor is an almost perfect genre predictor. For the

datasets without artist effect, we can clearly observe the expected learning curve,

where the k-NN classifier profits from considering an increasing neighborhood.

Thus, we can conclude that from an analysis of the nearest neighbor classification

results one can even detect the presence of a strong artist or album effect.

Considering the results of the individual algorithms, the SG, the G1C and the

MARSYAS algorithms perform significantly worse than the other algorithms on

all datasets. This is in line with our expectations and illustrates the progress in

music similarity estimation over the last years. What jumps to the eye is the
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different behavior of the G1C algorithm compared to the other algorithms. This

untypical behavior seems to be related to the simple combination strategy of the

G1C model, which is not able to adapt to the specific properties of a dataset. For

the other four algorithms BLS, RTBOF, TAG and TAGVS a qualitative difference

is not so obvious. In general the RTBOF algorithm outperforms the others on those

datasets where no artist filter is used. However, on the artist filtered datasets in

turn the BLS, TAG and TAGVS algorithms outperform the RTBOF algorithm.

So one can conclude that the RTBOF algorithm is more adequate for music sim-

ilarity estimation, but with respect to music recommendation and identification

of non trivial song relationships the block-level feature based variants outperform

the RTBOF algorithm. Of course it is also important to note in this context that

the BLS algorithm has been optimized on the “1517-Artists” dataset, while the

RTBOF algorithm has been optimized on the “ballroom” dataset. For both algo-

rithms the obtained results reported on their optimization datasets are superior,

which might be due to over-fitting effects. Another finding is that the auto-tag

based similarity algorithm (TAG) using the DSN approach, yields higher results

on most of the analyzed datasets compared to the vector space variant (TAGVS).

However, the difference is not huge. Consequently, the TAGVS approach is an

adequate choice for extremely large music collections, where search and retrieval

times are a critical issue.

Regarding the different quality indicators it is important to note that they are not

always consistent. The first inconsistency that can be observed is among quality

indicators of different neighbourhood sizes. For example the RTBOF algorithm

yields a classification accuracy of 88.26% on the “ismir2004all” dataset, while

the BLS algorithm reaches only 87.67%, when considering the 1-NN. However,

when the 20-NN is considered one obtains the inverse result and the BLS algo-

rithm reaches 83.6%, while the RTBOF algorithm reaches 82.06%. Furthermore,

one can observe another inconsistency that exists between the k-NN CA quality

indicator and the k-NA quality indicator. For example the 20-NN CA quality

measure indicates that the BLS algorithm (38.62%) outperforms the TAGVS al-

gorithm (37.02%). The 20-NA measure, however, indicates the opposite, reporting

a neighbour accuracy of 25.26 for the TAGVS algorithm and a neighbour accuracy
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of 24.43 for the BLS algorithm. As the results of the evaluation depend on the

chosen quality indicator, one can conclude that a sound comparison of algorithms

should always report various quality indicators so that existing inconsistencies in

the evaluation results become at least obvious.



5 Block-Level Music Similarity Algorithms 141

5 10 15 20
0

0.2

0.4

0.6

0.8

k−NN Classifier

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

ISMIR 2004 Genre

 

 

5 10 15 20
0

0.2

0.4

0.6

0.8

k−NN Classifier

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Ballroom

 

 

5 10 15 20
0

0.2

0.4

0.6

0.8

k−NN Classifier

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

GTZAN

 

 

5 10 15 20
0

0.1

0.2

0.3

0.4

k−NN Classifier

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

1517−Artists (artist filter)

 

 

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

k−NN Classifier

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Homburg (artist filter)

 

 

SG

BLS

MARSYAS

RTBOF

RND

TAGVS

G1C

TAG

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k−NN Classifier

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Unique (artist filter)

 

 

Figure 5.9: Comparison of music similarity algorithms (k-NN CA).
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Figure 5.10: Comparison of music similarity algorithms (k-NA).
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Furthermore, to quantify any existing portfolio effects all algorithms have been

also evaluated using the even more restrictive portfolio filter (see 3.3.2). These

results are visualized in figure 5.11. As artist information is not available for

all datasets, portfolio filtered results are only reported for the “Homburg”, the

“1517-Artist” and the “Annotated” datasets. It is also worth mentioning that the

results reported for the “Unique” dataset are automatically portfolio-filtered, as

there is only one track per artist in this dataset. The same argument applies to

the “Annotated” dataset. In figure 5.11 the plots to the left hand side report the

k-NN CA and the plots to the right hand side report the k-NA quality measure.

At a first glance it seems that there is no big change in the evaluation results

on datasets “1517-Artists” and “Homburg”. However, this is not a big surprise

as the average number of tracks per artist is very low on both datasets. On the

average there are only 2.1 tracks per artist in the “1517-Artists” dataset and

1.29 tracks per artist in the “Homburg” dataset. Hence, the results on these two

datasets are almost portfolio filtered if an artist filter is used. Still, by looking more

closely at the results one can observe a difference to the artist filtered results.

For both quality measures one can observe a general decrease in classification

accuracy. For the k-NN CA this decrease is rather marginal in the range of 0.6 to

0.8 percentage points for dataset “1517-Artists” and about 0.4 percentage points

for dataset “Homburg”. For the k-NA this difference is bigger and in the range

of 1 to 1.4 percentage points on dataset “1517-Artists” and about 0.2 percentage

points for dataset “Homburg” respectively. Also the relative difference between

the algorithms has slightly changed. Altogether, one can conclude that there is

a perceivable impact of the portfolio filter on the obtained results and one can

expect that this impact would increase if the average number of tracks per artist

were higher.

Last but not least, what jumps to the eye is that on the rather tiny “Annotated”

dataset the auto-tag based algorithms clearly outperform all other algorithms.

This could be an indicator that for smaller datasets auto-tag based similarity

is more adequate. One explanation is that no perfectly similar songs exist in

small datasets, which would be more easily identified by algorithms that perform

a direct feature matching, while auto-tag based algorithms can also infer broader
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similarities among songs.
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Figure 5.11: Comparison of music similarity algorithms (portfolio filter).
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Altogether, the conducted evaluation shows that the proposed block-level algo-

rithms (BLS, TAG, TAGVS) perform at least comparable to state-of-the-art al-

gorithms with respect to their recommendation quality. In the next subsection

all possible combinations of the three best performing algorithms (BLS, TAG,

RTBOF) are evaluated.

5.5.3 Combinations of Algorithms

In this subsection any further potential for improvement of content-based music

recommendation algorithms is identified. This is realized by evaluating all possi-

ble combinations of the best performing algorithms of the conducted evaluation.

To combine two or more algorithms the distance matrices produced by the indi-

vidual algorithms are combined using the extended distance space normalization

(EDSN) approach presented in section 5.3.2. Figure 5.12 visualizes the result of

the original algorithms and the four evaluated combinations. Note that compared

to the previous plots the colors of the algorithms have changed. Darker colors indi-

cate combinations of algorithms, while lighter colors mark the original algorithms.

One can observe that in general combinations of algorithms outperform individual

algorithms. Over all datasets the combination of all three algorithms (CMB4)

seems to achieve the best and most stable classification performance. However,

the difference to CMB2 and CMB3 is not huge. CMB1 yields the worst results

of all the evaluated combinations. Altogether, we can conclude that there is still

some potential for improvement and that the evaluated combinations are all an

improvement over the current state-of-the-art. In the next subsection the results

obtained by the submissions to the MIREX 2010 evaluation, which are all based

on block-level features, are presented and discussed.
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Figure 5.12: Comparison of four different combinations of the evaluated music sim-

ilarity algorithms.
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5.5.4 MIREX 2010 Results

The last subsection of the evaluation section in this chapter focuses on the results

of the 2010 Music Information Retrieval Evaluation eXchange (MIREX), a yearly

held competitive evaluation of MIR algorithms. The results of the MIREX 2010

evaluation are complementing the in-house evaluation of the proposed block-level

features and similarity algorithms, as they represent an external and objective

evaluation of the proposed feature set and techniques.

Three algorithms based on block-level features were submitted. The corresponding

MIREX categories were the Audio Music Similarity and Retrieval Task, the Audio

Train/Test Task and the Audio Tag Classification. The following subsections will

report and discuss the obtained results in the different categories. For a detailed

description of the submitted block-level feature based algorithms the interested

reader is referred to the accompanying algorithm description of the submission

[Seyerlehner and Schedl, 2010].

5.5.4.1 Audio Music Similarity and Retrieval Task

The goal of the Audio Music Similarity and Retrieval Task is to automatically

identify, for a number of query songs, similar songs within a large music collection

containing 7000 songs. Then the most similar songs according to the participating

algorithms are rated by human evaluators on two different scales. The fine score

is a continuous value in the range from 0 (failure) to 100 (perfection). For the

broad score the graders can choose between three categories Not Similar(NS=0),

Somewhat Similar(SS=1) and Very Similar (VS=2). These scores are averaged

over all queries and over all graders. Figure 5.13 visualizes the obtained scores

of the participating algorithms. The abbreviation SSPK2 denotes the submitted

algorithm and is highlighted in the figure. The submitted algorithm (SSPK2) is

basically the same as the combination of the auto-tag based algorithm (TAG)

and the direct block-level similarity algorithm (BLS). In the previously conducted

evaluation this combination was named CMB1. For both broad and fine scores

the submitted algorithms obtained the highest scores. This result supports the



5 Block-Level Music Similarity Algorithms 149

findings of the evaluation from the previous section and indicates that the proposed

algorithms in this thesis are state-of-the-art methods. It is however also important

to mention that the difference between the first four algorithms of this human

evaluation was not found to be statistically significant.
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Figure 5.13: Visualization of the results of the MIREX 2010 Audio Music Similar-

ity and Retrieval Task.

Another important aspect of this human evaluation is that the results are pretty

much in line with the results of the conducted automatic evaluation. Thus, one

can conclude that the results from automatic evaluations are quite reliable quality

predictors (see also chapter 3.2.2).

5.5.4.2 Audio Train/Test Task

Automatic music genre classification is a performance task to evaluate the power

of feature sets and classification approaches. The precise MIREX task name is

Audio Train/Test Tasks. There exist four different subtasks that correspond to

four different datasets:

� Classical Composer Identification
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� Latin Genre Classification

� Music Mood Classification

� Mixed Popular Genre Classification

Figure 5.14 visualizes the obtained classification accuracies of all submitted al-

gorithms. The submitted algorithm by the author is denoted SSPK1 and is

highlighted in the visualization. The presented block-level feature in combination

with the support vector machine implementation of the machine learning toolbox

WEKA were used in this submission. In figure 5.14 on can see that the number

of participating algorithms varies depending on the dataset. This is because some

of the algorithms failed to produce results on individual datasets. Comparing the

block-level feature based algorithm to the other submitted algorithms one can see

that the proposed algorithm either ranks first or second on all datasets. This is

especially remarkable, as many other algorithms perform well only on individual

datasets, but not on all datasets. Altogether, these results clearly show that the

proposed block-level feature set is a highly descriptive feature set that is especially

suitable for audio classification because of its vector space representation.
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Figure 5.14: Visualization of the results of the MIREX 2010 Genre Classification

Tasks.
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5.5.4.3 Audio Tag Classification

To evaluate the block-level feature based auto-tagging approach a variant of the

presented tag classification algorithm in section 5.4.2 was submitted to the MIREX

Audio Tag Classification task. In contrast to the evaluated tag classification algo-

rithm, where a two stage classification approach called stacked generalization was

used, in the submission a simple support vector machine with a polynomial kernel

serves as tag classifier. One reason for this change in the classification procedure

was that the submission should be platform independent and therefore the bind-

ing to the MARSYAS framework had to be removed. Regarding the evaluation

procedure the task for the algorithms is to produce two outputs: for each song and

each learned tag classifier an algorithm should report the probability that the tag

applies to the given song and also the binary classification results, i.e., if the tag

is set or not for the given song. To train the tag classifiers the evaluation datasets

are first split into a training and testing set. Two different tag datasets are used

in the evaluation: the MajorMiner Tag Dataset and the Mood Tag Dataset. In

figure 5.15 the results of this MIREX task are visualized for both datasets. For

the binary classification results the f-Score is plotted as global evaluation metric,

while for the predicted tag affinities the Area Under the Receiver Operating Char-

acteristic Curve (AUC-ROC) is plotted. Depending on the chosen metric on the

MajorMiner dataset the block-level feature based submission (SSPK3) took rank

4 or rank 8. For the Mood dataset the SSPK3 algorithm achieved rank 6 or rank

9. Still, the proposed algorithm belongs to a larger group of algorithms, where the

absolute difference in quality is marginal. Consequently, this external evaluation is

in line with the obtained results of the conducted evaluation and we can conclude

that block-level features are also well-suited for automatic tag prediction.
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Figure 5.15: Visualization of the results of the MIREX 2010 Audio Tag Classifica-

tion Results.
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5.6 Conclusions

In this chapter a set of block-level features has been introduced that in contrast

to frame-level features is especially designed to capture some local temporal infor-

mation within the features themselves. The proposed feature set is significantly

different from other feature sets and all the individual features have a simple vector

space representation. This is an essential advantage not only because song models

can easily be visualized, but also because this allows to make use of the whole

mathematical toolbox that is available for vector spaces.

It could be experimentally shown that these block-level features are also a powerful

feature set with respect to the task of automatic genre classification and automatic

tag classification. To make them also applicable to music recommendation three

music similarity measures based on this block-level features have been defined

(BLS, TAG, TAGVS). The first approach (BLS) was to directly define a music

similarity measure based on the block-level features using a complex combination

approach. The second approach is a semantic space approach, where each song is

represented by a number of automatically estimated tags. For this approach two

variants have been proposed (TAG, TAGVS).

The bock-level feature based music similarity algorithms have been evaluated with

respect to their ability to identify non-trivial music recommendations — i.e. songs

not from the same artist as the query songs. This evaluation reveals that all three

proposed algorithms perform at least comparably to the state-of-the-art. However,

especially the auto-tag based variants seem to be an adequate choice to generate

music recommendation. These algorithms do not only allow to explain generated

music recommendations and have a semantic interpretable model, but additionally

are easy to improve and extend. To improve an auto-tag based algorithm one can

either add new features to the training process, or one can learn additional semantic

attributes from other tag or genre datasets. Also filtering and weighting of the

learned semantic concepts before estimating pairwise song similarities should be

considered in future. Another advantage of the auto-tag based approach is that the

TAGVS approach can be used in combination with more powerful search strategies.
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This way such an auto-tag based recommender system is suitable even for music

catalogs containing millions of audio tracks.

Besides the evaluation of individual algorithms also several combinations of the

best performing individual algorithms have been analyzed to identify further po-

tential for improvements. The finding is that these combinations typically outper-

form the individual algorithms. Future research will focus on identifying exactly

which components of the combined algorithms are responsible for the achieved

improvement.

Another finding of the conducted evaluation concerns the evaluation itself. It could

be shown that the evaluation results depend on the chosen dataset and also on the

chosen quality indicators. The obtained results based on automatic classification

can be inconsistent or contradicting. To provide a comprehensive overview of the

recommendation quality of an algorithm it should be evaluated on a number of

different datasets. Furthermore, different quality indicators should be used.

In contrast to this chapter, which basically focused on the underlying music simi-

larity algorithms of content-based music recommender systems, the following chap-

ter considers improvements on a more abstract level, where music recommender

systems are interpreted as recommendation networks.



6 Analysis of Music
Recommendation Networks

In contrast to the previous chapters, which basically tried to improve music rec-

ommender systems by improving the underlying music similarity measures, the

underlying features and the evaluation methods thereof, in this chapter analysis

and improvements on a more abstract level are considered. On this higher level of

abstraction a music recommender system is represented by a directed graph, where

the vertices of this graph correspond to songs and the edges in the graph represent

the recommendations for each song. Based on this graph representation network

properties like reachability, connectedness and hubness of the emerging complex

network can be analyzed. These network properties are essential as music rec-

ommendation services are typically used to explore the online music catalog by

moving from recommendation to recommendation. Thus, music recommendation

is not a one step process, but a continuous process. Therefore it is not enough to

focus on accuracy based quality criteria only when music recommender systems

are analyzed, but it is also important to analyze if users will be able explore a

music catalog via browsing and navigating within the emerging recommendation

network, which is the focus of this chapter. The following section presents an

overview on related work with respect to the analysis of music recommendation

networks and introduces the related Long Tail phenomenon. Then the subsequent

sections will focus on theoretical and empirical analysis of the reachability of songs

in music recommendation networks and methods that reduce the identified navi-

gation issues.

156
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6.1 Related Work and the Long Tail

The analysis of emerging music recommendation networks is a relatively new re-

search area. The first who analyzed music network structures were Aucouturier

and Pachet [Aucouturier and Pachet, 2008, Aucouturier and Pachet, 2004]. Their

research was driven by the observation that certain songs occur in a large number

of playlists, although they do not share any perceptually meaningful similarity to

the query songs, if these playlists were generated by frame-level music similarity

algorithms (see Chapter 4). They named these songs hub-songs or simply hubs

(see 6.2.3). Aucouturier and Pachet conducted many interesting experiments to

better understand the emergence of hubs. They tried to understand why certain

similarity measures and feature sets produce more hubs than others, but they

did not explicitly conduct any analysis of music recommendation networks, but

rather interpreted hubs as an issue related to the similarity algorithm. Celma

[Celma and Cano, 2008, Celma and Herrera, 2008], in contrast, explicitly focused

on the analysis of music recommendation networks. He compared the structure

of music recommendation networks generated by a content-based, a collaborative-

filtering and an expert-based music recommender system. He investigated different

network properties related to navigation, connectivity and clustering. One of the

main findings of Celma is that collaborative filtering recommenders typically follow

a popularity rule, so that they recommend the most popular songs to all users,

whereas unpopular or new songs in a music catalog that have just a few or no

ratings are not or very rarely recommended. This behavior of collaborative fil-

tering recommenders leads to a very typical song-popularity distribution within

a music catalog (e.g. measured in play-counts or song-downloads). The result-

ing popularity distributions are in general characterized by a head containing the

few popular songs and a long tail consisting of all unknown or unpopular items.

This specific pattern has motivated the phrase Long Tail [Brynjolfsson et al., 2003,

Anderson, 2006, Brynjolfsson et al., 2006]. Of course exploring a music catalog

does not only mean browsing the few popular items, but more importantly means

browsing and finding interesting niche products within a catalog, which unfortu-

nately reside in the Long Tail. Interestingly, Celma could show that expert-based

and content-based systems are not affected by such a popularity bias. Using these
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types of system songs sitting in the Long Tail would be accessible, which is a big

motivation for building hybrid recommender systems.

Here in this chapter the network analysis of Celma is extended to especially an-

alyze the navigability of content-based top-N music recommender systems. The

special focus of this chapter will be on measuring the catalog coverage of mu-

sic recommender systems [Herlocker et al., 2004]. The catalog coverage measures

what percentage of items a recommender system ever recommends to users and

is related to the coverage, which measures the percentage of a dataset that the

recommender system is able to provide recommendations for. While traditionally

catalog coverage was measured based on a set of recommendations formed at a sin-

gle point in time — e.g. it was measured by the percentage of all items that were

recommended to all users in the population over a specified time period — , in this

chapter it is proposed to measure the catalog coverage by identifying the number

of not reachable vertices in a recommendation network. These not reachable songs

in the recommendation network are called anti-hubs [Godfrey and Chordia, 2008],

orphans [Gasser et al., 2010] or sources [Seyerlehner et al., 2009b]. By identify-

ing the number of sources in a recommendation network one obtains an inverse

measure of the catalog coverage.

6.2 Complex Network Analysis

The analysis and experiments of the emerging music network structures conducted

in this chapter do not only apply to music recommendation networks, but gener-

alize to any arbitrary recommendation network that can be derived for any top-N

recommender system [Seyerlehner et al., 2009a]. To measure the catalog cover-

age of an item-based top-N recommender system the recommender system is first

transformed into an equivalent recommendation network or recommendation graph.

Given a recommender system presenting a user a list of precisely l recommenda-

tions for each item in the database, the recommendation graph of this system

can be represented as a directed graph G = (V,E), where each vertex v ∈ V

corresponds to an item in the database. Furthermore, each vertex v has exactly
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Figure 6.1: The recommendation graph of a top-N item-based recommender. Each

vertex has exactly l outgoing edges. In this example l = 3. The number

of incoming edges is an emergent property of the network. There might

be hubs, i.e., vertices with a high indegree (dark), and sources, i.e.,

vertices with an indegree of zero (white).

l outgoing edges pointing to those items in the database that are recommended

for item v. Thus, each vertex v has an outdegree of l (deg+(v) = l). Figure 6.1

visualizes such a directed recommendation graph.

The graph representation makes it easy to identify items that are not reachable via

recommendation. Obviously, every vertex v with an indegree of zero (deg−(v) = 0)

corresponds to such an item. In graph theory a vertex with an indegree of 0 is

called a source. Vertices with a very high indegree are called hubs (see figure

6.1). The number of sources is an emergent property depending on the network

structure. It is an inverse measure of the catalog coverage, as it measures the

number of items that are not reachable, while catalog coverage informs about the

number of items that are ever recommended. In this chapter it will be shown that

sources naturally exist in any recommendation network and a lower bound on the

number of sources one can expect will be established.
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6.2.1 Reachability: A theoretical view

The basic principle of an item-based recommender system is to first estimate sim-

ilarities among catalog items and then generate recommendations based on these

similarities. Consequently, the estimates of the item-to-item similarities deter-

mine the respective recommendation graph as they define the edges between the

vertices. The structure of the graph in turn determines the number of sources.

Hence, a similarity function that is completely unbiased (with no preference of

linking specific items) will produce the fewest sources in a recommendation graph.

Clearly a random recommender is a realization of such a “fair” similarity function

and represents a lower bound with respect to the number of sources. Therefore to

identify the lower bound the recommendation graph of a random recommender is

analyzed.

Random graphs [Newman, 2003, Erdős and Rényi, 1959] have been intensively

studied in complex network analysis. The specific random graph model that is

studied here is a directed graph G = (V,E) with a fixed outdegree for all vertices,

as defined previously. Furthermore, it is assumed that the recommended items are

chosen randomly. Thus, each item in the recommendation graph will point to l

other random items, but not to itself. If we suppose that there are N items in

total in the database, then the recommendation graph will have N vertices and

lN random edges. The probability of an item in this graph to be referenced by

exactly k other items is then given by the binomial distribution:

P (X = k) =

(
l(N − 1)

k

)
pk(1− p)l(N−1)−k, (6.1)

where p = 1
N−1 as each item will equally likely point to any other item, but not to

itself. The probability of not being referenced by any other item in the graph is

P (X = 0) = (1− 1

N − 1
)l(N−1). (6.2)
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Knowing the probability for a single item not to be referenced by any other item,

we can now estimate the expected number of sources E(X) (items that are not

referenced) for the whole system containing N items.

E(X) = NP (X = 0) = N(1− 1

N − 1
)l(N−1) (6.3)

To validate the proposed model, the number of sources of a real implementation

of a random recommender was studied. In figure 6.2 the number of observed

sources is plotted together with the expected number of sources from the model.

The model perfectly fits the observed numbers. It essentially depends on the two

parameters l and N . The number of sources seem to linearly increase with the

collection size (see figure 6.2). Depending on l, the number of sources grows more

or less slowly. If N approaches infinity (N →∞) the expected number of sources

(E(X) → ∞) approaches infinity as well. Deriving the limit, for N approaching

infinity, of the probability for an item to be a source-item (equation 6.2), it can

be seen that the probability converges:

lim
N→∞

P (X = 0) = lim
N→∞

(1− 1

N − 1
)l(N−1) = e−l (6.4)

In combination with equation 6.3 this implies that the percentage of sources will

stay constant and that the number of sources increases linearly with the database

size. More importantly, the percentage of sources exponentially decays with the

length of the recommendation lists. Thus, it is in general desirable to have long

recommendation lists, as this implies high catalog coverage. In practice, however,

the number of recommended items is constrained by usability concerns and is

typically rather low (usually below ten). Furthermore, the random recommender

model is optimal in the sense that it will create the fewest sources that one can

expect. For real world recommender systems the percentage of items inaccessible

via recommendation can be much higher (see next section). One major theoretical

result is that even in the best case, and independently of the recommendation

approach, there will always be a percentage of items that will be inaccessible when

browsing a top-N recommender system — unless it is specifically designed (see

section 6.3).
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Figure 6.2: Number of sources observed for a random recommender and the pre-

dictions from the proposed model.

6.2.2 Reachability: An Empirical Study

Given the theoretical findings on the lower bound of the number of expected

sources, it will now empirically be shown that for real world recommender sys-

tems, this lower bound is far too optimistic. Two different types of recommender

system (see section 1.3) from different domains have been analyzed to demon-

strate that the reachability issue is a fundamental problem of any recommender

system: a real world content-based music recommender system and a prototyp-

ical collaborative-filtering based movie recommender system. To evaluate these

two systems, the number of sources for various recommendation graphs has been

determined: Systematically recommendation graphs for different recommendation

list length l were generated. A recommendation list length of l = 5 implies that
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the five most similar items are recommended. Hence, the corresponding system

is a top-5 recommender. Furthermore different collection sizes were simulated by

randomly removing items from the respective datasets.
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Figure 6.3: Analysis of a content-based music recommender system (upper plot)

and a collaborative filtering based movie recommender (lower plot).

The number of sources is illustrated for a top-5, a top-10 and a top-15

recommender system. The lower limit for the expected percentage of

sources is 0.00673 for top-5, 0.000453 for top-10 and 2.06115 ∗ 10−9 for

top-15.

Content-Based Recommendation As an example of a content-based recom-

mender system we analyze the real world music recommender attached to the

FM4 Soundpark1, an Austrian music portal. At the moment this platform con-

tains about 10000 songs and is steadily growing. At the time of our experiments,

7665 songs were available. The recommender system of the FM4 Soundpark is

1http://fm4.orf.at/soundpark/main
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based on a standard similarity measure for music audio files [Flexer et al., 2008],

the Single Gaussian (SG) algorithm (see 4.2.2). Based on this similarity measure

one can generate song recommendations of arbitrary length, ordered according to

the similarity to the query song. Figure 6.3 (upper plot) shows that for recom-

mendation lists of length l = 5 approximately 34% of all songs are sources and are

therefore inaccessible via browsing.

Collaborative Filtering The analyzed collaborative filtering recommender is

based on the well-known Movielens dataset2, which contains 1 million ratings for

3900 movies by 6040 users. The simulated recommendation approach is similar

to [Sarwar et al., 2001]. The cosine distance between item vectors of the user-

item ratings matrix is used as a similarity measure. Based on these similarities

the experimental recommender then simply proposes the top-N most similar items

according to the cosine distance. Even if this is surely not a high quality recom-

mender system, it will be useful as here we are not striving for improved classifica-

tion accuracy. The sole goal is to demonstrate that even for collaborative filtering

approaches, recommender systems based on real world datasets will produce many

sources, far above the lower bound predicted by our model. The results of the anal-

ysis are visualized in figure 6.3 (lower plot). Obviously, in practice, the number of

produced sources is far above the theoretical lower limit, which is significantly be-

low one percent for all systems (see caption figure 6.3). Thus, a significant portion

of the movies is never recommended by this experimental recommender system.

For example, 19.23% of all movies will never be recommended when browsing the

top-5 recommendations only. Consequently, for real world recommenders, sources

can significantly reduce the utility of a recommender system. However, sources are

not the only problem with respect to the browsabilty of music recommendation

networks. Also hub-songs are problematic in this context.

6.2.3 Hubs: Highly Reachable Songs

In a music recommendation network hubs, in contrast to sources, are vertices with

a very high indegree i.e., items that are in the recommendation lists of a large

2www.grouplens.org
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number of other items (see figure 6.1). While hub-songs were initially seen as bad

or incorrect recommendations, hubs also significantly decrease the browsability of

music recommender systems. In this context especially large hubs are problematic

as the users of the recommender system will likely revisit hub-songs many times

when browsing the recommendations, which can be extremely annoying.

However, it is not as straightforward as for sources to define which vertices in

a graph are actually hub vertices. The first definition of hubs was coined by

Aucouturier [Aucouturier and Pachet, 2008, Aucouturier and Pachet, 2004]. He

defined a song to be a so-called hub song if

� the song appears in most of the recommendation lists of the other songs in

a music catalog

and

� most of these appearances do not correspond to any meaningful perceptual

similarity.

To quantify the ”hubness” of a song Aucouturier introduced the notion of n-

Occurrence3 of a song, which is the same as the indegree deg−(v) of a vertex v ∈ V
of the recommendation graph. However, Aucoututier’s definition of hubs is too im-

precise. In this thesis we follow the definition of Gasser et al. [Gasser et al., 2010]

and define that hubs are outlier vertices where the indegree is higher than three

times the expected number of incoming edges :

isHub(v) =

 1 deg−(v) > 3l

0 otherwise
(6.5)

The expected number of incoming edges can be derived from equation 6.1 by

computing the expected value of the binomial distribution E(X) = np = l(N −
1) 1

N−1 = l.

3The n-Occurrence is the number of times a song occurs in the first n nearest neighbors of all

the other songs in the dataset.
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Figure 6.5 visualizes the indegree of each song and the indegree distribution for

the Single Gaussian (SG) algorithms on dataset “1517-Artists” for recommenda-

tion list of length l = 15. The vertices with an indegree higher than the dotted

line are the hub vertices according to the above definition. As already observed

by Aucouturier the indegree distribution resembles an exponential distribution,

which led him to the conclusion that the recommendation networks of frame-level

algorithms belong to the category of so called scale-free networks. However, taking

a look at the indegree distribution of the proposed MLVQ algorithm (see 4.3.1.1)

also visible in figure 6.5, one can conclude that this assumption is not true for

all frame-level similarity algorithms. Especially non-parametric modeling of local

spectral features seems to reduce the number of hubs, which was simultaneously

found by [Hoffman et al., 2008] and [Seyerlehner et al., 2008]. Furthermore, using

the Nearest Neighbour (NN) density estimation algorithm presented in section

4.3.2.1 one can investigate the relation between the smoothness of the distribution

of the local features and the hubness of songs. Figure 6.4 shows the number of

hubs, the number of sources and the maximum hub. Additionally, the neighbour

radius around a MFCC vector that is used in the density estimation and controls

the smoothness of the distribution model has been varied between 20 to 60. From

these results one can see that, on the one hand, very multi-modal and spiky distri-

butions generated by a low neighbour radius produce many hubs and sources. On

the other hand, very smooth distributions generated by a large neighbour radius,

also produce more hubs than the optimal configuration (a neighbour radius of 45).

Based on this result one can conclude that the smoothness of the distribution used

to model the MFCC vectors has a significant influence on the hubness of the result-

ing recommendation network of frame-level similarity algorithms. This relation of

hubness and smoothness of a distribution will also be discussed in the following

section focusing on the relation between hubs and sources in more detail.

6.2.4 Relation between Hubs and Sources

To investigate the relation of hubs and sources the graph representations of the top-

1 up to the top-100 recommender (l = 1 . . . 100) for the FM4 Soundpark have been
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Figure 6.4: Visualization of the number of hubs, the number of sources and the

maximum indegree for distribution models of different smoothness.

Dataset “Annotated” and recommendation list containing 10 songs are

used.

created systematically. For each of these graphs the number of sources, the number

of hubs and additionally the “biggest” hub, the vertex with the maximum indegree,

were determined. Figure 6.6 shows that for short recommendation lists the number

of sources is extremely high. When increasing the length of the recommendation

list, the number of sources decreases exponentially — as expected. Furthermore,

the number of hubs exponentially decreases as well. In contrast, the indegree of the

maximum hub increases, while the number of hubs stays approximately constant.

Therefore, simply increasing the recommendation list length will make more items

reachable, but in turn will also create even extremer hubs. This implies that when

browsing such a recommendation network, one will often visit or re-visit hub items,

which degrades the browseability. Furthermore it seems that hubs and sources

are related phenomena. For small recommendation lists extreme hubs imply that
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Figure 6.5: Visualization of the indegree of the Single Gaussian (SG) measure (up-

per plots) and the Multi-Level Vector Quantization (MLVQ) approach

(lower plots). Any vertices with an indegree higher than indicated by

the dotted line are hub songs by definition.

there are many sources and vice versa (see figure 6.4). A very informal but intuitive

explanation is that hub-vertices are some sort of attractors “stealing” the links from

other vertices, which may even lead to a vertex having no incoming links at all.

Recent research on hubs [Radovanovic et al., 2009] indicates that the emergence of

hubs is a direct consequence of the high (intrinsic) dimensionality of the underlying

data. This finding explains why the smoothness of the distribution model that is

used to model the observed MFCC vectors is so crucial, which was observed in

the previous section (see figure 6.4). Intuitively, smoother distribution models

will implicitly define a music similarity space of lower intrinsic dimensionality,

which in turn will create fewer hubs and fewer sources in the emerging music

recommendation network. All in all, one can conclude that hubs are a consequence

of the curse of dimensionality, and sources are the counterpart of hubs.
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Figure 6.6: Analysis of the FM4 Soundpark. For small recommendation lists, the

number of sources is extremely large. It decreases with a growing

number of recommendations per song, whereas the maximum indegree

over all vertices in each graph increases. For a result set size of 100,

there is one song that appears in the recommendation list of 2628 other

songs, or in 34.29% of all recommendation lists.

6.3 Improving Music Recommendation Networks:

Two Approaches

As shown in the previous section both hubs and sources significantly reduce the

browsability of music recommendation networks. In this section two methods that

improve the navigability of recommendation networks are discussed. The first

approach is a graph transformation algorithm that transforms any directed rec-

ommendation graph into a undirected so-called browsing graph that under some
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conditions ensures reachability of all songs of the underlying music catalog. The

second method is based on the hubness analysis of the state-of-the-art algorithms

presented in section 5.5. The finding is that the distance space normalization

(DSN) operation that is used to combine the individual components of the similar-

ity measure significantly reduces the number of hubs and sources in the respective

music recommendation network.

6.3.1 A Graph Transformation Algorithm

The basic idea of the graph transformation algorithm presented in this section is

to modify a given directed recommendation graph in such a way that it is more

adequate to browse and explore a music recommendation network. One main ques-

tion is: Under which conditions is a graph well-suited to browse a recommendation

network?

In the following three reasonable graph properties are proposed to define a subset

of recommendation graphs that are well-suited for browsing, which will then be

called browsing graphs.

6.3.1.1 Properties of a Browsing Graph

Up to this point reachability as the only important property of a recommenda-

tion graph has been considered. In this section additional desirable properties

of recommendation graphs are derived by analyzing user requirements of music

recommender systems.

A typical requirement of many real world recommender systems is that the result

set should be relatively small — first of all, because the display space for recom-

mendations is in general limited on output devices, and secondly, because too large

result sets would confuse the user and make for a very unfocused search. Thus, it

is a natural constraint that the size of the result set should not exceed a maximum

number of recommendations kmax. For the corresponding recommendation graph
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G = (V,E) this implies that the outdegree of all vertices is less or equal to kmax.

This property is called maximum outdegree property.

∀v ∈ V : deg+(v) ≤ kmax (6.6)

The second constraint is that if item B is a recommendation for item A then

item A should also be a recommendation of item B. This corresponds not only to

humans’ intuition that similarity relations are symmetric, but also allows to easily

go back each recommendation step. The symmetry property as defined in (6.7)

implies that the browsing graph is an undirected graph.

∀e1 = (v1, u1) ∈ E :

∃e2 = (v2, u2) ∈ E : (6.7)

v1 = u2 ∧ u1 = v2

Finally, the notion of reachability is extended. Reachability just ensures that

starting from an arbitrary vertex there is at least a single path to each other

vertex. This could make it rather difficult to find this path. Therefore, we require

each vertex to have a minimum number of incoming edges. For the browsing

graph this implies that each vertex has a minimum indegree kmin and means that

each item is reachable by recommendations from at least kmin other items. This

property is called minimum indegree property.

∀v ∈ V : deg−(v) ≥ kmin (6.8)

The result from this requirement analysis is the claim that a recommendation

graph is better suited for browsing a music archive if additionally to reachability

also these three properties are ensured. Such a graph is then no longer called a rec-

ommendation graph, but a browsing graph instead. In the next section a heuristic

algorithm is presented that allows to transform a recommendation graph into such

a browsing graph and the effect of this transformation on the recommendation

quality will be evaluated.

6.3.1.2 Constructing a Browsing Graph

The main idea of the transformation algorithm is to transform a recommendation

graph into a browsing graph, simply by replacing all directed edges by undirected
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edges and then iteratively (and heuristically) removing edges from the resulting

graph so that the maximum outdegree and the minimum indegree properties are

satisfied for all vertices. The symmetry property is automatically ensured because

the graph is undirected. Furthermore, reachability is guaranteed if the resulting

graph is connected.

The proposed algorithm has three important parameters. There is the minimum

indegree kmin and the maximum outdegree kmax, which directly result from the

required properties. It is easy to see that in combination with the symmetry

property this implies that each vertex in the final browsing graph will have to

have an edge degree between kmin and kmax. The proposed algorithm starts from

the directed version of the recommendation graph. One could of course run the

algorithm based on a recommendation graph with outdegree kmax, but since we

want to give our algorithm additional flexibility during the process of removing

edges, it is required that the original recommendation graph has an outdegree of

at least kstart for all vertices. This implies that one can generate for each item at

least kstart recommendations. The three parameters are related to each other as

stated in (6.9).

kmin < kmax < kstart (6.9)

The only thing left to do is to remove edges till each vertex has a degree in between

kmin and kmax. This should be done in such a way that each vertex tries to remove

its “weakest” links (i.e., those with the lowest degree of relatedness), since the

recommendations should be as good as possible. This can be done as follows:

1. Put all vertices into a priority queue q, where all vertices are sorted according

to their degree deg(v); break ties among same-degree nodes randomly;

2. Pop the vertex with the highest degree from the queue.

3. If this vertex already has a degree smaller than or equal to kmax, then all

vertices in the queue have a degree smaller or equal to kmax. We are done.

4. As the current vertex has too many edges, remove an edge that connects

this vertex to another vertex having a degree greater than kmin. Choose

the edge to remove according to the indegree of the neighboring vertices.
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Remove the edge connecting to the vertex with the highest indegree and if

there are several vertices of the same indegree remove the vertex with the

weakest (lowest similarity) edge. If this vertex is not connected to any other

vertex having a degree greater than kmin, then we are not able to ensure the

maximum indegree property for this node. Stop in this case.

5. Since we have removed an edge, the indegrees of the two vertices connected

by the edge have changed. Remove them from the queue and reinsert them

so that the queue is up to date.

6. Go back to step 2.

One important remark is that in some cases the proposed algorithm might find a

solution where individual vertices have an edge degree higher than kmax, violating

the maximum outdegree property. This can be due to the fact that for given

constraints there simply does not exist any solution. In such a case weakening the

constraint till enough solutions to the problem exist can help. If there are enough

solutions, simply rerunning the algorithm might help, as vertices of the same edge

count are inserted into the priority queue in random order and the algorithm might

find different solutions for different runs. However, our experiments indicate that

it is quite easy to find a valid solution. Furthermore, the proposed algorithm

does not guarantee that the resulting graph is connected, but in all our conducted

experiments the resulting browsing graph turned out to be connected.

6.3.1.3 Validation of the Transformation Algorithm

To validate the proposed algorithm the resulting graph after the transformation

of the FM4 Soundpark into a browsing graph has been analyzed. The parameters

used to transform the graph were kmin = 4, kmax = 7 and kstart = 9. To verify that

the recommendation quality is approximately the same before and after the graph

transformation, the neighbour accuracy (NA) was computed for both graphs. For

all query songs q we count the number of songs in the recommendation list R(q)

that have the same genre as the query song and compute the overall percentage

relative to the number of recommended songs. That way one measures the accuracy
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of the recommendations independently of the number of the recommendations.

The accuracy of the recommendations using result sets of length k = 5 was 35.39%,

for k = 6 it was 34.86% and for k = 7 it was 34.32%. After the transformation

using the above parameters the accuracy was 35.63% with an average degree of

5.918 per vertex. This result indicates that there is only a marginal change in

recommendation quality. Furthermore, to evaluate how the reachability of songs
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Figure 6.7: The average percentage of songs that can be reached by browsing se-

quences of different lengths. Before the transformation (for k = 5, 6, 7)

and after the transformation.

has changed it was investigated how many songs can be reached on average by

a recommendation sequence of length l. To do so, for each song the number

of songs that can be reached by such a sequence was computed. This can be

done by traversing the recommendation graph using the breadth-first search (BFS)

algorithm up to a maximum depth of l. As a quality indicator for the whole

network the average over all songs was used. As one can see from figure 6.7 the

transformation algorithm radically improved the reachability of the songs in the

recommendation graph.
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6.3.1.4 Time Complexity

One major advantage of this algorithm is its low runtime complexity ofO(n log(n)).

At most n(kstart− kmin) edges have to be removed. Therefore, we have to perform

a maximum of 3n(kstart − kmin) removal or insertion operations on the sorted

priority queue. Sorting and removing elements from a priority queue can be done

in O(log(n)), e.g., by using a balanced red-black tree. Therefore, removing all the

additional edges from the graph can be done in O(n log(n)). The initial insertion

operation of all elements in the priority queue is also of complexity O(n log(n)).

Thus, the overall complexity of this algorithm is O(n log(n)), which allows to apply

this transform even to very large music catalogs. The next section in this chapter

presents the second method, namely Distance Space Normalization (DSN), that

was found to improve the navigability of music recommendation networks.

6.3.2 Distance Space Normalization

While the previous sections have been mainly focusing on recommendation net-

works resulting from frame-level similarity algorithms, in this section all music

recommendation algorithms presented in Chapters 4 and 5 are compared with re-

spect to the reachability within the emerging recommendation network. Hence,

the number of hubs and the number of sources were determined for each algo-

rithm. Dataset “1517-Artists” and recommendation lists of length l = 10 were

used. Table 6.3.2 summarizes the result. Obviously, those algorithms (BLS and

TAG) that use the Distance Space Normalization (DSN) approach presented in

5.3.1 to combine individual components produce only a marginal number of hubs

and sources. To verify the assumption that the lower number of hubs and sources

is a consequence of the DSN approach, the distance matrices produced by all al-

gorithms are finally normalized using the DSN method. It can be seen from table

6.3.2 that the DSN efficiently reduces both the number of hubs and the number of

sources.

Still some hubs and sources remain in the recommendation network, but their

number is significantly reduced. Furthermore, it seems that those algorithms that
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unmodified using final DSN

Approach #hubs #sources #hubs #sources

BLS 10 23 6 13

RTBOF 104 236 16 62

SG 244 599 156 224

MLVQ 78 145 4 46

G1C 143 517 65 81

MARSYAS 144 208 39 13

TAG 10 18 8 17

TAGVS 82 121 9 16

Table 6.1: Number of hubs for unmodified similarity algorithms and after finally

applying a DSN measured on dataset “1517-Artists”.

combine many components (BLS and TAG) produce the fewest sources and hubs.

Thus, not only DSN reduces the number of hubs, but also combining different

similarity components leads to a reduction of these navigation issues. This finding

that combining many components reduces the number of hubs and sources is in line

with some recent research work of Flexer et al. [Flexer et al., 2010], who show that

the combination of two well-known similarity measures reduces the number of hubs

of the combined similarity algorithm. Therefore, also from a network perspective

it seems advisable to combine many components using the DSN operation and as

a last step once more normalize the combined distance matrix, which is then called

Extended Distance Space Normalization (see 5.3.2). However, the main drawback

of the DSN approach is that the runtime of the DSN is O(n2) and consequently

the DSN is not a practical solution for large music catalogs containing millions

of songs. So one important future research direction will be to try to reduce the

runtime complexity of the DSN operation to make similarity measures based on

DSN applicable even for very large music catalogs.
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6.4 Conclusions

In this chapter the reachability of top-N music recommender systems has been in-

vestigated. The theoretical findings are that vertices that are not reachable (called

sources) naturally exist in any recommendation network independently of the rec-

ommendation approach. It could also be theoretically shown that the number of

sources exponentially decreases with increasing number of recommendations per

query. However, empirical analysis of recommendation networks shows that the

number of unreachable items in a recommendation graph can be a problem for

any real world recommender system, as the number of sources in a recommen-

dation network depends on the intrinsic dimensionality of the underlying data.

Additionally, it was argued that hubs and sources are related phenomena. Finally,

two approaches to reduce these navigation issues of music recommendation net-

works have been proposed. While it could be shown that similarity algorithms

that make use of the distance normalization approach do no longer suffer from

the hub-problem that much, also a graph transformation algorithm has been pro-

posed. In contrast to the DSN approach, which has a runtime complexity of O(N2)

this graph transformation algorithm has only a runtime complexity of O(N logN).

Therefore, for small and medium datasets algorithms that combine many compo-

nents using the DSN method is recommended. For large and very large datasets it

is advisable to use vector space music similarity measure, for example the TAGVS

algorithm, in combination with the graph transformation algorithm to improve the

navigability of the recommendation network.



7 Conclusions and Future Work

The goal of this thesis was to identify ways to further improve content-based

music recommender systems. For this reason music recommender systems and

their evaluation have been studied in detail on two different abstraction layers.

The obtained results and conclusions can be summarized as follows:

� With respect to the evaluation of content-based music recommender systems

it is important to note the difference between music recommendation and

music similarity. In a recommendation context only non-trivial similarity

relations among songs are of interest. For this purpose it is important to use

an artist or portfolio filter, whenever content-based music recommender sys-

tems are evaluated via genre classification based quality indicators, so that

no over-optimistic quality estimates are reported. Additionally, it turned out

that within an evaluation different datasets and evaluation metrics should

be considered to provide a comprehensive overview of the obtainable recom-

mendation quality, as the obtained results can vary depending on both the

used dataset and the used evaluation metric.

� The conducted experiments analyzing frame-level similarity revealed that

BoF approaches are difficult to improve and are in general limited in their

ability to identify interesting musical similarities among songs. Three lim-

iting factors have been identified: BoF approaches are not pitch invariant,

cannot identify existing similarity relations in case of multiple sound sources

and do not capture any temporal information of the analyzed signal. The

latter reason was addressed by introducing so-called block-level features that

can also capture some temporal information of audio signals.

178
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� To make this novel feature set applicable to music recommendation three

music similarity measures based on this block-level feature set have been

defined (BLS, TAG, TAGVS). Especially the auto-tag based variants (TAG,

TAGVS) seem to be an adequate choice to generate music recommendation.

In contrast to music similarity algorithms that directly estimate similarity

using the extracted audio features, auto-tag based music recommendation

algorithms have a semantic interpretable representation. This, for example,

allows to explain the generated recommendations and also allows to support

exploring the music space using the predicted tags. Furthermore, auto-tag

based music similarity algorithms are easy to improve and extend. To im-

prove the quality of an auto-tag based algorithm one can either add new

features to the training process, or one can learn new semantic attributes

from other tag or genre datasets. Another advantage of the auto-tag based

approach (TAGVS) is that it can be used in combination with more power-

ful search strategies. Consequently, this method is extremely scalable, which

makes it a feasible solution even for very large music collections. Altogether,

it seems that auto-tag music similarity algorithms will be the future trend

in the field of content-based music recommendation.

� However, the listening experiment presented in chapter 3.4.2 revealed that

in general collaborative approaches outperform both automatic methods as

well as individual human performances with respect to the task of music cat-

egorization. This indicates that collaborative music recommender systems

outperform content-based music recommender systems in terms of recom-

mendation quality. This raises the question about the future role of content-

based music recommender systems. It seems that purely content-based music

recommender systems will only be useful in an application context where no

access to collaboratively collected metadata is possible or no metadata is

available at all. Nevertheless, there will be a growing interest in content-

based recommender systems as content-based techniques will be one impor-

tant component of more complex hybrid music recommenders, for example

to resolve the cold-start problem.

� Finally, also the navigability of music recommender systems has been stud-
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ied. The empirical analysis of music recommendation networks shows that

the number of unreachable items in the corresponding recommendation graph

can be a problem for any real world recommender. Even more important are

the obtained theoretic findings. It could be shown that vertices that are

not reachable (called sources) naturally exist in any recommendation net-

work (not only in music recommendation networks) and are not a specific

property of the underlying recommendation approach. Another important

theoretic finding is that the number of sources exponentially decreases with

an increasing number of recommendations per query. As a consequence, in

general it is advisable to present users longer recommendation lists. Alto-

gether, the conducted network analysis showed that a straightforward top-N

recommendation approach is not ideal to explore an item catalog and that

navigation issues should be considered already during the development phase

of recommendation engines.

Regarding future research work there are at least two major research directions

that should be investigated:

One future research direction could focus on improving the quality of automatic tag

predictions, as this would directly improve the quality of music recommendation

engines that are based on auto-tags. Thus, one idea would be to collect user

feedback on auto-tags for songs that have not yet been manually annotated. This

way the user feedback could be used to acquire additional ground truth data that

could then be used to retrain the tag classifiers.

Another future research direction would be to concentrate on the audio feature

side. To improve the quality of audio features decomposing music signals into

multiple sources would be an important step. As a first starting point it should

be explored how simple decomposition techniques like the percussive-harmonic

decomposition presented in [Pohle et al., 2010] would affect the quality of audio

features.
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’103-Artists’

Figure 9.1: Visualization of the class distribution.

genre #tracks #artists

Blues 63 100

Jazz 63 103

Reggae 44 87

Death Metal 69 103

Trance 106 82

Punk 255 83

Electronic 63 46

Eurodance 96 98

Acid Jazz 68 86

Folk-Rock 234 117

Celtic 132 116

Acapella 112 92

Drum & Bass 71 113

Heavy Metal 242 76

Bossa Nova 72 76

Downtempo 116 71

German Hip Hop 123 74

Hard Core Rap 137 98

Italian 142 68

Jazz Guitar 70 72

Melodic Metal 167 72

total 2445 1517

Table 9.1: Detailed song and artist distribution.
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’1517-Artists’

Figure 9.2: Visualization of the class distribution.

genre #tracks #artists

Blues 186 100

Country 187 103

Hip-Hop 155 87

Jazz 177 103

New Age 175 82

Reggae 172 83

Classical 125 46

Folk 185 98

Latin 163 86

Rock & Pop 181 117

Alternative & Punk 182 116

Electronic & Dance 164 92

R&B & Soul 175 113

World 158 76

Religious 172 71

Children’s 164 74

Easy Listening & Vocals 175 98

Comedy & Spoken Word 134 68

Soundtracks & More 150 72

total 3180 1517

Table 9.2: Detailed song and artist distribution.
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’Annotated’

Figure 9.3: Visualization of the class distribution.

genre #tracks #artists

Alternative & Punk 10 10

Blues 10 10

Childrens’s 10 10

Classical 10 10

Comedy & Spoken Word 10 10

Country 10 10

Easy Listening 10 10

Electronic & Dance 10 10

Vocals 10 10

Hip-Hop 10 10

Jazz 10 10

Latin 10 10

New Age 10 10

R&B & Soul 10 10

Reggae 10 10

Rock & Pop 10 10

Soundtracks & More 10 10

Folk 10 10

World & More 10 10

total 190 190

Table 9.3: Detailed song and artist distribution.
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’Unique’

Figure 9.4: Visualization of the class distribution.

genre #tracks #artists

blues 41 41

country 58 58

dance 766 766

electronica 187 187

hip-hop 229 229

jazz 310 310

klassik 744 744

reggae 74 74

rock 398 398

schlager 59 59

soul rnb 39 39

volksmusik 38 38

world 146 146

wort 26 26

total 3115 3115

Table 9.4: Detailed song and artist distribution.
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’GTZAN’

Figure 9.5: Visualization of the class distribution.

genre #tracks #artists

blues 10 N/A

classical 10 N/A

country 10 N/A

disco 10 N/A

hiphop 10 N/A

jazz 10 N/A

metal 10 N/A

pop 10 N/A

reggae 10 N/A

rock 10 N/A

total 1000 N/A

Table 9.5: Detailed song and artist distribution.
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’Homburg’

Figure 9.6: Visualization of the class distribution.

genre #tracks #artists

alternative 145 121

blues 120 80

electronic 113 97

folkcountry 222 177

funksoulrnb 47 39

jazz 319 214

pop 116 106

raphiphop 300 210

rock 504 448

total 1886 1463

Table 9.6: Detailed song and artist distribution.
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’ISMIR 2004 Genre’

Figure 9.7: Visualization of the class distribution.

genre #tracks #artists

classical 640 N/A

electronic 229 N/A

jazz blues 52 N/A

metal punk 90 N/A

rock pop 203 N/A

world 244 N/A

total 1458 N/A

Table 9.7: Detailed song and artist distribution.
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